JP2008288344A - Organic el element - Google Patents

Organic el element Download PDF

Info

Publication number
JP2008288344A
JP2008288344A JP2007131019A JP2007131019A JP2008288344A JP 2008288344 A JP2008288344 A JP 2008288344A JP 2007131019 A JP2007131019 A JP 2007131019A JP 2007131019 A JP2007131019 A JP 2007131019A JP 2008288344 A JP2008288344 A JP 2008288344A
Authority
JP
Japan
Prior art keywords
organic
host compound
group
compound
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007131019A
Other languages
Japanese (ja)
Inventor
Toshimitsu Tsuzuki
俊満 都築
Shizuo Tokito
静士 時任
Yoshimasa Matsushima
義正 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2007131019A priority Critical patent/JP2008288344A/en
Publication of JP2008288344A publication Critical patent/JP2008288344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element which can further enhance luminous efficacy, has excellent stability, and also has a phosphorescent organic thin film material which can be formed by a wet process. <P>SOLUTION: This organic EL element has: a pair of opposite electrodes 20, 80; and single-layer or multilayer organic thin film layers 100 disposed between the electrodes 20 and 80, and at least one layer of the organic thin film layers 100 is a luminous layer 40. In the organic EL element, the luminous layer 40 contains at least a host compound and a guest compound, the host compound contains at least two kinds of host compounds consisting of a first host compound made of a hole transport material and a second host compound made of a phosphorescent metal complex, and the guest compound contains at least one kind of phosphorescent luminous material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高効率な燐光を発する有機EL素子に関するものであり、表示素子、ディスプレイ、バックライト、電子写真、照明光源、露光光源、標識、看板、インテリアの分野に好適に使用できる発光素子に関するものである。   The present invention relates to an organic EL element that emits high-efficiency phosphorescence, and relates to a light-emitting element that can be suitably used in the fields of display elements, displays, backlights, electrophotography, illumination light sources, exposure light sources, signs, signboards, and interiors. Is.

有機EL素子は、無機材料からなる発光ダイオードデバイスと同じ発光原理であり、電界を印加し、電子およびホールを注入し、それらを再結合させることにより、電界発光させる自発光型デバイスである。発光材料として有機薄膜を用いるため、低電圧で高輝度・高効率の発光をさせることができるので、有望な次世代表示素子として期待されている。
近年、有機EL素子の作製技術が飛躍的に進歩し、小型の有機ELディスプレイが既に実用化されたが、大型の有機ELディスプレイの実用化への観点からは、より一層の低電圧化が求められ、より一層の発光効率の向上も求められていた。
An organic EL element is a self-luminous device that emits light by applying an electric field, injecting electrons and holes, and recombining them based on the same light emission principle as a light-emitting diode device made of an inorganic material. Since an organic thin film is used as a light emitting material, it is possible to emit light with high luminance and high efficiency at a low voltage, which is expected as a promising next generation display element.
In recent years, the manufacturing technology of organic EL elements has advanced dramatically, and small organic EL displays have already been put into practical use. From the viewpoint of putting large organic EL displays into practical use, further lowering of voltage is required. Therefore, further improvement in luminous efficiency has been demanded.

有機EL素子における発光効率は、様々な要因によって決定されるが、主たる要因の一つが励起子の生成確率である。励起子の生成確率が高ければ、当該励起子が失活して放射するエネルギーも大きくなり、発光効率が高まることとなる。前記励起子は、電子と正孔とが再結合することにより生じ、一重項励起子と三重項励起子とに分けることができる。また、前記一重項励起子のエネルギー失活過程による発光が蛍光発光、前記三重項励起子のエネルギー失活過程による発光が、燐光発光として規定されている。前記一重項励起子と前記三重項励起子は、それぞれ1:3の割合で生成すると考えられているので、前記三重項励起子からのエネルギー失活過程による発光である燐光発光を利用できれば、発光効率を向上させることができると考えられていた。   The luminous efficiency of the organic EL element is determined by various factors, and one of the main factors is the exciton generation probability. If the exciton generation probability is high, the exciton is deactivated and radiated energy is increased, and the light emission efficiency is increased. The excitons are generated by recombination of electrons and holes, and can be divided into singlet excitons and triplet excitons. Further, light emission due to the energy deactivation process of the singlet excitons is defined as fluorescence emission, and light emission due to the energy deactivation process of the triplet excitons is defined as phosphorescence emission. Since the singlet excitons and the triplet excitons are considered to be generated at a ratio of 1: 3, if phosphorescence emission, which is light emission from the triplet exciton due to an energy deactivation process, can be used, light emission It was thought that efficiency could be improved.

従来、有機EL素子は、発光層に蛍光材料を用いており、一重項励起子からの蛍光を有機EL素子の光として取り出していた。前記考察に基づき、発光効率を向上させるため、燐光性有機材料を用いて有機EL素子を製造する試みがなされたが、発光効率を向上させることはできなかった。従来の発光材料においては、生成した三重項励起子は、その寿命が長いため、エネルギー失活過程において、放射失活よりも無輻射の熱失活が優先的に起こり、発光を効率的に行うことはできなかったためである。   Conventionally, an organic EL element uses a fluorescent material for a light emitting layer, and fluorescence from a singlet exciton is extracted as light of the organic EL element. Based on the above consideration, in order to improve the luminous efficiency, an attempt was made to produce an organic EL element using a phosphorescent organic material, but the luminous efficiency could not be improved. In the conventional light emitting material, the generated triplet exciton has a long lifetime, and thus in the energy deactivation process, non-radiative thermal deactivation occurs preferentially over radiative deactivation, and light emission is performed efficiently. It was because it was not possible.

しかしながら、非特許文献1、2および特許文献1において開示されたように、プリンストン大学のバルドーらは、燐光性有機材料を発光層とした有機EL素子について開示し、発光効率を向上させることができることを示した。前記燐光性有機材料として、トリス−(2−フェニルピリジン)イリジウムのような、白金やイリジウムなどの遷移金属を有する有機金属錯体を発光材料として用いることにより、三重項励起子を安定的に当該発光材料にトラップさせることができ、そこから熱失活させることなく放射失活させることにより、従来の蛍光材料を発光層とした有機EL素子に比較して、高い発光効率とすることができた。   However, as disclosed in Non-Patent Documents 1 and 2 and Patent Document 1, Bardot et al. Of Princeton University disclose an organic EL element using a phosphorescent organic material as a light-emitting layer, and can improve luminous efficiency. showed that. As the phosphorescent organic material, an organic metal complex having a transition metal such as platinum or iridium such as tris- (2-phenylpyridine) iridium is used as the light-emitting material, so that triplet excitons can stably emit light. By being able to be trapped in the material and radiating and deactivating without thermally deactivating from the material, it was possible to achieve high luminous efficiency as compared with an organic EL element using a conventional fluorescent material as a luminescent layer.

以来、燐光材料を用いた有機EL素子の研究が活発に行われることとなり、たとえば、特許文献2においては、特定の部分構造を有するIr錯体からなる燐光発光材料を用いた有機EL素子について開示されている。このように、燐光性有機材料を用いた有機EL素子が、次世代表示素子の実用化に向けて期待され始めた。
しかしながら、前記燐光性有機材料を有する有機EL素子においては、依然として、発光効率改善、駆動電圧の低減、色純度の向上など多くの点で未解決な課題が残っており、特に、発光効率の改善が求められていた。
また、将来の大画面、高精細ディスプレイを考えると、スピンコート法、インクジェット法および印刷法などのウエットプロセスが有利となると考えられるので、ウエットプロセスで成膜できる有機薄膜材料の開発が求められていた。
特表2003−526876号公報 特開2005−276799号公報 エム・エー・バルドーら(M.A.Baldo et al.),ネイチャー(Nature),395,151(1998) エム・エー・バルドーら(M.A.Baldo et al.),アプライド・フィジックス・レターズ(Appl.Phys.Lett.),175,4(1999)
Since then, organic EL devices using phosphorescent materials have been actively researched. For example, Patent Document 2 discloses an organic EL device using a phosphorescent material made of an Ir complex having a specific partial structure. ing. As described above, organic EL elements using phosphorescent organic materials have begun to be expected for practical use of next-generation display elements.
However, in the organic EL device having the phosphorescent organic material, there are still unsolved problems such as improvement of luminous efficiency, reduction of driving voltage, improvement of color purity, and particularly improvement of luminous efficiency. Was demanded.
Considering future large screens and high-definition displays, we believe that wet processes such as spin coating, ink jet, and printing will be advantageous, so there is a need to develop organic thin film materials that can be deposited by wet processes. It was.
Special table 2003-526876 gazette JP 2005-276799 A M. A Baldo et al., Nature, 395, 151 (1998). M. A Baldo et al., Applied Physics Letters, 175, 4 (1999).

本発明は、上記事情を鑑みてなされたもので、発光効率をより向上させることができ、安定性に優れ、また、ウエットプロセスにより成膜することができる燐光性有機薄膜材料を有する有機EL素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is an organic EL device having a phosphorescent organic thin film material that can further improve luminous efficiency, has excellent stability, and can be formed by a wet process. The purpose is to provide.

発光層が、ホスト材料と燐光発光性のゲスト材料との混合体により構成される場合、ゲストの三重項励起子からの燐光発光に至るまでの過程は以下のように考えられる。
1. 発光層への正孔・電子の注入
2. 正孔・電子の再結合による、ホストの励起子生成(一重項および三重項)
3. ホストからゲストへの励起エネルギーの移動(一重項および三重項)
4. ゲストの三重項励起子生成
5. ゲストの三重項励起子の失活に伴う燐光放出
In the case where the light emitting layer is composed of a mixture of a host material and a phosphorescent guest material, the process up to phosphorescence emission from the triplet exciton of the guest is considered as follows.
1. 1. Injection of holes and electrons into the light emitting layer Generation of host excitons by recombination of holes and electrons (singlet and triplet)
3. Transfer of excitation energy from host to guest (singlet and triplet)
4). 4. Guest triplet exciton generation Phosphorescence emission associated with deactivation of guest triplet excitons.

各々の過程におけるエネルギー移動、発光は、これらを阻害する様々な失活過程との競争で起こっている。有機EL素子の発光効率を高めるためには、発光量子効率の高い発光材料をゲスト材料に用いることが必須となる。そして、このゲスト材料を効率よく発光させるためには、発光層中でゲスト材料の周りを取り巻くホスト材料の選択も極めて重要である。すなわち、ホスト材料からゲスト材料への励起エネルギーの移動が効率よく行われ、ゲスト材料へ移ったエネルギーが再びホスト材料へ逆戻りすることのないように、適切なホスト材料を選択することが重要である。さらに、有機EL素子の耐久性の観点から、ホスト材料には高い膜安定性が求められる。さらに、ウエットプロセスにより、発光層の成膜が可能な有機EL素子の実現のためには、有機溶媒に対する溶解性およびウエットプロセスでの優れた成膜性をも求められる。   Energy transfer and light emission in each process occur in competition with various deactivation processes that inhibit these processes. In order to increase the light emission efficiency of the organic EL element, it is essential to use a light emitting material with high light emission quantum efficiency as a guest material. And in order to make this guest material light-emit efficiently, selection of the host material surrounding the guest material in a light emitting layer is also very important. In other words, it is important to select an appropriate host material so that the excitation energy can be efficiently transferred from the host material to the guest material, and the energy transferred to the guest material does not return to the host material again. . Furthermore, from the viewpoint of durability of the organic EL element, the host material is required to have high film stability. Furthermore, in order to realize an organic EL element capable of forming a light emitting layer by a wet process, solubility in an organic solvent and excellent film formation in a wet process are also required.

本発明者らは、高効率発光が得られ、安定性に優れ、ウエットプロセスにより発光層の成膜が可能な有機EL素子を実現すべく、鋭意検討を重ねた結果、対向した電極間に3成分以上の材料で構成された発光層をウエットプロセスにより成膜した有機EL素子において、該発光層の第一ホスト材料(第一主構成材料)としてトリフェニルアミン骨格を有する正孔輸送性材料を、第二ホスト材料(第二主構成材料)としてイリジウム錯体などの燐光発光性の金属錯体を、さらにゲスト材料(副構成材料)として燐光発光性の発光材料を用いることにより、極めて高効率で安定性に優れる有機EL素子が得られることを見出し、本発明を完成するに至った。   As a result of intensive investigations to realize an organic EL element that can achieve high-efficiency light emission, excellent stability, and capable of forming a light-emitting layer by a wet process, the present inventors have studied 3 In an organic EL device in which a light emitting layer composed of a material higher than components is formed by a wet process, a hole transporting material having a triphenylamine skeleton is used as a first host material (first main constituent material) of the light emitting layer. By using a phosphorescent metal complex such as an iridium complex as the second host material (second main constituent material) and a phosphorescent light emitting material as the guest material (sub constituent material), it is extremely efficient and stable. The present inventors have found that an organic EL element having excellent properties can be obtained, and have completed the present invention.

上記の目的を達成するために、本発明は以下の構成を採用した。すなわち、
本発明の有機EL素子は、一対の対向する電極と、前記電極の間に配置される単層又は多層の有機薄膜層を有し、前記有機薄膜層のうち少なくとも一層が発光層である有機EL素子において、前記発光層がホスト化合物とゲスト化合物とを少なくとも含有して構成され、前記ホスト化合物が、正孔輸送材料からなる第一ホスト化合物と、燐光性の金属錯体からなる第二ホスト化合物の少なくとも2種のホスト化合物とを含み、前記ゲスト化合物が、少なくとも1種の燐光性の発光材料を含むことを特徴とする。
In order to achieve the above object, the present invention employs the following configuration. That is,
The organic EL device of the present invention has a pair of opposing electrodes and a single-layer or multilayer organic thin film layer disposed between the electrodes, and at least one of the organic thin film layers is a light-emitting layer. In the device, the light-emitting layer includes at least a host compound and a guest compound, and the host compound includes a first host compound made of a hole transport material and a second host compound made of a phosphorescent metal complex. At least two kinds of host compounds, and the guest compound contains at least one kind of phosphorescent light emitting material.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第一ホスト化合物の三重項エネルギー準位が前記ゲスト化合物の三重項エネルギー準位よりも高く、かつ前記第二ホスト化合物の三重項エネルギー準位が前記ゲスト化合物の三重項エネルギー準位よりも高いことが好ましい。   The organic EL device of the present invention is the organic EL device as defined above, wherein the triplet energy level of the first host compound is higher than the triplet energy level of the guest compound, and The triplet energy level is preferably higher than the triplet energy level of the guest compound.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第一ホスト化合物の三重項エネルギー準位が前記第二ホスト化合物の三重項エネルギー準位と同じないしは高いことが好ましい。   The organic EL device of the present invention is an organic EL device as defined above, wherein the triplet energy level of the first host compound is preferably the same as or higher than the triplet energy level of the second host compound.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第一ホスト化合物が、下記一般式(1)で示されるトリフェニルアミン骨格を有するものであることが好ましい。

Figure 2008288344
式中、n〜nは1〜3の整数を表し、Ar〜Arは、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar〜Arが置換しているベンゼン環と縮合して芳香環を形成しても良い。 The organic EL device of the present invention is an organic EL device as defined above, wherein the first host compound preferably has a triphenylamine skeleton represented by the following general formula (1).
Figure 2008288344
In the formula, n 1 to n 3 represent an integer of 1 to 3 , and Ar 1 to Ar 3 each independently represent a hydrogen atom, an alkyl group, or an aryl group, or Ar 1 to Ar 3 are substituted. An aromatic ring may be formed by condensation with a benzene ring.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第一ホスト化合物が、下記一般式(1)−(a)で表せるものであることが好ましい。

Figure 2008288344
式中、n、nは、1〜4の整数を表し、Ar〜Arは、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar〜Arが置換しているベンゼン環と縮合して芳香環を形成しても良い。 The organic EL device of the present invention is an organic EL device as defined above, and the first host compound is preferably one that can be represented by the following general formulas (1) to (a).
Figure 2008288344
In the formula, n 4 and n 5 each represent an integer of 1 to 4, and Ar 4 to Ar 9 each independently represent a hydrogen atom, an alkyl group, or an aryl group, or Ar 4 to Ar 9 are substituted. An aromatic ring may be formed by condensation with a benzene ring.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第一ホスト化合物が、下記一般式(1)−(b)で表せるものであることが好ましい。

Figure 2008288344
式中、n、nは1〜4の整数を表し、Ar10〜Ar15は、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar10〜Ar15が置換しているベンゼン環と縮合して芳香環を形成しても良い。また、Xは、2価の原子又は原子団;直鎖又は分岐もしくは環状のアルキレン基;又はアリール基を表す。 The organic EL device of the present invention is an organic EL device as defined above, and the first host compound is preferably one that can be represented by the following general formulas (1) to (b).
Figure 2008288344
Wherein, n 6, n 7 is an integer of 1 to 4, Ar 10 to Ar 15 are each independently hydrogen atom, an alkyl group, an aryl group, Ar 10 to Ar 15 is substituted An aromatic ring may be formed by condensation with a benzene ring. X represents a divalent atom or atomic group; a linear or branched or cyclic alkylene group; or an aryl group.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第一ホスト化合物が、下記一般式(1)−(c)で表せるものであることが好ましい。

Figure 2008288344
式中、Ar16〜Ar24は、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar16〜Ar24が置換しているベンゼン環と縮合して芳香環を形成しても良い。また、Yは、3価の原子又は原子団;直鎖又は分岐もしくは環状のアルカントリイル基;又はアレーントリイル基を表す。 The organic EL device of the present invention is an organic EL device as defined above, and the first host compound is preferably one that can be represented by the following general formulas (1) to (c).
Figure 2008288344
In the formula, each of Ar 16 to Ar 24 independently represents a hydrogen atom, an alkyl group, or an aryl group, or may be condensed with a benzene ring substituted by Ar 16 to Ar 24 to form an aromatic ring. good. Y represents a trivalent atom or atomic group; a linear or branched or cyclic alkanetriyl group; or an arenetriyl group.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第一ホスト化合物が、下記一般式(1)−(d)で表せるものであることが好ましい。

Figure 2008288344
式中、Ar25〜Ar33は、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar25〜Ar33が置換しているベンゼン環と縮合して芳香環を形成しても良い。 The organic EL device of the present invention is an organic EL device as defined above, and the first host compound is preferably one that can be represented by the following general formulas (1) to (d).
Figure 2008288344
In the formula, Ar 25 to Ar 33 each independently represent a hydrogen atom, an alkyl group, or an aryl group, or they may be condensed with a benzene ring substituted by Ar 25 to Ar 33 to form an aromatic ring. good.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記第二ホスト化合物が、下記一般式(2)で示されるイリジウム錯体であることが好ましい。

Figure 2008288344
式中、R〜Rは、それぞれ独立して、水素原子、アルキル基、アリール基、ハロゲン原子を表すか、R〜Rが置換しているベンゼン環又はピリジン環と縮合して芳香環を形成しても良い。 The organic EL element of the present invention is the organic EL element defined above, and the second host compound is preferably an iridium complex represented by the following general formula (2).
Figure 2008288344
In the formula, each of R 1 to R 7 independently represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, or condensed with a benzene ring or pyridine ring substituted by R 1 to R 7 to give an aromatic A ring may be formed.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記ゲスト化合物が、白金あるいはイリジウム原子を有する燐光性の発光材料であることが好ましい。   The organic EL device of the present invention is the organic EL device defined above, and the guest compound is preferably a phosphorescent light emitting material having platinum or iridium atoms.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記発光層中における前記第一ホスト化合物と前記第二ホスト化合物との質量比(第一ホスト化合物/第二ホスト化合物)が、10/90〜90/10であることが好ましい。   The organic EL device of the present invention is an organic EL device as defined above, wherein a mass ratio (first host compound / second host compound) between the first host compound and the second host compound in the light emitting layer is It is preferable that it is 10 / 90-90 / 10.

本発明の有機EL素子は、上記規定の有機EL素子であって、前記発光層が、ウエットプロセスにより成膜されることが好ましい。   The organic EL element of the present invention is the organic EL element defined above, and the light emitting layer is preferably formed by a wet process.

上記の構成によれば、発光効率をより向上させることができ、耐久性に優れ、また、ウエットプロセスにより成膜することができる燐光性有機薄膜材料を有する有機EL素子を提供することができる。   According to said structure, the organic EL element which can improve luminous efficiency more, is excellent in durability, and has the phosphorescent organic thin film material which can be formed into a film by a wet process can be provided.

以下、本発明の実施形態である有機EL素子の一例について説明する。
図1は、本発明の実施形態である有機EL素子の一例を説明する断面模式図である。図1に示す有機EL素子は、基板10上に、陽極20が形成され、さらに、正孔注入層30、発光層40、正孔阻止層50、および電子輸送層60からなる有機薄膜層100が形成され、更に、陰極70が積層されて構成されている。前記有機EL素子を取り囲んで、ガラス封止管80と基板10とが、UV硬化樹脂90により接着されている。
Hereinafter, an example of the organic EL element which is an embodiment of the present invention will be described.
FIG. 1 is a schematic cross-sectional view illustrating an example of an organic EL element according to an embodiment of the present invention. In the organic EL device shown in FIG. 1, an anode 20 is formed on a substrate 10, and an organic thin film layer 100 including a hole injection layer 30, a light emitting layer 40, a hole blocking layer 50, and an electron transport layer 60 is further formed. In addition, the cathode 70 is laminated. The glass sealing tube 80 and the substrate 10 are bonded by a UV curable resin 90 so as to surround the organic EL element.

(基板)
前記基板10は、透明な材料で、空気、水分などを遮断する特性に優れた材料を用いることができる。ガラス、石英などの無機材料に限らず、プラスチックフィルムなどの有機材料も用いることができる。
(substrate)
The substrate 10 may be made of a transparent material having excellent characteristics for blocking air, moisture, and the like. Not only inorganic materials such as glass and quartz, but also organic materials such as plastic films can be used.

前記基板10としてプラスチックフィルムなどの有機材料も用いる場合には、ガスバリア層を設けることが好ましい。
前記ガスバリア層とは、空気、水分などを遮断する効果を有する薄膜層のことであり、CVD法あるいは高周波スパッタリング法などにより、SiOあるいはSiNなどを複数層成膜することにより形成される。さらに、前記基板10には、ハ−ドコ−ト層などを設けてもかまわない。
When an organic material such as a plastic film is used as the substrate 10, it is preferable to provide a gas barrier layer.
The gas barrier layer is a thin film layer having an effect of blocking air, moisture, and the like, and is formed by forming a plurality of layers of SiO 2 or SiN by CVD or high-frequency sputtering. Further, the substrate 10 may be provided with a hard coat layer or the like.

(陽極)
前記陽極20は、導電性の高く、仕事関数の大きい材料が好ましい。仕事関数は、少なくとも4.0eV以上であることが好ましい。有機EL素子として、発光を陽極側から取り出す場合には、前記陽極20は、透明な材料であることが好ましい。一般的には、インジウム−錫−酸化物(以下、ITO)あるいはインジウム−亜鉛−酸化物(以下、IZO)などの導電性透明酸化物が用いられる。
(anode)
The anode 20 is preferably made of a material having high conductivity and a large work function. The work function is preferably at least 4.0 eV. In the case where light is extracted from the anode side as the organic EL element, the anode 20 is preferably a transparent material. Generally, a conductive transparent oxide such as indium-tin-oxide (hereinafter referred to as ITO) or indium-zinc-oxide (hereinafter referred to as IZO) is used.

(正孔注入層)
前記正孔注入層30は、正孔注入能の高い有機材料から構成される。また、電界を印加することにより、陽極20から正孔を正孔注入層30内に高効率で取り込み、正孔注入層30内から発光層40に正孔を高効率に注入することができる材料である。電界を印加しても、有機薄膜として安定に存在することのできる有機材料が好ましく、たとえば、PEDOT/PSS混合材料のようなポリエチレンジオキシチオフェンとポリスチレンスルホネ―トの混合物、ポリアニリン、ポリチオフェンなどの導電性高分子材料などを使用することができる。
(Hole injection layer)
The hole injection layer 30 is made of an organic material having a high hole injection capability. Further, a material capable of taking holes from the anode 20 into the hole injection layer 30 with high efficiency and applying holes from the hole injection layer 30 into the light emitting layer 40 by applying an electric field. It is. An organic material that can exist stably as an organic thin film even when an electric field is applied is preferable. For example, a mixture of polyethylene dioxythiophene and polystyrene sulfonate such as PEDOT / PSS mixed material, polyaniline, polythiophene, etc. A conductive polymer material or the like can be used.

前記PEDOT/PSS混合材料を用いる場合には、スピンコート法を利用することができる。
たとえば、まず、所定量のPEDOT/PSSを有機溶媒に含有させ、正孔注入層用溶液を調整する。次に、スピンコーターの所定の位置に、前記基板10をセットし、所定の回転速度とした後、前記正孔注入層用溶液を塗布する。それを180℃のチャンバーに導入し、乾燥工程を行い、有機溶媒を除去することにより、所定の膜厚の正孔注入層30を形成する。
When the PEDOT / PSS mixed material is used, a spin coating method can be used.
For example, first, a predetermined amount of PEDOT / PSS is contained in an organic solvent to prepare a hole injection layer solution. Next, the substrate 10 is set at a predetermined position of a spin coater, set to a predetermined rotation speed, and then the hole injection layer solution is applied. The hole injection layer 30 having a predetermined thickness is formed by introducing it into a chamber at 180 ° C., performing a drying process, and removing the organic solvent.

前記有機溶媒としては、極性溶媒が好ましく、N、N−ジメチルホルムアミド、N,N―ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、エチレングリコール、ジエチレングリコール、グリセリンなどを挙げることができる。   The organic solvent is preferably a polar solvent, and examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, ethylene glycol, diethylene glycol, and glycerin.

前記正孔注入層30の膜厚は、1nm〜5μmとすることが好ましく、10nm〜1μmがより好ましく、20nm〜200nmがさらに好ましい。
前記正孔注入層30の膜厚が1nm未満の場合には、前記正孔輸送層30は、アイランド構造となり、層としての形を成さないので、有機EL素子として機能させることができなくなる。逆に、前記正孔注入層30の膜厚が5μm超の場合には、膜厚が厚いので、発光に必要な電圧が高くなりすぎ、発光効率が低下する。さらに、短絡し、素子破壊を生ずる場合がある。
The film thickness of the hole injection layer 30 is preferably 1 nm to 5 μm, more preferably 10 nm to 1 μm, and still more preferably 20 nm to 200 nm.
When the thickness of the hole injection layer 30 is less than 1 nm, the hole transport layer 30 has an island structure and does not form a layer, and thus cannot function as an organic EL element. On the contrary, when the thickness of the hole injection layer 30 exceeds 5 μm, the film thickness is large, so that the voltage required for light emission becomes too high and the light emission efficiency is lowered. Furthermore, a short circuit may occur, causing element destruction.

(発光層)
前記発光層40は、3成分以上の有機材料、すなわち、正孔輸送材料からなる第一ホスト化合物と、燐光性の金属錯体からなる第二ホスト化合物と、燐光性の発光材料からなるゲスト化合物とを含み構成される。
前記発光層40の構成成分として、3成分以上の有機材料を用いることにより、電子、正孔を発光層40内に蓄積させ、電子および正孔の再結合により生成される励起子の発生確率を高めることができる。また、生じた励起子をゲスト化合物の三重項エネルギー準位に安定して保持させることができる。その結果、有機EL素子の発光効率を向上させることができる。
(Light emitting layer)
The light emitting layer 40 includes three or more component organic materials, that is, a first host compound made of a hole transport material, a second host compound made of a phosphorescent metal complex, and a guest compound made of a phosphorescent light emitting material. It is comprised including.
By using an organic material having three or more components as a constituent component of the light emitting layer 40, electrons and holes are accumulated in the light emitting layer 40, and the probability of occurrence of excitons generated by recombination of electrons and holes is increased. Can be increased. In addition, the generated excitons can be stably held at the triplet energy level of the guest compound. As a result, the light emission efficiency of the organic EL element can be improved.

前記発光層40の膜厚は、1nm〜5μmとすることが好ましく、10nm〜1μmがより好ましく、20nm〜200nmがさらに好ましい。
前記発光層40の膜厚が1nm未満の場合には、前記発光層40は、アイランド構造となり、層としての形を成さないので、有機EL素子として機能させることができなくなる。 逆に、前記発光層40の膜厚が5μm超の場合には、膜厚が厚いので、発光に必要な電圧が高くなりすぎ、発光効率が低下する。さらに、短絡し、素子破壊を生ずる場合がある。
The film thickness of the light emitting layer 40 is preferably 1 nm to 5 μm, more preferably 10 nm to 1 μm, and even more preferably 20 nm to 200 nm.
When the thickness of the light emitting layer 40 is less than 1 nm, the light emitting layer 40 has an island structure and does not form a layer, so that it cannot function as an organic EL element. On the contrary, when the thickness of the light emitting layer 40 is more than 5 μm, since the film thickness is thick, the voltage required for light emission becomes too high, and the light emission efficiency is lowered. Furthermore, a short circuit may occur, causing element destruction.

(第一ホスト化合物)
前記第一ホスト化合物は、発光層40の主成分となる正孔輸送材料であり、前記発光層40の中で三重項エネルギー準位の最も高い材料である。
前記第一ホスト化合物としては、下記一般式(1)で示されるトリフェニルアミン骨格を有するものが好ましい。
(First host compound)
The first host compound is a hole transport material that is a main component of the light emitting layer 40, and is the material having the highest triplet energy level in the light emitting layer 40.
As the first host compound, those having a triphenylamine skeleton represented by the following general formula (1) are preferable.

Figure 2008288344
式中、n〜nは1〜3の整数を表し、Ar〜Arとしては、水素原子;メチル基、エチル基、イソプロピル基、t−ブチル基等の炭素数1〜4のアルキル基;フェニル基、トリル基、キシリル基、メシチル基、t−ブチルフェニル基、ビフェニル基等のアリール基等が挙げられる。また、Ar〜Arが置換しているベンゼン環と縮合して形成する芳香環としては、ナフタレン環、アントラセン環、フェナントレン環等が挙げられる。
Figure 2008288344
In the formula, n 1 to n 3 represent an integer of 1 to 3 , and Ar 1 to Ar 3 represent a hydrogen atom; an alkyl having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, or a t-butyl group. Group; aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group, t-butylphenyl group and biphenyl group; Examples of the aromatic ring formed by condensation with a benzene ring substituted by Ar 1 to Ar 3 include a naphthalene ring, an anthracene ring, and a phenanthrene ring.

特に、前記第一ホスト化合物が、前記一般式(1)に示すようなトリフェニルアミン骨格を有する正孔輸送材料のうち、下記一般式(1)−(a)で表せるようなトリフェニルアミンが2個連結した構造を有する正孔輸送材料であることが好ましい。

Figure 2008288344
式中、n、nは1〜4の整数を表し、Ar〜Arとしては、水素原子;メチル基、エチル基、イソプロピル基、t−ブチル基等の炭素数1〜4のアルキル基;フェニル基、トリル基、キシリル基、メシチル基、t−ブチルフェニル基、ビフェニル基等のアリール基等が挙げられる。また、Ar〜Arが置換しているベンゼン環と縮合して形成する芳香環としては、ナフタレン環、アントラセン環、フェナントレン環等が挙げられる。 Particularly, among the hole transport materials in which the first host compound has a triphenylamine skeleton as shown in the general formula (1), a triphenylamine that can be expressed by the following general formula (1)-(a) is used. A hole transport material having a structure in which two are connected is preferable.
Figure 2008288344
In the formula, n 4 and n 5 represent an integer of 1 to 4 , and Ar 4 to Ar 9 are each a hydrogen atom; an alkyl having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, or a t-butyl group. Group; aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group, t-butylphenyl group and biphenyl group; In addition, examples of the aromatic ring formed by condensation with a benzene ring substituted by Ar 4 to Ar 9 include a naphthalene ring, an anthracene ring, and a phenanthrene ring.

また、前記第一ホスト化合物が、前記一般式(1)に示すようなトリフェニルアミン骨格を有する正孔輸送材料のうち、下記一般式(1)−(b)で表せるようなトリフェニルアミンが連結基Xを介して2個連結した構造を有する正孔輸送材料であることが好ましい。

Figure 2008288344
式中、n、nは1〜4の整数を表し、Ar10〜Ar15としては、水素原子;メチル基、エチル基、イソプロピル基、t−ブチル基等の炭素数1〜4のアルキル基;フェニル基、トリル基、キシリル基、メシチル基、t−ブチルフェニル基、ビフェニル基等のアリール基等が挙げられる。また、Ar10〜Ar15が置換しているベンゼン環と縮合して形成する芳香環としては、ナフタレン環、アントラセン環、フェナントレン環等が挙げられる。また、2価の原子又は原子団のXとしては、酸素原子;メチレン基、エチレン基、1,1−シクロヘキシレン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基、フェニレン基等の直鎖、分岐又は環状のアルキレン基、もしくはアリーレン基等が挙げられる。 Further, among the hole transport materials in which the first host compound has a triphenylamine skeleton as shown in the general formula (1), there is a triphenylamine that can be expressed by the following general formulas (1) to (b). A hole transport material having a structure in which two are connected via a linking group X is preferred.
Figure 2008288344
Wherein, n 6, n 7 represents an integer of 1 to 4, the Ar 10 to Ar 15, a hydrogen atom; a methyl group, an ethyl group, an isopropyl group, an alkyl having 1 to 4 carbon atoms a t- butyl group and the like Group; aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group, t-butylphenyl group and biphenyl group; In addition, examples of the aromatic ring formed by condensation with a benzene ring substituted with Ar 10 to Ar 15 include a naphthalene ring, an anthracene ring, and a phenanthrene ring. In addition, as X of the divalent atom or atomic group, oxygen atom; methylene group, ethylene group, 1,1-cyclohexylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, phenylene group, etc. A linear, branched or cyclic alkylene group, or an arylene group.

また、前記第一ホスト化合物が、前記一般式(1)に示すようなトリフェニルアミン骨格を有する正孔輸送材料のうち、下記一般式(1)−(c)で表せるようなトリフェニルアミンが連結基Yを介して3個連結した構造を有する正孔輸送材料であることが好ましい。

Figure 2008288344
式中、Ar16〜Ar24としては、水素原子;メチル基、エチル基、イソプロピル基、t−ブチル基等の炭素数1〜4のアルキル基;フェニル基、トリル基、キシリル基、メシチル基、t−ブチルフェニル基、ビフェニル基等のアリール基等が挙げられる。また、Ar16〜Ar24が置換しているベンゼン環と縮合して形成する芳香環としては、ナフタレン環、アントラセン環、フェナントレン環等が挙げられる。また、3価の原子又は原子団のYとしては、窒素原子、リン原子、ホウ素原子;メチリジン基、ベンジリジン基、シクロヘキサントリイル基、ベンゼントリイル基等のアルカントリイル基又はアレーントリイル基等が挙げられる。 Further, among the hole transport materials in which the first host compound has a triphenylamine skeleton as shown in the general formula (1), a triphenylamine that can be expressed by the following general formulas (1) to (c) is used. A hole transport material having a structure in which three are connected via a connecting group Y is preferable.
Figure 2008288344
In the formula, Ar 16 to Ar 24 include a hydrogen atom; an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, and a t-butyl group; a phenyl group, a tolyl group, a xylyl group, a mesityl group, Examples thereof include aryl groups such as t-butylphenyl group and biphenyl group. In addition, examples of the aromatic ring formed by condensation with a benzene ring substituted by Ar 16 to Ar 24 include a naphthalene ring, an anthracene ring, and a phenanthrene ring. In addition, as Y of the trivalent atom or atomic group, nitrogen atom, phosphorus atom, boron atom; alkanetriyl group such as methylidyne group, benzylidine group, cyclohexanetriyl group, benzenetriyl group, or arenetriyl group, etc. Is mentioned.

また、前記第一ホスト化合物が、前記一般式(1)に示すようなトリフェニルアミン骨格を有する正孔輸送材料のうち、下記一般式(1)−(d)で表せるようなトリフェニルアミンにカルバゾール基が3個連結している構造を有する正孔輸送材料であることがより好ましい。

Figure 2008288344
式中、Ar25〜Ar33としては、水素原子;メチル基、エチル基、イソプロピル基、t−ブチル基等の炭素数1〜4のアルキル基;フェニル基、トリル基、キシリル基、メシチル基、t−ブチルフェニル基、ビフェニル基等のアリール基等が挙げられる。また、Ar25〜Ar33が置換しているベンゼン環と縮合して形成する芳香環としては、ナフタレン環、アントラセン環、フェナントレン環等が挙げられる。 In addition, among the hole transport materials having the triphenylamine skeleton as shown in the general formula (1), the first host compound may be triphenylamine that can be expressed by the following general formulas (1) to (d). A hole transport material having a structure in which three carbazole groups are linked is more preferable.
Figure 2008288344
In the formula, Ar 25 to Ar 33 are each a hydrogen atom; an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, or a t-butyl group; a phenyl group, a tolyl group, a xylyl group, a mesityl group, Examples thereof include aryl groups such as t-butylphenyl group and biphenyl group. In addition, examples of the aromatic ring formed by condensation with a benzene ring substituted with Ar 25 to Ar 33 include a naphthalene ring, an anthracene ring, and a phenanthrene ring.

さらに、次に、本発明の実施形態において用いる前記第一ホスト化合物の具体例を示すが、本発明はこれらに限定されるものではない。
なお、ここで、式(1−1)〜式(1−37)は、一般式(1)に対応する。特に、式(1−5)〜式(1−19)は、一般式(1)−(a)に対応し、式(1−20)〜式(1−25)は、一般式(1)−(b)に対応し、式(1−26)〜式(1−34)は、一般式(1)−(c)に対応し、式(1−35)〜式(1−37)は、一般式(1)−(d)に対応するものである。
Furthermore, although the specific example of said 1st host compound used in embodiment of this invention is shown next, this invention is not limited to these.
Here, the expressions (1-1) to (1-37) correspond to the general expression (1). In particular, formula (1-5) to formula (1-19) correspond to general formula (1)-(a), and formula (1-20) to formula (1-25) correspond to general formula (1). -(B), formulas (1-26) to (1-34) correspond to general formulas (1) to (c), and formulas (1-35) to (1-37) These correspond to the general formulas (1) to (d).

Figure 2008288344
Figure 2008288344

Figure 2008288344
Figure 2008288344

Figure 2008288344
Figure 2008288344

(第二ホスト化合物)
前記第二ホスト化合物は、発光層40の主成分となる燐光性の金属錯体であり、発光層40を構成する有機材料の中で、三重項エネルギーが第一ホストと同じまたは第一ホストに次いで高い材料である。
前記第二ホスト化合物としては、下記一般式(2)で示されるイリジウム錯体を有するものが好ましい。
(Second host compound)
The second host compound is a phosphorescent metal complex that is a main component of the light emitting layer 40. Among the organic materials constituting the light emitting layer 40, the triplet energy is the same as that of the first host or next to the first host. High material.
As said 2nd host compound, what has an iridium complex shown by following General formula (2) is preferable.

Figure 2008288344
式中、R〜Rとしては、水素原子;メチル基、エチル基、イソプロピル基、ブチル基、t−ブチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、シクロヘキシル基等の、直鎖、分岐又は環状の炭素数1〜16のアルキル基;フェニル基、トリル基、キシリル基、メシチル基、t−ブチルフェニル基、ビフェニル基等のアリール基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。
Figure 2008288344
In the formula, R 1 to R 7 are each a hydrogen atom; methyl, ethyl, isopropyl, butyl, t-butyl, hexyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl Linear, branched or cyclic alkyl groups having 1 to 16 carbon atoms such as a group, tetradecyl group and cyclohexyl group; aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group, t-butylphenyl group and biphenyl group A halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom;

さらに、次に、本発明の実施形態において用いる第二ホスト化合物の具体例を示すが、本発明はこれらに限定されるものではない。   Furthermore, although the specific example of the 2nd host compound used in embodiment of this invention is shown next, this invention is not limited to these.

Figure 2008288344
Figure 2008288344

(ゲスト化合物)
前記ゲスト化合物は、発光層40の副成分となる燐光性有機材料であり、前記発光層40を構成する有機材料の中で三重項エネルギー準位が最も低い材料である。たとえば、イリジウムまたは白金などのような遷移金属を有する金属錯体が好ましい。
(Guest compound)
The guest compound is a phosphorescent organic material that is a subcomponent of the light emitting layer 40, and is a material having the lowest triplet energy level among the organic materials constituting the light emitting layer 40. For example, a metal complex having a transition metal such as iridium or platinum is preferable.

次に、本発明の実施形態において用いる前記ゲスト化合物の具体例を示すが、本発明はこれらに限定されるものではない。   Next, although the specific example of the said guest compound used in embodiment of this invention is shown, this invention is not limited to these.

Figure 2008288344
Figure 2008288344

Figure 2008288344
Figure 2008288344

発光層は、まず、発光層溶液を調整した後、スピンコート法、もしくはインクジェット法などのウエットプロセスにより、前記発光層溶液を前記正孔注入層の上に塗布、乾燥させて形成する。   The light emitting layer is formed by first preparing a light emitting layer solution and then applying and drying the light emitting layer solution on the hole injection layer by a wet process such as a spin coating method or an ink jet method.

より具体的には、たとえば、スピンコーターの所定の位置に、正孔注入層30を形成した基板10をセットし、前記発光層溶液を滴下した後、所定の速度で回転させて塗布する。回転を止め、前記スピンコーターから取り出した前記基板10を、70℃としたチャンバーに導入し、1時間保持する。この乾燥工程により、前記有機溶媒を除去し、所定の膜厚の発光層40を形成する。   More specifically, for example, the substrate 10 on which the hole injection layer 30 is formed is set at a predetermined position of a spin coater, and after the light emitting layer solution is dropped, the substrate is rotated and applied at a predetermined speed. The rotation is stopped, and the substrate 10 taken out from the spin coater is introduced into a chamber set at 70 ° C. and held for 1 hour. Through this drying process, the organic solvent is removed, and the light emitting layer 40 having a predetermined thickness is formed.

発光層溶液の調整は、以下のように行う。前記第一ホスト化合物と、前記第二ホスト化合物と所定量測り取る。前記第一ホスト化合物と前記第二ホスト化合物の総量をホスト化合物の総量とする。次に、前記ゲスト化合物を所定量測り取り、ホスト化合物に加える。最後に、所定量の溶媒を入れて溶解させ、発光層用溶液を調整する。発光層中における前記ホスト化合物に対するゲスト化合物の割合は、前記ホスト化合物の総量に対するゲスト化合物の量の割合となる。   The light emitting layer solution is adjusted as follows. A predetermined amount of the first host compound and the second host compound are measured. The total amount of the first host compound and the second host compound is defined as the total amount of the host compound. Next, a predetermined amount of the guest compound is measured and added to the host compound. Finally, a predetermined amount of solvent is added and dissolved to prepare a light emitting layer solution. The ratio of the guest compound to the host compound in the light emitting layer is the ratio of the amount of the guest compound to the total amount of the host compound.

発光層中における前記ホスト化合物と前記ゲスト化合物との質量比(ゲスト化合物/ホスト化合物)は、0.1/99.9〜50/50であることが好ましい。   The mass ratio of the host compound and the guest compound (guest compound / host compound) in the light emitting layer is preferably 0.1 / 99.9 to 50/50.

前記質量比(ゲスト化合物/ホスト化合物)が0.1/99.9より小さい場合は、ゲスト化合物の数が十分でないので、電子と正孔が再結合して励起エネルギーが多く生成されたとしても、すべての励起子がゲスト化合物にエネルギー移動することができなくなり、発光効率を向上させることができなくなる。
また、前記質量比(ゲスト化合物/ホスト化合物)が50/50より大きい場合は、電子と正孔とを再結合させて生成した励起エネルギーを、ゲスト化合物にエネルギー移動させ、ゲスト化合物を三重項状態に励起しても、濃度消光の効果により、発光せずにエネルギー失活させてしまうので、好ましくない。
When the mass ratio (guest compound / host compound) is smaller than 0.1 / 99.9, the number of guest compounds is not sufficient, so even if a lot of excitation energy is generated due to recombination of electrons and holes. , All excitons cannot transfer energy to the guest compound, and the light emission efficiency cannot be improved.
When the mass ratio (guest compound / host compound) is larger than 50/50, the excitation energy generated by recombining electrons and holes is transferred to the guest compound, and the guest compound is in a triplet state. Even if excited, it is not preferable because energy is deactivated without light emission due to the effect of concentration quenching.

前記発光層中における前記第一ホスト化合物と前記第二ホスト化合物との質量比(第一ホスト化合物/第二ホスト化合物)が、10/90〜90/10であることが好ましい。30質量比以上70質量比未満であることがより好ましい。   The mass ratio of the first host compound and the second host compound (first host compound / second host compound) in the light emitting layer is preferably 10/90 to 90/10. More preferably, it is 30 mass ratio or more and less than 70 mass ratio.

前記質量比(第一ホスト化合物/第二ホスト化合物)が10/90より小さい場合は、正孔輸送材料の比率の低下により分子間距離が大きくなりすぎて、発光層全体の正孔輸送性が低下し、発光効率を向上させることができなくなる。また、前記質量比(第一ホスト化合物/第二ホスト化合物)が、90/10より大きい場合は、第二ホスト材料の比率の低下により、第一ホストから第二ホストへのエネルギー移動が効率的に起こらなくなるため、好ましくない。   When the mass ratio (first host compound / second host compound) is smaller than 10/90, the intermolecular distance becomes too large due to the decrease in the ratio of the hole transport material, and the hole transport property of the entire light emitting layer is reduced. The light emission efficiency cannot be improved. In addition, when the mass ratio (first host compound / second host compound) is greater than 90/10, energy transfer from the first host to the second host is efficient due to a decrease in the ratio of the second host material. This is not preferable because it does not occur in

(正孔阻止層)
次に、発光層40を形成した前記基板10を、真空蒸着器のチャンバー内の所定の位置にセットし、前記チャンバー内を減圧状態とする。所定の減圧状態となった後、正孔阻止層50の材料を入れた坩堝を加熱し、蒸着することにより、前記発光層40の上に正孔阻止層50を形成する。
(Hole blocking layer)
Next, the substrate 10 on which the light emitting layer 40 is formed is set at a predetermined position in the chamber of the vacuum vapor deposition device, and the inside of the chamber is brought into a reduced pressure state. After reaching a predetermined reduced pressure state, the crucible containing the material of the hole blocking layer 50 is heated and evaporated to form the hole blocking layer 50 on the light emitting layer 40.

前記正孔阻止層50としては、発光層40内部をホッピング移動してきた正孔を阻止することができる有機薄膜が好ましい。たとえば、発光層40の基底状態のエネルギー準位と、正孔阻止層50の基底状態のエネルギー準位とを比較して、正孔阻止層50の基底状態のエネルギー準位が発光層40の基底状態のエネルギー準位よりも高く、かつそのエネルギーギャップが大きい材料であれば、正孔阻止層50として使用することができる。このエネルギーギャップのために、移動してきた正孔が正孔阻止層50の中への浸入を防ぐことができるためである。正孔阻止層50の中への浸入を阻止された正孔は、発光層40内部に滞留し、励起子の生成に寄与する。   The hole blocking layer 50 is preferably an organic thin film that can block holes that have hopped and moved inside the light emitting layer 40. For example, when the energy level of the ground state of the light-emitting layer 40 is compared with the energy level of the ground state of the hole blocking layer 50, the energy level of the ground state of the hole blocking layer 50 is Any material that is higher than the energy level of the state and has a large energy gap can be used as the hole blocking layer 50. This is because the holes that have moved can be prevented from entering the hole blocking layer 50 due to this energy gap. Holes that are prevented from entering the hole blocking layer 50 stay inside the light emitting layer 40 and contribute to the generation of excitons.

前記正孔阻止層50として用いることができる有機材料は、前記条件を満足する一般的な電子輸送材を用いることができる。たとえば、2,2’,2”−(1,3,5−ベンゼントリイル)−トリス[1−フェニル−1H−ベンズイミダゾール](以下、TPBI)などを用いることができる。   As the organic material that can be used as the hole blocking layer 50, a general electron transporting material that satisfies the above conditions can be used. For example, 2,2 ′, 2 ″-(1,3,5-benzenetriyl) -tris [1-phenyl-1H-benzimidazole] (hereinafter, TPBI) can be used.

前記正孔阻止層50の膜厚は、1nm〜5μmとすることが好ましく、10nm〜1μmがより好ましく、20nm〜200nmがさらに好ましい。
前記正孔阻止層50の膜厚が1nm未満の場合には、前記正孔阻止層50は、アイランド構造となり、層としての形を成さないので、有機EL素子として機能させることができなくなる。逆に、前記正孔阻止層50の膜厚が5μm超の場合には、膜厚が厚いので、発光に必要な電圧が高くなりすぎ、発光効率が低下する。さらに、短絡し、素子破壊を生ずる場合がある。
The thickness of the hole blocking layer 50 is preferably 1 nm to 5 μm, more preferably 10 nm to 1 μm, and still more preferably 20 nm to 200 nm.
When the thickness of the hole blocking layer 50 is less than 1 nm, the hole blocking layer 50 has an island structure and does not form a layer, so that it cannot function as an organic EL element. On the other hand, when the hole blocking layer 50 has a film thickness of more than 5 μm, the film thickness is too large, so that the voltage required for light emission becomes too high and the light emission efficiency is lowered. Furthermore, a short circuit may occur, causing element destruction.

(電子輸送層)
次に、正孔阻止層50を形成した前記基板10の、真空装置のチャンバー内の位置はそのままの状態にして、減圧条件下のもと、引き続き電子輸送層60の材料を入れた坩堝を加熱、蒸着することにより、前記正孔阻止層50の上に、電子輸送層60を形成する。
(Electron transport layer)
Next, the crucible containing the material of the electron transport layer 60 is continuously heated under the reduced pressure condition with the position of the substrate 10 on which the hole blocking layer 50 is formed in the chamber of the vacuum apparatus as it is. The electron transport layer 60 is formed on the hole blocking layer 50 by vapor deposition.

前記電子輸送層60は、電子輸送能が高い有機材料であり、電界を印加しても破壊されること無く、薄膜として安定に存在することのできる材料が好ましい。前記正孔阻止層40としても用いることができる有機材料を、適宜選択して用いることができる。
たとえば、前記電子輸送層60の材料として、トリス−(8−ヒドロキシキノリン)−アルミニウム(以下、Alq)を挙げることができる。
The electron transport layer 60 is an organic material having a high electron transport capability, and is preferably a material that can be stably present as a thin film without being broken even when an electric field is applied. An organic material that can also be used as the hole blocking layer 40 can be appropriately selected and used.
For example, as a material of the electron transport layer 60, tris- (8-hydroxyquinoline) -aluminum (hereinafter, Alq 3 ) can be exemplified.

前記電子輸送層60の膜厚は、1nm〜5μmとすることが好ましく、10nm〜1μmがより好ましく、20nm〜200nmがさらに好ましい。
前記電子輸送層60の膜厚が1nm未満の場合には、前記電子輸送層60は、アイランド構造となり、層としての形を成さないので、有機EL素子として機能させることができなくなる。逆に、前記電子輸送層60の膜厚が5μm超の場合には、膜厚が厚いので、発光に必要な電圧が高くなりすぎ、発光効率が低下する。さらに、短絡し、素子破壊を生ずる場合がある。
The film thickness of the electron transport layer 60 is preferably 1 nm to 5 μm, more preferably 10 nm to 1 μm, and still more preferably 20 nm to 200 nm.
When the thickness of the electron transport layer 60 is less than 1 nm, the electron transport layer 60 has an island structure and does not form a layer, so that it cannot function as an organic EL element. On the contrary, when the film thickness of the electron transport layer 60 exceeds 5 μm, since the film thickness is thick, the voltage required for light emission becomes too high, and the light emission efficiency is lowered. Furthermore, a short circuit may occur, causing element destruction.

(陰極)
前記陰極70は、仕事関数の低い金属を用いることが好ましい。前記仕事関数は、少なくとも4.5eV以下であることが好ましい。仕事関数の低い金属を用いることにより、陰極70と電子輸送層60との間の電子注入障壁を低くすることができ、陰極70から電子輸送層60へ電子を注入させやすくすることができるためである。仕事関数の低い金属としては、たとえば、Li、Csなどのアルカリ金属、Ca、Ba、Mgなどのアルカリ土類金属を例示することができる。
(cathode)
The cathode 70 is preferably made of a metal having a low work function. The work function is preferably at least 4.5 eV or less. By using a metal having a low work function, the electron injection barrier between the cathode 70 and the electron transport layer 60 can be lowered, and electrons can be easily injected from the cathode 70 into the electron transport layer 60. is there. Examples of the metal having a low work function include alkali metals such as Li and Cs, and alkaline earth metals such as Ca, Ba, and Mg.

しかしながら、前記仕事関数の低い金属は、空気中の酸素や水分などと反応しやすいので、MgAgなどの合金、あるいはLiF、LiO、CsFなどの前記金属を含む化合物などとして形成することが好ましい。あるいは、前記アルカリ金属、アルカリ土類金属の上に、AlもしくはAuなどの仕事関数の高い金属を積層して形成することが望ましい。 However, since the metal having a low work function easily reacts with oxygen or moisture in the air, it is preferably formed as an alloy such as MgAg or a compound containing the metal such as LiF, LiO 2 , or CsF. Alternatively, it is desirable to stack a metal having a high work function such as Al or Au on the alkali metal or alkaline earth metal.

(ガラス封止管)
前記ガラス封止管80を、UV硬化樹脂90を用いて、基板10に接着することにより、有機EL素子のデバイス部分は、外界から遮断され、空気、水分等からの影響が少なくすることができ、有機EL素子としての耐久性、素子寿命を大きく改善することができる。
なお、ガラス封止を行う際、ガラス封止管80内部の空気を窒素ガスで置換し、さらにガラス封止管80内部に乾燥剤を導入することにより、前記効果を強めることができる。
(Glass sealing tube)
By adhering the glass sealing tube 80 to the substrate 10 using the UV curable resin 90, the device portion of the organic EL element is blocked from the outside world and can be less affected by air, moisture, and the like. The durability as an organic EL element and the element life can be greatly improved.
In addition, when performing glass sealing, the said effect can be strengthened by substituting the air inside the glass sealing tube 80 with nitrogen gas, and also introduce | transducing a desiccant into the glass sealing tube 80 inside.

本発明の実施形態では、正孔注入層30から電子輸送層60までの各層を構成する有機薄膜層100の形成に、真空蒸着法によるドライプロセスとスピンコート法によるウエットプロセスを用いて製造したが、前記有機薄膜層100の全層を単一のプロセスを用いて形成することもできる。
前記ウエットプロセスによる有機薄膜層100の形成方法としては、スピンコート法以外に、インクジェット法、印刷法などを用いることができる。
大画面、高精細のディスプレイを有機EL素子により形成する場合には、特性面、製造面から、前記ウエットプロセスを用いて、有機薄膜層100を形成することが好ましい。
In the embodiment of the present invention, the organic thin film layer 100 constituting each layer from the hole injection layer 30 to the electron transport layer 60 is formed by using a dry process by a vacuum deposition method and a wet process by a spin coating method. The entire organic thin film layer 100 may be formed using a single process.
As a method for forming the organic thin film layer 100 by the wet process, an inkjet method, a printing method, or the like can be used in addition to the spin coating method.
In the case of forming a large-screen, high-definition display with organic EL elements, it is preferable to form the organic thin film layer 100 using the wet process in terms of characteristics and manufacturing.

前記発光層40には、さらに別の前記有機材料を添加することも可能であり、添加することができる有機材料の数に制限はない。
以下、本発明の実施形態の効果について説明する。
It is also possible to add another organic material to the light emitting layer 40, and the number of organic materials that can be added is not limited.
Hereinafter, effects of the embodiment of the present invention will be described.

本発明の実施形態である有機EL素子は、発光層を構成する3成分以上の材料が、正孔輸送材料からなる第一ホスト化合物と、燐光性の金属錯体からなる第二ホスト化合物と、燐光性の発光材料からなるゲスト化合物とから構成されているので、電子、正孔および電子および正孔の再結合により生成される励起子を発光層内に蓄積することができる。また、生じた励起子をゲスト化合物の三重項エネルギー準位に保持させることができる。その結果、有機EL素子の発光効率を向上させることができる。   In the organic EL device according to the embodiment of the present invention, the three or more components constituting the light emitting layer include a first host compound made of a hole transport material, a second host compound made of a phosphorescent metal complex, and phosphorescence. Therefore, excitons generated by recombination of electrons, holes, and electrons and holes can be accumulated in the light emitting layer. In addition, the generated excitons can be held at the triplet energy level of the guest compound. As a result, the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、第一ホスト化合物の三重項エネルギー準位がゲスト化合物の三重項エネルギー準位よりも高く、かつ第二ホスト化合物の三重項エネルギー準位がゲスト化合物の三重項エネルギー準位よりも高いので、励起エネルギーをホスト化合物からゲスト化合物へ効率的に遷移させることができる。その結果、有機EL素子の発光効率を向上させることができる。   In the organic EL device according to an embodiment of the present invention, the triplet energy level of the first host compound is higher than the triplet energy level of the guest compound, and the triplet energy level of the second host compound is that of the guest compound. Since it is higher than the triplet energy level, the excitation energy can be efficiently transferred from the host compound to the guest compound. As a result, the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、第一ホスト化合物の三重項エネルギー準位が、第二ホスト化合物の三重項エネルギー準位と同じあるいは第二ホスト化合物の三重項エネルギー準位よりも高いので、励起エネルギーを第一ホスト化合物の三重項エネルギー準位から第二ホスト化合物の三重項エネルギー準位へ効率的に遷移させることができる。その結果、有機EL素子の発光効率を向上させることができる。   In the organic EL device according to the embodiment of the present invention, the triplet energy level of the first host compound is the same as the triplet energy level of the second host compound or higher than the triplet energy level of the second host compound. Therefore, the excitation energy can be efficiently shifted from the triplet energy level of the first host compound to the triplet energy level of the second host compound. As a result, the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、第一ホスト化合物が、正孔輸送能に優れたトリフェニルアミン骨格を有するので、発光層内に多くの正孔を蓄積することができる。その結果、有機EL素子の発光効率を向上させることができる。   In the organic EL device according to the embodiment of the present invention, the first host compound has a triphenylamine skeleton excellent in hole transport ability, and therefore, a large number of holes can be accumulated in the light emitting layer. As a result, the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、第二ホスト化合物が、励起子を三重項エネルギー準位に安定的に保持することができるイリジウム錯体であるので、発光層内の第二ホスト化合物の三重項エネルギー準位に励起子を蓄積することができる。その結果、有機EL素子の発光効率を向上させることができる。   In the organic EL device according to the embodiment of the present invention, the second host compound is an iridium complex that can stably hold excitons at the triplet energy level. Exciton can be accumulated in the triplet energy level. As a result, the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、前記ゲスト化合物が、励起子を三重項エネルギー準位に安定的に保持することができる、白金あるいはイリジウム原子を有する燐光性の発光材料であるので、発光層内のゲスト化合物の三重項エネルギー準位に励起子を蓄積することができる。その結果、有機EL素子の発光効率を向上させることができる。   In the organic EL device according to the embodiment of the present invention, the guest compound is a phosphorescent light-emitting material having platinum or iridium atoms that can stably hold excitons at a triplet energy level. Excitons can be accumulated at the triplet energy level of the guest compound in the light emitting layer. As a result, the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、発光層中におけるゲスト化合物の割合が、0.01質量%〜50質量%であるので、濃度消光させることなく、安定的に、ゲスト化合物の三重項エネルギー準位から燐光発光させることができ、有機EL素子の発光効率を向上させることができる。   In the organic EL device according to the embodiment of the present invention, the proportion of the guest compound in the light emitting layer is 0.01% by mass to 50% by mass, and thus the triplet of the guest compound can be stably performed without quenching the concentration. Phosphorescence can be emitted from the energy level, and the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、第一ホスト化合物と第二ホスト化合物との質量比が、10/90〜90/10の範囲にあるので、第一ホスト化合物で生成した励起子を第二ホスト化合物の三重項エネルギー準位に遷移し、安定的に保持させることができる。その結果、有機EL素子の発光効率を向上させることができる。   Since the organic EL element which is embodiment of this invention has the mass ratio of a 1st host compound and a 2nd host compound in the range of 10 / 90-90 / 10, the exciton produced | generated with the 1st host compound is used. It can transit to the triplet energy level of the second host compound and can be held stably. As a result, the light emission efficiency of the organic EL element can be improved.

本発明の実施形態である有機EL素子は、発光層などの有機薄膜層をウエットプロセスにより成膜することができるので、大型の有機ELディスプレイの製造においても、ドライプロセスで必要となる大型の真空チャンバーなどを必要とせず、その製造を簡易にすることができる。
以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例にのみ限定されるものではない。
In the organic EL device according to the embodiment of the present invention, an organic thin film layer such as a light emitting layer can be formed by a wet process. Therefore, a large vacuum required for a dry process is required in manufacturing a large organic EL display. A chamber or the like is not required, and the manufacturing can be simplified.
Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited only to these examples.

(実施例1)
(素子作成)
まず、ガラス基板上にITOからなる陽極を形成した。
Example 1
(Element creation)
First, an anode made of ITO was formed on a glass substrate.

(正孔注入層形成)
次に、前記陽極上に、PEDOT/PSSを含む正孔注入層用溶液をスピンコート法により膜厚35nmの正孔注入層を成膜し、180℃にて乾燥した。
なお、PEDOTはポリ(3,4−エチレンジオキシチオフェン)を示し、PSSはポリスルホスチレンを示す(以下、同じ)。
(Hole injection layer formation)
Next, a hole injection layer having a film thickness of 35 nm was formed on the anode by spin coating with a hole injection layer solution containing PEDOT / PSS and dried at 180 ° C.
PEDOT represents poly (3,4-ethylenedioxythiophene) and PSS represents polysulfostyrene (hereinafter the same).

(発光層形成)
まず、第一ホスト化合物として正孔輸送材料であり、式(1−11)に示す化合物である4,4’−ビス[N−(1−ナフチル)−フェニル−アミノ]−ビフェニル(以下、α−NPD)を50質量部、第二ホスト化合物として式(2−7)に示す化合物である(ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)2,4−トリデカンジオナート)を50質量部、ゲスト化合物として式(3−14)に示す化合物であるトリス(1−フェニルイソキノリノラト−C,N)イリジウム(III)を3質量部測り取り、1、2−ジクロロエタン溶液に溶解させ、発光層用溶液を調整した。
次に、前記正孔注入層の上に、スピンコート法により前記発光層溶液を塗布し、発光層を成膜し、70℃、1時間の条件で乾燥した。膜厚50nmの前記3成分からなる発光層を形成した。
(Light emitting layer formation)
First, 4,4′-bis [N- (1-naphthyl) -phenyl-amino] -biphenyl which is a hole transport material as the first host compound and is a compound represented by the formula (1-11) (hereinafter, α -NPD) is a compound represented by the formula (2-7) as the second host compound (bis (2-phenylpyridinato-N, C2 ' ) iridium (III) 2,4-tridecane) 50 parts by mass of dionate), 3 parts by mass of tris (1-phenylisoquinolinolato-C 2 , N) iridium (III), which is a compound represented by the formula (3-14) as a guest compound, A solution for a light emitting layer was prepared by dissolving in a 2-dichloroethane solution.
Next, the light emitting layer solution was applied onto the hole injection layer by a spin coating method to form a light emitting layer, which was dried at 70 ° C. for 1 hour. A light emitting layer composed of the three components having a thickness of 50 nm was formed.

(正孔阻止層形成)
次に、前記発光層の上に、膜厚10nmのTPBIからなる正孔阻止層を、真空蒸着法により形成した。
(Hole blocking layer formation)
Next, a hole blocking layer made of TPBI having a thickness of 10 nm was formed on the light emitting layer by a vacuum deposition method.

(電子輸送層形成)
さらに、前記正孔阻止層の上に、膜厚30nmのAlqからなる電子輸送層を、真空蒸着法により形成した。
(Electron transport layer formation)
Furthermore, an electron transport layer made of Alq 3 having a thickness of 30 nm was formed on the hole blocking layer by a vacuum deposition method.

最後に、前記電子輸送層上に、真空蒸着法を用いて、膜厚0.5nmのフッ化リチウム膜層、膜厚100nmのアルミニウムからなる陰極7を、真空蒸着法により連続して蒸着した。
陰極の成膜後、窒素ガスで満たされたグローブボックス内に前記有機EL素子を移し、封止用ガラスに紫外線硬化樹脂を用いて前記素子に接着し、封止を行った。
Finally, a cathode 7 made of a lithium fluoride film layer having a thickness of 0.5 nm and aluminum having a thickness of 100 nm was continuously deposited on the electron transport layer by a vacuum deposition method.
After film formation of the cathode, the organic EL element was transferred into a glove box filled with nitrogen gas, and was bonded to the element by using an ultraviolet curable resin as a sealing glass for sealing.

得られた素子の発光特性の測定を行った。
前記有機EL素子のITO陽極側に正、アルミニウム陰極側に負となる電圧を印加して、電流、輝度、発光スペクトル特性を測定した。
The light emitting characteristics of the obtained device were measured.
A positive voltage was applied to the ITO anode side of the organic EL element and a negative voltage was applied to the aluminum cathode side, and current, luminance, and emission spectrum characteristics were measured.

電圧印加時に、発光ピークが617nmとなる赤色発光が得られた。発光スペクトルから、ゲスト化合物からの発光であることを確認した。520nm付近に第二ホスト化合物からの微弱な発光成分も観測できた。輝度100cd/mにおけるCIE色度座標は(0.64、0.35)であった。輝度100cd/mにおける外部発光量子効率は5.8%であり、電力効率は4.11lm/Wであった。
実施例1の実験条件および実験結果について、表1、2に示す。
When voltage was applied, red light emission with an emission peak of 617 nm was obtained. From the emission spectrum, it was confirmed that the light emitted from the guest compound. A weak light emission component from the second host compound was also observed at around 520 nm. The CIE chromaticity coordinates at a luminance of 100 cd / m 2 were (0.64, 0.35). The external light emission quantum efficiency at a luminance of 100 cd / m 2 was 5.8%, and the power efficiency was 4.11 lm / W.
The experimental conditions and results of Example 1 are shown in Tables 1 and 2.

Figure 2008288344
Figure 2008288344

なお、表2に示すように、α−NPD、式(2−7)に示す化合物および式(3−14)に示す化合物の三重項エネルギー準位はそれぞれ、2.3eV、2.3eV、および 1.9eVであった。
なお、比較例4においては、第一ホストよりも三重項エネルギーの高い材料としてイリジウム(III)ビス[(4,6−ジフルオロフェニル)ピリジナト−N,C2’]ピコリネート(以下、FIrpicとする)を用いた。
また、比較例5において、赤色発光ゲスト材料である式(3−14)に示す化合物よりも三重項エネルギーの低い適当な第二ホストが無いため、ゲスト材料として、より三重項エネルギーの高い青色発光ゲスト材料であるFIrpicを用い、ゲストよりも三重項エネルギーの低い第二ホストとして式(2−7)に示す化合物を用いた。
As shown in Table 2, the triplet energy levels of α-NPD, the compound represented by formula (2-7), and the compound represented by formula (3-14) are 2.3 eV, 2.3 eV, and It was 1.9 eV.
In Comparative Example 4, iridium (III) bis [(4,6-difluorophenyl) pyridinato-N, C 2 ′ ] picolinate (hereinafter referred to as FIrpic) as a material having a triplet energy higher than that of the first host. Was used.
In Comparative Example 5, since there is no suitable second host having a triplet energy lower than that of the compound represented by Formula (3-14), which is a red light emitting guest material, blue light emission having a higher triplet energy as a guest material. Using FIrpic as a guest material, a compound represented by the formula (2-7) was used as a second host having a triplet energy lower than that of the guest.

Figure 2008288344
Figure 2008288344

(比較例1)
第二ホスト化合物を用いず、第一ホスト化合物の割合を100質量部とし、実施例1と同じゲスト化合物を3質量部とし、これらを1、2−ジクロロエタン溶液に溶解させ、発光層用溶液を調整して、発光層を形成したこと以外は、実施例1と同様にして、有機EL素子を作製した。
(Comparative Example 1)
Without using the second host compound, the proportion of the first host compound was 100 parts by mass, the same guest compound as in Example 1 was 3 parts by mass, these were dissolved in a 1,2-dichloroethane solution, and the light emitting layer solution was prepared. An organic EL device was produced in the same manner as in Example 1 except that the light emitting layer was formed by adjusting.

発光ピークが616nmとなる赤色発光が得られた。発光スペクトルから、ゲスト化合物からの発光であることを確認した。輝度100cd/mにおけるCIE色度座標は(0.66、0.33)であった。輝度100cd/mにおける外部発光量子効率は3.7%であり、電力効率は2.7lm/Wであった。
比較例1の実験条件および実験結果について、表1、2に合わせて示す。
Red light emission with an emission peak of 616 nm was obtained. From the emission spectrum, it was confirmed that the light emitted from the guest compound. The CIE chromaticity coordinates at a luminance of 100 cd / m 2 were (0.66, 0.33). The external light emission quantum efficiency at a luminance of 100 cd / m 2 was 3.7%, and the power efficiency was 2.7 lm / W.
The experimental conditions and experimental results of Comparative Example 1 are shown in Tables 1 and 2.

(実施例2)
第一ホスト化合物として、α−NPDの代わりに式(1−21)に示す化合物である1,1’−ビス(ジ−4−トルイルアミノフェニル)シクロヘキサン(以下、TAPC)を用いたほかは実施例1と同様にして、有機EL素子を作製した。
(Example 2)
Implemented except that 1,1′-bis (di-4-toluylaminophenyl) cyclohexane (hereinafter referred to as TAPC), which is a compound represented by the formula (1-21), was used as the first host compound instead of α-NPD. In the same manner as in Example 1, an organic EL device was produced.

発光ピークが618nmとなる赤色発光が得られた。発光スペクトルから、ゲスト化合物からの発光であることを確認した。520nm付近に第二ホスト化合物からの微弱な発光成分も観測できた。輝度100cd/mにおけるCIE色度座標は(0.61、0.38)であった。輝度100cd/mにおける外部発光量子効率は4.9%であり、電力効率は2.8lm/Wであった。
実施例2の実験条件および実験結果について、表1、2に合わせて示す。
Red light emission with an emission peak of 618 nm was obtained. From the emission spectrum, it was confirmed that the light emitted from the guest compound. A weak light emission component from the second host compound was also observed at around 520 nm. The CIE chromaticity coordinates at a luminance of 100 cd / m 2 were (0.61, 0.38). The external light emission quantum efficiency at a luminance of 100 cd / m 2 was 4.9%, and the power efficiency was 2.8 lm / W.
The experimental conditions and results of Example 2 are shown in Tables 1 and 2.

(比較例2)
第二ホスト化合物を用いず、第一ホスト化合物の割合を100質量部とし、実施例1と同じゲスト化合物を3質量部とし、これらを1、2−ジクロロエタン溶液に溶解させ、発光層用溶液を調整して、発光層を形成したこと以外は、実施例2と同様にして、有機EL素子を作製した。
(Comparative Example 2)
Without using the second host compound, the proportion of the first host compound was 100 parts by mass, the same guest compound as in Example 1 was 3 parts by mass, these were dissolved in a 1,2-dichloroethane solution, and the light emitting layer solution was prepared. An organic EL device was produced in the same manner as in Example 2 except that the light emitting layer was formed by adjusting.

発光ピークが619nmとなる赤色発光が得られた。発光スペクトルから、ゲスト化合物からの発光であることを確認した。輝度100cd/mにおけるCIE色度座標は(0.64、0.33)であった。輝度100cd/mにおける外部発光量子効率は2.1%であり、電力効率は0.9lm/Wであった。
比較例2の実験条件および実験結果について、表1、2に合わせて示す。
Red light emission with an emission peak of 619 nm was obtained. From the emission spectrum, it was confirmed that the light emitted from the guest compound. The CIE chromaticity coordinates at a luminance of 100 cd / m 2 were (0.64, 0.33). The external light emission quantum efficiency at a luminance of 100 cd / m 2 was 2.1%, and the power efficiency was 0.9 lm / W.
The experimental conditions and experimental results of Comparative Example 2 are shown in Tables 1 and 2.

(実施例3)
第一ホスト化合物として、α−TPDの代わりに式(1−35)に示す化合物である4,4’,4”−トリ(N−カルバゾリル)トリフェニルアミン(以下、TCTA)を用いたほかは実施例1と同様にして、有機EL素子を作製した。
(Example 3)
As the first host compound, 4,4 ′, 4 ″ -tri (N-carbazolyl) triphenylamine (hereinafter, TCTA), which is a compound represented by the formula (1-35), was used instead of α-TPD. In the same manner as in Example 1, an organic EL element was produced.

発光ピークが624nmとなる赤色発光が得られた。発光スペクトルから、ゲスト化合物からの発光であることを確認した。520nm付近に第二ホスト化合物からの微弱な発光成分も観測できた。輝度100cd/mにおけるCIE色度座標は(0.63、0.36)であった。輝度100cd/mにおける外部発光量子効率は4.8%であり、電力効率は2.5lm/Wであった。 Red light emission with an emission peak of 624 nm was obtained. From the emission spectrum, it was confirmed that the light emitted from the guest compound. A weak light emission component from the second host compound was also observed at around 520 nm. The CIE chromaticity coordinates at a luminance of 100 cd / m 2 were (0.63, 0.36). The external light emission quantum efficiency at a luminance of 100 cd / m 2 was 4.8%, and the power efficiency was 2.5 lm / W.

(比較例3)
第二ホスト化合物を用いず、第一ホスト化合物の割合を100質量部とし、実施例1と同じゲスト化合物を3質量部とし、これらを1、2−ジクロロエタン溶液に溶解させ、発光層用溶液を調整して、発光層を形成したこと以外は、実施例3と同様にして、有機EL素子を作製した。
(Comparative Example 3)
Without using the second host compound, the proportion of the first host compound was 100 parts by mass, the same guest compound as in Example 1 was 3 parts by mass, these were dissolved in a 1,2-dichloroethane solution, and the light emitting layer solution was prepared. An organic EL device was produced in the same manner as in Example 3 except that the light emitting layer was formed by adjusting.

発光層をスピンコート法により成膜した際、発光層が直ちに結晶化し、均質な膜が得られず、有機EL素子を作製することができなかった。
比較例3の実験条件および実験結果について、表1、2に合わせて示す。
When the light emitting layer was formed by spin coating, the light emitting layer immediately crystallized and a homogeneous film could not be obtained, making it impossible to produce an organic EL device.
The experimental conditions and experimental results of Comparative Example 3 are shown in Tables 1 and 2.

(比較例4)
第二ホスト化合物として、式(2−7)で表される化合物の代わりに、α−NPDよりも大きな三重項エネルギーを有する燐光材料であるFIrpicを用いたほかは実施例1と同様にして、有機EL素子を作製した。
(Comparative Example 4)
In the same manner as in Example 1 except that FIrpic, which is a phosphorescent material having a triplet energy larger than α-NPD, was used as the second host compound instead of the compound represented by formula (2-7). An organic EL element was produced.

発光ピークが622nmとなる赤色発光が得られた。発光スペクトルから、ゲスト化合物からの発光であることを確認した。輝度100cd/mにおけるCIE色度座標は(0.68,0.32)であった。輝度100cd/mにおける外部発光量子効率は3.4%であり、電力効率は1.3lm/Wであった。
比較例4の実験条件および実験結果について、表1、2に合わせて示す。
Red light emission with an emission peak of 622 nm was obtained. From the emission spectrum, it was confirmed that the light emitted from the guest compound. The CIE chromaticity coordinates at a luminance of 100 cd / m 2 were (0.68, 0.32). The external light emission quantum efficiency at a luminance of 100 cd / m 2 was 3.4%, and the power efficiency was 1.3 lm / W.
The experimental conditions and experimental results of Comparative Example 4 are shown in Tables 1 and 2.

(比較例5)
ゲスト化合物として、FIrpicを用いたほかは実施例1と同様にして、有機EL素子を作製した。
(Comparative Example 5)
An organic EL device was produced in the same manner as in Example 1 except that FIrpic was used as the guest compound.

ゲスト化合物の三重項エネルギーが、第一ホスト化合物および第二ホスト化合物の三重項エネルギーよりも大きいため、ゲスト化合物に三重項エネルギーを移動させることができなくなり、ゲスト化合物からの赤色発光ではなく、第二ホスト化合物に由来する発光ピークが524nmとなる緑色発光が得られた。輝度100cd/mにおける外部発光量子効率は1.8%であり、電力効率は3.5lm/Wであった。電力効率が他の素子に比較して高く見えるが、発光色が、より視感度の高い緑色であるためである。
比較例5の実験条件および実験結果について、表1、2に合わせて示す。
Since the triplet energy of the guest compound is larger than the triplet energy of the first host compound and the second host compound, the triplet energy cannot be transferred to the guest compound, and the red light emission from the guest compound does not occur. Green light emission with an emission peak derived from the bihost compound of 524 nm was obtained. The external light emission quantum efficiency at a luminance of 100 cd / m 2 was 1.8%, and the power efficiency was 3.5 lm / W. This is because the power efficiency looks higher than other elements, but the emission color is green with higher visibility.
The experimental conditions and experimental results of Comparative Example 5 are shown in Tables 1 and 2.

本発明は、高効率な燐光を発する有機EL素子に関するものであり、表示素子、ディスプレイ、バックライト、電子写真、照明光源、露光光源、標識、看板、インテリアの分野に好適に使用できる発光素子、照明機器、ディスプレイ産業において利用可能性がある。   The present invention relates to an organic EL element that emits high-efficiency phosphorescence, and can be suitably used in the fields of display elements, displays, backlights, electrophotography, illumination light sources, exposure light sources, signs, signboards, and interiors, It can be used in the lighting equipment and display industries.

本発明の実施形態である有機EL素子の一例を説明する断面模式図である。It is a cross-sectional schematic diagram explaining an example of the organic EL element which is embodiment of this invention.

符号の説明Explanation of symbols

10…基板、20…陽極、30…正孔注入層、40…発光層、50…正孔阻止層、60…電子輸送層、70…陰極、80…ガラス封止管、90…紫外線硬化樹脂、100…有機薄膜層。 DESCRIPTION OF SYMBOLS 10 ... Substrate, 20 ... Anode, 30 ... Hole injection layer, 40 ... Light emitting layer, 50 ... Hole blocking layer, 60 ... Electron transport layer, 70 ... Cathode, 80 ... Glass sealing tube, 90 ... UV curable resin, 100: Organic thin film layer.

Claims (12)

一対の対向する電極と、前記電極の間に配置される単層又は多層の有機薄膜層を有し、前記有機薄膜層のうち少なくとも一層が発光層である有機EL素子において、
前記発光層がホスト化合物とゲスト化合物とを少なくとも含有して構成され、
前記ホスト化合物が、正孔輸送材料からなる第一ホスト化合物と、燐光性の金属錯体からなる第二ホスト化合物の少なくとも2種のホスト化合物とを含み、
前記ゲスト化合物が、少なくとも1種の燐光性の発光材料を含むことを特徴とする有機EL素子。
In an organic EL element having a pair of opposing electrodes and a single-layer or multilayer organic thin film layer disposed between the electrodes, and at least one of the organic thin film layers being a light emitting layer,
The light emitting layer is configured to contain at least a host compound and a guest compound,
The host compound includes a first host compound made of a hole transport material and at least two kinds of host compounds of a second host compound made of a phosphorescent metal complex,
The organic EL device, wherein the guest compound includes at least one phosphorescent light emitting material.
前記第一ホスト化合物の三重項エネルギー準位が前記ゲスト化合物の三重項エネルギー準位よりも高く、かつ前記第二ホスト化合物の三重項エネルギー準位が前記ゲスト化合物の三重項エネルギー準位よりも高いことを特徴とする請求項1に記載の有機EL素子。   The triplet energy level of the first host compound is higher than the triplet energy level of the guest compound, and the triplet energy level of the second host compound is higher than the triplet energy level of the guest compound. The organic EL element according to claim 1. 前記第一ホスト化合物の三重項エネルギー準位が前記第二ホスト化合物の三重項エネルギー準位と同じないしは高いことを特徴とする請求項1又は請求項2のいずれか1項に記載の有機EL素子。   The organic EL device according to claim 1, wherein the triplet energy level of the first host compound is the same as or higher than the triplet energy level of the second host compound. . 前記第一ホスト化合物が、下記一般式(1)で示されるトリフェニルアミン骨格を有するものであることを特徴とする請求項1〜3のいずれか1項に記載の有機EL素子。
Figure 2008288344
式中、n〜nは1〜3の整数を表し、Ar〜Arは、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar〜Arが置換しているベンゼン環と縮合して芳香環を形成しても良い。
The organic EL device according to any one of claims 1 to 3, wherein the first host compound has a triphenylamine skeleton represented by the following general formula (1).
Figure 2008288344
In the formula, n 1 to n 3 represent an integer of 1 to 3 , and Ar 1 to Ar 3 each independently represent a hydrogen atom, an alkyl group, or an aryl group, or Ar 1 to Ar 3 are substituted. An aromatic ring may be formed by condensation with a benzene ring.
前記第一ホスト化合物が、下記一般式(1)−(a)で表せるものであることを特徴とする請求項1〜4のいずれか1項に記載のEL素子。
Figure 2008288344
式中、n、nは、1〜4の整数を表し、Ar〜Arは、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar〜Arが置換しているベンゼン環と縮合して芳香環を形成しても良い。
The EL device according to claim 1, wherein the first host compound is represented by the following general formula (1)-(a).
Figure 2008288344
In the formula, n 4 and n 5 each represent an integer of 1 to 4, and Ar 4 to Ar 9 each independently represent a hydrogen atom, an alkyl group, or an aryl group, or Ar 4 to Ar 9 are substituted. An aromatic ring may be formed by condensation with a benzene ring.
前記第一ホスト化合物が、下記一般式(1)−(b)で表せるものであることを特徴とする請求項1〜4のいずれか1項に記載のEL素子。
Figure 2008288344
式中、n、nは1〜4の整数を表し、Ar10〜Ar15は、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar10〜Ar15が置換しているベンゼン環と縮合して芳香環を形成しても良い。また、Xは、2価の原子又は原子団;直鎖又は分岐もしくは環状のアルキレン基;又はアリール基を表す。
5. The EL device according to claim 1, wherein the first host compound can be expressed by the following general formulas (1) to (b).
Figure 2008288344
Wherein, n 6, n 7 is an integer of 1 to 4, Ar 10 to Ar 15 are each independently hydrogen atom, an alkyl group, an aryl group, Ar 10 to Ar 15 is substituted An aromatic ring may be formed by condensation with a benzene ring. X represents a divalent atom or atomic group; a linear or branched or cyclic alkylene group; or an aryl group.
前記第一ホスト化合物が、下記一般式(1)−(c)で表せるものであることを特徴とする請求項1〜4のいずれか1項に記載のEL素子。
Figure 2008288344
式中、Ar16〜Ar24は、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar16〜Ar24が置換しているベンゼン環と縮合して芳香環を形成しても良い。また、Yは、3価の原子又は原子団;直鎖又は分岐もしくは環状のアルカントリイル基;又はアレーントリイル基を表す。
The EL device according to claim 1, wherein the first host compound is represented by the following general formulas (1) to (c).
Figure 2008288344
In the formula, each of Ar 16 to Ar 24 independently represents a hydrogen atom, an alkyl group, or an aryl group, or may be condensed with a benzene ring substituted by Ar 16 to Ar 24 to form an aromatic ring. good. Y represents a trivalent atom or atomic group; a linear or branched or cyclic alkanetriyl group; or an arenetriyl group.
前記第一ホスト化合物が、下記一般式(1)−(d)で表せるものであることを特徴とする請求項1〜4のいずれか1項に記載のEL素子。
Figure 2008288344
式中、Ar25〜Ar33は、それぞれ独立して、水素原子、アルキル基、アリール基を表すか、Ar25〜Ar33が置換しているベンゼン環と縮合して芳香環を形成しても良い。
5. The EL device according to claim 1, wherein the first host compound can be represented by the following general formulas (1) to (d).
Figure 2008288344
In the formula, Ar 25 to Ar 33 each independently represent a hydrogen atom, an alkyl group, or an aryl group, or they may be condensed with a benzene ring substituted by Ar 25 to Ar 33 to form an aromatic ring. good.
前記第二ホスト化合物が、下記一般式(2)で示されるイリジウム錯体であることを特徴とする請求項1〜8のいずれか1項に記載の有機EL素子。
Figure 2008288344
式中、R〜Rは、それぞれ独立して、水素原子、アルキル基、アリール基、ハロゲン原子を表すか、R〜Rが置換しているベンゼン環又はピリジン環と縮合して芳香環を形成しても良い。
The organic EL device according to claim 1, wherein the second host compound is an iridium complex represented by the following general formula (2).
Figure 2008288344
In the formula, each of R 1 to R 7 independently represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, or condensed with a benzene ring or pyridine ring substituted by R 1 to R 7 to give an aromatic A ring may be formed.
前記ゲスト化合物が、白金あるいはイリジウム原子を有する燐光性の発光材料であることを特徴とする請求項1〜9のいずれか1項に記載の有機EL素子。   The organic EL device according to claim 1, wherein the guest compound is a phosphorescent light emitting material having platinum or iridium atoms. 前記発光層中における前記第一ホスト化合物と前記第二ホスト化合物との質量比(第一ホスト化合物/第二ホスト化合物)が、10/90〜90/10であることを特徴とする請求項1〜10のいずれか1項に記載の有機EL素子。   The mass ratio (first host compound / second host compound) of the first host compound and the second host compound in the light emitting layer is 10/90 to 90/10. The organic EL element of any one of 10-10. 前記発光層が、ウエットプロセスにより成膜されることを特徴とする請求項1〜11のいずれか1項に記載の有機EL素子。   The organic EL device according to claim 1, wherein the light emitting layer is formed by a wet process.
JP2007131019A 2007-05-16 2007-05-16 Organic el element Pending JP2008288344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131019A JP2008288344A (en) 2007-05-16 2007-05-16 Organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131019A JP2008288344A (en) 2007-05-16 2007-05-16 Organic el element

Publications (1)

Publication Number Publication Date
JP2008288344A true JP2008288344A (en) 2008-11-27

Family

ID=40147798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131019A Pending JP2008288344A (en) 2007-05-16 2007-05-16 Organic el element

Country Status (1)

Country Link
JP (1) JP2008288344A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098246A1 (en) * 2009-02-27 2010-09-02 新日鐵化学株式会社 Organic electroluminescent element
JP2011066192A (en) * 2009-09-17 2011-03-31 Canon Inc Organic el element
JP2011119251A (en) * 2009-12-04 2011-06-16 Samsung Mobile Display Co Ltd Organic light-emitting device
JP2012009877A (en) * 1998-09-14 2012-01-12 Trustees Of Princeton Univ Structure for high efficiency electroluminescent device
JP2012129370A (en) * 2010-12-15 2012-07-05 Nippon Hoso Kyokai <Nhk> Organic electroluminescent element
JP2013125653A (en) * 2011-12-14 2013-06-24 Seiko Epson Corp Light-emitting element, light-emitting device, display device, and electronic apparatus
CN103779100A (en) * 2012-10-23 2014-05-07 中国科学院化学研究所 Ion/hole double-transmission-channel molecule organic conductor composite electrolyte, preparation method thereof and application thereof
KR20140136027A (en) * 2012-03-14 2014-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, electronic device, and lighting device
US9118020B2 (en) 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
WO2017115833A1 (en) * 2015-12-28 2017-07-06 国立大学法人九州大学 Organic electroluminescent element
JP2017519096A (en) * 2014-05-30 2017-07-13 グァンヂョウ チャイナレイ オプトエレクトロニック マテリアルズ リミテッドGuangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture, composition containing the same, organic electronic device and use thereof
KR101758414B1 (en) * 2010-05-11 2017-07-14 메르크 파텐트 게엠베하 Organic electroluminescent devices
KR101793880B1 (en) * 2011-02-16 2017-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US9911936B2 (en) 2014-08-29 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US9929350B2 (en) 2011-02-28 2018-03-27 Semiconducor Energy Laboratory Co., Ltd. Light-emitting device
US9941483B2 (en) 2013-12-02 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US9941481B2 (en) 2015-03-09 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US9947885B2 (en) 2012-08-03 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9954177B2 (en) 2015-03-09 2018-04-24 Semiconductor Enery Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US9978960B2 (en) 2013-06-14 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
US9978971B2 (en) 2014-05-30 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9985233B2 (en) 2015-12-01 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having a delayed fluorescence component due to triplet-triplet annihilation
US9985221B2 (en) 2014-07-25 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US10026917B2 (en) 2013-12-02 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10062861B2 (en) 2015-02-24 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10069076B2 (en) 2012-08-03 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10096658B2 (en) 2016-04-22 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10096783B2 (en) 2016-07-20 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10121984B2 (en) 2012-08-10 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10128455B2 (en) 2013-05-16 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10134998B2 (en) 2015-05-21 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR101922602B1 (en) * 2012-02-09 2018-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US10164206B2 (en) 2012-04-20 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10181571B2 (en) 2012-08-03 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light emitting device, display device, electronic appliance, and lighting device
US10224494B2 (en) 2015-08-07 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20190086585A (en) * 2011-04-07 2019-07-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US10361388B2 (en) 2016-05-20 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10361389B2 (en) 2012-08-03 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US10367160B2 (en) 2011-03-23 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10424755B2 (en) 2012-04-06 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device each comprising light-emitting layer with mixed organic compounds capable of forming exciplex
US10439005B2 (en) 2013-08-26 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10573829B2 (en) 2011-02-16 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
CN110845525A (en) * 2018-12-06 2020-02-28 广州华睿光电材料有限公司 Naphthocarbazole compound and application thereof
US10586932B2 (en) 2015-05-29 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10600972B2 (en) 2012-04-20 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US10686153B2 (en) 2014-05-13 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Exciplex light-emitting device
US10693094B2 (en) 2015-09-30 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10700288B2 (en) 2015-07-24 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and lighting system
US10734589B2 (en) 2016-08-17 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10756286B2 (en) 2016-05-06 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10818861B2 (en) 2012-04-13 2020-10-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10868256B2 (en) 2015-05-21 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10998516B2 (en) 2016-05-06 2021-05-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11072623B2 (en) 2015-07-21 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11133482B2 (en) 2014-09-30 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN113816966A (en) * 2021-10-25 2021-12-21 温州大学 Guest material of phosphorescent material, phosphorescent material and method for regulating luminescent property of phosphorescent material
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US11637263B2 (en) 2017-11-02 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device each including TADF organic compound
US11925041B2 (en) 2015-09-30 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11930653B2 (en) 2019-02-06 2024-03-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting appliance, display device, electronic appliance, and lighting device
US11950497B2 (en) 2018-03-07 2024-04-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, organic compound, and lighting device
US11974445B2 (en) 2015-07-23 2024-04-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041395A (en) * 2004-07-29 2006-02-09 Sanyo Electric Co Ltd Organic electroluminescent element
JP2007110102A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Organic electroluminescence element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041395A (en) * 2004-07-29 2006-02-09 Sanyo Electric Co Ltd Organic electroluminescent element
JP2007110102A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Organic electroluminescence element

Cited By (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009877A (en) * 1998-09-14 2012-01-12 Trustees Of Princeton Univ Structure for high efficiency electroluminescent device
US9118020B2 (en) 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
KR20110134885A (en) * 2009-02-27 2011-12-15 신닛테츠가가쿠 가부시키가이샤 Organic electroluminescent element
JP5433677B2 (en) * 2009-02-27 2014-03-05 新日鉄住金化学株式会社 Organic electroluminescence device
WO2010098246A1 (en) * 2009-02-27 2010-09-02 新日鐵化学株式会社 Organic electroluminescent element
US8795852B2 (en) 2009-02-27 2014-08-05 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device with host materials having same or similar IP, EA and T1 values
KR101596906B1 (en) * 2009-02-27 2016-03-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Organic electroluminescent element
JP2011066192A (en) * 2009-09-17 2011-03-31 Canon Inc Organic el element
JP2011119251A (en) * 2009-12-04 2011-06-16 Samsung Mobile Display Co Ltd Organic light-emitting device
KR101758414B1 (en) * 2010-05-11 2017-07-14 메르크 파텐트 게엠베하 Organic electroluminescent devices
JP2012129370A (en) * 2010-12-15 2012-07-05 Nippon Hoso Kyokai <Nhk> Organic electroluminescent element
US10593895B2 (en) 2011-02-16 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR102113251B1 (en) * 2011-02-16 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR102134951B1 (en) * 2011-02-16 2020-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US11038135B2 (en) 2011-02-16 2021-06-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2019087769A (en) * 2011-02-16 2019-06-06 株式会社半導体エネルギー研究所 Light-emitting element material, light-emitting element, and light-emitting device
KR101793880B1 (en) * 2011-02-16 2017-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20170134768A (en) * 2011-02-16 2017-12-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR101812673B1 (en) * 2011-02-16 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20180017233A (en) * 2011-02-16 2018-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US10403839B2 (en) 2011-02-16 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR20190000936A (en) * 2011-02-16 2019-01-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US11812626B2 (en) 2011-02-16 2023-11-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10573829B2 (en) 2011-02-16 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10586934B2 (en) 2011-02-16 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US12100795B2 (en) 2011-02-16 2024-09-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR102112440B1 (en) * 2011-02-16 2020-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US9929350B2 (en) 2011-02-28 2018-03-27 Semiconducor Energy Laboratory Co., Ltd. Light-emitting device
US10505120B2 (en) 2011-02-28 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US10930852B2 (en) 2011-02-28 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US11508912B2 (en) 2011-02-28 2022-11-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US12108658B2 (en) 2011-02-28 2024-10-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US10978661B2 (en) 2011-03-23 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10367160B2 (en) 2011-03-23 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11871592B2 (en) 2011-03-23 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR102154694B1 (en) 2011-04-07 2020-09-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20200062381A (en) * 2011-04-07 2020-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR102159895B1 (en) 2011-04-07 2020-09-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20190086585A (en) * 2011-04-07 2019-07-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
JP2013125653A (en) * 2011-12-14 2013-06-24 Seiko Epson Corp Light-emitting element, light-emitting device, display device, and electronic apparatus
US11495763B2 (en) 2012-02-09 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR101922602B1 (en) * 2012-02-09 2018-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US10693093B2 (en) 2012-02-09 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11997860B2 (en) 2012-02-09 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10326093B2 (en) 2012-02-09 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR102153512B1 (en) 2012-03-14 2020-09-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, electronic device, and lighting device
KR20140136027A (en) * 2012-03-14 2014-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, electronic device, and lighting device
US10062867B2 (en) 2012-03-14 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10424755B2 (en) 2012-04-06 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device each comprising light-emitting layer with mixed organic compounds capable of forming exciplex
US10818861B2 (en) 2012-04-13 2020-10-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11393997B2 (en) 2012-04-13 2022-07-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10164206B2 (en) 2012-04-20 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11672177B2 (en) 2012-04-20 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US12127419B2 (en) 2012-04-20 2024-10-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11177451B2 (en) 2012-04-20 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10797257B2 (en) 2012-04-20 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10600972B2 (en) 2012-04-20 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US11778846B2 (en) 2012-04-20 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10505135B2 (en) 2012-04-20 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11183644B2 (en) 2012-04-20 2021-11-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US11322709B2 (en) 2012-08-03 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US11355722B2 (en) 2012-08-03 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10644254B2 (en) 2012-08-03 2020-05-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10734594B2 (en) 2012-08-03 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10505132B2 (en) 2012-08-03 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11043637B2 (en) 2012-08-03 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9947885B2 (en) 2012-08-03 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11730007B2 (en) 2012-08-03 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10862059B2 (en) 2012-08-03 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US10897012B2 (en) 2012-08-03 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10361389B2 (en) 2012-08-03 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US11937439B2 (en) 2012-08-03 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
US11968889B2 (en) 2012-08-03 2024-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10181571B2 (en) 2012-08-03 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light emitting device, display device, electronic appliance, and lighting device
US10069076B2 (en) 2012-08-03 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10121984B2 (en) 2012-08-10 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US12029059B2 (en) 2012-08-10 2024-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10665808B2 (en) 2012-08-10 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11690239B2 (en) 2012-08-10 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11018313B2 (en) 2012-08-10 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN103779100A (en) * 2012-10-23 2014-05-07 中国科学院化学研究所 Ion/hole double-transmission-channel molecule organic conductor composite electrolyte, preparation method thereof and application thereof
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10833279B2 (en) 2013-04-26 2020-11-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11462701B2 (en) 2013-05-16 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10128455B2 (en) 2013-05-16 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9978960B2 (en) 2013-06-14 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
US10431752B2 (en) 2013-06-14 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
US11825718B2 (en) 2013-08-26 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US11049908B2 (en) 2013-08-26 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10439005B2 (en) 2013-08-26 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10374186B2 (en) 2013-12-02 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10439158B2 (en) 2013-12-02 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US9941483B2 (en) 2013-12-02 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US10930873B2 (en) 2013-12-02 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US12048178B2 (en) 2013-12-02 2024-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US11672136B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10026917B2 (en) 2013-12-02 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US11158832B2 (en) 2014-05-13 2021-10-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with exciplex light-emitting layers
US11864403B2 (en) 2014-05-13 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device comprising first to third light-emitting layers
US10686153B2 (en) 2014-05-13 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Exciplex light-emitting device
US9978971B2 (en) 2014-05-30 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11832465B2 (en) 2014-05-30 2023-11-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10468619B2 (en) 2014-05-30 2019-11-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11387422B2 (en) 2014-05-30 2022-07-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10686152B2 (en) 2014-05-30 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2017519096A (en) * 2014-05-30 2017-07-13 グァンヂョウ チャイナレイ オプトエレクトロニック マテリアルズ リミテッドGuangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture, composition containing the same, organic electronic device and use thereof
US9985221B2 (en) 2014-07-25 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US11552256B2 (en) 2014-07-25 2023-01-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US10418565B2 (en) 2014-07-25 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US11800799B2 (en) 2014-07-25 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US12127479B2 (en) 2014-07-25 2024-10-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US10714700B2 (en) 2014-08-29 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US9911936B2 (en) 2014-08-29 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11997861B2 (en) 2014-08-29 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element with fluorescent material, display device, electronic device, and lighting device
US11563191B2 (en) 2014-08-29 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element with light-emitting layer including first and second organic compounds, display device, electronic device, and lighting device
US10693095B2 (en) 2014-08-29 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11557742B2 (en) 2014-09-30 2023-01-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and display device including compound having function of emitting TADF at room temperature
US11133482B2 (en) 2014-09-30 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10062861B2 (en) 2015-02-24 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10461271B2 (en) 2015-02-24 2019-10-29 Semiconductor Energy Laboratories Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US9954177B2 (en) 2015-03-09 2018-04-24 Semiconductor Enery Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11903227B2 (en) 2015-03-09 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10454052B2 (en) 2015-03-09 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11895908B2 (en) 2015-03-09 2024-02-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US9941481B2 (en) 2015-03-09 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11038134B2 (en) 2015-03-09 2021-06-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11322689B2 (en) 2015-03-09 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10811611B2 (en) 2015-03-09 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10134998B2 (en) 2015-05-21 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10937965B2 (en) 2015-05-21 2021-03-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US12052912B2 (en) 2015-05-21 2024-07-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10868256B2 (en) 2015-05-21 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11482674B2 (en) 2015-05-21 2022-10-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US12029114B2 (en) 2015-05-21 2024-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10586932B2 (en) 2015-05-29 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US11072623B2 (en) 2015-07-21 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11974445B2 (en) 2015-07-23 2024-04-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10700288B2 (en) 2015-07-24 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and lighting system
US10224494B2 (en) 2015-08-07 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11145827B2 (en) 2015-08-07 2021-10-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11770969B2 (en) 2015-08-07 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10693094B2 (en) 2015-09-30 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11925041B2 (en) 2015-09-30 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US12063803B2 (en) 2015-12-01 2024-08-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including light-emitting layer having host material
US10573837B2 (en) 2015-12-01 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11050032B2 (en) 2015-12-01 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9985233B2 (en) 2015-12-01 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having a delayed fluorescence component due to triplet-triplet annihilation
JPWO2017115833A1 (en) * 2015-12-28 2018-10-18 国立大学法人九州大学 Organic electroluminescence device
TWI814608B (en) * 2015-12-28 2023-09-01 國立大學法人九州大學 Organic electroluminescent device
CN108463894B (en) * 2015-12-28 2020-03-27 国立大学法人九州大学 Organic electroluminescent element
TWI728024B (en) * 2015-12-28 2021-05-21 國立大學法人九州大學 Organic electroluminescent device
CN108463894A (en) * 2015-12-28 2018-08-28 国立大学法人九州大学 Organic electroluminescent device
WO2017115833A1 (en) * 2015-12-28 2017-07-06 国立大学法人九州大学 Organic electroluminescent element
US12048175B2 (en) 2015-12-28 2024-07-23 Kyushu University, National University Corporation Organic electroluminescent device
US10096658B2 (en) 2016-04-22 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11177325B2 (en) 2016-04-22 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10998516B2 (en) 2016-05-06 2021-05-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10756286B2 (en) 2016-05-06 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11991890B2 (en) 2016-05-20 2024-05-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10910576B2 (en) 2016-05-20 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10361388B2 (en) 2016-05-20 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11462702B2 (en) 2016-05-20 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10658604B2 (en) 2016-05-20 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10096783B2 (en) 2016-07-20 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10559762B2 (en) 2016-07-20 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US11121326B2 (en) 2016-08-17 2021-09-14 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device and lighting device
US20200358003A1 (en) 2016-08-17 2020-11-12 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device
US10734589B2 (en) 2016-08-17 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US11956981B2 (en) 2017-11-02 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and light device each including TADF organic compound
US11637263B2 (en) 2017-11-02 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device each including TADF organic compound
US12096690B2 (en) 2018-01-19 2024-09-17 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US11950497B2 (en) 2018-03-07 2024-04-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, organic compound, and lighting device
CN110845525B (en) * 2018-12-06 2023-07-28 广州华睿光电材料有限公司 Naphthazole compound and application thereof
CN110845525A (en) * 2018-12-06 2020-02-28 广州华睿光电材料有限公司 Naphthocarbazole compound and application thereof
US11930653B2 (en) 2019-02-06 2024-03-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting appliance, display device, electronic appliance, and lighting device
CN113816966B (en) * 2021-10-25 2022-09-16 温州大学 Guest material of phosphorescent material, phosphorescent material and method for regulating luminescent property of phosphorescent material
CN113816966A (en) * 2021-10-25 2021-12-21 温州大学 Guest material of phosphorescent material, phosphorescent material and method for regulating luminescent property of phosphorescent material

Similar Documents

Publication Publication Date Title
JP2008288344A (en) Organic el element
JP6219453B2 (en) Long-life phosphorescent organic light-emitting device (OLED) structure
JP6701335B2 (en) Phosphorescent organic electroluminescent device
TWI395358B (en) Material for organic electro-optical device having fluorene derivative compound and organic electro-optical device including the same
US8242489B2 (en) OLED with high efficiency blue light-emitting layer
JP6060361B2 (en) Organic light emitting device
JP2010103534A (en) Organic light-emitting diode device having nano-dot and method of manufacturing same
JP5312861B2 (en) Organic EL element and organic EL display
JP5349105B2 (en) Organic electroluminescence device
KR101989667B1 (en) Organic electroluminescent devices
JP5681766B2 (en) Phosphorescent compound and organic light-emitting diode device using the same
JP2013115066A (en) Organic electroluminescent element
JP2006173569A (en) Organic electroluminescent device containing triazine derivative compound
JP5242976B2 (en) Organic electroluminescence device
JP5109054B2 (en) Organic electroluminescence device
JP2017054870A (en) Organic light emitting element and light source device
JP2007318130A (en) Organic light emitting device, light emitting layer, and its manufacturing method
JP2012142365A (en) Organic electroluminescent element and manufacturing method thereof
JP5402703B2 (en) Organic electroluminescence device, organic EL display, organic EL lighting, and organic EL signal device
Srivastava et al. Organic Light Emitting Diodes-Recent Advancements
TW201803181A (en) Organic light emitting device, display device and lighting device
KR20180128212A (en) Organic electroluminescent device comprising compounds with spin selectivity and method for preparing the same
JP2010238606A (en) Organic electroluminescent element, organic el display, and organic el illumination
JP2010209143A (en) Composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
Chen et al. The Investigation on Color Purity of Blue Organic Light‐Emitting Diodes (BOLED) by Hole‐Blocking Layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121221