JP2008294809A - Stacked helical antenna - Google Patents

Stacked helical antenna Download PDF

Info

Publication number
JP2008294809A
JP2008294809A JP2007139002A JP2007139002A JP2008294809A JP 2008294809 A JP2008294809 A JP 2008294809A JP 2007139002 A JP2007139002 A JP 2007139002A JP 2007139002 A JP2007139002 A JP 2007139002A JP 2008294809 A JP2008294809 A JP 2008294809A
Authority
JP
Japan
Prior art keywords
electrode
helical
parasitic
antenna
radiation electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007139002A
Other languages
Japanese (ja)
Inventor
Masaki Shibata
正樹 柴田
Shigeya Aoyama
惠哉 青山
Naoki Otaka
直樹 大鷹
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007139002A priority Critical patent/JP2008294809A/en
Publication of JP2008294809A publication Critical patent/JP2008294809A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked helical antenna whose frequency reduction is easy. <P>SOLUTION: The stacked helical antenna is equipped with: a plurality of dielectric layers arranged by being stacked; a plurality of first radiation electrodes arranged on any of first surfaces of the plurality of dielectric layers; a plurality of second radiation electrodes arranged on any of second surfaces of the plurality of dielectric layers; a plurality of connection parts for connecting edges of the plurality of first radiation electrodes with edges of the plurality of second radiation electrodes to constitute a helical electrode with the plurality of first, second radiation electrodes; and a first non-supplied electrode which is arranged on a third surface to be boundary of any of the plurality of dielectric layers between the first, second surfaces and is not connected to the helical electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,無線通信機器に用いる積層型ヘリカルアンテナに関する。   The present invention relates to a laminated helical antenna used in a wireless communication device.

ヘリカルエレメントを有するヘリカルアンテナの技術が公開されている(特許文献1参照)。ヘリカルエレメント10と,このヘリカルエレメント10に電磁気的に結合されている無給電ヘリカルエレメント11により多周波共用アンテナ1が構成される。ヘリカルエレメント10はその共振する周波数帯において励振される。また,このヘリカルエレメント10とほぼ同軸に配置されている無給電ヘリカルエレメント11に,ヘリカルエレメント10に流れる電流が誘起され,その共振する周波数帯において励振されるようになる。この結果,多周波共用アンテナ1は,2つの異なる周波数帯で動作する。
特開2002−118408
A technique of a helical antenna having a helical element has been disclosed (see Patent Document 1). The multi-frequency shared antenna 1 is constituted by the helical element 10 and the parasitic helical element 11 electromagnetically coupled to the helical element 10. The helical element 10 is excited in its resonating frequency band. In addition, a current flowing through the helical element 10 is induced in the parasitic helical element 11 arranged substantially coaxially with the helical element 10, and is excited in the resonance frequency band. As a result, the multi-frequency shared antenna 1 operates in two different frequency bands.
JP 2002-118408 A

しかしながら,この技術では,動作する周波数帯自体を低周波化することは困難である。即ち,この技術では,ヘリカルエレメント10,無給電ヘリカルエレメント11それぞれでの周波数帯域で動作するに留まり,無給電ヘリカルエレメント11を追加することで,ヘリカルエレメント10の動作周波数帯が低周波化されるという訳ではない。
上記に鑑み,本発明は,低周波化が容易な積層型ヘリカルアンテナを提供することを目的とする。
However, with this technology, it is difficult to lower the frequency band itself that operates. That is, in this technique, the operation is performed only in the frequency band of each of the helical element 10 and the parasitic helical element 11, and by adding the parasitic helical element 11, the operating frequency band of the helical element 10 is lowered. Not that.
In view of the above, an object of the present invention is to provide a laminated helical antenna that can be easily reduced in frequency.

本発明に係る積層型ヘリカルアンテナは,互いに積層して配置される複数の誘電体層と,前記複数の誘電体層の何れかの第1の面に配置される複数の第1の放射電極と,前記複数の誘電体層の何れかの第2の面に配置される複数の第2の放射電極と,前記複数の第1の放射電極の端部と,前記複数の第2の放射電極の端部と,を互いに接続して,この複数の第1,第2の放射電極と共にヘリカル電極を構成する複数の接続部と,前記第1,第2の面間の,前記複数の誘電体層の何れかの境界たる第3の面に配置され,かつ前記ヘリカル電極と接続されない第1の無給電電極と,を具備することを特徴とする。   The laminated helical antenna according to the present invention includes a plurality of dielectric layers arranged in a stacked manner, a plurality of first radiation electrodes arranged on a first surface of any one of the plurality of dielectric layers, , A plurality of second radiation electrodes disposed on a second surface of any one of the plurality of dielectric layers, end portions of the plurality of first radiation electrodes, and a plurality of second radiation electrodes. A plurality of dielectric layers between the first and second surfaces, and a plurality of connection portions constituting a helical electrode together with the plurality of first and second radiation electrodes. And a first parasitic electrode which is disposed on the third surface as a boundary and is not connected to the helical electrode.

本発明によれば,低周波化が容易な積層型ヘリカルアンテナを提供できる。   According to the present invention, it is possible to provide a laminated helical antenna that can be easily reduced in frequency.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。
図1は本発明の一実施形態に係る積層型ヘリカルアンテナ10の一部を分解した状態を表す分解斜視図である。図2は,積層型ヘリカルアンテナ10の一部(チップアンテナ13)を拡大した状態を表す拡大斜視図である。図3,図4はそれぞれ,チップアンテナ13を正面(自由端側)および側面から見た状態を表す正面図および側面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an exploded perspective view showing a state in which a part of a laminated helical antenna 10 according to an embodiment of the present invention is disassembled. FIG. 2 is an enlarged perspective view showing a state in which a part of the laminated helical antenna 10 (chip antenna 13) is enlarged. 3 and 4 are a front view and a side view, respectively, illustrating a state in which the chip antenna 13 is viewed from the front (free end side) and the side.

積層型ヘリカルアンテナ10は,絶縁基板11,平板接地電極12,チップアンテナ13,給電線14,接続部15,固定端子16を有する。   The laminated helical antenna 10 includes an insulating substrate 11, a flat plate ground electrode 12, a chip antenna 13, a feed line 14, a connection portion 15, and a fixed terminal 16.

絶縁基板11は,絶縁材料,例えば,FR4(Flame Retardant Type 4の略であり,ガラス繊維とエポキシ樹脂の複合材料からなる難燃性のプリント基板材料(比誘電率ε1r=4.8))からなる略矩形平板形状の基板である。   The insulating substrate 11 is made of an insulating material such as FR4 (abbreviation of Flame Retardant Type 4 and a flame-retardant printed circuit board material made of a composite material of glass fiber and epoxy resin (relative permittivity ε1r = 4.8)). This is a substantially rectangular flat-plate substrate.

平板接地電極12は,銀,白金,銅等からなる略矩形平板状の導体であり,絶縁基板11の裏面に配置される。給電線14と平板接地電極12とが近接して対向することから,給電線14からの電界が平板接地電極12との間に制限され,平板接地電極12と対向する範囲の給電線14は放射電極として機能しない。   The flat ground electrode 12 is a substantially rectangular flat conductor made of silver, platinum, copper or the like, and is disposed on the back surface of the insulating substrate 11. Since the feed line 14 and the flat plate ground electrode 12 face each other close to each other, the electric field from the feed line 14 is limited between the flat plate ground electrode 12 and the feed line 14 in the range facing the flat plate ground electrode 12 radiates. Does not function as an electrode.

チップアンテナ13は,直方体状(略平板状)の形状をなし(幅W0,長さL0,高さH0),誘電体部材131,132,ヘリカル電極133,無給電電極134,パッド135,136を有する。   The chip antenna 13 has a rectangular parallelepiped shape (substantially flat plate shape) (width W0, length L0, height H0), and includes dielectric members 131 and 132, a helical electrode 133, a parasitic electrode 134, and pads 135 and 136. Have.

誘電体部材131,132は,絶縁基板11よりも誘電率が大きい誘電体材料(例えば,ホウケイ酸ガラス系セラミック(比誘電率ε2r=7.5)等のセラミック材料)からなる直方体状の部材である。誘電体部材131,132の誘電率が比較的大きいのは,ヘリカル電極133,無給電電極134の実効長を大きくしてその小型化を図るためである。なお,誘電体部材131,132それぞれを複数の誘電体層から構成できる。   The dielectric members 131 and 132 are rectangular parallelepiped members made of a dielectric material having a dielectric constant larger than that of the insulating substrate 11 (for example, a ceramic material such as borosilicate glass-based ceramic (relative permittivity ε2r = 7.5)). is there. The reason why the dielectric constants of the dielectric members 131 and 132 are relatively large is to increase the effective length of the helical electrode 133 and the parasitic electrode 134 to reduce the size thereof. Each of the dielectric members 131 and 132 can be composed of a plurality of dielectric layers.

ヘリカル電極133は,放射電極137(137a,137b),138(138a,138b),層間接続部139(139a〜139c)から構成され,全体として略ヘリカル(らせん)形状をなす放射電極として機能する。ヘリカル電極133をヘリカル形状としたのは,チップアンテナ13の体積を有効に利用して,ヘリカル電極133の線路長を確保し,チップアンテナ13を低周波化するためである。なお,本実施形態に係るヘリカル電極133は,右巻きであるが,左巻きとしても差し支えない。   The helical electrode 133 includes radiation electrodes 137 (137a, 137b), 138 (138a, 138b), and interlayer connection portions 139 (139a-139c), and functions as a radiation electrode having a substantially helical shape as a whole. The reason why the helical electrode 133 is formed in a helical shape is to effectively use the volume of the chip antenna 13 to secure the line length of the helical electrode 133 and to reduce the frequency of the chip antenna 13. The helical electrode 133 according to this embodiment is a right-handed winding, but may be a left-handed winding.

放射電極137,138はそれぞれ,チップアンテナ13の上面および下面の近傍(誘電体部材131の上面の近傍,誘電体部材132の下面の近傍,正確には上下面から例えば,0.1mmまでの範囲内)に配置される導体,例えば,銀,白金,銅からなる帯状の平板電極である。なお,放射電極137,138の一方または片方を誘電体部材131,132の表面に配置しても良い。なお,中央面SCは,放射電極137,138から等距離(中央)にある仮想的な面である。   Each of the radiation electrodes 137 and 138 is in the vicinity of the upper surface and the lower surface of the chip antenna 13 (in the vicinity of the upper surface of the dielectric member 131, in the vicinity of the lower surface of the dielectric member 132, precisely from the upper and lower surfaces to, for example, 0.1 mm). A strip-shaped flat electrode made of silver, platinum, or copper. One or one of the radiation electrodes 137 and 138 may be arranged on the surface of the dielectric members 131 and 132. The center plane SC is a virtual plane that is equidistant (center) from the radiation electrodes 137 and 138.

放射電極137,138がヘリカル電極133の一部を構成する関係から,放射電極137,138はそれぞれ,チップアンテナ13の側面に対して傾いて配置される(放射電極137,138がチップアンテナ13の側面と直交しない)。   Since the radiation electrodes 137 and 138 constitute a part of the helical electrode 133, the radiation electrodes 137 and 138 are respectively inclined with respect to the side surface of the chip antenna 13 (the radiation electrodes 137 and 138 are arranged on the chip antenna 13). Not perpendicular to the side).

放射電極137,138はそれぞれ,放射電極137a,137b,放射電極138a,138bに区分される。ヘリカル電極133の給電端および自由端では,パッド135,136との接続の関係で,他の放射電極137a,138aと異なる形状の放射電極137b,138bが配置される。放射電極137bは,層間接続部139cを介して,パッド135に接続される。放射電極138bは,パッド136に接続される。   The radiation electrodes 137 and 138 are divided into radiation electrodes 137a and 137b and radiation electrodes 138a and 138b, respectively. At the feeding end and the free end of the helical electrode 133, radiation electrodes 137b and 138b having shapes different from those of the other radiation electrodes 137a and 138a are disposed due to the connection with the pads 135 and 136. The radiation electrode 137b is connected to the pad 135 through the interlayer connection 139c. The radiation electrode 138b is connected to the pad 136.

層間接続部139は,誘電体部材131,132を貫通して配置される導電性材料(例えば,導電性ペースト)からなる一種のビアホールである。層間接続部139aは,放射電極137の自由端と放射電極138の給電端を接続する。層間接続部139bは,放射電極138の自由端と放射電極137の給電端を接続する。層間接続部139cは,ヘリカル電極133の給電端側のパッド135と放射電極137の給電端を接続する。   The interlayer connection portion 139 is a kind of via hole made of a conductive material (for example, a conductive paste) disposed through the dielectric members 131 and 132. The interlayer connection portion 139a connects the free end of the radiation electrode 137 and the feeding end of the radiation electrode 138. The interlayer connection portion 139b connects the free end of the radiation electrode 138 and the feeding end of the radiation electrode 137. The interlayer connection portion 139c connects the pad 135 on the power supply end side of the helical electrode 133 and the power supply end of the radiation electrode 137.

パッド135,136はそれぞれ,給電側,自由端側に配置され,例えば,導体ペーストにより,接続部15,固定端子16と接続される。この接続は,電気的接続のみならず,チップアンテナ13と絶縁基板11との物理的接続をも兼ねる。   The pads 135 and 136 are disposed on the power supply side and the free end side, respectively, and are connected to the connection portion 15 and the fixed terminal 16 by, for example, a conductor paste. This connection serves not only as an electrical connection but also as a physical connection between the chip antenna 13 and the insulating substrate 11.

無給電電極134は,誘電体部材131,132の界面に,ヘリカル電極133の軸と平行(放射電極137,138と平行)に配置され,給電線14と接続されない導体,例えば,銀,白金,銅からなる帯状の平板電極である。無給電電極134はヘリカル電極133と電磁的に接続され,チップアンテナ13の共振周波数の低周波化に寄与する。また,無給電電極134は,ヘリカル電極133の中央面SCからある程度離した方が好ましい。なお,この詳細は後述する。   The parasitic electrode 134 is disposed at the interface between the dielectric members 131 and 132 in parallel with the axis of the helical electrode 133 (parallel to the radiation electrodes 137 and 138) and is not connected to the feeder 14 such as silver, platinum, It is a strip-shaped flat electrode made of copper. The parasitic electrode 134 is electromagnetically connected to the helical electrode 133 and contributes to lowering the resonance frequency of the chip antenna 13. Further, it is preferable that the parasitic electrode 134 be separated to some extent from the center plane SC of the helical electrode 133. Details of this will be described later.

給電線14は,導体,例えば,銀,白金,銅からなる,例えば,幅1.1mmの略線状の電極であり,チップアンテナ13に電力を供給する。給電線14は平板接地電極12と対向している。
平板接地電極12の境界18によって,給電線14は区分され,境界18よりチップアンテナ13側の給電線14は放射電極として機能する。なお,境界18は,絶縁基板11の下面の境界17に対応する絶縁基板11の上面上の仮想的な線であり,絶縁基板11の上面上に現実に存在する訳ではない。
The feed line 14 is a substantially linear electrode made of a conductor, for example, silver, platinum, or copper, and having a width of 1.1 mm, for example, and supplies power to the chip antenna 13. The feed line 14 faces the flat plate ground electrode 12.
The feed line 14 is divided by the boundary 18 of the flat plate ground electrode 12, and the feed line 14 on the chip antenna 13 side from the boundary 18 functions as a radiation electrode. The boundary 18 is a virtual line on the upper surface of the insulating substrate 11 corresponding to the boundary 17 on the lower surface of the insulating substrate 11, and does not actually exist on the upper surface of the insulating substrate 11.

接続部15は,導体,例えば,銀,白金,銅からなる略平板状の導体であり,給電線14と一体的に形成され,パッド135,層間接続部139cを介して,給電線14とヘリカル電極133とを電気的に接続する。   The connection portion 15 is a conductor, for example, a substantially flat conductor made of silver, platinum, or copper, and is formed integrally with the feed line 14 and is helically connected to the feed line 14 via the pad 135 and the interlayer connection portion 139c. The electrode 133 is electrically connected.

固定端子16は,導体,例えば,銀,白金,銅からなる略平板状の導体であり,パッド136を介してヘリカル電極133の開放端側に接続される。
接続部15および固定端子16は,チップアンテナ13を絶縁基板11に固定するパッドとして機能する。チップアンテナ13と,接続部15および固定端子16とが例えば,導体ペーストで接続されることで,チップアンテナ13が絶縁基板11に固定され,かつ電気的に接続される。
固定端子16は,ヘリカル電極133と共に,電磁波を放射する放射電極として機能する。固定端子16は,ヘリカル電極133に線路長を付加して,積層型ヘリカルアンテナ10の放射特性を低周波側にシフトさせ,かつ広帯域化を図っている。
The fixed terminal 16 is a conductor, for example, a substantially flat conductor made of silver, platinum, or copper, and is connected to the open end side of the helical electrode 133 via a pad 136.
The connection portion 15 and the fixed terminal 16 function as a pad for fixing the chip antenna 13 to the insulating substrate 11. The chip antenna 13 is connected to the insulating substrate 11 and electrically connected to the chip antenna 13 by connecting the connecting portion 15 and the fixed terminal 16 with, for example, a conductive paste.
The fixed terminal 16 functions as a radiation electrode that radiates electromagnetic waves together with the helical electrode 133. The fixed terminal 16 adds a line length to the helical electrode 133, shifts the radiation characteristic of the laminated helical antenna 10 to the low frequency side, and achieves a wider band.

(アンテナ特性)
以下,無給電電極134の付加することによる積層型ヘリカルアンテナ10の特性の変化を説明する。
ここでは,チップアンテナ13の幅W0,長さL0,高さH0の基準値を1.6mm*3.2mm*1mmとする。また,固定端子16を幅1.6mm,長さ1.0mmとする。
図5,図6,図8〜図13はそれぞれ,積層型ヘリカルアンテナ10の周波数特性を表すグラフである。グラフの横軸,縦軸それぞれが周波数[GHz],反射率[dB]に対応する。
表1〜表4は,無給電電極134の長さL[mm],幅W[mm],距離t[mm],ターン数N[回],中心周波数F0[MHz],帯域幅BW[MHz]を表す。この内,表2は,ヘリカル電極133の中央面SCからの距離Δt(=t−0.5)をも表す。
(Antenna characteristics)
Hereinafter, a change in characteristics of the laminated helical antenna 10 due to the addition of the parasitic electrode 134 will be described.
Here, the reference values of the width W0, the length L0, and the height H0 of the chip antenna 13 are set to 1.6 mm * 3.2 mm * 1 mm. The fixed terminal 16 has a width of 1.6 mm and a length of 1.0 mm.
5, FIG. 6 and FIG. 8 to FIG. 13 are graphs showing frequency characteristics of the laminated helical antenna 10, respectively. The horizontal and vertical axes of the graph correspond to the frequency [GHz] and the reflectance [dB], respectively.
Tables 1 to 4 show the length L [mm], the width W [mm], the distance t [mm], the number of turns N [times], the center frequency F0 [MHz], and the bandwidth BW [MHz]. ]. Of these, Table 2 also represents the distance Δt (= t−0.5) from the center plane SC of the helical electrode 133.

距離tは,チップアンテナ13(ヘリカル電極133)の底面から無給電電極134までの距離を意味し,無給電電極134の位置に対応する。
帯域幅BWは,VSWR(Voltage Standing Wave Ratio(電圧定在波比.インピーダンス不整合により,反射波が発生している伝送線路上に発生する電圧振幅分布の山と谷の比))=2.0となる最低周波数fL,最大周波数fHの差で定義され,BW=fH−fLで表される。
The distance t means the distance from the bottom surface of the chip antenna 13 (helical electrode 133) to the parasitic electrode 134, and corresponds to the position of the parasitic electrode 134.
Bandwidth BW is VSWR (Voltage Standing Wave Ratio (ratio of peak and valley of voltage amplitude distribution generated on transmission line where reflected wave is generated due to impedance mismatch)) = 2. It is defined by the difference between the minimum frequency fL that becomes 0 and the maximum frequency fH, and is represented by BW = fH−fL.

(1)無給電電極134の有無
図5のグラフG00,G01,G02それぞれが,以下の場合に対応する。
グラフG00:無給電電極134,固定端子16の何れもが接続されていない場合
グラフG01:固定端子16のみが接続されている場合
グラフG02:無給電電極134,固定端子16の双方が接続されている場合
(1) Presence / absence of parasitic electrode 134 Each of graphs G00, G01, G02 in FIG. 5 corresponds to the following case.
Graph G00: When neither parasitic electrode 134 nor fixed terminal 16 is connected Graph G01: When only fixed terminal 16 is connected Graph G02: Both parasitic electrode 134 and fixed terminal 16 are connected If

ヘリカル電極133のみの場合(グラフG00)に対して,固定端子16を接続し電極長を増加することで,共振周波数(ピーク)が幾分低周波側に移動する(グラフG01)。さらに,無給電電極134を接続することで,共振周波数(ピーク)が低周波側に移動する(グラフG02)。
以上のように,無給電電極134を追加することで,共振周波数が低周波側に移動することが判る。
In contrast to the case of only the helical electrode 133 (graph G00), the resonance frequency (peak) is shifted somewhat to the low frequency side by connecting the fixed terminal 16 and increasing the electrode length (graph G01). Furthermore, by connecting the parasitic electrode 134, the resonance frequency (peak) moves to the low frequency side (graph G02).
As described above, it can be seen that the resonance frequency moves to the low frequency side by adding the parasitic electrode 134.

(2)無給電電極134の位置
表1は,図6のグラフG10〜G14と対応する。

Figure 2008294809
(2) Position of parasitic electrode 134 Table 1 corresponds to graphs G10 to G14 in FIG.
Figure 2008294809

図7は,ヘリカル電極133の中央面SCからの距離Δt(=t−0.5)と中心周波数F0の変化量(周波数変化量)ΔF0(=F0(Δt)−F0(0))の対応関係を表すグラフである。表2は,図7と対応する。

Figure 2008294809
FIG. 7 shows the correspondence between the distance Δt (= t−0.5) from the center plane SC of the helical electrode 133 and the change amount (frequency change amount) ΔF0 (= F0 (Δt) −F0 (0)) of the center frequency F0. It is a graph showing a relationship. Table 2 corresponds to FIG.
Figure 2008294809

無給電電極134の位置をヘリカル電極133の中央面SC(t=0.5mm)からずらすことで,中心周波数F0が低周波側に移動することが判る。また,図7のグラフは距離Δt=0で左右がほぼ対称であり,距離Δtの正負(中央面SCの上下何れに移動するか)は周波数変化量ΔF0にほとんど影響しないことが判る。   It can be seen that the center frequency F0 moves to the low frequency side by shifting the position of the parasitic electrode 134 from the center plane SC (t = 0.5 mm) of the helical electrode 133. In the graph of FIG. 7, it can be seen that the distance Δt = 0 and the left and right are almost symmetrical, and the sign of the distance Δt (whether it moves up or down the center plane SC) has little effect on the frequency change amount ΔF0.

無給電電極134の位置をヘリカル電極133の中央面SCから0.2mm以上ずらすことで(|Δt|≧0.2),中心周波数F0を低周波側に大きく移動できることが判る。チップアンテナ13の厚さ(t0)からすると,このずらし量の割合(ずらし比率)R(=|Δt/t0|)は0.2mm/1.0mm=0.2である。ずらし比率Rは0.2以上であることが好ましい。R<0.2の範囲では,中心周波数F0の変化量ΔF0が比較的小さい。
なお,既述のように,放射電極137,138は,チップアンテナ13の上下面から0.1mmまでの範囲内であることから,図7および表2での距離Δtの絶対値の上限を0.4としている(無給電電極134と放射電極137,138とが接触しない範囲)。
It can be seen that by shifting the position of the parasitic electrode 134 by 0.2 mm or more from the center plane SC of the helical electrode 133 (| Δt | ≧ 0.2), the center frequency F0 can be greatly moved to the low frequency side. Considering the thickness (t0) of the chip antenna 13, the ratio (shift ratio) R (= | Δt / t0 |) of this shift amount is 0.2 mm / 1.0 mm = 0.2. The shift ratio R is preferably 0.2 or more. In the range of R <0.2, the change amount ΔF0 of the center frequency F0 is relatively small.
As described above, since the radiation electrodes 137 and 138 are within a range of 0.1 mm from the top and bottom surfaces of the chip antenna 13, the upper limit of the absolute value of the distance Δt in FIG. .4 (range in which the parasitic electrode 134 and the radiation electrodes 137 and 138 do not contact each other).

以上では,チップアンテナ13の厚さt0を基準として,ずらし比率Rを規定している。これに対して,ずらし比率Rに替えて,放射電極137,138間の距離t1を基準とするずらし比率R1(=|Δt/t1|)を用いることができる。この場合でもR1<0.2の範囲で,中心周波数F0の変化量ΔF0が比較的小さいと言える。無給電電極134はチップアンテナ13の上下面近傍に配置されていることから,放射電極137,138間の距離t1はチップアンテナ13の厚さt0とほぼ等しいからである。   In the above, the shift ratio R is defined based on the thickness t0 of the chip antenna 13. On the other hand, instead of the shift ratio R, a shift ratio R1 (= | Δt / t1 |) based on the distance t1 between the radiation electrodes 137 and 138 can be used. Even in this case, it can be said that the amount of change ΔF0 of the center frequency F0 is relatively small in the range of R1 <0.2. This is because the parasitic electrode 134 is disposed in the vicinity of the upper and lower surfaces of the chip antenna 13, so that the distance t 1 between the radiation electrodes 137 and 138 is substantially equal to the thickness t 0 of the chip antenna 13.

(3)無給電電極134の大きさ
図8,図9はそれぞれ,無給電電極134の長さL,幅Wを変化させた場合の積層型ヘリカルアンテナ10の周波数特性を表すグラフである。
(3) Size of parasitic electrode 134 FIGS. 8 and 9 are graphs showing frequency characteristics of the laminated helical antenna 10 when the length L and width W of the parasitic electrode 134 are changed, respectively.

表3,表4はそれぞれ,図8(グラフG30〜G33),および図9(グラフG40〜G43)と対応する。

Figure 2008294809
Figure 2008294809
無給電電極134の長さL,幅Wを大きくすることで,中心周波数F0が低周波側に移行することが判る。 Tables 3 and 4 correspond to FIG. 8 (graphs G30 to G33) and FIG. 9 (graphs G40 to G43), respectively.
Figure 2008294809
Figure 2008294809
It can be seen that the center frequency F0 shifts to the low frequency side by increasing the length L and the width W of the parasitic electrode 134.

(4)無給電電極134の本数
無給電電極134を複数としても積層型ヘリカルアンテナ10の共振周波数を低周波化できる。
図10は,本発明の変形例に係る積層型ヘリカルアンテナ20のチップアンテナ23を正面(自由端側)から見た状態を表す正面図であり,図3に対応する。チップアンテナ23は,無給電電極13に替えて,2つの無給電電極234a,234bを有する。無給電電極234a,234bに対応して,3層の誘電体部材231〜233が配置される。無給電電極234a,234bは,チップアンテナ23(ヘリカル電極133)の中央面SCに略対称に(中央面SCからの距離が略等しくなるように),配置されている。
(4) Number of parasitic electrodes 134 The resonance frequency of the laminated helical antenna 10 can be lowered even if a plurality of parasitic electrodes 134 are provided.
FIG. 10 is a front view showing a state in which the chip antenna 23 of the laminated helical antenna 20 according to the modification of the present invention is viewed from the front (free end side), and corresponds to FIG. The chip antenna 23 has two parasitic electrodes 234a and 234b instead of the parasitic electrode 13. Three layers of dielectric members 231 to 233 are arranged corresponding to the parasitic electrodes 234a and 234b. The parasitic electrodes 234a and 234b are disposed substantially symmetrically (so that the distance from the central plane SC is substantially equal) with respect to the central plane SC of the chip antenna 23 (helical electrode 133).

図11は,チップアンテナ23(ヘリカル電極133)の長さLを変化させた場合の積層型ヘリカルアンテナ20の周波数特性を表すグラフである。図11のグラフG51〜G53がそれぞれ,無給電電極134の長さL=2.2,1.4,0.6mmに対応する。なお,このときの無給電電極134の幅W=0.2mm,距離t=0.2mm,ターン数N=6.75回である。
表5は,図11のグラフG51〜G53と対応する。

Figure 2008294809
FIG. 11 is a graph showing the frequency characteristics of the laminated helical antenna 20 when the length L of the chip antenna 23 (helical electrode 133) is changed. The graphs G51 to G53 in FIG. 11 correspond to the length L of the parasitic electrode 134 = 2.2, 1.4, and 0.6 mm, respectively. At this time, the width W of the parasitic electrode 134 is 0.2 mm, the distance t is 0.2 mm, and the number of turns N is 6.75.
Table 5 corresponds to the graphs G51 to G53 in FIG.
Figure 2008294809

無給電電極134を複数としても中心周波数F0の低周波化が可能である。また,ヘリカル電極133の軸を基準に2つの無給電電極134を対称に配置しても中心周波数F0が低周波側に移行する。
また,図6のグラフG11と図11のグラフG51を比較することで(長さL,幅W,距離tが等しい),無給電電極134の本数を1本から2本に増加させることで,中心周波数F0は幾分低下することが判る。
Even if there are a plurality of parasitic electrodes 134, the center frequency F0 can be lowered. Even if the two parasitic electrodes 134 are arranged symmetrically with respect to the axis of the helical electrode 133, the center frequency F0 shifts to the low frequency side.
Further, by comparing the graph G11 in FIG. 6 with the graph G51 in FIG. 11 (the length L, the width W, and the distance t are equal), by increasing the number of the parasitic electrodes 134 from one to two, It can be seen that the center frequency F0 decreases somewhat.

(5)無給電電極134の方向
図12は,本発明の比較例に係る積層型ヘリカルアンテナ30のチップアンテナ33の斜視図であり,図2に対応する。チップアンテナ33は,無給電電極13に替えて,3つの無給電電極334(334a〜334c)を有する。なお,見やすさのため,放射電極137aの図示を省略している。無給電電極334a〜334cはそれぞれ,チップアンテナ33(ヘリカル電極133)の上下方向に(放射電極137,138の垂直方向に),中央面SCに略対称に,放射電極137a,137bと接触しないように配置されている。
図13のグラフG60,G61,G62は,無給電電極334の本数を0,1,3本としたときの積層型ヘリカルアンテナ30の周波数特性を表す。
本図に示すように,無給電電極134をチップアンテナ13の上下方向に配置した場合,中心周波数F0がほとんど低周波化されないことが判る。
(5) Direction of Parasitic Electrode 134 FIG. 12 is a perspective view of the chip antenna 33 of the laminated helical antenna 30 according to the comparative example of the present invention, and corresponds to FIG. The chip antenna 33 has three parasitic electrodes 334 (334a to 334c) instead of the parasitic electrode 13. Note that the radiation electrode 137a is not shown for easy viewing. The parasitic electrodes 334a to 334c do not come into contact with the radiation electrodes 137a and 137b in the vertical direction of the chip antenna 33 (helical electrode 133) (in the vertical direction of the radiation electrodes 137 and 138) and substantially symmetrical to the center plane SC. Is arranged.
Graphs G60, G61, and G62 in FIG. 13 represent frequency characteristics of the laminated helical antenna 30 when the number of parasitic electrodes 334 is 0, 1, and 3, respectively.
As shown in this figure, it can be seen that when the parasitic electrode 134 is arranged in the vertical direction of the chip antenna 13, the center frequency F0 is hardly lowered.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(1)チップアンテナ13への電力の供給に際し,種々の伝送線路を用いることができる。上記実施形態では,給電線14と平板接地電極12とが近接して対向する,いわゆるマイクロストリップ線路によって電力を伝送している。これに替えて,給電線14が平板接地電極12と同一平面上に配置される,いわゆるコプレーナ線路を用いても良い。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.
(1) When power is supplied to the chip antenna 13, various transmission lines can be used. In the above-described embodiment, power is transmitted by a so-called microstrip line in which the feeder 14 and the flat plate ground electrode 12 face each other in close proximity. Instead, a so-called coplanar line in which the feeder 14 is arranged on the same plane as the flat plate ground electrode 12 may be used.

(2)絶縁基板11上に,他の素子を配置することも可能である。例えば,他のアンテナ,アンテナを切り替えるためのスイッチ,フィルタ(バンドパスフィルタ等),水晶振動子,受信用のIC(集積回路),送信用のIC,高周波増幅用のICである。 (2) It is possible to dispose other elements on the insulating substrate 11. For example, other antennas, switches for switching antennas, filters (bandpass filters, etc.), crystal resonators, ICs for reception (integrated circuits), ICs for transmission, and ICs for high frequency amplification.

本発明の一実施形態に係る積層型ヘリカルアンテナの斜視図である。1 is a perspective view of a laminated helical antenna according to an embodiment of the present invention. 本発明の一実施形態に係る積層型ヘリカルアンテナの拡大上面図である。1 is an enlarged top view of a laminated helical antenna according to an embodiment of the present invention. 本発明の一実施形態に係る積層型ヘリカルアンテナの拡大正面図である。1 is an enlarged front view of a laminated helical antenna according to an embodiment of the present invention. 本発明の一実施形態に係る積層型ヘリカルアンテナの拡大側面図である。1 is an enlarged side view of a laminated helical antenna according to an embodiment of the present invention. 積層型ヘリカルアンテナの周波数特性の一例を表すグラフである。It is a graph showing an example of the frequency characteristic of a laminated | stacked helical antenna. 積層型ヘリカルアンテナの周波数特性の一例を表すグラフである。It is a graph showing an example of the frequency characteristic of a laminated | stacked helical antenna. ヘリカル電極の中央面からの距離Δtと周波数変化量ΔF0対応関係を表すグラフである。It is a graph showing distance (DELTA) t from the center surface of a helical electrode, and frequency change amount (DELTA) F0 correspondence relationship. 積層型ヘリカルアンテナの周波数特性の一例を表すグラフである。It is a graph showing an example of the frequency characteristic of a laminated | stacked helical antenna. 積層型ヘリカルアンテナの周波数特性の一例を表すグラフである。It is a graph showing an example of the frequency characteristic of a laminated | stacked helical antenna. 本発明の変形例に係る積層型ヘリカルアンテナの正面図である。It is a front view of the lamination type helical antenna concerning the modification of the present invention. 積層型ヘリカルアンテナの周波数特性の一例を表すグラフである。It is a graph showing an example of the frequency characteristic of a laminated | stacked helical antenna. 本発明の比較例に係る積層型ヘリカルアンテナの斜視図である。It is a perspective view of the lamination type helical antenna concerning the comparative example of the present invention. 積層型ヘリカルアンテナの周波数特性の一例を表すグラフである。It is a graph showing an example of the frequency characteristic of a laminated | stacked helical antenna.

符号の説明Explanation of symbols

10 積層型ヘリカルアンテナ
11 絶縁基板
12 平板接地電極
13 チップアンテナ
14 給電線
15 接続部
16 固定端子
17 境界
18 境界
131,132 誘電体部材
133 ヘリカル電極
134 無給電電極
135,136 パッド
137(137a,137b),138(138a,138b) 放射電極
139(139a〜139c) 層間接続部
DESCRIPTION OF SYMBOLS 10 Laminated helical antenna 11 Insulating substrate 12 Flat ground electrode 13 Chip antenna 14 Feed line 15 Connection part 16 Fixed terminal 17 Boundary 18 Boundary 131, 132 Dielectric member 133 Helical electrode 134 Parasitic electrode 135, 136 Pad 137 (137a, 137b ), 138 (138a, 138b) Radiation electrode 139 (139a-139c) Interlayer connection

Claims (5)

互いに積層して配置される複数の誘電体層と,
前記複数の誘電体層の何れかの第1の面に配置される複数の第1の放射電極と,
前記複数の誘電体層の何れかの第2の面に配置される複数の第2の放射電極と,
前記複数の第1の放射電極の端部と,前記複数の第2の放射電極の端部と,を互いに接続して,この複数の第1,第2の放射電極と共にヘリカル電極を構成する複数の接続部と,
前記第1,第2の面間の,前記複数の誘電体層の何れかの境界たる第3の面に配置され,かつ前記ヘリカル電極と接続されない第1の無給電電極と,
を具備することを特徴とする積層型ヘリカルアンテナ。
A plurality of dielectric layers arranged on top of each other;
A plurality of first radiation electrodes disposed on a first surface of any of the plurality of dielectric layers;
A plurality of second radiation electrodes disposed on a second surface of any of the plurality of dielectric layers;
The plurality of first radiation electrodes and the plurality of second radiation electrodes are connected to each other, and a plurality of first and second radiation electrodes constitute a helical electrode. The connection of
A first parasitic electrode that is disposed on a third surface between the first and second surfaces, which is a boundary of any one of the plurality of dielectric layers, and is not connected to the helical electrode;
A laminated helical antenna characterized by comprising:
前記無給電電極が,前記第1,第2の面の中央の第4の面と略平行である
ことを特徴とする請求項1に記載の積層型ヘリカルアンテナ。
2. The stacked helical antenna according to claim 1, wherein the parasitic electrode is substantially parallel to a central fourth surface of the first and second surfaces.
前記第3,第4の面間の距離が,前記第1,第2の面間の距離の0.2倍以上である
ことを特徴とする請求項2に記載の積層型ヘリカルアンテナ。
The multilayer helical antenna according to claim 2, wherein a distance between the third and fourth surfaces is 0.2 times or more a distance between the first and second surfaces.
前記第1,第3の面の間の,前記複数の誘電体層の第5の面に配置される第2の無給電電極,
をさらに具備することを特徴とする請求項1乃至3の何れか1項に記載の積層型ヘリカルアンテナ。
A second parasitic electrode disposed on a fifth surface of the plurality of dielectric layers between the first and third surfaces;
The laminated helical antenna according to any one of claims 1 to 3, further comprising:
前記第3,第4の面間の距離が,前記第4,第5の面間の距離と略等しい
ことを特徴とする請求項4記載の積層型ヘリカルアンテナ。
5. The stacked helical antenna according to claim 4, wherein a distance between the third and fourth surfaces is substantially equal to a distance between the fourth and fifth surfaces.
JP2007139002A 2007-05-25 2007-05-25 Stacked helical antenna Withdrawn JP2008294809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139002A JP2008294809A (en) 2007-05-25 2007-05-25 Stacked helical antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139002A JP2008294809A (en) 2007-05-25 2007-05-25 Stacked helical antenna

Publications (1)

Publication Number Publication Date
JP2008294809A true JP2008294809A (en) 2008-12-04

Family

ID=40169081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139002A Withdrawn JP2008294809A (en) 2007-05-25 2007-05-25 Stacked helical antenna

Country Status (1)

Country Link
JP (1) JP2008294809A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082361A (en) * 2014-10-15 2016-05-16 富士通株式会社 Antenna and radio communication device
JP2016082072A (en) * 2014-10-16 2016-05-16 富士通株式会社 Choke coil, bias t circuit and communication device
JP2016092160A (en) * 2014-10-31 2016-05-23 富士通株式会社 Choke coil, bias t circuit, and communication device
WO2023138034A1 (en) * 2022-01-18 2023-07-27 安徽安努奇科技有限公司 Antenna assembly and communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082361A (en) * 2014-10-15 2016-05-16 富士通株式会社 Antenna and radio communication device
JP2016082072A (en) * 2014-10-16 2016-05-16 富士通株式会社 Choke coil, bias t circuit and communication device
JP2016092160A (en) * 2014-10-31 2016-05-23 富士通株式会社 Choke coil, bias t circuit, and communication device
WO2023138034A1 (en) * 2022-01-18 2023-07-27 安徽安努奇科技有限公司 Antenna assembly and communication system

Similar Documents

Publication Publication Date Title
US6639559B2 (en) Antenna element
JP4305282B2 (en) Antenna device
US6587015B2 (en) Transmission/reception unit with improved antenna gain
US6369762B1 (en) Flat antenna for circularly-polarized wave
JP4930359B2 (en) Antenna device
JP2007049674A (en) Antenna structure
JP2003163528A (en) Printed circuit board, smd antenna, and communication equipment
US8283990B2 (en) Signal transmission communication unit and coupler
US9225057B2 (en) Antenna apparatus and wireless communication device using same
US5627551A (en) Antennas for surface mounting and method of adjusting frequency thereof
JP4823433B2 (en) Integrated antenna for mobile phone
JP5824563B1 (en) Small slot antenna
US11240909B2 (en) Antenna device
JP2019507984A (en) Energy harvesting circuit board
CN211088515U (en) Antenna coupling element, antenna device, and electronic apparatus
JP2014183355A (en) Small-sized antenna
JP4263972B2 (en) Surface mount antenna, antenna device, and wireless communication device
JP2009182786A (en) Laminated antenna
JP2008300897A (en) Antenna unit
JP2008294809A (en) Stacked helical antenna
JP2019121826A (en) antenna
JP4968033B2 (en) Antenna device
JP7425554B2 (en) antenna device
KR101491278B1 (en) Antenna apparatus and feeding structure thereof
JP2009077028A (en) Antenna equipment and communication equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803