JP2008304409A - Acceleration detecting unit and acceleration sensor - Google Patents

Acceleration detecting unit and acceleration sensor Download PDF

Info

Publication number
JP2008304409A
JP2008304409A JP2007153637A JP2007153637A JP2008304409A JP 2008304409 A JP2008304409 A JP 2008304409A JP 2007153637 A JP2007153637 A JP 2007153637A JP 2007153637 A JP2007153637 A JP 2007153637A JP 2008304409 A JP2008304409 A JP 2008304409A
Authority
JP
Japan
Prior art keywords
acceleration
tuning fork
fork type
fixed
type piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007153637A
Other languages
Japanese (ja)
Inventor
Jun Watanabe
潤 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007153637A priority Critical patent/JP2008304409A/en
Publication of JP2008304409A publication Critical patent/JP2008304409A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration detecting unit that has high measurement accuracy and sensitivity of acceleration and does not break even if excessive stress is applied. <P>SOLUTION: This acceleration detecting unit has a fixing member 5 that is not displaced by acceleration application, a bi-tuning fork type piezoelectric vibrating element 10 having two fixed ends connected to a stress sensitive section so as to grip the stress sensitive section, a weight member 15, and a buffer member 22. The fixing member 5 has a step section 5b and a recessed section 5a. The weight member 15 is fixed to one fixed end 10a of the bi-tuning fork type piezoelectric vibrating element 10, and the other fixed end 10b is stuck and fixed to the step section 5b of the fixing member 5 using an adhesive 20. The weight member 15 fixed to the one fixed end 10a of the bi-tuning fork type piezoelectric vibrating element 10 is supported on the bottom surface of the recessed section 5a of the fixing member 5 via the buffer member 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加速度検知ユニット及び加速度センサに関し、特に応力感応素子として双音叉型圧電振動素子を用い、該双音叉型圧電振動素子に加わる過度の応力に耐えられるように改善された加速度検知ユニット、及び加速度センサに関する。   The present invention relates to an acceleration detection unit and an acceleration sensor, in particular, a double tuning fork type piezoelectric vibration element as a stress sensitive element, and an improved acceleration detection unit that can withstand excessive stress applied to the double tuning fork type piezoelectric vibration element, And an acceleration sensor.

加速度センサは、従来から自動車、航空機、ロケットから各種プラントの異常振動監視等にまで、広く使用されている。特許文献1には、加速度あるいは回転速度を測定することができる運動量センサが開示されている。図4は1次元の加速度を検出する加速度センサの平面図であり、印加された加速度を振動体の固有振動数の変化として検出するセンサである。センサ全体は金属あるいは圧電材料の板材を図示形状に打ち抜いて形成される。枠型振動体40の図中左端は固定部材45と一体であり、その最左端は基台に固定されている。右端は連結部53を介して付加質量47に固着され、図示した矢印G方向の加速度成分を検出する。両端を連結された振動脚51、52よりなる枠型の振動体40は、両者のバネ軸は平行であるが、図中破線で示したように、枠の長手方向の中心軸の両側に対称的に振動する屈曲振動を励振される。
この自由振動状態の枠の長手方向の両端に引っ張り力、あるいは圧縮力を印加すると、力に応じて振動数が変化し、その変化量から力の大きさを測定する。固定部材45の周囲は外枠状をしており、付加質量を支えると共に、その左右方向への直線運動のガイド部材を兼用している。
Conventionally, acceleration sensors have been widely used from automobiles, airplanes, rockets to monitoring abnormal vibrations of various plants. Patent Document 1 discloses a momentum sensor capable of measuring acceleration or rotational speed. FIG. 4 is a plan view of an acceleration sensor that detects one-dimensional acceleration, and is a sensor that detects applied acceleration as a change in the natural frequency of the vibrating body. The entire sensor is formed by punching a metal or piezoelectric material plate into the illustrated shape. The left end of the frame-type vibrating body 40 in the figure is integral with the fixing member 45, and the leftmost end is fixed to the base. The right end is fixed to the additional mass 47 via the connecting portion 53 and detects the acceleration component in the direction of arrow G shown in the figure. In the frame-shaped vibrating body 40 composed of the vibrating legs 51 and 52 connected at both ends, the spring axes of both are parallel, but as shown by the broken lines in the figure, they are symmetrical on both sides of the central axis in the longitudinal direction of the frame. Is excited by bending vibration.
When a tensile force or a compressive force is applied to both ends in the longitudinal direction of the frame in the free vibration state, the frequency changes according to the force, and the magnitude of the force is measured from the amount of change. The periphery of the fixing member 45 has an outer frame shape, and supports an additional mass and also serves as a guide member for linear motion in the left-right direction.

図5は2次元の加速度センサを示す平面図であり、図4に示した枠型の振動体40と同様な4個の枠型の振動体41〜44を備えている。これらはほぼ同一形状を有し、1枚の板状素材から一体形成される。61〜68は夫々振動脚、53、73、74、75は連結部、47は付加質量で、4個の枠型振動体41〜44はその連結部が中心の付加質量47に連結されて、その周囲に90°間隔で放射状に配置され、それらの外端は固定部材46と一体となっている。
4個の枠型振動体41〜44は、図示しない電気−機械変換器と発振回路とによって自励振動している。図5の上下方向の加速度成分については、付加質量47の慣性力による枠型振動体41、43の周波数変化量を、水平方向の加速度成分は枠型振動体42、44の周波数変化量を測定することにより求めることができる。また、両成分の大きさと符号の比較により、センサ面内の任意の方向の加速度Gθを求めることができると記述されている。
特開2000−206141公報 特開昭60−39911号公報
FIG. 5 is a plan view showing a two-dimensional acceleration sensor, and includes four frame-shaped vibrating bodies 41 to 44 similar to the frame-shaped vibrating body 40 shown in FIG. These have substantially the same shape and are integrally formed from a single plate-like material. 61 to 68 are vibrating legs, 53, 73, 74, and 75 are connecting portions, 47 is an additional mass, and the four frame-type vibrating bodies 41 to 44 are connected to the additional mass 47 at the center, The outer ends thereof are arranged radially at intervals of 90 °, and their outer ends are integrated with the fixing member 46.
The four frame-type vibrating bodies 41 to 44 are self-excited by an electro-mechanical converter and an oscillation circuit (not shown). For the acceleration component in the vertical direction in FIG. 5, the frequency change amount of the frame-type vibrators 41 and 43 due to the inertial force of the additional mass 47 is measured, and for the horizontal acceleration component, the frequency change amount of the frame-type vibrator members 42 and 44 is measured. Can be obtained. Further, it is described that the acceleration Gθ in an arbitrary direction in the sensor plane can be obtained by comparing the magnitude and sign of both components.
JP 2000-206141 A JP 60-39911 A

しかしながら、特許文献1に記載の加速度センサでは、枠型振動体に対して垂直方向に過度の加速度が加わった場合、枠型振動体の変位に対して保護装置がなく、破損する虞があるという問題があった。また、垂直方向の加速度に対して全ての枠型振動体の周波数が変化し、測定誤差を引き起こすという問題もあった。
本発明は上記問題を解決するためになされたもので、過度の力、加速度が加わった場合に対応した加速度検知ユニット及び加速度センサを提供することにある。
However, in the acceleration sensor described in Patent Document 1, when excessive acceleration is applied in the vertical direction with respect to the frame-type vibrating body, there is no protection device against the displacement of the frame-type vibrating body, and there is a risk of damage. There was a problem. In addition, the frequency of all the frame-type vibrating bodies changes with respect to the acceleration in the vertical direction, causing a measurement error.
The present invention has been made to solve the above problems, and it is an object of the present invention to provide an acceleration detection unit and an acceleration sensor corresponding to a case where excessive force or acceleration is applied.

上記目的を達成するため、本発明の加速度センサは、段差部と該段差部より張り出した凹陥部とを有し、加速度印加によって変位しない固定部材と、応力感応部と該応力感応部を挟むよう該応力感応部と連結された2つの固定端部とを有する双音叉型圧電振動素子と、双音叉型圧電振動素子の一方の固定端部に固定された重り部材と、双音叉型圧電振動素子の他方の固定端部を固定部材の段差部に固定した状態で重り部材と凹陥部との間に設けられる緩衝部材と、を備えたことを特徴とする。
また本発明の加速度センサは、重り部材を重心が固定端部の厚さの中心となるように固定する。また本発明の加速度センサは、重り部材を固定端部の一方の面に固定する。
以上のように加速度検知ユニットを構成すると、検出軸方向の加速度が印加された場合には、緩衝部材は容易に変形するので、加速度の測定精度、感度に影響を及ぼすことはない。過度の応力、加速度が加わった場合には、緩衝部材がその力を吸収するので、応力感応素子としての双音叉型圧電素子が破損することはないという効果がある。
また本発明の加速度センサは、本発明の加速度検知ユニットを備えたことを特徴とする。本発明のように加速度センサを構成すると、加速度の測定精度、感度が良好で、過度の応力、加速度に耐える加速度センサが得られるという効果がある。
In order to achieve the above object, an acceleration sensor according to the present invention has a stepped portion and a recessed portion protruding from the stepped portion so as to sandwich a fixing member that is not displaced by application of acceleration, a stress sensitive portion, and the stress sensitive portion. A double tuning fork type piezoelectric vibration element having two fixed ends connected to the stress sensitive part, a weight member fixed to one fixed end of the double tuning fork type piezoelectric vibration element, and a double tuning fork type piezoelectric vibration element And a buffer member provided between the weight member and the recessed portion in a state where the other fixed end portion is fixed to the step portion of the fixing member.
In the acceleration sensor of the present invention, the weight member is fixed so that the center of gravity is the center of the thickness of the fixed end. In the acceleration sensor of the present invention, the weight member is fixed to one surface of the fixed end portion.
When the acceleration detection unit is configured as described above, when the acceleration in the detection axis direction is applied, the buffer member is easily deformed, so that the measurement accuracy and sensitivity of the acceleration are not affected. When excessive stress or acceleration is applied, the buffer member absorbs the force, so that there is an effect that the double tuning fork type piezoelectric element as the stress sensitive element is not damaged.
The acceleration sensor of the present invention is characterized by including the acceleration detection unit of the present invention. When the acceleration sensor is configured as in the present invention, there is an effect that an acceleration sensor with good measurement accuracy and sensitivity of acceleration and withstanding excessive stress and acceleration can be obtained.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、第1の実施の形態の加速度検知ユニット1を示す図であり、同図(a)は平面図、同図(b)はQ−Qにおける断面図である。加速度検知ユニット1は、加速度印加によって変位しない固定部材5と、応力感応部を挟むよう応力感応部と連結された2つの固定端部とを有する双音叉型圧電振動素子10と、重り部材15と、緩衝部材22と、を備えている。固定部材5は段差部5bとこの段差部5bより張り出した凹陥部5aとを有している。重り部材15は、双音叉型圧電振動素子10の一方の固定端部10aに、重り部材15の重心が固定端部10aの厚さの中心にあるように固定され、双音叉型圧電振動素子10の他方の固定端部10bは、固定部材5の段差部5bに接着剤20を用いて接着固定されている。そして、双音叉型圧電振動素子10の一方の固定端部10aに固定された重り部材15は、緩衝部材22を介して固定部材5の凹陥部5aの底面に支持されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A and 1B are diagrams showing an acceleration detection unit 1 according to the first embodiment. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line Q-Q. The acceleration detection unit 1 includes a fixed member 5 that is not displaced by application of acceleration, a double tuning fork type piezoelectric vibration element 10 having two fixed ends connected to the stress sensitive part so as to sandwich the stress sensitive part, and a weight member 15. The buffer member 22 is provided. The fixing member 5 has a step portion 5b and a recessed portion 5a protruding from the step portion 5b. The weight member 15 is fixed to one fixed end portion 10a of the double tuning fork type piezoelectric vibration element 10 so that the center of gravity of the weight member 15 is at the center of the thickness of the fixed end portion 10a. The other fixed end portion 10 b is bonded and fixed to the step portion 5 b of the fixing member 5 using an adhesive 20. The weight member 15 fixed to one fixed end portion 10 a of the double tuning fork type piezoelectric vibration element 10 is supported by the bottom surface of the recessed portion 5 a of the fixed member 5 via the buffer member 22.

本発明の理解を得るため、双音叉型圧電振動素子について若干説明する。特許文献2には双音叉型圧電振動素子の電極構造が開示されている。図6(a)は双音叉型圧電振動素子の平面図であり、各振動腕部81a、81bには3分割した励振電極を形成する。励振電極は振動の節となる線に沿って分割され、分割線の相隣り合う励振電極には逆極性の電圧を印加するように電極を接続する。励振電極の分割線は、振動腕部81a(81b)の長さをLとすると、両固定端部80a、80bの中央寄りの端から夫々0.255Lの所である。また、図6(b)は同図(a)のA−Aにおける断面図であり、励振電極の接続方法を示した図である。つまり、各振動腕部81a、81bの表裏面に第1、第2及び第3の励振電極を形成すると共に、夫々の両側面に第4、第5及び第6の励振電極を形成する。図6(b)に示すように各振動腕部81a、81bの表裏面及び両側面の対向する励振電極同士を接続し、各振動腕部81a、81bの対応する励振電極に逆極成の高周波電圧が印加されるようにして、双音叉型圧電振動素子の中心軸の両側に対称な屈曲振動を励振するようにする。   In order to gain an understanding of the present invention, a double tuning fork type piezoelectric vibration element will be described briefly. Patent Document 2 discloses an electrode structure of a double tuning fork type piezoelectric vibration element. FIG. 6A is a plan view of a double tuning fork type piezoelectric vibration element. Excitation electrodes divided into three are formed on the respective vibrating arm portions 81a and 81b. The excitation electrode is divided along a line serving as a vibration node, and the electrodes are connected so that voltages of opposite polarities are applied to the excitation electrodes adjacent to each other of the division line. The dividing line of the excitation electrode is 0.255L from the ends of the fixed end portions 80a and 80b near the center, where L is the length of the vibrating arm portion 81a (81b). FIG. 6B is a cross-sectional view taken along the line AA of FIG. 6A and shows a connection method of the excitation electrodes. That is, the first, second, and third excitation electrodes are formed on the front and back surfaces of the vibrating arm portions 81a, 81b, and the fourth, fifth, and sixth excitation electrodes are formed on both side surfaces. As shown in FIG. 6B, the excitation electrodes facing each other on the front and back surfaces and both side surfaces of the vibrating arm portions 81a and 81b are connected to each other and the corresponding excitation electrodes of the vibrating arm portions 81a and 81b are oppositely polarized high frequency. A voltage is applied to excite symmetrical bending vibrations on both sides of the central axis of the double tuning fork type piezoelectric vibration element.

特に水晶材料を用いて双音叉型圧電振動素子を構成すると、周波数の温度特性、周波数安定性、応力感度が優れた加速度検知ユニットが構成できる。本実施形態例では、応力感応素子として2本の振動腕部を備えた双音叉型水晶振動素子を用いている。双音叉型水晶振動素子は伸張・圧縮応力に対する感度が良好であり、高度計用、或いは深度計用の応力感応素子として使用した場合には分解能力が優れるために僅かな気圧差から高度差、深度差を知ることができる。
双音叉型水晶振動素子の2本の振動腕に外力Fを加えたときの共振周波数fFは以下の如くである。
F=f0(1−(KL2F)/(2EI))1/2 (1)
ここで、f0は外力がないときの双音叉型水晶振動素子の共振周波数、Kは基本波モードによる定数(=0.0458)、lは振動ビームの長さ、Eは縦弾性定数、Iは断面2次モーメントである。断面2次モーメントIはI=dw3/12より、式(1)は次式のように変形することができる。ここで、dは振動ビームの厚さ、wは幅である。
F=f0(1−SFσ)1/2 (2)
但し、応力感度SFと、応力σとはそれぞれ次式で表される。
F=12(K/E)(L/w)2 (3)
σ=F/(2A) (4)
In particular, when a double tuning fork type piezoelectric vibration element is configured using a quartz material, an acceleration detection unit having excellent frequency temperature characteristics, frequency stability, and stress sensitivity can be configured. In the present embodiment example, a double tuning fork type crystal vibrating element having two vibrating arms is used as the stress sensitive element. The double tuning fork type quartz vibrating element has good sensitivity to tensile and compressive stress, and when used as a stress sensitive element for altimeter or depth gauge, it has excellent decomposition ability. You can know the difference.
The resonance frequency f F when the external force F is applied to the two vibrating arms of the double tuning fork type crystal vibrating element is as follows.
f F = f 0 (1- (KL 2 F) / (2EI)) 1/2 (1)
Here, f 0 is the resonance frequency of the double tuning fork type quartz vibrating element when there is no external force, K is a constant according to the fundamental mode (= 0.0458), l is the length of the vibrating beam, E is the longitudinal elastic constant, I Is the moment of inertia of the cross section. Second moment I are from I = dw 3/12, the equation (1) can be modified as follows. Here, d is the thickness of the vibration beam, and w is the width.
f F = f 0 (1−S F σ) 1/2 (2)
However, the stress sensitivity SF and the stress σ are respectively expressed by the following equations.
S F = 12 (K / E) (L / w) 2 (3)
σ = F / (2A) (4)

以上から双音叉型振動素子に作用する力Fを圧縮方向のとき負、伸張方向(引張り方向)を正としたとき、力Fと共振周波数fFの関係は、力Fが圧縮で共振周波数fFが減少し、伸張(引張り)では増加する。また応力感度SFは振動ビームのl/wの2乗に比例する。しかし、圧電振動素子としては、双音叉型水晶振動素子に限らず、伸張・圧縮応力によって周波数が変化する圧電振動素子であればどのようなものを用いても良い。 From the above, when the force F acting on the double tuning fork type vibration element is negative in the compression direction and positive in the extension direction (tensile direction), the relationship between the force F and the resonance frequency f F is the resonance frequency f. F decreases and increases with stretching (tensile). The stress sensitivity S F is proportional to the square of l / w of the vibrating beam. However, the piezoelectric vibration element is not limited to a double tuning fork type crystal vibration element, and any piezoelectric vibration element whose frequency changes due to stretching / compression stress may be used.

図1に示した加速度検知ユニット1の特徴は、双音叉型圧電振動素子10の一方の固定端部10aに固定された重り部材15と、固定部材5の凹陥部5aの底面との間に緩衝部材22として、例えばシリコン接着剤を挟んだことである。加速度検知ユニット1の加速度検出軸は、図1(b)の矢印G方向である。矢印方向に加速度が印加された場合は、緩衝部材22は十分に柔らかいので加速度αに応じてα×m(mは重り部材を含めた質量)の力Fが、双音叉型圧電振動素子10に加わり、この応力Fに応じて双音叉型圧電振動素子10の周波数が変化する。双音叉型圧電振動素子10の端子電極は発振器に接続されており、自励発振の状態で加速度ユニットを用いる。
従来の加速度検知ユニットでは、双音叉型圧電振動素子10に対し垂直方向に過度の力、加速度が加えられた場合には、双音叉型圧電振動素子10の弾性限界を超え、破損する虞が多々あった。これに対し、本発明の加速度検知ユニット1では、重り部材15と固定部材5との間に弾力性のある緩衝部材22を挟んで構成されているので、過度の力、加速度に対しても緩衝部材22がその力を吸収するので、応力感応素子としての双音叉型圧電素子は破損しないという効果がある。
The acceleration detection unit 1 shown in FIG. 1 is characterized in that a buffer is provided between the weight member 15 fixed to one fixed end portion 10a of the double tuning fork type piezoelectric vibration element 10 and the bottom surface of the recessed portion 5a of the fixed member 5. For example, a silicon adhesive is sandwiched between the members 22. The acceleration detection axis of the acceleration detection unit 1 is in the direction of arrow G in FIG. When acceleration is applied in the direction of the arrow, the buffer member 22 is sufficiently soft, and a force F of α × m (m is the mass including the weight member) according to the acceleration α is applied to the double tuning fork type piezoelectric vibration element 10. In addition, the frequency of the double tuning fork type piezoelectric vibration element 10 changes according to the stress F. A terminal electrode of the double tuning fork type piezoelectric vibration element 10 is connected to an oscillator, and an acceleration unit is used in a self-excited oscillation state.
In the conventional acceleration detection unit, when an excessive force or acceleration is applied in the vertical direction to the double tuning fork type piezoelectric vibration element 10, the elastic limit of the double tuning fork type piezoelectric vibration element 10 is exceeded, and there is a risk of damage. there were. On the other hand, in the acceleration detection unit 1 of the present invention, since the elastic buffer member 22 is sandwiched between the weight member 15 and the fixed member 5, buffering is performed against excessive force and acceleration. Since the member 22 absorbs the force, there is an effect that the double tuning fork type piezoelectric element as the stress sensitive element is not damaged.

図2は、加速度検知ユニットの第2の実施の形態の構成を示す断面図である。加速度印加によって変位しない固定部材5と、応力感応部と応力感応部を挟むよう応力感応部と連結した2つの固定端部とを有する双音叉型圧電振動素子10と、を備えている。重り部材15は双音叉型圧電振動素子10の一方の固定端部10aの一方の面(下側)に固定され、双音叉型圧電振動素子10の他方の固定端部10bは固定部材5の段差部5bに接着剤を用いて接着固定されている。そして、双音叉型圧電振動素子10の一方の固定端部に固定された前記重り部材15は緩衝部材22を介して固定部材5の凹陥部5aに支持されている。
この場合も図1(b)に示した第1の実施の形態と同様に、加速度検知ユニット1の加速度検出軸は、図2の矢印G方向である。矢印方向に加速度が印加されると、緩衝部材22は弾性を有するので、加速度αによる力Fが双音叉型圧電振動素子10に加わる。この応力Fに応じて双音叉型圧電振動素子10の周波数が変化する。双音叉型圧電振動素子10に垂直方向から過大な力が加わると、双音叉型圧電振動素子10もその方向に若干変形するが、緩衝部材22がその応力を吸収するので、応力感応素子としての双音叉型圧電素子は破損しないという効果がある。
FIG. 2 is a cross-sectional view showing the configuration of the second embodiment of the acceleration detection unit. A double tuning fork type piezoelectric vibration element 10 having a fixed member 5 that is not displaced by application of acceleration and two fixed end portions connected to the stress sensitive portion so as to sandwich the stress sensitive portion is provided. The weight member 15 is fixed to one surface (lower side) of one fixed end portion 10 a of the double tuning fork type piezoelectric vibration element 10, and the other fixed end portion 10 b of the double tuning fork type piezoelectric vibration element 10 is a step of the fixing member 5. The part 5b is bonded and fixed using an adhesive. The weight member 15 fixed to one fixed end portion of the double tuning fork type piezoelectric vibration element 10 is supported by the recessed portion 5 a of the fixing member 5 via the buffer member 22.
In this case as well, as in the first embodiment shown in FIG. 1B, the acceleration detection axis of the acceleration detection unit 1 is in the direction of arrow G in FIG. When acceleration is applied in the direction of the arrow, the buffer member 22 has elasticity, so that a force F due to the acceleration α is applied to the double tuning fork type piezoelectric vibration element 10. In response to the stress F, the frequency of the double tuning fork type piezoelectric vibration element 10 changes. When an excessive force is applied to the double tuning fork type piezoelectric vibration element 10 from the vertical direction, the double tuning fork type piezoelectric vibration element 10 is also slightly deformed in that direction, but the buffer member 22 absorbs the stress, so that The double tuning fork type piezoelectric element has the effect of not being damaged.

図3は、本実施の形態の加速度センサの構成を示す断面図である。加速度センサは、上記の加速度検知ユニット1と、発振回路30と、データ処理部32と、これらを収容するハウジング35と、このハウジング35を密封するための蓋部材36から構成される。
本発明の加速度センサは加速度の感度、精度が優れているのみならず、過度の応力が加わった場合でも応力感応部の双音叉型圧電振動素子が破損しないという特徴を有す。
FIG. 3 is a cross-sectional view showing the configuration of the acceleration sensor of the present embodiment. The acceleration sensor includes the acceleration detection unit 1, the oscillation circuit 30, the data processing unit 32, a housing 35 that accommodates these, and a lid member 36 that seals the housing 35.
The acceleration sensor of the present invention has not only excellent acceleration sensitivity and accuracy, but also has a feature that even if excessive stress is applied, the double tuning fork type piezoelectric vibration element of the stress sensitive portion is not damaged.

第1の実施の形態の加速度検知ユニットの構成を示した図であり、(a)は平面図、(b)は断面図である。It is the figure which showed the structure of the acceleration detection unit of 1st Embodiment, (a) is a top view, (b) is sectional drawing. 第2の実施の形態の加速度検知ユニットの構成を示す断面図である。It is sectional drawing which shows the structure of the acceleration detection unit of 2nd Embodiment. 本実施の形態の加速度検センサの構成を示す断面図である。It is sectional drawing which shows the structure of the acceleration sensor of this Embodiment. 従来の1次元加速度センサの構成を示す平面図である。It is a top view which shows the structure of the conventional one-dimensional acceleration sensor. 従来の2次元加速度センサの構成を示す平面図である。It is a top view which shows the structure of the conventional two-dimensional acceleration sensor. 従来の双音叉型圧電振動素子の構成を示す図であり、(a)は平面図、(b)は断面図である。It is a figure which shows the structure of the conventional double tuning fork type piezoelectric vibration element, (a) is a top view, (b) is sectional drawing.

符号の説明Explanation of symbols

1、2…加速度検知ユニット、5…固定部材、5a…凹陥部、5b…段差部、10…双音叉型圧電振動素子、10a…双音叉型圧電振動素子の一方の端部、10b…双音叉型圧電振動素子の一方の端部、15重り部材、20…接着剤、22…緩衝部材、30…発振回路、32…データ処理、35…ハウジング、36…蓋部材   DESCRIPTION OF SYMBOLS 1, 2 ... Acceleration detection unit, 5 ... Fixed member, 5a ... Recessed part, 5b ... Step part, 10 ... Double tuning fork type piezoelectric vibration element, 10a ... One end of double tuning fork type piezoelectric vibration element, 10b ... Double tuning fork One end of the piezoelectric piezoelectric element, 15 weight member, 20 ... adhesive, 22 ... buffer member, 30 ... oscillation circuit, 32 ... data processing, 35 ... housing, 36 ... lid member

Claims (2)

段差部と該段差部より張り出した凹陥部とを有し、加速度印加によって変位しない固定部材と、
応力感応部と該応力感応部を挟むよう該応力感応部と連結された2つの固定端部とを有する双音叉型圧電振動素子と、
前記双音叉型圧電振動素子の一方の固定端部に固定された重り部材と、
前記双音叉型圧電振動素子の他方の固定端部を前記固定部材の段差部に固定した状態で前記重り部材と前記凹陥部との間に設けられる緩衝部材と、
を備えたことを特徴とする加速度検知ユニット。
A fixing member having a stepped portion and a recessed portion protruding from the stepped portion, and not displaced by application of acceleration;
A double tuning fork type piezoelectric vibration element having a stress sensitive part and two fixed ends connected to the stress sensitive part so as to sandwich the stress sensitive part;
A weight member fixed to one fixed end of the double tuning fork type piezoelectric vibration element;
A buffer member provided between the weight member and the recessed portion in a state in which the other fixed end portion of the double tuning fork type piezoelectric vibration element is fixed to the step portion of the fixing member;
An acceleration detection unit comprising:
請求項1に記載の加速度検知ユニットを備えたことを特徴とする加速度センサ。   An acceleration sensor comprising the acceleration detection unit according to claim 1.
JP2007153637A 2007-06-11 2007-06-11 Acceleration detecting unit and acceleration sensor Withdrawn JP2008304409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153637A JP2008304409A (en) 2007-06-11 2007-06-11 Acceleration detecting unit and acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153637A JP2008304409A (en) 2007-06-11 2007-06-11 Acceleration detecting unit and acceleration sensor

Publications (1)

Publication Number Publication Date
JP2008304409A true JP2008304409A (en) 2008-12-18

Family

ID=40233254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153637A Withdrawn JP2008304409A (en) 2007-06-11 2007-06-11 Acceleration detecting unit and acceleration sensor

Country Status (1)

Country Link
JP (1) JP2008304409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472679A (en) * 2012-06-08 2013-12-25 上海微电子装备有限公司 Double-workpiece table long travel measurement apparatus and use method thereof
CN103472691A (en) * 2013-09-27 2013-12-25 南京中电熊猫液晶显示科技有限公司 Exposure machine and method for controlling same
CN106443068A (en) * 2016-10-26 2017-02-22 西安交通大学 Torsional differential quartz resonant acceleration sensor chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472679A (en) * 2012-06-08 2013-12-25 上海微电子装备有限公司 Double-workpiece table long travel measurement apparatus and use method thereof
CN103472691A (en) * 2013-09-27 2013-12-25 南京中电熊猫液晶显示科技有限公司 Exposure machine and method for controlling same
CN106443068A (en) * 2016-10-26 2017-02-22 西安交通大学 Torsional differential quartz resonant acceleration sensor chip

Similar Documents

Publication Publication Date Title
US8939027B2 (en) Acceleration sensor
JP5446187B2 (en) Vibrating piece and vibration type sensor
JP5375624B2 (en) Acceleration sensor and acceleration detection device
US20180209791A1 (en) Motion measurement devices and methods for measuring motion
US8850896B2 (en) Physical quantity detector
RU2623694C1 (en) Pressure sensor implemented on basis of nanotenzometers related to resonator
US20110100125A1 (en) Acceleration sensor
JP2010157933A (en) Bending vibrating piece and electronic component
JP2008304409A (en) Acceleration detecting unit and acceleration sensor
JP2008170203A (en) Acceleration detection unit and acceleration sensor
JP2011191091A (en) Tuning-fork type vibrator element, vibrator, and sensor device
JP2000258165A (en) Angular velocity sensor
JP2008309731A (en) Acceleration detection unit and acceleration sensor
JP2008197030A (en) Stress sensitive element
JP2011064651A (en) Acceleration detector
JP2007187463A (en) Acceleration sensor
JP2009156831A (en) Acceleration detecting unit and acceleration detecting apparatus
JP4848973B2 (en) Acceleration detection unit and acceleration sensor
WO2016067543A1 (en) Vibration-type angular velocity sensor
JP2011064652A (en) Acceleration detector
JP3129022B2 (en) Acceleration sensor
JP2008197031A (en) Acceleration detecting unit and acceleration sensor
JP2008170383A (en) Single-axis semiconductor acceleration sensor
JP2008170166A (en) Acceleration detection unit and acceleration sensor
JP5003161B2 (en) Acceleration detection unit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907