JP2008283296A - Reception device and receiving method - Google Patents

Reception device and receiving method Download PDF

Info

Publication number
JP2008283296A
JP2008283296A JP2007123706A JP2007123706A JP2008283296A JP 2008283296 A JP2008283296 A JP 2008283296A JP 2007123706 A JP2007123706 A JP 2007123706A JP 2007123706 A JP2007123706 A JP 2007123706A JP 2008283296 A JP2008283296 A JP 2008283296A
Authority
JP
Japan
Prior art keywords
signal
channel
quadrature
channels
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007123706A
Other languages
Japanese (ja)
Inventor
Yasushi Murakami
康 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007123706A priority Critical patent/JP2008283296A/en
Publication of JP2008283296A publication Critical patent/JP2008283296A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reception device and a receiving method that suppress misrecognition of a signal due to signal deterioration and unnecessary radiation of a noise component by removing spurious component generated due to unnecessary addition of the noise component. <P>SOLUTION: Broadcast signals of a plurality of channels are received by a receiver 10 and converted into a digital signal of the IF band comprising the plurality of channels through a frequency converter 20 and an analog-to-digital converter 30. The digital signal is input to a channel distributor 40, and quadrature-demodulated by a quadrature demodulator 41 into an I/Q signal, which is multiplied with a weight coefficient multiplier 42 by a weight coefficient based upon a window function in band-pass filter form and then subjected to FFT processing by an FFT unit 43 to be divided into I/Q signals for the each channel. Then the I/Q signals divided by the FFT unit are frequency-converted with mixers 44-1 to 44-N for the channels into base band signals. Thus, the base band signals output from the channel distributor 40 are subjected to signal demodulation processing for the each channel with demodulators 50-1 to 50-N. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば複数の地上デジタル放送信号を中継する中継装置、複数の地上デジタル放送信号をモニタするモニタ装置に用いられ、複数チャンネルの伝送信号を同時に受信する受信装置と受信方法に関する。   The present invention relates to a receiving apparatus and a receiving method for simultaneously receiving transmission signals of a plurality of channels, for example, used in a relay apparatus that relays a plurality of terrestrial digital broadcast signals and a monitor apparatus that monitors a plurality of terrestrial digital broadcast signals.

従来の地上デジタル放送システムにおいて、複数チャンネルのデジタル放送信号を中継装置、あるいはモニタするモニタ装置に用いられる受信装置では、受信アンテナにより受信されたデジタル放送信号を取り込み、周波数変換部で中間周波数帯に変換し、アナログ−デジタル変換部によってデジタル化して、チャンネル分割部でチャンネル毎に分割した後、復調部で個々のチャンネルの放送信号を復調して必要な信号情報を取り出すようにしている。   In a conventional terrestrial digital broadcasting system, a receiving device used as a relay device or a monitoring device for monitoring a digital broadcasting signal of a plurality of channels takes in a digital broadcasting signal received by a receiving antenna and puts it in an intermediate frequency band by a frequency converter. After being converted and digitized by an analog-to-digital conversion unit, the channel dividing unit divides each channel, and then a demodulating unit demodulates the broadcast signal of each channel to extract necessary signal information.

ここで、チャンネル分割部は、デジタル信号に変換された放送信号に、重み係数乗算部で窓関数に基づく重み係数を乗算し、FFT(Fast Fourier Transform)部でこの信号のFFTを行いチャンネル毎の信号に分岐する。そして、FFT部からの一部の出力に対して周波数変換又は、直交復調を行うことにより、ベースバンド信号又は、同相(I:In Phase)信号及び直交(Q:Quadrature)信号に変換し、信号の歪補償や不要波の抑圧などの信号処理を行う。   Here, the channel dividing unit multiplies the broadcast signal converted into a digital signal by a weighting factor based on a window function in a weighting factor multiplication unit, and performs FFT of this signal in an FFT (Fast Fourier Transform) unit for each channel. Branch to signal. Then, by performing frequency conversion or quadrature demodulation on a part of the output from the FFT unit, the signal is converted into a baseband signal or an in-phase (I: In Phase) signal and a quadrature (Q: Quadrature) signal. Signal processing such as distortion compensation and suppression of unwanted waves.

このとき窓関数の係数としては1チャンネルのベースバンド信号を取り出す低域通過フィルタ(LPF:Low Pass Filter)を実現するFIR(Finite Impulse Filter:有限インパルス応答)フィルタの係数を用いる(例えば、特許文献1、2参照。)。こうすることにより、m番目(m=0〜N−1)の端子のFFT出力は、

Figure 2008283296
At this time, as a coefficient of the window function, a coefficient of an FIR (Finite Impulse Filter) filter that realizes a low-pass filter (LPF) that extracts a baseband signal of one channel is used (for example, Patent Documents). 1 and 2). By doing this, the FFT output of the m-th (m = 0 to N−1) terminal is
Figure 2008283296

となる。ここで、Iin(k)は入力信号のk番目の振幅成分、WLPF(k)はLPF形式による窓関数成分、fは周波数、fsはFFT部のサンプリング周波数、NはFFTのサイズである。式(1)より、0番目の端子のFFT出力は、

Figure 2008283296
It becomes. Here, I in (k) is the k-th amplitude component of the input signal, W LPF (k) is the window function component in the LPF format, f is the frequency, fs is the sampling frequency of the FFT unit, and N is the size of the FFT. . From equation (1), the FFT output of the 0th terminal is
Figure 2008283296

となる。これは、窓関数WLPF(k)を係数とするFIRフィルタの周波数特性に一致するので、窓関数WLPF(k)によるLPFで高域のカットされた信号となる。一方、m番目の端子からの出力信号は、式(2)に示した周波数特性がm/Nだけ周波数シフトされたものになる。つまり、m番目の出力信号は、通過帯域の中心に位置する基準周波数がmfs/Nだけずれた帯域通過フィルタ(BPF:Band Pass Filter)を通ったときの信号となる。よって、mとNを適当に選ぶことにより、FFT端子に各チャンネルのみの信号を取り出すことが可能となる。 It becomes. This coincides with the frequency characteristic of the FIR filter having the window function W LPF (k) as a coefficient, so that the high-frequency signal is cut by the LPF by the window function W LPF (k). On the other hand, the output signal from the m-th terminal is obtained by shifting the frequency characteristic shown in Expression (2) by m / N. That is, the m-th output signal is a signal when it passes through a band pass filter (BPF: Band Pass Filter) in which the reference frequency located at the center of the pass band is shifted by mfs / N. Therefore, by appropriately selecting m and N, it is possible to take out signals of only each channel to the FFT terminal.

しかしながら、上記窓関数にLPF形式を用いた信号処理では、基準周波数が通常のFFTにおける直流成分(DC成分)とみなされるために、雑音成分が電力加算され、スプリアス成分が発生する。そのため、注目しているチャンネルに信号が乗せられていない場合には、基準周波数に、雑音成分が加算された信号が発生するという問題があった。特に、この受信装置が放送波中継で用いられる場合には、本来そのチャンネルに入力がないにもかかわらず雑音成分を放射してしまう可能性が高くなるという問題があった。また、信号が入力された場合であっても、基準周波数に雑音成分が加算されて大きくなった雑音成分が存在するため、信号のSN比(Signal-to-Noise Ratio)が劣化し、信号の誤認識の原因となるという問題があった。
特願2005−362335号公報 特願2006−305503号公報
However, in the signal processing using the LPF format for the window function, since the reference frequency is regarded as a direct current component (DC component) in a normal FFT, the noise component is power-added to generate a spurious component. Therefore, there is a problem that when a signal is not put on the channel of interest, a signal in which a noise component is added to the reference frequency is generated. In particular, when this receiving apparatus is used for broadcast wave relay, there is a problem that there is a high possibility that noise components will be radiated even though there is no input on the channel. Even when a signal is input, there is a noise component that is increased by adding a noise component to the reference frequency, so that the signal-to-noise ratio of the signal deteriorates, There was a problem of causing misrecognition.
Japanese Patent Application No. 2005-362335 Japanese Patent Application No. 2006-305503

以上のように、従来、複数チャンネルを同時受信する受信装置では、通過帯域の中心に位置する基準周波数に雑音成分が加算された信号が発生してしまい、注目しているチャンネルに信号が乗せられていない場合であっても、そのチャンネルから雑音成分が放射されるという問題があった。また、信号が入力される場合には、帯域の中心周波数に存在する雑音成分のため、信号のSN比が劣化し、信号の誤認識の原因となっていた。   As described above, in conventional receivers that simultaneously receive a plurality of channels, a signal in which a noise component is added to a reference frequency located at the center of the passband is generated, and the signal is placed on the channel of interest. Even if not, there is a problem that noise components are radiated from the channel. In addition, when a signal is input, the signal-to-noise ratio of the signal is deteriorated due to a noise component present at the center frequency of the band, causing erroneous recognition of the signal.

本発明は上記事情によりなされたもので、その目的は、雑音成分の不要な加算により発生するスプリアス成分を除去し、信号劣化による信号の誤認識及び、雑音成分の不要放射を抑圧した受信装置と受信方法を提供することにある。   The present invention has been made under the circumstances described above, and an object thereof is to eliminate a spurious component generated by unnecessary addition of a noise component, and to suppress a false recognition of a signal due to signal deterioration and an unnecessary emission of a noise component. It is to provide a receiving method.

上記目的を達成するため、本発明は、複数のチャンネルからなる無線信号を受信する受信アンテナと、前記受信アンテナで受信された複数チャンネルからなる無線信号を複数チャンネル分のIF(Intermediate Frequency)信号に変換する周波数変換部と、前記複数チャンネル分のIF信号を複数チャンネル分のデジタル信号に変換するアナログ−デジタル変換部と、前記複数チャンネル分のデジタル信号をチャンネル毎のデジタル信号に分割して分配するチャンネル分配部と、前記チャンネル毎のデジタル信号それぞれを復調する復調部とを具備し、前記チャンネル分配部は、前記複数チャンネル分のデジタル信号を同相信号及び、直交信号に直交復調する直交復調部と、前記直交復調部からの同相信号及び、直交信号それぞれに、帯域通過フィルタ形式の窓関数に基づく重み係数を乗算する重み係数乗算部と、前記重み係数が乗算された同相信号及び、直交信号に高速フーリエ変換(FFT:Fast Fourier Transform)を行い、チャンネル毎の同相信号及び、直交信号に分割して分配するFFT部と、前記FFT部から出力されるチャンネル毎の信号に対して周波数変換を行う複数のデジタル周波数変換部とを具備する。   In order to achieve the above object, the present invention provides a receiving antenna that receives a radio signal composed of a plurality of channels, and converts the radio signal composed of a plurality of channels received by the receiving antenna into an IF (Intermediate Frequency) signal for a plurality of channels. A frequency conversion unit for conversion, an analog-digital conversion unit for converting the IF signals for the plurality of channels into digital signals for the plurality of channels, and the digital signals for the plurality of channels are divided into digital signals for each channel and distributed. A quadrature demodulating unit for demodulating each digital signal for each channel, wherein the channel distributing unit quadrature demodulates the digital signals for the plurality of channels into an in-phase signal and a quadrature signal; And a band pass filter for each of the in-phase signal and the quadrature signal from the quadrature demodulation unit. A weight coefficient multiplication unit that multiplies the weight coefficient based on the window function of the data format, a fast Fourier transform (FFT) on the in-phase signal and the quadrature signal multiplied by the weight coefficient, and the same for each channel. An FFT unit that divides and distributes a phase signal and an orthogonal signal, and a plurality of digital frequency conversion units that perform frequency conversion on a signal for each channel output from the FFT unit.

上記構成による受信装置では、複数チャンネルからなる無線信号を、受信アンテナで受信し、周波数変換部、アナログ−デジタル変換部を介して、複数チャンネルからなるデジタル信号に変換する。チャンネル分配部において、このデジタル信号を、直交復調部で同相信号及び、直交信号に直交復調し、重み係数乗算部で帯域通過フィルタ形式の窓関数に基づく重み係数を乗算し、FFT部でFFTを行い、チャンネル毎の同相信号及び、直交信号に分割する。そして、FFT部で分割された同相信号及び、直交信号を、デジタル周波数変換部でチャンネル毎に周波数変換し、復調部へ出力する。チャンネル分配部から出力された信号は、復調部でチャンネル毎に復調される。これにより、複数チャンネル分のデジタル信号を、帯域通過フィルタ形式の窓関数を用いて、チャンネル毎のデジタル信号に分割することが可能となる。   In the receiving apparatus having the above configuration, a radio signal composed of a plurality of channels is received by a receiving antenna and converted into a digital signal composed of a plurality of channels via a frequency converter and an analog-digital converter. In the channel distributor, the digital signal is quadrature demodulated to the in-phase signal and the quadrature signal by the quadrature demodulator, the weight coefficient multiplier multiplies the weight coefficient based on the bandpass filter type window function, and the FFT section performs FFT. Is divided into an in-phase signal and a quadrature signal for each channel. Then, the in-phase signal and the quadrature signal divided by the FFT unit are frequency-converted for each channel by the digital frequency conversion unit, and output to the demodulation unit. The signal output from the channel distributor is demodulated for each channel by the demodulator. This makes it possible to divide the digital signals for a plurality of channels into digital signals for each channel using a bandpass filter type window function.

本発明に係る受信装置及び受信方法では、信号劣化による信号の誤認識及び、雑音成分の不要放射を抑圧することが可能となる。   In the receiving apparatus and the receiving method according to the present invention, it is possible to suppress signal misrecognition due to signal degradation and unnecessary emission of noise components.

以下、図面を参照しながら本発明の実施の形態について説明する。尚、ここでは地上デジタルテレビジョン放送システムにおいて、複数チャンネルのデジタル放送信号をモニタするモニタ装置に用いられる受信装置を例にあげて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, in the terrestrial digital television broadcasting system, a receiving device used as a monitor device for monitoring digital broadcasting signals of a plurality of channels will be described as an example.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る受信装置の機能構成を示すブロック図である。図1において、受信部(RX)10は、受信アンテナを通じて、予め地上デジタル放送用に割り当てられた周波数帯で伝送される複数チャンネルの放送信号を受信し、規定レベルに増幅するもので、その出力は周波数変換部20で中間周波数(IF:Intermediate Frequency)信号に変換され、アナログ−デジタル変換部30でデジタル信号に変換される。デジタル変換された複数チャンネルの放送信号は、チャンネル分配部40で1チャンネル毎の放送信号に分割されて分配され、復調部50−1〜50−N(Nは2以上の整数)でそれぞれのチャンネルの放送信号が復調される。
(First embodiment)
FIG. 1 is a block diagram showing a functional configuration of a receiving apparatus according to the first embodiment of the present invention. In FIG. 1, a receiving unit (RX) 10 receives a plurality of channels of broadcast signals transmitted in a frequency band previously assigned for digital terrestrial broadcasting through a receiving antenna and amplifies them to a prescribed level. Is converted to an intermediate frequency (IF) signal by the frequency converter 20 and converted to a digital signal by the analog-digital converter 30. A plurality of channels of digitally converted broadcast signals are divided and distributed into broadcast signals for each channel by the channel distribution unit 40, and each channel is demodulated by the demodulation units 50-1 to 50-N (N is an integer of 2 or more). The broadcast signal is demodulated.

上記チャンネル分配部40は、アナログ−デジタル変換部30でデジタル化された複数チャンネルの放送信号を直交復調部41に入力してI/Q信号に直交復調する。そして、重み係数乗算部42において、1チャンネルの周波数帯域に相当するBPF形式の窓関数を時間軸上で表現した重み係数を生成して、各チャンネルの時系列データ(I/Q信号)に乗算する。そして、重み係数が乗算されたI/Q信号を、FFT部43でFFT処理してチャンネル毎の信号に分割し、ミキサ44−1〜44−Nで局部発振器45−1〜45−Nからのローカル信号と混合してベースバンド信号に変換する。このようにして、チャンネル分配部40でチャンネル毎に分配されたベースバンド信号は、復調部50−1〜50−Nで復調処理され、必要な信号情報を取り出される。   The channel distribution unit 40 inputs the broadcast signals of a plurality of channels digitized by the analog-digital conversion unit 30 to the orthogonal demodulation unit 41 and performs orthogonal demodulation on the I / Q signal. Then, the weighting factor multiplication unit 42 generates a weighting factor representing a BPF format window function corresponding to the frequency band of one channel on the time axis, and multiplies the time series data (I / Q signal) of each channel. To do. Then, the I / Q signal multiplied by the weighting coefficient is subjected to FFT processing by the FFT unit 43 and divided into signals for each channel, and the mixers 44-1 to 44 -N output from the local oscillators 45-1 to 45 -N. Mix with local signal and convert to baseband signal. Thus, the baseband signal distributed for each channel by the channel distribution unit 40 is demodulated by the demodulation units 50-1 to 50-N, and necessary signal information is extracted.

上記構成において、チャンネル分配部40の動作について詳細に説明する。図2は、本発明の第1の実施形態に係るチャンネル分配部40によるデジタル信号のチャンネル毎の分配を示す概念図である。図2(a)はチャンネル分配部40に入力されるデジタル化されたIF信号を示す概念図であり、図2(b)は直交復調部41で直交復調されたI/Q信号を表す概念図であり、図2(c)はチャンネル毎に分配されたI/Q信号を表す概念図である。なお、Ch.3における点線は、Ch.3には信号成分が存在していないことを表わしている。   In the above configuration, the operation of the channel distributor 40 will be described in detail. FIG. 2 is a conceptual diagram showing distribution of digital signals for each channel by the channel distributor 40 according to the first embodiment of the present invention. 2A is a conceptual diagram showing a digitized IF signal input to the channel distribution unit 40, and FIG. 2B is a conceptual diagram showing an I / Q signal orthogonally demodulated by the orthogonal demodulation unit 41. FIG. 2C is a conceptual diagram showing the I / Q signal distributed for each channel. In addition, Ch. The dotted line in FIG. 3 indicates that no signal component exists.

チャンネル分配部40に入力されたデジタル化されたIF信号は(図2(a))、直交復調部41で直交復調されてI/Q信号となり(図2(b))、重み係数乗算部42へ出力される。   The digitized IF signal input to the channel distributor 40 (FIG. 2A) is quadrature demodulated by the orthogonal demodulator 41 to become an I / Q signal (FIG. 2B), and the weight coefficient multiplier 42. Is output.

重み係数乗算部42において、窓関数の係数としては1チャンネルの信号を取り出すBPFを実現するFIRフィルタの係数を用いる。これにより、FFT部43のm番目(m=0〜N−1)の端子の出力は、

Figure 2008283296
In the weighting coefficient multiplication unit 42, as a window function coefficient, a coefficient of an FIR filter that realizes a BPF for extracting a signal of one channel is used. Thereby, the output of the m-th (m = 0 to N−1) terminal of the FFT unit 43 is
Figure 2008283296

となる。ここで、Iin(k)は入力信号のk番目の振幅成分、WBPF(k)はBPF形式による窓関数成分、fは周波数、fsはFFT部43のサンプリング周波数、NはFFTのサイズである。式(3)において、式(1)との違いは、窓関数成分がBPF形式のWBPF(k)であることである。つまり、LPF形式では基準周波数が通過帯域の中央であるのに対し、BPF形式では通過帯域の外部となる。このとき、m番目の端子からの出力信号は、WBPF(k)により規定される基準周波数よりmfs/Nだけずれた周波数を基準周波数とするBPFを通過したときの信号となる。よって、式(1)同様、mとNを適当に選ぶことにより、FFT端子に各チャンネルのみの信号を取り出すことが可能となる。 It becomes. Here, I in (k) is the k-th amplitude component of the input signal, W BPF (k) is the window function component in the BPF format, f is the frequency, fs is the sampling frequency of the FFT unit 43, and N is the FFT size. is there. In the formula (3), the difference from the formula (1) is that the window function component is W BPF (k) in the BPF format. That is, in the LPF format, the reference frequency is the center of the pass band, whereas in the BPF format, it is outside the pass band. At this time, the output signal from the m-th terminal is a signal when passing through the BPF having a reference frequency that is shifted by mfs / N from the reference frequency defined by W BPF (k). Therefore, as in the equation (1), by selecting m and N appropriately, it becomes possible to take out signals of only the respective channels to the FFT terminal.

ここで、窓関数の係数として基準周波数f、帯域W(1チャンネルの帯域に等しい帯域)とし、サンプリング周波数fs、FFTのサイズN、FFT端子mを適当に選ぶことにより、1チャンネルの信号のみの信号を取り出すことが可能となる(図2(c))。図2(c)における周波数軸上の太線は、雑音が電力加算されて生成するスプリアス成分を示す。このとき、BPF形式における基準周波数は、通過帯域の中心からf離れて位置するため、スプリアス成分は、図2(c)のようにBPFの通過帯域外に発生する。 Here, the reference frequency f 0 and the band W 0 (band equal to the band of one channel) are used as the coefficients of the window function, and the sampling frequency fs, the FFT size N, and the FFT terminal m are appropriately selected, so that the signal of one channel is obtained. Only the signal can be extracted (FIG. 2C). A thick line on the frequency axis in FIG. 2C indicates a spurious component generated by adding power to noise. At this time, since the reference frequency in the BPF format is located f 0 away from the center of the pass band, the spurious component is generated outside the pass band of the BPF as shown in FIG.

比較のため、図3に、従来の、窓関数成分にWLPF(k)を用いたチャンネル分配部40によるデジタル信号のチャンネル毎の分配の一例を示す概念図を示す。図3における周波数軸上の太線は、図2(c)と同様スプリアス成分を示している。 For comparison, FIG. 3 is a conceptual diagram illustrating an example of distribution of digital signals for each channel by the channel distribution unit 40 using W LPF (k) as a window function component. A thick line on the frequency axis in FIG. 3 indicates a spurious component as in FIG.

窓関数成分にWLPF(k)を用いた場合でも、図2(c)と同様に1チャンネル毎に信号を分割することができる。しかしながら、LPF形式における基準周波数は、通過帯域の中心に位置するため、基準周波数でスプリアス成分が発生すると、信号成分がないチャンネルでは(図3のCh.3)、雑音成分が放射されることになり、信号成分があるチャンネルでは(図3のCh.1,2,4)、信号のSN比が劣化する。 Even when W LPF (k) is used as the window function component, the signal can be divided for each channel as in FIG. However, since the reference frequency in the LPF format is located at the center of the passband, when a spurious component is generated at the reference frequency, a noise component is radiated in a channel having no signal component (Ch. 3 in FIG. 3). Thus, in a channel having a signal component (Ch. 1, 2, 4 in FIG. 3), the signal-to-noise ratio of the signal deteriorates.

これに対し、上記第1の実施形態の構成では、アナログ−デジタル変換部30から出力された複数チャンネルのデジタル信号は、チャンネル分配部40により1チャンネル毎の信号に分割されて出力される。このとき、チャンネル分配部40は、重み係数乗算部42で、直交復調されたI/Q信号に窓関数WBPF(k)に基づく重み係数を乗算し、FFT部43でFFTを行って1チャンネル毎の信号に分割する。これにより、通過帯域の外部に基準周波数が位置するため、スプリアス成分が通過帯域の外部に発生するようになる。 On the other hand, in the configuration of the first embodiment, the digital signals of a plurality of channels output from the analog-digital conversion unit 30 are divided into signals for each channel by the channel distribution unit 40 and output. At this time, the channel distribution unit 40 multiplies the quadrature demodulated I / Q signal by the weighting factor multiplication unit 42 by a weighting factor based on the window function W BPF (k), and performs the FFT by the FFT unit 43 to perform one channel. Divide every signal. As a result, since the reference frequency is located outside the pass band, a spurious component is generated outside the pass band.

したがって、上記構成による受信装置は、自動的にスプリアス成分を除去することができるようになり、雑音成分の不要放射を抑圧でき、さらに、信号のS/N比の劣化による誤認識を防止することが可能となる。   Therefore, the receiving apparatus having the above configuration can automatically remove spurious components, can suppress unnecessary emission of noise components, and can prevent erroneous recognition due to deterioration of the S / N ratio of the signal. Is possible.

(第2の実施形態)
図4は、本発明の第2の実施形態にかかる受信装置の機能構成を示すブロック図である。なお、図4において、図1と同一部分には同一符号を付して示し、ここでは重複する説明を省略する。
(Second Embodiment)
FIG. 4 is a block diagram showing a functional configuration of a receiving apparatus according to the second embodiment of the present invention. In FIG. 4, the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted here.

図4における受信装置と、図1における受信装置とでは、チャンネル分配部40の構成が異なる。図1の受信装置のチャンネル分配部40では、まず直交復調部41でI信号及びQ信号に直交復調した後、重み係数乗算部42で重み係数を乗算し、FFT部43でチャンネル毎に分割したが、図4における第2の実施形態に係る受信装置では、IF帯の信号に対して重み係数乗算部42で重み係数を乗算し、FFT部43でチャンネル毎に分割した後、各チャンネル信号に対して直交復調部41−1〜41−Nで直交復調を行う。   The configuration of the channel distribution unit 40 differs between the receiving device in FIG. 4 and the receiving device in FIG. In the channel distribution unit 40 of the receiving apparatus of FIG. 1, first, the quadrature demodulation unit 41 quadrature-demodulates the I signal and the Q signal, then the weighting factor multiplication unit 42 multiplies the weighting factor, and the FFT unit 43 divides each channel. However, in the receiving apparatus according to the second embodiment in FIG. 4, the IF band signal is multiplied by the weighting factor by the weighting factor multiplication unit 42 and divided by the FFT unit 43 for each channel. On the other hand, orthogonal demodulation is performed by the orthogonal demodulation units 41-1 to 41-N.

以上のように、上記第2の実施形態では、FFT部43で信号をチャンネル毎に分割した後に、各チャンネル信号に対して直交復調部41−1〜41−Nで直交復調するようにしている。これにより、周波数変換を1段減らすことが可能となる。   As described above, in the second embodiment, after the signal is divided for each channel by the FFT unit 43, the quadrature demodulation units 41-1 to 41-N perform quadrature demodulation on each channel signal. . As a result, the frequency conversion can be reduced by one stage.

したがって、信号への局部発振器45−1〜45−Nからの局部発振信号による位相雑音付加を防ぐことができると共に、回路規模の削減が可能となる。   Therefore, addition of phase noise due to the local oscillation signals from the local oscillators 45-1 to 45-N to the signal can be prevented, and the circuit scale can be reduced.

なお、本発明は上記下記実施形態に限定されるものではない。本発明は実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   The present invention is not limited to the following embodiment. The present invention can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明に係る受信装置の第1の実施形態の構成を示すブロック図。The block diagram which shows the structure of 1st Embodiment of the receiver which concerns on this invention. 上記第1の実施形態のチャンネル分配部によるデジタル信号のチャンネル毎の分配を示す概念図。The conceptual diagram which shows the distribution for every channel of the digital signal by the channel distribution part of the said 1st Embodiment. 従来の、窓関数成分にWLPF(k)を用いたチャンネル分配部によるデジタル信号のチャンネル毎の分配の一例を示す概念図。The conceptual diagram which shows an example of the distribution of the digital signal for every channel by the channel distribution part which used the conventional WLPF (k) for the window function component. 本発明に係る受信装置の第2の実施形態の構成を示すブロック図。The block diagram which shows the structure of 2nd Embodiment of the receiver which concerns on this invention.

符号の説明Explanation of symbols

10…受信部、20…周波数変換部、30…アナログ−デジタル変換部、40…チャンネル分配部、41,41−1〜41−N…直交復調部、42…重み係数乗算部、43…FFT部、44−1〜44−N…ミキサ、45−1〜45−N…局部発振部、50−1〜50−N…復調部。   DESCRIPTION OF SYMBOLS 10 ... Reception part, 20 ... Frequency conversion part, 30 ... Analog-digital conversion part, 40 ... Channel distribution part, 41, 41-1 to 41-N ... Orthogonal demodulation part, 42 ... Weight coefficient multiplication part, 43 ... FFT part 44-1 to 44-N, mixers, 45-1 to 45-N, local oscillation units, 50-1 to 50-N, demodulation units.

Claims (8)

所定の帯域内で互いに周波数の異なる複数チャンネルの伝送信号を受信する受信処理部と、
前記受信処理部で受信された複数チャンネルの伝送信号を同時に中間周波数帯の信号に変換する周波数変換部と、
前記中間周波数帯に変換された複数チャンネルの伝送信号をデジタル信号に変換するアナログ−デジタル変換部と、
前記デジタル信号に変換された複数チャンネルの伝送信号をチャンネル毎に分割し、それぞれ伝送信号を抽出するための帯域通過フィルタ特性を有する窓関数に基づく重み係数を乗じて高速フーリエ変換(FFT:Fast Fourier Transform)を行うことで各チャンネルの伝送信号を分配するチャンネル分配部と
を具備することを特徴とする受信装置。
A reception processing unit that receives transmission signals of a plurality of channels having different frequencies within a predetermined band; and
A frequency conversion unit for simultaneously converting the transmission signals of a plurality of channels received by the reception processing unit into signals of an intermediate frequency band;
An analog-to-digital converter that converts a plurality of channels of transmission signals converted into the intermediate frequency band into digital signals;
The multi-channel transmission signal converted into the digital signal is divided for each channel, and multiplied by a weighting factor based on a window function having a band-pass filter characteristic for extracting the transmission signal, and fast Fourier transform (FFT) And a channel distribution unit that distributes the transmission signal of each channel by performing (Transform).
前記チャンネル分配部は、
前記デジタル信号に変換された複数チャンネルの伝送信号から同相信号及び直交信号を直交復調する直交復調部と、
前記直交復調部で復調された同相信号及び直交信号それぞれに、前記複数のチャンネルの伝送信号それぞれの帯域通過フィルタ特性を有する窓関数に基づく重み係数を乗算する重み係数乗算部と、
前記重み係数が乗算された同相信号及び直交信号に高速フーリエ変換を行ってチャンネル毎の同相信号及び直交信号を得るFFT部と、
前記FFT部から出力されるチャンネル毎の同相信号及び直交信号をベースバンドに周波数変換する複数のデジタル周波数変換部と
を備えることを特徴とする請求項1に記載の受信装置。
The channel distributor is
A quadrature demodulator that performs quadrature demodulation of an in-phase signal and a quadrature signal from a transmission signal of a plurality of channels converted into the digital signal;
A weight coefficient multiplier that multiplies each of the in-phase signal and the quadrature signal demodulated by the quadrature demodulator by a weight coefficient based on a window function having bandpass filter characteristics of the transmission signals of the plurality of channels;
An FFT unit that performs fast Fourier transform on the in-phase signal and the quadrature signal multiplied by the weighting factor to obtain an in-phase signal and a quadrature signal for each channel;
The receiving apparatus according to claim 1, further comprising: a plurality of digital frequency conversion units that frequency-convert in-phase signals and quadrature signals for each channel output from the FFT unit into baseband.
前記チャンネル分配部は、
前記デジタル信号に変換された複数チャンネルの伝送信号に、前記複数のチャンネルの伝送信号それぞれの帯域通過フィルタ特性を有する窓関数に基づく重み係数を乗算する重み係数乗算部と、
前記重み係数が乗算された前記複数チャンネルの伝送信号に高速フーリエ変換を行ってチャンネル毎の伝送信号を得るFFT部と、
前記FFT部から出力されるチャンネル毎の伝送信号からそれぞれ同相信号及び直交信号を直交復調する複数の直交復調部と
を具備することを特徴とする請求項1に記載の受信装置。
The channel distributor is
A weighting factor multiplier that multiplies the transmission signals of the plurality of channels converted into the digital signal by a weighting factor based on a window function having a bandpass filter characteristic of each of the transmission signals of the plurality of channels;
An FFT unit that performs fast Fourier transform on the transmission signals of the plurality of channels multiplied by the weighting factor to obtain transmission signals for each channel;
The receiving apparatus according to claim 1, further comprising: a plurality of quadrature demodulation units that quadrature demodulate an in-phase signal and a quadrature signal from transmission signals for each channel output from the FFT unit.
さらに、前記チャンネル分配部で分配された複数チャンネルの伝送信号からベースバンドの伝送信号を復調とする複数の復調手段を備えることを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, further comprising a plurality of demodulation means for demodulating a baseband transmission signal from a plurality of channel transmission signals distributed by the channel distribution unit. 所定の帯域内で互いに周波数の異なる複数チャンネルの伝送信号を受信し、
前記受信された複数チャンネルの伝送信号を同時に中間周波数帯の信号に変換し、
前記中間周波数帯に変換された複数チャンネルの伝送信号をデジタル信号に変換し、
前記デジタル信号に変換された複数チャンネルの伝送信号をチャンネル毎に分割し、それぞれ伝送信号を抽出するための帯域通過フィルタ特性を有する窓関数に基づく重み係数を乗じて高速フーリエ変換(FFT:Fast Fourier Transform)を行うことで各チャンネルの伝送信号を分配することを特徴とする受信方法。
Receive transmission signals of multiple channels with different frequencies within a predetermined band,
The received transmission signals of a plurality of channels are simultaneously converted into intermediate frequency band signals,
The transmission signal of a plurality of channels converted into the intermediate frequency band is converted into a digital signal,
The multi-channel transmission signal converted into the digital signal is divided for each channel, and multiplied by a weighting factor based on a window function having a band-pass filter characteristic for extracting the transmission signal, and fast Fourier transform (FFT) (Transform) is performed to distribute the transmission signal of each channel.
前記伝送信号のチャンネル毎の分配は、
前記デジタル信号に変換された複数チャンネルの伝送信号から同相信号及び直交信号を直交復調し、
前記直交復調された同相信号及び直交信号それぞれに、前記複数のチャンネルの伝送信号それぞれの帯域通過フィルタ特性を有する窓関数に基づく重み係数を乗算し、
前記重み係数が乗算された同相信号及び直交信号に高速フーリエ変換を行ってチャンネル毎の同相信号及び直交信号に分配し、
前記チャンネル毎の同相信号及び直交信号をベースバンドに周波数変換することを特徴とする請求項5に記載の受信方法。
Distribution of the transmission signal for each channel is as follows:
The in-phase signal and the quadrature signal are quadrature demodulated from the transmission signal of the plurality of channels converted into the digital signal,
Multiplying each of the quadrature demodulated in-phase signal and quadrature signal by a weighting factor based on a window function having bandpass filter characteristics of the transmission signals of the plurality of channels,
Performs a fast Fourier transform on the in-phase signal and quadrature signal multiplied by the weighting factor to distribute to the in-phase signal and quadrature signal for each channel,
6. The receiving method according to claim 5, wherein the in-phase signal and the quadrature signal for each channel are frequency-converted to baseband.
前記伝送信号のチャンネル毎の分配は、
前記デジタル信号に変換された複数チャンネルの伝送信号に、前記複数のチャンネルの伝送信号それぞれの帯域通過フィルタ特性を有する窓関数に基づく重み係数を乗算し、
前記重み係数が乗算された前記複数チャンネルの伝送信号に高速フーリエ変換を行ってチャンネル毎の伝送信号に分配し、
前記チャンネル毎の伝送信号からそれぞれ同相信号及び直交信号を直交復調することを特徴とする請求項5に記載の受信方法。
Distribution of the transmission signal for each channel is as follows:
Multiplying the transmission signal of the plurality of channels converted into the digital signal by a weighting factor based on a window function having a bandpass filter characteristic of each of the transmission signals of the plurality of channels,
Performing a fast Fourier transform on the transmission signals of the plurality of channels multiplied by the weighting factor to distribute the transmission signals for each channel;
6. The reception method according to claim 5, wherein an in-phase signal and a quadrature signal are quadrature demodulated from the transmission signal for each channel.
さらに、前記チャンネル毎に分配された伝送信号それぞれからベースバンドの伝送信号を復調することを特徴とする請求項5に記載の受信方法。 6. The receiving method according to claim 5, further comprising demodulating a baseband transmission signal from each of the transmission signals distributed for each channel.
JP2007123706A 2007-05-08 2007-05-08 Reception device and receiving method Pending JP2008283296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123706A JP2008283296A (en) 2007-05-08 2007-05-08 Reception device and receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123706A JP2008283296A (en) 2007-05-08 2007-05-08 Reception device and receiving method

Publications (1)

Publication Number Publication Date
JP2008283296A true JP2008283296A (en) 2008-11-20

Family

ID=40143768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123706A Pending JP2008283296A (en) 2007-05-08 2007-05-08 Reception device and receiving method

Country Status (1)

Country Link
JP (1) JP2008283296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133778A (en) * 2008-12-03 2010-06-17 Toshiba Corp Radar signal processor and radar system
JP2010278722A (en) * 2009-05-28 2010-12-09 Sharp Corp Receiving apparatus, receiving method, communication system, and communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133778A (en) * 2008-12-03 2010-06-17 Toshiba Corp Radar signal processor and radar system
JP2010278722A (en) * 2009-05-28 2010-12-09 Sharp Corp Receiving apparatus, receiving method, communication system, and communication method

Similar Documents

Publication Publication Date Title
KR101016876B1 (en) Coherent am demodulator using a weighted lsb/usb sum for interference mitigation
TW522672B (en) Radio receiver having a dynamic bandwidth filter and method therefor
US20160088344A1 (en) Wideband tuner architecture
US8358994B2 (en) Mitigating radio receiver multipath noise
EP1339197A1 (en) I/Q Mismatch compensation in an OFDM receiver in presence of frequency offset
JP2007329926A (en) Adaptive wireless receiver
US11296739B2 (en) Noise suppression device, noise suppression method, and reception device and reception method using same
US20090286499A1 (en) High dynamic range receiver
KR100988448B1 (en) Radio receiver with variable bandwidth IF filter
CN105745851A (en) Method, system and apparatus for phase noise cancellation
JP6548668B2 (en) First Adjacent Canceller (FAC) Improves Mixing Using Parametric Filters
JP5650625B2 (en) Receiving system
JP2008283296A (en) Reception device and receiving method
JP2008072218A (en) Digital broadcast wave relay device
JP2004194322A (en) Parallel processing apparatus and method for radio signals
JP2002094482A (en) Ofdm signal transmitter, ofdm signal repeater, and ofdm signal detecting device
EP2766997B1 (en) Digital down conversion and demodulation
EP1441457A1 (en) Direct conversion receiver
US20060189291A1 (en) Receiver and method for concurrent receiving of multiple channels
EP4391394A1 (en) Method for demodulating a rf signal in the presence of inband harmonic spurs
US9065487B2 (en) Wideband software-defined RF receiver
JP4930262B2 (en) OFDM receiving apparatus and OFDM receiving method
KR20010086533A (en) Apparatus for removing interference signal in receiving path
JP4541199B2 (en) Receiver
CN118249827A (en) Method for demodulating RF signals in the presence of in-band harmonic spurs