JP2008270350A - Device for storing laminated electrical power - Google Patents

Device for storing laminated electrical power Download PDF

Info

Publication number
JP2008270350A
JP2008270350A JP2007108223A JP2007108223A JP2008270350A JP 2008270350 A JP2008270350 A JP 2008270350A JP 2007108223 A JP2007108223 A JP 2007108223A JP 2007108223 A JP2007108223 A JP 2007108223A JP 2008270350 A JP2008270350 A JP 2008270350A
Authority
JP
Japan
Prior art keywords
power storage
common heat
exterior plate
heat transfer
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007108223A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Makoto Seto
誠 瀬戸
Ryuzo Kura
竜三 久良
Yoshihiro Hatakeyama
善博 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007108223A priority Critical patent/JP2008270350A/en
Publication of JP2008270350A publication Critical patent/JP2008270350A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for storing laminated electrical power facilitating radiation of heat to the outside via a metal laminated vessel and making it difficult for heat be transmitted to the adjacent electrical power storage cell. <P>SOLUTION: The device for storing laminated electrical power is provided with a plurality of electrical power storage cells (1) which are accommodated within a metal laminated vessel, formed in rectangular pallelopiped shape, equipped with a positive cell terminal (10) and a negative cell terminal (9) only on a surface, arranged linearly within the surface and connected electrically in series. This laminated electrical power storage device is further provided with a common heat-conducting external plate (4), including a box-like accommodation space for the electrical power storage cell (1), by bending a sheet of blank having a plurality of bending portions along these bending portions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、金属ラミネート容器に収納され、形状が直方体であり、一方の面に正極セル端子と負極セル端子を有する複数の電力貯蔵セルが直列に接続された積層型電力貯蔵デバイスに関する。   The present invention relates to a stacked power storage device that is housed in a metal laminate container, has a rectangular parallelepiped shape, and has a plurality of power storage cells connected in series on one surface and having a positive electrode terminal and a negative electrode terminal.

金属ラミネート容器に収納され、形状が直方体であり、一方の面に正極セル端子と負極セル端子を有した電力貯蔵デバイスとしては、電気二重層キャパシタ、リチウムイオン電池またはリチウムイオンキャパシタなどがある。
電気二重層キャパシタは、セパレータを挟んで互いに対向する分極性電極(正極及び負極)を設け、電解液中において分極性電極の表面と電解液との界面に形成される電気二重層の静電容量を利用したものである。
また、リチウムイオン電池は、リチウムをカーボン負極に安定に充電貯蔵できることが特長で、正極にはコバルト、ニッケル、マンガンなどの酸化物が用いられている。
また、電気二重層キャパシタとリチウムイオン電池のハイブリッド型としてリチウムイオンキャパシタが開発されており、電気二重層キャパシタの正極とリチウムイオン電池の負極を兼ね備えたもので、電気二重層キャパシタよりも高い電圧が得られる反面、電圧を0Vにまでできないのが欠点である。
いずれの場合も、金属ラミネート容器に収納されているので、安価にコンパクトに構成できるが、金属ラミネート容器が傷つきやすいので、丈夫な容器に収納して保護する必要がある。
また、電圧が3V程度と、アルミ電解コンデンサの400Vなどと比べて低いので、直列に接続して電圧を上げる必要がある。
Examples of the power storage device housed in a metal laminate container and having a rectangular parallelepiped shape and having a positive cell terminal and a negative cell terminal on one surface include an electric double layer capacitor, a lithium ion battery, and a lithium ion capacitor.
An electric double layer capacitor has polarizable electrodes (positive electrode and negative electrode) facing each other across a separator, and the capacitance of the electric double layer formed in the electrolyte solution at the interface between the surface of the polarizable electrode and the electrolyte solution Is used.
In addition, lithium ion batteries are characterized in that lithium can be stably charged and stored in a carbon negative electrode, and oxides such as cobalt, nickel, and manganese are used for the positive electrode.
In addition, a lithium ion capacitor has been developed as a hybrid type of an electric double layer capacitor and a lithium ion battery, and has a positive electrode of the electric double layer capacitor and a negative electrode of the lithium ion battery, and has a higher voltage than the electric double layer capacitor. On the other hand, the disadvantage is that the voltage cannot be reduced to 0V.
In any case, since the metal laminate container is housed in the metal laminate container, it can be configured compactly at a low cost. However, since the metal laminate container is easily damaged, it must be housed in a strong container for protection.
Moreover, since the voltage is about 3 V, which is lower than 400 V of an aluminum electrolytic capacitor, it is necessary to increase the voltage by connecting in series.

電力貯蔵デバイスの電圧を上げるために積層という手法が用いられる。金属ラミネート容器に収納され、形状が直方体であり、一方の面に正極セル端子と負極セル端子を有した電力貯蔵セルを積層する方法としては、直方体の厚さの薄い方向に積み重ねるのが一般的である。
しかし、電力貯蔵デバイスには、充放電の際に発熱があり、熱を外部に取りだして除去しないと、電力貯蔵デバイスの温度が上昇し、劣化が加速する恐れがある。電力貯蔵デバイスは、一般に、7℃あるいは10℃温度が上昇するにつれて、寿命が半減する7℃半減則や10℃半減則が知られている。
A technique called stacking is used to increase the voltage of the power storage device. As a method of stacking power storage cells that are housed in a metal laminate container and have a rectangular parallelepiped shape and having a positive cell terminal and a negative cell terminal on one side, it is common to stack the rectangular parallelepiped in the direction of decreasing thickness It is.
However, the power storage device generates heat during charging / discharging, and unless the heat is taken out and removed, the temperature of the power storage device rises and there is a risk that deterioration will accelerate. In general, a power storage device is known to have a 7 ° C. half law or a 10 ° C. half law in which the lifetime is halved as the temperature rises to 7 ° C. or 10 ° C.

このため、積層型電力貯蔵デバイスでは、放熱させる工夫がなされている。例えば、熱良伝導体を挟んで、電力貯蔵デバイスを直方体の厚さの薄い方向に積み重ねて積層型電力貯蔵デバイスを構成し、側面から放熱版を用いて放熱させることで、電力貯蔵デバイスを冷却する構成が開示されている(例えば、特許文献1参照)。
また、放熱させる他の工夫として、平面内に複数の電力貯蔵セルを配置して、共通する補強部材を表裏にあてがった電力貯蔵セルの平面整列構造が開示されている(例えば、特許文献2参照)。
For this reason, the laminated power storage device is devised to dissipate heat. For example, sandwiching a good thermal conductor, stacking power storage devices in the direction of thin rectangular parallelepiped to form a stacked power storage device, and radiating heat from the side using a heat dissipation plate, cooling the power storage device The structure which does is disclosed (for example, refer patent document 1).
Further, as another device for dissipating heat, a planar alignment structure of power storage cells in which a plurality of power storage cells are arranged in a plane and a common reinforcing member is applied to the front and back is disclosed (for example, see Patent Document 2). ).

特開2005−57007号公報Japanese Patent Laid-Open No. 2005-57007 特開2005−288138号公報JP 2005-288138 A

しかし、特許文献1に開示されている電力貯蔵デバイスでは、電力貯蔵デバイスで発生した熱を側面にまで伝熱する必要があり、電力貯蔵デバイスの中心部と側面までの距離が長いので、電力貯蔵デバイスの中心部を十分に冷却することが困難で、電力貯蔵デバイスの中心部が高温に保たれるために、積層型電力貯蔵デバイスでは、電力貯蔵デバイス単独(1セル)での劣化速度に比べて、劣化速度が著しく促進されるという問題がある。
また、金属ラミネート容器が傷つきやすいので、丈夫な容器に収納しなければならず、せっかく、側面に集熱しても、容器の外部に逃がす機構が必要であり、高コストになると共に、十分な冷却を行うことが困難である。
However, in the power storage device disclosed in Patent Document 1, it is necessary to transfer the heat generated in the power storage device to the side surface, and the distance between the central portion and the side surface of the power storage device is long. Because it is difficult to sufficiently cool the center of the device and the center of the power storage device is kept at a high temperature, the stacked power storage device has a deterioration rate compared with that of the power storage device alone (one cell). Thus, there is a problem that the deterioration rate is remarkably accelerated.
In addition, since the metal laminate container is easily damaged, it must be stored in a strong container, and even if the heat is collected on the side, a mechanism to release it to the outside of the container is necessary, resulting in high cost and sufficient cooling. Is difficult to do.

また、特許文献2に開示されている電力貯蔵セルでは、平面状に展開しているだけで、電力貯蔵セルの側面や底面や上面については補強されておらず、金属ラミネート容器を充分に保護することはできないという問題がある。
また、隣接するセルの熱が補強部材を介して伝達され、隣接セルが加熱されて劣化が加速されるという問題がある。
また、格子枠を用いて構成すると、部品点数が多くなると共に構造が複雑で高コストになるという問題がある。
Further, in the power storage cell disclosed in Patent Document 2, the side surface, bottom surface, and top surface of the power storage cell are merely reinforced in a flat shape, and the metal laminate container is sufficiently protected. There is a problem that you can't.
Further, there is a problem that heat of adjacent cells is transmitted through the reinforcing member, and the adjacent cells are heated to accelerate deterioration.
In addition, when configured using a lattice frame, there are problems that the number of parts increases and the structure is complicated and expensive.

この発明の目的は、金属ラミネート容器を介しての外部への放熱を容易にすると共に、隣接する電力貯蔵セルに熱が伝達しにくい積層型電力貯蔵デバイスを提供することである。   An object of the present invention is to provide a stacked type power storage device that facilitates heat dissipation to the outside through a metal laminate container and hardly transfers heat to an adjacent power storage cell.

この発明に係る積層型電力貯蔵デバイスは、金属ラミネート容器に収納された形状が直方体であるとともに一つの面に正極セル端子および負極セル端子とを有し、且つ平面内に直線状に並べられ電気的に直列に接続された複数の電力貯蔵セルを備える積層型電力貯蔵デバイスにおいて、複数の折り曲げ部を有する1枚のブランクを上記折り曲げ部に沿って折り曲げることにより上記電力貯蔵セルを収容する枡状の収容空間が形成された共通伝熱外装板を備える。   The laminated power storage device according to the present invention has a rectangular parallelepiped shape accommodated in a metal laminate container, and has a positive electrode terminal and a negative electrode terminal on one surface, and is arranged in a straight line in a plane. In a stacked power storage device comprising a plurality of power storage cells connected in series, a saddle-like shape that accommodates the power storage cells by bending a blank having a plurality of bent portions along the bent portions The common heat-transfer exterior board in which the accommodation space was formed is provided.

この発明に係る積層型電力貯蔵デバイスの効果は、金属ラミネート容器が共通伝熱外装板によって6面が保護されており、金属ラミネート容器が外部から傷つけられる心配がないので、外から別の外装容器を用いる必要がないことである。従って、共通伝熱外装板を直接、空冷や水冷で冷却し放熱させることが可能になり、冷却が容易な積層型電力貯蔵デバイスが構成されることである。   The effect of the laminated power storage device according to the present invention is that the six surfaces of the metal laminate container are protected by the common heat transfer exterior plate, and there is no fear of the metal laminate container being damaged from the outside. It is not necessary to use. Therefore, it is possible to directly cool the common heat-transfer exterior plate by air cooling or water cooling to dissipate heat, and to construct a stacked power storage device that can be easily cooled.

実施の形態1.
この発明に係る実施の形態1による積層型電力貯蔵デバイスとして、電気二重層キャパシタを例にして説明するが、これに限るものではなく、リチウムイオン電池やリチウムイオンキャパシタなどにも同様に適用できる。
また、この発明に係る実施の形態1による電気二重層キャパシタは、電力貯蔵セル1が直列に3個配列されているが、電力貯蔵セル1の直列数はこれに限るものではない。
Embodiment 1 FIG.
Although the electric double layer capacitor will be described as an example of the multilayer power storage device according to the first embodiment of the present invention, the present invention is not limited to this and can be similarly applied to a lithium ion battery or a lithium ion capacitor.
In the electric double layer capacitor according to Embodiment 1 of the present invention, three power storage cells 1 are arranged in series, but the number of power storage cells 1 in series is not limited to this.

図1は、この発明に係る実施の形態1による電力貯蔵セルの正面図である。
この発明に係る実施の形態1による電力貯蔵セル1は、図示しないセパレータを図示しない正極と図示しない負極とで挟んで形成された板状のセルをベース金属ラミネートフィルム上に配置してからカバー金属ラミネートフィルムで封止して金属ラミネート容器に収容したものである。また、正極と負極とから負極セル端子9と正極セル端子10がベース金属ラミネートフィルムとカバー金属ラミネートフィルムの間を通って電力貯蔵セル1の上面から引き出されている。また、電力貯蔵セル1の上面には電力貯蔵セル1の内部で発生するガスを外部に放出するガス放出弁14が設けられており、電力貯蔵セル1が劣化してガスが発生した場合に内部のガスを放出してラミネート容器の破裂を防止している。
なお、以下の説明では板状のセルのうちベース金属ラミネートフィルムに覆われている側面を副面、カバー金属ラミネートフィルムに覆われている側面を主要面と称す。
FIG. 1 is a front view of a power storage cell according to Embodiment 1 of the present invention.
The power storage cell 1 according to Embodiment 1 of the present invention includes a cover metal after a plate-like cell formed by sandwiching a separator (not shown) between a positive electrode (not shown) and a negative electrode (not shown) on a base metal laminate film. It is sealed with a laminate film and accommodated in a metal laminate container. Further, the negative electrode cell terminal 9 and the positive electrode cell terminal 10 are drawn from the upper surface of the power storage cell 1 through the base metal laminate film and the cover metal laminate film from the positive electrode and the negative electrode. A gas release valve 14 is provided on the upper surface of the power storage cell 1 to release the gas generated inside the power storage cell 1 to the outside. This gas is released to prevent the laminate container from bursting.
In the following description, the side surface covered with the base metal laminate film in the plate-like cell is referred to as the sub surface, and the side surface covered with the cover metal laminate film is referred to as the main surface.

この発明に係る実施の形態1による積層型電力貯蔵デバイスでは、電力貯蔵セル1として2種類の電力貯蔵セル1L、1Rが使用されている。電力貯蔵セル1Lと1Rの違いは、副面を盤に接するようにして盤上に並べた電力貯蔵セル1を上方から見たとき、負極セル端子9と正極セル端子10との位置関係が線対称の関係にあることである。   In the stacked power storage device according to the first embodiment of the present invention, two types of power storage cells 1L and 1R are used as the power storage cell 1. The difference between the power storage cells 1L and 1R is that the positional relationship between the negative cell terminal 9 and the positive cell terminal 10 is linear when the power storage cell 1 arranged on the panel with the sub surface in contact with the panel is viewed from above. It is a symmetrical relationship.

図2は、この発明の実施の形態1に係る積層型電力貯蔵デバイスの上面図と平面図である。
各電力貯蔵セル1は、共通伝熱外装板4で囲まれており、副面が共通伝熱外装板背面部5に面し、主要面が共通伝熱外装板正面部6に面している。電気絶縁プレート11の上で、隣接する電力貯蔵セル1の負極セル端子9と正極セル端子10がスポット溶接で接続されていて、積層型電力貯蔵デバイスの両端部に負極電流端子12と正極電流端子13が配置され、他の積層型電力貯蔵デバイスと電気的に接続可能になっている。
FIG. 2 is a top view and a plan view of the stacked power storage device according to the first embodiment of the present invention.
Each power storage cell 1 is surrounded by a common heat transfer exterior plate 4, the sub surface faces the common heat transfer exterior plate back surface portion 5, and the main surface faces the common heat transfer exterior plate front portion 6. . On the electrically insulating plate 11, the negative electrode terminal 9 and the positive electrode terminal 10 of the adjacent power storage cell 1 are connected by spot welding, and the negative current terminal 12 and the positive current terminal are connected to both ends of the stacked power storage device. 13 is arranged and can be electrically connected to other stacked power storage devices.

各電力貯蔵セル1の負極セル端子9と正極セル端子10との間にはツェナーダイオードや抵抗などの保護回路15が設けられており、電力貯蔵セル1に高電圧が印加されるのを防止するように構成されている。   A protection circuit 15 such as a Zener diode or a resistor is provided between the negative electrode terminal 9 and the positive cell terminal 10 of each power storage cell 1 to prevent a high voltage from being applied to the power storage cell 1. It is configured as follows.

図3は、この発明に係る実施の形態1による共通伝熱外装板のブランクの平面図である。ここで言うブランクとは、金属板のような熱伝導性の高い平板状の板のことである。
共通伝熱外装板4は、厚さ0.1mmのニッケルメッキ鉄板を打ち抜いたブランクを折り曲げ加工を施して立体的な形状に仕上げたものである。
ブランクは、折り曲げる箇所に、打ち抜き加工と同時に行う溝加工により折り曲げ溝が形成されている。なお、図3のブランクに描いた点線は表面に、一点鎖線は裏面に形成された折り曲げ溝を示す。
ブランクには、折り曲げ溝により区画された、共通伝熱外装板正面部6、共通伝熱外装板側部7、共通伝熱外装板背面部5、共通伝熱外装板上面部8、共通伝熱外装板底面部16、共通伝熱外装板側面部17および共通伝熱外装板底側面部18がある。
FIG. 3 is a plan view of a blank of the common heat transfer exterior plate according to the first embodiment of the present invention. The blank mentioned here is a flat plate having a high thermal conductivity such as a metal plate.
The common heat transfer exterior plate 4 is obtained by bending a blank obtained by punching a nickel-plated iron plate having a thickness of 0.1 mm into a three-dimensional shape.
In the blank, a bending groove is formed at a portion to be bent by groove processing performed simultaneously with the punching processing. In addition, the dotted line drawn on the blank of FIG. 3 shows the bending groove | channel formed in the surface, and the dashed-dotted line formed in the back surface.
The blank includes a common heat-transfer exterior plate front portion 6, a common heat-transfer exterior plate side portion 7, a common heat-transfer exterior plate rear surface portion 5, a common heat-transfer exterior plate upper-surface portion 8, and a common heat-transfer partition, which are partitioned by bending grooves. There are an exterior plate bottom surface portion 16, a common heat transfer exterior plate side surface portion 17, and a common heat transfer exterior plate bottom side surface portion 18.

3つの共通伝熱外装板背面部5は、対向する2辺に共通伝熱外装板側部7が連なり直線状に並んでいる。
3つの共通伝熱外装板正面部6は、共通伝熱外装板背面部5と共通伝熱外装板底面部16を介在して連なっている。また、3つの共通伝熱外装板正面部6は、共通伝熱外装板底面部16に連なる辺と対向する辺に共通伝熱外装板上面部8が連なっている。また、3つの共通伝熱外装板正面部6は、残りの2辺に共通伝熱外装板側面部17が連なっている。
共通伝熱外装板側面部17は、共通伝熱外装板正面部6と共通伝熱外装板底面部16が連なる折り曲げ溝の端の連なる辺に共通伝熱外装板底側面部18が連なっている。
なお、以下の説明では図2において表れている共通伝熱外装板正面部6の面を甲面、甲面の裏面を乙面と称して説明する。
The three common heat transfer exterior plate back surface portions 5 are arranged in a straight line with the common heat transfer exterior plate side portions 7 connected to two opposing sides.
The three common heat transfer exterior plate front portions 6 are connected with the common heat transfer exterior plate back surface portion 5 and the common heat transfer exterior plate bottom surface portion 16 interposed therebetween. The three common heat transfer exterior plate front surface portions 6 are connected to the common heat transfer exterior plate upper surface portion 8 on the side facing the side continuous with the common heat transfer exterior plate bottom surface portion 16. Moreover, the common heat-transfer exterior board side surface part 17 is connecting the three common heat-transfer exterior board front-surface parts 6 with the remaining 2 sides.
In the common heat transfer exterior plate side surface portion 17, the common heat transfer exterior plate bottom side surface portion 18 is connected to the side where the ends of the bent grooves where the common heat transfer exterior plate front surface portion 6 and the common heat transfer exterior plate bottom surface portion 16 are continuous are connected. .
In the following description, the surface of the common heat-transfer exterior plate front portion 6 shown in FIG. 2 will be referred to as the upper surface, and the rear surface of the upper surface will be referred to as the front surface.

そして、ブランクを折り曲げ加工することにより、共通伝熱外装板正面部6、共通伝熱外装板背面部5、共通伝熱外装板上面部8、共通伝熱外装板底面部16、共通伝熱外装板側面部17および共通伝熱外装板底側面部18によって電力貯蔵セル1の6面全てを囲繞する外装が形成され、電力貯蔵セル1を保護すると共に、電力貯蔵セル1に生じた熱を伝熱して外部に放出する。   Then, by bending the blank, the common heat transfer exterior plate front portion 6, the common heat transfer exterior plate back portion 5, the common heat transfer exterior plate upper surface portion 8, the common heat transfer exterior plate bottom surface portion 16, the common heat transfer exterior plate The plate side surface portion 17 and the common heat transfer exterior plate bottom side surface portion 18 form an exterior that surrounds all six surfaces of the power storage cell 1 to protect the power storage cell 1 and transfer heat generated in the power storage cell 1. Heat to discharge outside.

図4は、この発明に係る実施の形態1によるブランクの折り曲げる方向を説明するための平面図である。
以下のブランクの折り曲げの説明において、該当する区画を紙面に対して手前側に折り曲げることを手前折り、紙面に対して奥行き側に折り曲げることを向こう折りと称する。
折り曲げ溝a1、a2、a5、a6に沿って共通伝熱外装板底側面部18を手前折りする。また、折り曲げ溝a3、a4に沿って共通伝熱外装板底側面部18を向こう折りする。
次に、両側の共通伝熱外装板正面部6の外周の折り曲げ溝に沿って共通伝熱外装板正面部6、共通伝熱外装板上面部8、共通伝熱外装板側面部17を手前折りする。また、中央の共通伝熱外装板正面部6の外周の折り曲げ溝に沿って共通伝熱外装板正面部6、共通伝熱外装板上面部8、共通伝熱外装板側面部17を向こう折りする。
次に、折り曲げ溝b1、b3に沿って共通伝熱外装板底面部16を手前折りする。また、折り曲げ溝b2に沿って共通伝熱外装板底面部16を向こう折りする。
最後に、折り曲げ溝c1、c2、c5、c6に沿って共通伝熱外装板側部7を手前折りする。また、折り曲げ溝c3、c4に沿って共通伝熱外装板側部7を向こう折りする。
このようにブランクに折り曲げ加工を施すことにより、電力貯蔵セル1を収納する収容空間が形成される。そして、共通伝熱外装板4の立体構造は金属製の箱のように単純な構造であるので、折り曲げ加工を機械化することは容易である。
FIG. 4 is a plan view for explaining a direction in which the blank is bent according to the first embodiment of the present invention.
In the following description of folding the blank, folding the corresponding section to the front side with respect to the paper surface is referred to as front folding, and folding to the depth side with respect to the paper surface is referred to as over-folding.
The common heat transfer exterior plate bottom side surface portion 18 is folded forward along the folding grooves a1, a2, a5, and a6. Further, the common heat transfer exterior plate bottom side surface portion 18 is folded away along the folding grooves a3 and a4.
Next, the common heat transfer exterior plate front portion 6, the common heat transfer exterior plate upper surface portion 8, and the common heat transfer exterior plate side surface portion 17 are folded forward along the outer peripheral bending groove of the common heat transfer exterior plate front portion 6. To do. Further, the common heat transfer exterior plate front portion 6, the common heat transfer exterior plate upper surface portion 8, and the common heat transfer exterior plate side surface portion 17 are folded away along the outer circumferential bending groove of the central common heat transfer exterior plate front portion 6. .
Next, the common heat transfer exterior plate bottom surface portion 16 is folded forward along the bending grooves b1 and b3. Moreover, the common heat-transfer exterior board bottom face part 16 is folded away along the bending groove b2.
Finally, the common heat transfer exterior plate side portion 7 is folded forward along the folding grooves c1, c2, c5, and c6. Further, the common heat transfer exterior plate side portion 7 is folded away along the folding grooves c3 and c4.
Thus, the storage space which accommodates the power storage cell 1 is formed by bending the blank. And since the three-dimensional structure of the common heat-transfer exterior board 4 is a simple structure like a metal box, it is easy to mechanize a bending process.

図5は、ブランクを折り曲げ加工を施して立体的に加工された共通伝熱外装板の上面図と平面図である。
上述のようにブランクに折り曲げ加工を施すことにより、3つの電力貯蔵セル1を収容できる3つの収容空間が形成される。この収容空間は隣接する収容空間と2枚の共通伝熱外装板側面部17とこれに挟まれた共通伝熱外装板側部7により隔離される。
また、収容空間に収容される電力貯蔵セル1は対向する共通伝熱外装板正面部6と共通伝熱外装板背面部5とにより挟まれている。但し、中央の収容空間の共通伝熱外装板正面部6の隣には両側の収容空間の共通伝熱外装板背面部5が横に並んでいる。逆に、中央の収容空間の共通伝熱外装板背面部5の隣には両側の収容空間の共通伝熱外装板正面部6が横に並んでいる。
そして、両側の収容空間の内側には共通伝熱外装板正面部6の甲面が、中央の収容空間の内側には共通伝熱外装板正面部6の乙面が表れている。
FIG. 5 is a top view and a plan view of a common heat-transfer exterior plate that is three-dimensionally processed by bending a blank.
By bending the blank as described above, three accommodation spaces that can accommodate the three power storage cells 1 are formed. This accommodation space is separated by an adjacent accommodation space, two common heat transfer exterior plate side portions 17 and a common heat transfer exterior plate side portion 7 sandwiched therebetween.
Further, the power storage cell 1 accommodated in the accommodation space is sandwiched between the common heat transfer exterior plate front portion 6 and the common heat transfer exterior plate back portion 5 which face each other. However, next to the common heat transfer exterior plate front portion 6 in the central accommodation space, the common heat transfer exterior plate back portions 5 in the accommodation spaces on both sides are arranged side by side. On the contrary, the common heat-transfer exterior board front part 6 of the accommodation space of both sides is located side by side next to the common heat-transfer exterior board back part 5 of the center accommodation space.
And the back surface of the common heat-transfer exterior board front part 6 appears inside the accommodation space of both sides, and the front face of the common heat-transfer exterior board front part 6 appears inside the central accommodation space.

この収容空間に収容された電力貯蔵セル1の側面は、隣接する収容空間に収容された電力貯蔵セル1の側面と2枚の共通伝熱外装板側面部17とこれらに挟まれた共通伝熱外装板側部7によって隔離されるので、電力貯蔵セル1に発生した熱が、隣接する電力貯蔵セル1に対して、伝導や周辺雰囲気の対流によって伝達されにくい構成になっている。   The side surface of the power storage cell 1 accommodated in this accommodation space is composed of the side surface of the power storage cell 1 accommodated in the adjacent accommodation space, the two common heat transfer exterior plate side surfaces 17 and the common heat transfer sandwiched between them. Since it is isolated by the exterior plate side portion 7, the heat generated in the power storage cell 1 is not easily transmitted to the adjacent power storage cell 1 by conduction or convection of the surrounding atmosphere.

図6は、この発明に係る実施の形態1による共通伝熱外装板に形成された収容空間に電力貯蔵セルを挿入する様子を示す上面図と平面図である。
電力貯蔵セル1を収容空間に挿入するとき、副面が共通伝熱外装板背面部5に、主要面が共通伝熱外装板正面部6に面するようにして挿入する。
すなわち、中央に位置する収容空間に挿入する電力貯蔵セル1Rは、両側に位置する収容空間に挿入する電力貯蔵セル1Lに対して、収容空間に電力貯蔵セル1を挿入する方向を中心線とした線対称の位置に位置決めして収容空間に挿入する。
収容空間に電力貯蔵セル1を挿入した後で共通伝熱外装板上面部8を折り曲げて、収容空間内に電力貯蔵セル1を固定する。
なお、上述の説明ではガス放出弁14が見えるように配置されているが、ガスが外部に直接放出されるのが不都合であれば、ガス放出弁14を覆うように共通伝熱外装板上面部8をあらかじめ長くして、折り曲げて、電力貯蔵セル1を固定してもよい。
6A and 6B are a top view and a plan view showing a state in which the power storage cell is inserted into the accommodation space formed in the common heat transfer exterior plate according to Embodiment 1 of the present invention.
When the power storage cell 1 is inserted into the accommodation space, the auxiliary surface is inserted into the common heat transfer exterior plate back surface portion 5 and the main surface is inserted into the common heat transfer exterior plate front surface portion 6.
That is, the power storage cell 1R to be inserted into the storage space located in the center is centered on the direction in which the power storage cell 1 is inserted into the storage space relative to the power storage cell 1L inserted into the storage space located on both sides. Position it in a line-symmetric position and insert it into the receiving space.
After the power storage cell 1 is inserted into the housing space, the upper surface portion 8 of the common heat transfer outer plate is bent to fix the power storage cell 1 in the housing space.
In the above description, the gas release valve 14 is arranged so that it can be seen. However, if it is inconvenient to directly release the gas to the outside, the upper surface of the common heat transfer exterior plate so as to cover the gas release valve 14 The power storage cell 1 may be fixed by elongating 8 and bending it.

図7は、この発明に係る実施の形態1による積層型電力貯蔵デバイスの電流端子の接続を示す上面図と平面図である。見やすくするために電気絶縁プレート11は省略している。
各電力貯蔵セル1の負極セル端子9と正極セル端子10を折り曲げて、隣接する負極セル端子9や正極セル端子10とスポット溶接するだけで、簡単にしかも最短で直列接続することができ、極めて簡単な構成になる。
また、中央に位置する電力貯蔵セル1Rは、両側に位置する電力貯蔵セル1Lに対して、収容空間に電力貯蔵セル1を挿入する方向を中心線とした線対称の関係にあるので、負極セル端子9と正極セル端子10が交互に並ぶ構成を選択することができる。
もし、電力貯蔵セル1として、電力貯蔵セル1Rまたは電力貯蔵セル1Lのいずれか一方のみを用いた場合には、負極セル端子9に負極セル端子9が、また、正極セル端子10に正極セル端子10が隣接することになり、直列接続が困難になる。
FIG. 7 is a top view and a plan view showing connection of current terminals of the stacked power storage device according to the first embodiment of the present invention. The electric insulating plate 11 is omitted for easy viewing.
By simply bending the negative electrode cell terminal 9 and the positive electrode cell terminal 10 of each power storage cell 1 and spot welding with the adjacent negative electrode cell terminal 9 or positive electrode cell terminal 10, it can be easily and in series connected in the shortest time. Simple configuration.
Further, the power storage cell 1R located in the center is in a line-symmetric relationship with the power storage cell 1L located on both sides as a center line in the direction in which the power storage cell 1 is inserted into the accommodation space. A configuration in which the terminals 9 and the positive electrode cell terminals 10 are alternately arranged can be selected.
If only one of the power storage cell 1R and the power storage cell 1L is used as the power storage cell 1, the negative cell terminal 9 is connected to the negative cell terminal 9, and the positive cell terminal is connected to the positive cell terminal 10. 10 will be adjacent to each other, making series connection difficult.

この発明に係る実施の形態1による積層型電力貯蔵デバイスでは、金属ラミネート容器が共通伝熱外装板4によって6面が保護されており、金属ラミネート容器が外部から傷つけられる心配がないので、外から別の外装容器を用いる必要がない。従って、共通伝熱外装板4を直接、空冷や水冷で冷却し放熱させることが可能になり、冷却が容易な積層型電力貯蔵デバイスが構成される。
このように冷却を十分に行うことにより、電力貯蔵セル1内の温度分布が均一になるとともに温度上昇も抑えられるので、電力貯蔵セル1の局部的な劣化を防げるともに寿命を延ばすことができる。
In the laminated power storage device according to the first embodiment of the present invention, the six surfaces of the metal laminate container are protected by the common heat transfer exterior plate 4, and there is no fear of the metal laminate container being damaged from the outside. There is no need to use a separate outer container. Therefore, the common heat-transfer exterior plate 4 can be directly cooled by air cooling or water cooling to dissipate heat, and a laminated power storage device that is easy to cool is configured.
By sufficiently cooling in this way, the temperature distribution in the power storage cell 1 becomes uniform and the temperature rise is suppressed, so that local deterioration of the power storage cell 1 can be prevented and the life can be extended.

特に、電力貯蔵セル1の副面が共通伝熱外装板背面部5に、主要面が共通伝熱外装板正面部6に面していて、隣接する電力貯蔵セル1と共有していないので、薄い共通伝熱外装板4の表裏を介して、電力貯蔵セル1の熱が隣接する電力貯蔵セル1に伝達されにくい構成になっており、発熱の隣接セルへの伝達による劣化を防止することができる。   In particular, since the secondary surface of the power storage cell 1 faces the common heat transfer exterior plate back surface portion 5 and the main surface faces the common heat transfer exterior plate front surface portion 6 and is not shared with the adjacent power storage cell 1, The heat of the power storage cell 1 is difficult to be transmitted to the adjacent power storage cell 1 through the thin common heat transfer exterior plate 4, and it is possible to prevent deterioration due to transmission of heat generation to the adjacent cell. it can.

また、電力貯蔵セル1の副面および主要面がすべて共通伝熱外装板正面部6または共通伝熱外装板背面部5のいずれかに面しているので、電力貯蔵セル1を包むように構成することができ、電力貯蔵セル1の発熱を、共通伝熱外装板正面部6または共通伝熱外装板背面部5から吸収して、共通伝熱外装板正面部6または共通伝熱外装板背面部5の面内に分配して外部に放出することができる。例えれば。たとえれば、おむつのように電力貯蔵セル1を包んで、おしっこが漏れないように構成されている。   Moreover, since all the subsurfaces and main surfaces of the power storage cell 1 face either the common heat transfer exterior plate front surface portion 6 or the common heat transfer exterior plate back surface portion 5, the power storage cell 1 is configured to be wrapped. The heat generation of the power storage cell 1 can be absorbed from the common heat transfer exterior plate front portion 6 or the common heat transfer exterior plate rear portion 5 and the common heat transfer exterior plate front portion 6 or the common heat transfer exterior plate rear portion. 5 can be distributed in the plane of 5 and discharged to the outside. For example. For example, the power storage cell 1 is wrapped like a diaper so that pee does not leak.

また、電力貯蔵セル1が、電力貯蔵セル1Rと電力貯蔵セル1Lに交互に構成されていることによって、隣接する電流端子の距離が確保され、電気絶縁プレート11上での電流端子の結線が容易になる。
なお、実施の形態1においては、ブランクとして1枚の厚さ0.1mmのニッケルメッキ鉄板を打ち抜いたものを用いたが、ブランクは必ずしも1枚で構成されている必要はなく、溶接などで繋ぎ合わせたものでも良く、実質的に熱伝導性が確保されて1枚の形状になっているものでも良い。
Further, since the power storage cell 1 is configured alternately as the power storage cell 1R and the power storage cell 1L, the distance between the adjacent current terminals is secured, and the connection of the current terminals on the electrical insulating plate 11 is easy. become.
In Embodiment 1, a blank obtained by punching a 0.1 mm thick nickel-plated iron plate is used. However, the blank does not necessarily have to be formed by one piece, and is connected by welding or the like. They may be combined, or may have a single shape with substantially ensured thermal conductivity.

実施の形態2.
図8は、この発明に係る実施の形態2による積層型電力貯蔵デバイスの上面図である。図9は、この発明に係る実施の形態2による積層型電力貯蔵デバイスの模式図である。
この発明に係る実施の形態2による積層型電力貯蔵デバイスは、2つの実施の形態1による積層型電力貯蔵デバイスを並べたものである。そして、2列目の積層型電力貯蔵デバイスは、1列目の積層型電力貯蔵デバイスと同じ積層型電力貯蔵デバイスをその積層型電力貯蔵デバイスの中央の電力貯蔵セル1Rの中心軸を中心として180度回転し、中心軸を電力貯蔵セル1の厚さだけ厚さ方向に移動したものであり、2つの積層型電力貯蔵デバイスの共通伝熱外装板4が接している。
Embodiment 2. FIG.
FIG. 8 is a top view of the stacked power storage device according to the second embodiment of the present invention. FIG. 9 is a schematic diagram of a stacked power storage device according to Embodiment 2 of the present invention.
The stacked power storage device according to the second embodiment of the present invention is an array of two stacked power storage devices according to the first embodiment. The stacked power storage device in the second row is 180 with the same stacked power storage device as the stacked power storage device in the first column about the central axis of the power storage cell 1R at the center of the stacked power storage device. And the central axis is moved in the thickness direction by the thickness of the power storage cell 1, and the common heat transfer outer plate 4 of the two stacked power storage devices is in contact.

このように配置すると、1列目の積層型電力貯蔵デバイスの右側の電力貯蔵セル1Lの正極セル端子10と2列目の積層型電力貯蔵デバイスの右側の電力貯蔵セル1Lの負極セル端子9が近づく。
そこで、1列目の積層型電力貯蔵デバイスの右側の電力貯蔵セル1Lの正極セル端子10と2列目の積層型電力貯蔵デバイスの右側の電力貯蔵セル1Lの負極セル端子9とをスポット溶接で接続することができる。このように配置し接続することにより、6個の電力貯蔵セル1が直列に接続された6セルモジュールが構成される。
When arranged in this manner, the positive electrode cell terminal 10 of the right power storage cell 1L of the stacked power storage device in the first row and the negative electrode terminal 9 of the right power storage cell 1L of the stacked power storage device in the second row are arranged. Get closer.
Therefore, the positive electrode cell terminal 10 of the right power storage cell 1L of the stacked power storage device in the first row and the negative electrode terminal 9 of the right power storage cell 1L of the stacked power storage device in the second row are spot-welded. Can be connected. By arranging and connecting in this way, a 6-cell module in which six power storage cells 1 are connected in series is configured.

この発明に係る実施の形態2による積層型電力貯蔵デバイスは、3つの電力貯蔵セル1が共通伝熱外装板4の3つの収容空間に平面内で直線状に収容された2つの積層型電力貯蔵デバイスを共通伝熱外装板4が面するように並べられているので、1列目の積層型電力貯蔵デバイスの正極セル端子10と2列目の積層型電力貯蔵デバイスの負極セル端子9が隣接し、これらの接続が容易になる。   In the stacked power storage device according to the second embodiment of the present invention, two stacked power storages in which three power storage cells 1 are accommodated in the three accommodating spaces of the common heat transfer exterior plate 4 in a straight line in a plane. Since the devices are arranged so that the common heat transfer exterior plate 4 faces, the positive electrode cell terminal 10 of the first row of stacked power storage devices and the negative electrode cell terminal 9 of the second row of stacked power storage devices are adjacent to each other. And these connections become easy.

実施の形態3.
図10は、この発明に係る実施の形態3による積層型電力貯蔵デバイスの模式図である。
この発明に係る実施の形態3による積層型電力貯蔵デバイスは、実施の形態2による積層型電力貯蔵デバイスを2個並べたものである。すなわち、第1の6セルモジュールの1列目の積層型電力貯蔵デバイスの左側の電力貯蔵セル1Lの負極セル端子9が正極セル端子10より左側に位置するように配置したとき、第2の6セルモジュールの1列目の積層型電力貯蔵デバイスの左側の電力貯蔵セル1Lの負極セル端子9が正極セル端子10より左側に位置するように配置する。すると、第1の6セルモジュールの2列目の積層型電力貯蔵デバイスの左側の電力貯蔵セル1Lの正極セル端子10に、第2の6セルモジュールの1列目の積層型電力貯蔵デバイスの左側の電力貯蔵セル1Lの負極セル端子9が近づく。
そこで、この近づいた正極セル端子10と負極セル端子9を、スポット溶接で接続することにより、12個の電力貯蔵セル1が直列に接続された12セルモジュールが構成される。
Embodiment 3 FIG.
FIG. 10 is a schematic diagram of a stacked power storage device according to Embodiment 3 of the present invention.
The stacked power storage device according to the third embodiment of the present invention is a stack of two stacked power storage devices according to the second embodiment. In other words, when the negative electrode terminal 9 of the left power storage cell 1L of the stacked power storage device in the first row of the first six-cell module is positioned on the left side of the positive cell terminal 10, the second 6 The power storage cell 1L on the left side of the stacked power storage device in the first row of the cell modules is arranged so that the negative electrode cell terminal 9 is located on the left side of the positive electrode cell terminal 10. Then, the left side of the stacked power storage device in the first row of the second 6-cell module is connected to the positive cell terminal 10 of the left power storage cell 1L of the stacked power storage device in the second row of the first 6-cell module. The negative electrode terminal 9 of the power storage cell 1L approaches.
Therefore, a 12-cell module in which twelve power storage cells 1 are connected in series is configured by connecting the positive electrode cell terminal 10 and the negative electrode cell terminal 9 which are close to each other by spot welding.

この発明に係る実施の形態3による積層型電力貯蔵デバイスは、3つの電力貯蔵セル1が共通伝熱外装板4の3つの収容空間に平面内で直線状に収容された4つの積層型電力貯蔵デバイスを共通伝熱外装板4が面するように並べられているので、2列目の積層型電力貯蔵デバイスの正極セル端子10と3列目の積層型電力貯蔵デバイスの負極セル端子9が隣接し、これらの接続が容易である。
また、直列数が増えて、外部へ取り出されるトータル電圧を高くすることができる
The stacked power storage device according to the third embodiment of the present invention has four stacked power storages in which three power storage cells 1 are linearly accommodated in the three accommodating spaces of the common heat transfer exterior plate 4 in a plane. Since the devices are arranged so that the common heat transfer exterior plate 4 faces, the positive electrode cell terminal 10 of the second row stacked power storage device and the negative electrode cell terminal 9 of the third row stacked power storage device are adjacent to each other. These connections are easy.
In addition, the number of series increases and the total voltage extracted to the outside can be increased.

実施の形態4.
図11は、この発明に係る実施の形態4による積層型電力貯蔵デバイスの模式図である。
この発明に係る実施の形態4による積層型電力貯蔵デバイスは、3つの電力貯蔵セル1が共通伝熱外装板4の3つの収容空間に収容された4つの積層型電力貯蔵デバイスから構成される。そして、4つの積層型電力貯蔵デバイスのうち、2つの第1種の積層型電力貯蔵デバイスは電力貯蔵セル1が1R、1L、1Rの順で並んでおり、他の2つの第2種の積層型電力貯蔵デバイスは電力貯蔵セル1が1L、1R、1Lの順で並んでいる。
Embodiment 4 FIG.
FIG. 11 is a schematic diagram of a stacked power storage device according to Embodiment 4 of the present invention.
The laminated power storage device according to the fourth embodiment of the present invention is composed of four laminated power storage devices in which three power storage cells 1 are accommodated in three accommodation spaces of the common heat transfer exterior plate 4. Of the four stacked power storage devices, two first type stacked power storage devices have the power storage cells 1 arranged in the order of 1R, 1L, and 1R, and the other two second type stacked power storage devices. In the type power storage device, the power storage cells 1 are arranged in the order of 1L, 1R, and 1L.

そして、4つの積層型電力貯蔵デバイスは以下のようにして並べられる。すなわち、1列目に、第1種の積層型電力貯蔵デバイスを第1種の積層型電力貯蔵デバイスの左側の電力貯蔵セル1Rの負極セル端子9が正極セル端子10より左側に位置するように配置する。
次に、2列目に、第2種の積層型電力貯蔵デバイスを第2種の積層型電力貯蔵デバイスの右側の電力貯蔵セル1Lの負極セル端子9が正極セル端子10より右側に位置するように配置するとともに、共通伝熱外装板正面部6と共通伝熱外装板背面部5とが接するようにして1列目の第1種の積層型電力貯蔵デバイスと2列目の第2種の積層型電力貯蔵デバイスとを並べる。
The four stacked power storage devices are arranged as follows. That is, in the first column, the first type stacked power storage device is arranged such that the negative electrode cell terminal 9 of the power storage cell 1R on the left side of the first type stacked power storage device is located on the left side of the positive electrode cell terminal 10. Deploy.
Next, in the second row, the second type stacked power storage device is arranged such that the negative electrode cell terminal 9 of the right power storage cell 1L on the right side of the second type stacked power storage device is positioned on the right side of the positive electrode cell terminal 10. And the common heat transfer exterior plate front portion 6 and the common heat transfer exterior plate back portion 5 are in contact with each other so that the first row of first type stacked power storage devices and the second row of second type Line up stacked power storage devices.

次に、3列目に、第1種の積層型電力貯蔵デバイスを第1種の積層型電力貯蔵デバイスの左側の電力貯蔵セル1Rの負極セル端子9が正極セル端子10より左側に位置するように配置するとともに、共通伝熱外装板正面部6と共通伝熱外装板背面部5が接するようにして2列目の第2種の積層型電力貯蔵デバイスと3列目の第1種の積層型電力貯蔵デバイスとを並べる。
次に、4列目に、第2種の積層型電力貯蔵デバイスを第2種の積層型電力貯蔵デバイスの右側の電力貯蔵セル1Lの負極セル端子9が正極セル端子10より右側に位置するように配置するとともに、共通伝熱外装板正面部6と共通伝熱外装板背面部5とが接するようにして3列目の第1種の積層型電力貯蔵デバイスと4列目の第2種の積層型電力貯蔵デバイスとを並べる。
Next, in the third row, the first type stacked power storage device is arranged such that the negative electrode cell terminal 9 of the power storage cell 1R on the left side of the first type stacked power storage device is located on the left side of the positive electrode cell terminal 10. The second row of the second type stacked power storage devices and the third row of the first type of lamination so that the common heat transfer outer plate front portion 6 and the common heat transfer outer plate rear portion 5 are in contact with each other. Side by side power storage device.
Next, in the fourth row, the second type stacked power storage device is arranged such that the negative electrode cell terminal 9 of the power storage cell 1L on the right side of the second type stacked power storage device is located on the right side of the positive electrode cell terminal 10. And the common heat transfer exterior plate front portion 6 and the common heat transfer exterior plate back portion 5 are in contact with each other so that the third row of the first type stacked power storage devices and the fourth row of the second type Line up stacked power storage devices.

この発明に係る実施の形態4による積層型電力貯蔵デバイスは、3つの電力貯蔵セル1が共通伝熱外装板4の3つの収容空間に平面内で直線状に収容された4つの積層型電力貯蔵デバイスを共通伝熱外装板4が面するように並べられているので、一方の積層型電力貯蔵デバイスの正極セル端子10と他方の積層型電力貯蔵デバイスの負極セル端子9が隣接し、これらの接続が容易である。   The stacked power storage device according to the fourth embodiment of the present invention has four stacked power storages in which three power storage cells 1 are accommodated linearly in the three accommodating spaces of the common heat transfer exterior plate 4 in a plane. Since the devices are arranged so that the common heat transfer exterior plate 4 faces, the positive electrode cell terminal 10 of one stacked power storage device is adjacent to the negative electrode cell terminal 9 of the other stacked power storage device. Easy connection.

また、共通伝熱外装板4の向きが全て同じ方向に向いているので、共通伝熱外装板4に面圧をかけた場合、面圧を均一にかけることができる。特に、充電時に大きく膨張する電極を用いている場合には、共通伝熱外装板4を挟持しているだけでは不十分であり、電力貯蔵セルを副面と主要面との間で面圧をかける必要があるので、共通伝熱外装板4の向きを揃えることが有用である。   Moreover, since the direction of the common heat transfer exterior plate 4 is all in the same direction, when the surface pressure is applied to the common heat transfer exterior plate 4, the surface pressure can be applied uniformly. In particular, when an electrode that expands greatly during charging is used, it is not sufficient to sandwich the common heat transfer exterior plate 4, and the surface pressure of the power storage cell is reduced between the sub surface and the main surface. Therefore, it is useful to align the direction of the common heat transfer outer plate 4.

実施の形態5.
図12は、この発明に係る実施の形態5による積層型電力貯蔵デバイスの共通伝熱外装板のブランクの平面図である。
ブランクには、折り曲げ溝により区画された、共通伝熱外装板正面部6、共通伝熱外装板側部7、共通伝熱外装板背面部5、共通伝熱外装板上面部8、共通伝熱外装板底面部16、共通伝熱外装板側面部17および共通伝熱外装板底側面部18がある。
Embodiment 5. FIG.
FIG. 12 is a plan view of a blank for a common heat-transfer exterior plate of a stacked power storage device according to Embodiment 5 of the present invention.
The blank includes a common heat-transfer exterior plate front portion 6, a common heat-transfer exterior plate side portion 7, a common heat-transfer exterior plate rear surface portion 5, a common heat-transfer exterior plate upper-surface portion 8, and a common heat-transfer partition, which are partitioned by bending grooves. There are an exterior plate bottom surface portion 16, a common heat transfer exterior plate side surface portion 17, and a common heat transfer exterior plate bottom side surface portion 18.

6つの共通伝熱外装板背面部5は、直線状に並べられ、3つずつの2つのグループに分けられる。そして、各グループの3つの共通伝熱外装板背面部5は、対向する2辺に共通伝熱外装板側部7が連なっている。
6つの共通伝熱外装板正面部6は、共通伝熱外装板背面部5と共通伝熱外装板底面部16を介在して連なっている。また、6つの共通伝熱外装板正面部6は、共通伝熱外装板底面部16に連なる辺と対向する辺に共通伝熱外装板上面部8が連なっている。また、6つの共通伝熱外装板正面部6は、残りの2辺に共通伝熱外装板側面部17が連なっている。
共通伝熱外装板側面部17は、共通伝熱外装板正面部6と共通伝熱外装板底面部16が連なる折り曲げ溝の端の連なる辺に共通伝熱外装板底側面部18が連なっている。
The six common heat transfer exterior plate back surface portions 5 are arranged in a straight line and divided into two groups of three. And as for the three common heat-transfer exterior board back surface parts 5 of each group, the common heat-transfer exterior board side part 7 continues in two opposite sides.
The six common heat transfer exterior plate front surface portions 6 are connected via the common heat transfer exterior plate back surface portion 5 and the common heat transfer exterior plate bottom surface portion 16. In addition, the front surface portion 6 of the six common heat transfer exterior plates has the common heat transfer exterior plate upper surface portion 8 connected to the side facing the side continuous to the common heat transfer exterior plate bottom surface portion 16. Moreover, the common heat-transfer exterior board side surface part 17 is continued to the remaining 2 sides of the six common heat-transfer exterior board front face parts 6.
In the common heat transfer exterior plate side surface portion 17, the common heat transfer exterior plate bottom side surface portion 18 is connected to the side where the ends of the bent grooves where the common heat transfer exterior plate front surface portion 6 and the common heat transfer exterior plate bottom surface portion 16 are continuous are connected. .

図13は、この発明に係る実施の形態5によるブランクの折り曲げを説明するための平面図である。
以下のブランクの折り曲げの説明において、該当する区画を紙面に対して手前側に折り曲げることを手前折り、紙面に対して奥行き側に折り曲げることを向こう折りと称する。
折り曲げ溝a1、a2、a5、a6、a7、a8、a11、a12に沿って共通伝熱外装板底側面部18を手前折りする。また、折り曲げ溝a3、a4、a9、a10に沿って共通伝熱外装板底側面部18を向こう折りする。
次に、各グループの両側の共通伝熱外装板正面部6の外周の折り曲げ溝に沿って共通伝熱外装板正面部6、共通伝熱外装板上面部8、共通伝熱外装板側面部17を手前折りする。また、各グループの中央の共通伝熱外装板正面部6の外周の折り曲げ溝に沿って共通伝熱外装板正面部6、共通伝熱外装板上面部8、共通伝熱外装板側面部17を向こう折りする。
次に、折り曲げ溝b1、b3、b4、b6に沿って共通伝熱外装板底面部16を手前折りする。また、折り曲げ溝b2、b5に沿って共通伝熱外装板底面部16を向こう折りする。
次に、折り曲げ溝c1、c2、c5、c6、c7、c8、c11、c12に沿って共通伝熱外装板側部7を手前折りする。また、折り曲げ溝c3、c4、c9、c10に沿って共通伝熱外装板側部7を向こう折りする。
最後に、折り曲げ溝d1に沿って共通伝熱外装板側部7を手前折りする。
このようにブランクに折り曲げ加工を施すことにより、電力貯蔵セル1を収納する収容空間が形成される。そして、共通伝熱外装板4の立体構造は金属製の箱のように単純な構造であるので、折り曲げ加工を機械化することは容易である。
FIG. 13 is a plan view for explaining the bending of the blank according to the fifth embodiment of the present invention.
In the following description of folding the blank, folding the corresponding section to the front side with respect to the paper surface is referred to as front folding, and folding to the depth side with respect to the paper surface is referred to as over-folding.
The common heat transfer exterior plate bottom side surface portion 18 is folded forward along the folding grooves a1, a2, a5, a6, a7, a8, a11, and a12. Further, the common heat transfer exterior plate bottom side surface portion 18 is folded away along the folding grooves a3, a4, a9, and a10.
Next, the common heat transfer exterior plate front portion 6, the common heat transfer exterior plate upper surface portion 8, and the common heat transfer exterior plate side surface portion 17 along the bending groove on the outer periphery of the common heat transfer exterior plate front portion 6 on both sides of each group. Fold it forward. In addition, the common heat transfer exterior plate front portion 6, the common heat transfer exterior plate upper surface portion 8, and the common heat transfer exterior plate side surface portion 17 are arranged along the outer peripheral bending groove of the common heat transfer exterior plate front portion 6 of each group. Fold it over.
Next, the common heat transfer exterior plate bottom surface portion 16 is folded forward along the bending grooves b1, b3, b4, and b6. Further, the common heat transfer exterior plate bottom surface portion 16 is folded away along the folding grooves b2 and b5.
Next, the common heat transfer exterior plate side portion 7 is folded forward along the folding grooves c1, c2, c5, c6, c7, c8, c11, and c12. Further, the common heat transfer exterior plate side portion 7 is folded away along the folding grooves c3, c4, c9, and c10.
Finally, the common heat transfer exterior plate side portion 7 is folded forward along the folding groove d1.
Thus, the storage space which accommodates the power storage cell 1 is formed by bending the blank. And since the three-dimensional structure of the common heat-transfer exterior board 4 is a simple structure like a metal box, it is easy to mechanize a bending process.

図14は、この発明に係る実施の形態5による積層型電力貯蔵デバイスの上面図である。図15は、この発明に係る実施の形態5による積層型電力貯蔵デバイスの模式図である。
上述のようにしてブランクを折り曲げ加工を施して6つの収容空間を有する共通伝熱外装板4に電力貯蔵セル1を電力貯蔵セル1Rと電力貯蔵セル1Lの順に収容すると、3番目の電力貯蔵セル1Rの負極セル端子9と正極セル端子10とが近づくので、その負極セル端子9と正極セル端子を折り曲げてスポット溶接すれば6つの電力貯蔵セル1が直列に接続された6セルモジュールを構成できる。
FIG. 14 is a top view of the stacked power storage device according to the fifth embodiment of the present invention. FIG. 15 is a schematic diagram of a stacked power storage device according to Embodiment 5 of the present invention.
When the power storage cell 1 is accommodated in the order of the power storage cell 1R and the power storage cell 1L in the common heat transfer exterior plate 4 having the six accommodation spaces by bending the blank as described above, the third power storage cell Since the 1R negative cell terminal 9 and the positive cell terminal 10 are close to each other, if the negative cell terminal 9 and the positive cell terminal are bent and spot-welded, a 6-cell module in which six power storage cells 1 are connected in series can be configured. .

このように共通伝熱外装板4に共通伝熱外装板側部7を1つ追加することにより、3つずつで並列に並べられた6つの電力貯蔵セル1を1つの共通伝熱外装板4に収容することができる。   Thus, by adding one common heat transfer exterior plate side part 7 to the common heat transfer exterior plate 4, the six power storage cells 1 arranged in parallel by three are connected to one common heat transfer exterior plate 4. Can be accommodated.

実施の形態6.
図16は、この発明に係る実施の形態6による積層型電力貯蔵デバイスの共通伝熱外装板のブランクの平面図である。
ブランクには、折り曲げ溝により区画された、共通伝熱外装板正面部6、共通伝熱外装板側部7、共通伝熱外装板背面部5、共通伝熱外装板上面部8、共通伝熱外装板底面部16、共通伝熱外装板側面部17、共通伝熱外装板底側面部18および共通伝熱外装板隔壁部19がある。
Embodiment 6 FIG.
FIG. 16: is a top view of the blank of the common heat-transfer exterior board of the laminated | stacked power storage device by Embodiment 6 which concerns on this invention.
The blank includes a common heat-transfer exterior plate front portion 6, a common heat-transfer exterior plate side portion 7, a common heat-transfer exterior plate rear surface portion 5, a common heat-transfer exterior plate upper-surface portion 8, and a common heat-transfer partition, which are partitioned by bending grooves. There are an exterior plate bottom surface portion 16, a common heat transfer exterior plate side surface portion 17, a common heat transfer exterior plate bottom side surface portion 18, and a common heat transfer exterior plate partition wall portion 19.

3つの共通伝熱外装板背面部5は、直線状に並べられ、各共通伝熱外装板背面部5は、並べられた方向に直交する2辺に共通伝熱外装板側部7が連なっている。また、共通伝熱外装板背面部5に挟まれる共通伝熱外装板側部7は、共通伝熱外装板隔壁部19が連なっている。
3つの共通伝熱外装板正面部6は、共通伝熱外装板背面部5と共通伝熱外装板底面部16を介在して連なっている。また、3つの共通伝熱外装板正面部6は、共通伝熱外装板底面部16に連なる辺と対向する辺に共通伝熱外装板上面部8が連なっている。また、3つの共通伝熱外装板正面部6は、残りの2辺に共通伝熱外装板側面部17が連なっている。
共通伝熱外装板側面部17は、共通伝熱外装板正面部6と共通伝熱外装板底面部16が連なる折り曲げ溝の端の連なる辺に共通伝熱外装板底側面部18が連なっている。
The three common heat transfer exterior plate back portions 5 are arranged in a straight line, and each common heat transfer exterior plate back portion 5 is formed by connecting the common heat transfer exterior plate side portions 7 to two sides orthogonal to the arranged direction. Yes. Further, the common heat transfer exterior plate side portion 7 sandwiched between the common heat transfer exterior plate back portions 5 is connected to the common heat transfer exterior plate partition wall portion 19.
The three common heat transfer exterior plate front portions 6 are connected with the common heat transfer exterior plate back surface portion 5 and the common heat transfer exterior plate bottom surface portion 16 interposed therebetween. The three common heat transfer exterior plate front surface portions 6 are connected to the common heat transfer exterior plate upper surface portion 8 on the side facing the side continuous with the common heat transfer exterior plate bottom surface portion 16. Moreover, the common heat-transfer exterior board side surface part 17 is connecting the three common heat-transfer exterior board front-surface parts 6 with the remaining 2 sides.
In the common heat transfer exterior plate side surface portion 17, the common heat transfer exterior plate bottom side surface portion 18 is connected to the side where the ends of the bent grooves where the common heat transfer exterior plate front surface portion 6 and the common heat transfer exterior plate bottom surface portion 16 are continuous are connected. .

図17は、この発明に係る実施の形態6によるブランクの折り曲げを説明するための平面図である。
以下のブランクの折り曲げの説明において、該当する区画を紙面に対して手前側に折り曲げることを手前折り、紙面に対して奥行き側に折り曲げることを向こう折りと称する。
折り曲げ溝a1、a2、a3、a4、a5、a6に沿って共通伝熱外装板底側面部18を手前折りする。
次に、各共通伝熱外装板正面部6の外周の折り曲げ溝に沿って共通伝熱外装板正面部6、共通伝熱外装板上面部8、共通伝熱外装板側面部17を手前折りする。
次に、折り曲げ溝b1、b2、b3に沿って共通伝熱外装板底面部16を手前折りする。
次に、折り曲げ溝c1、c2、c3、c4、c5、c6に沿って共通伝熱外装板側部7を手前折りする。
最後に、折り曲げ溝d1、d2、d3、d4に沿って共通伝熱外装板隔壁部19を向こう折りする。
このようにブランクに折り曲げ加工を施すことにより、電力貯蔵セル1を収納する収容空間が形成される。そして、共通伝熱外装板4の立体構造は金属製の箱のように単純な構造であるので、折り曲げ加工を機械化することは容易である。
FIG. 17 is a plan view for explaining the bending of the blank according to the sixth embodiment of the present invention.
In the following description of folding the blank, folding the corresponding section to the front side with respect to the paper surface is referred to as front folding, and folding to the depth side with respect to the paper surface is referred to as over-folding.
The common heat-transfer exterior plate bottom side surface portion 18 is folded forward along the folding grooves a1, a2, a3, a4, a5, and a6.
Next, the common heat transfer exterior plate front portion 6, the common heat transfer exterior plate upper surface portion 8, and the common heat transfer exterior plate side surface portion 17 are folded forward along the outer circumferential bending groove of each common heat transfer exterior plate front portion 6. .
Next, the common heat transfer exterior plate bottom surface portion 16 is folded forward along the bending grooves b1, b2, and b3.
Next, the common heat transfer exterior plate side portion 7 is folded forward along the folding grooves c1, c2, c3, c4, c5, and c6.
Finally, the common heat transfer exterior plate partition wall 19 is folded away along the folding grooves d1, d2, d3, and d4.
Thus, the storage space which accommodates the power storage cell 1 is formed by bending the blank. And since the three-dimensional structure of the common heat-transfer exterior board 4 is a simple structure like a metal box, it is easy to mechanize a bending process.

図18は、この発明に係る実施の形態6による積層型電力貯蔵デバイスの上面図と平面図である。
電力貯蔵セル1を収容空間に挿入するとき、副面が共通伝熱外装板背面部5に、主要面が共通伝熱外装板正面部6に面するようにして挿入する。なお、実施の形態6による共通伝熱外装板4は、共通伝熱外装板背面部5と共通伝熱外装板正面部6とがそれぞれ横に並んでいるので、電力貯蔵セル1Lだけを用いている。
このように1種類の電力貯蔵セルだけで構成できるので、構成を簡素化できる。
また、隣接する電力貯蔵セル間の距離が長くなるので、コンパクト性には欠けるが、熱伝導をより少なくできる。
FIG. 18 is a top view and a plan view of a stacked power storage device according to the sixth embodiment of the present invention.
When the power storage cell 1 is inserted into the accommodation space, the auxiliary surface is inserted into the common heat transfer exterior plate back surface portion 5 and the main surface is inserted into the common heat transfer exterior plate front surface portion 6. In addition, since the common heat-transfer exterior plate back part 5 and the common heat-transfer exterior plate front part 6 are arranged side by side, the common heat-transfer exterior plate 4 according to Embodiment 6 uses only the power storage cell 1L. Yes.
Thus, since it can comprise only one kind of electric power storage cell, composition can be simplified.
Moreover, since the distance between the adjacent power storage cells becomes long, the compactness is lacking, but the heat conduction can be reduced.

実施の形態7.
図19は、この発明に係る実施の形態7による積層型電力貯蔵デバイスの上面図である。図20は、この発明に係る実施の形態7による積層型電力貯蔵デバイスの模式図である。
この発明に係る実施の形態7による積層型電力貯蔵デバイスは、実施の形態6による積層型電力貯蔵デバイスを2個連結して、6セルモジュールを構成したものであり、負極電流端子12と正極電流端子13が隣接されて配置されるので、外部電流端子の接続が容易になる。
Embodiment 7 FIG.
FIG. 19 is a top view of the stacked power storage device according to the seventh embodiment of the present invention. FIG. 20 is a schematic diagram of a stacked power storage device according to the seventh embodiment of the present invention.
The stacked power storage device according to the seventh embodiment of the present invention is configured by connecting two stacked power storage devices according to the sixth embodiment to form a 6-cell module. The negative current terminal 12 and the positive current Since the terminals 13 are arranged adjacent to each other, it is easy to connect the external current terminals.

なお、上述の実施の形態1乃至7では、電力貯蔵セル1は、共通伝熱外装板4の6つの面に対峙しているが、共通伝熱外装板上面部8を省略して5つの面に対峙しても良く、電力貯蔵セル1の上面に電気絶縁プレート11を固定することができる。   In the first to seventh embodiments described above, the power storage cell 1 faces the six surfaces of the common heat transfer exterior plate 4, but omits the common heat transfer exterior plate upper surface portion 8 and has five surfaces. The electrical insulating plate 11 can be fixed to the upper surface of the power storage cell 1.

また、上述の実施の形態1乃至7では、1枚の金属板を打つ抜きブランクを用意したが、一部溶接されていたり、部分的に切り離されていたりしていても良く、実質的に1枚の構成になっていれば、電力貯蔵セル1の発熱を受け取って外部へ伝熱し、電力貯蔵セル1を外力から保護することができるので、同様の効果が出られる。   In the first to seventh embodiments described above, a blank for punching one metal plate is prepared. However, it may be partially welded or partially cut off. If it is the structure of a sheet | seat, since the heat_generation | fever of the electric power storage cell 1 is received and heat-transferred outside and the electric power storage cell 1 can be protected from external force, the same effect will come out.

また、上述の実施の形態2乃至4では、複数個の積層型電力貯蔵デバイスを電気的に直列に接続した場合を示したが、並列であってもよい。   Further, in the above-described Embodiments 2 to 4, the case where a plurality of stacked power storage devices are electrically connected in series has been described, but they may be parallel.

この発明に係る実施の形態1による電力貯蔵セルの正面図である。It is a front view of the electric power storage cell by Embodiment 1 which concerns on this invention. この発明の実施の形態1に係る積層型電力貯蔵デバイスの上面図と平面図である。1 is a top view and a plan view of a stacked power storage device according to a first embodiment of the present invention. この発明に係る実施の形態1による共通伝熱外装板のブランクの平面図である。It is a top view of the blank of the common heat-transfer exterior board by Embodiment 1 which concerns on this invention. この発明に係る実施の形態1によるブランクの折り曲げる方向を説明するための平面図である。It is a top view for demonstrating the direction which bends the blank by Embodiment 1 which concerns on this invention. ブランクを折り曲げ加工を施して立体的に加工された共通伝熱外装板の上面図と平面図である。It is the upper side figure and top view of a common heat-transfer exterior board which gave the blank process and processed three-dimensionally. この発明に係る実施の形態1による共通伝熱外装板に形成された収容空間に電力貯蔵セルを挿入する様子を示す上面図と平面図である。It is the top view and top view which show a mode that an electric power storage cell is inserted in the accommodation space formed in the common heat-transfer exterior board by Embodiment 1 which concerns on this invention. この発明に係る実施の形態1による積層型電力貯蔵デバイスの電流端子の接続を示す上面図と平面図である。It is the top view and top view which show the connection of the current terminal of the laminated | stacked power storage device by Embodiment 1 which concerns on this invention. この発明に係る実施の形態2による積層型電力貯蔵デバイスの上面図である。It is a top view of the laminated | stacked power storage device by Embodiment 2 which concerns on this invention. この発明に係る実施の形態2による積層型電力貯蔵デバイスの模式図である。It is a schematic diagram of the laminated power storage device according to the second embodiment of the present invention. この発明に係る実施の形態3による積層型電力貯蔵デバイスの模式図である。It is a schematic diagram of the laminated power storage device according to Embodiment 3 according to the present invention. この発明に係る実施の形態4による積層型電力貯蔵デバイスの模式図である。It is a schematic diagram of the stacked power storage device according to the fourth embodiment of the present invention. この発明に係る実施の形態5による共通伝熱外装板のブランクの平面図である。It is a top view of the blank of the common heat-transfer exterior board by Embodiment 5 which concerns on this invention. この発明に係る実施の形態5によるブランクの折り曲げを説明するための平面図である。It is a top view for demonstrating bending of the blank by Embodiment 5 which concerns on this invention. この発明に係る実施の形態5による積層型電力貯蔵デバイスの上面図である。It is a top view of the laminated power storage device according to the fifth embodiment of the present invention. この発明に係る実施の形態5による積層型電力貯蔵デバイスの模式図である。It is a schematic diagram of the laminated power storage device according to the fifth embodiment of the present invention. この発明に係る実施の形態6による共通伝熱外装板のブランクの平面図である。It is a top view of the blank of the common heat-transfer exterior board by Embodiment 6 which concerns on this invention. この発明に係る実施の形態6によるブランクの折り曲げを説明するための平面図である。It is a top view for demonstrating bending of the blank by Embodiment 6 which concerns on this invention. この発明に係る実施の形態6による積層型電力貯蔵デバイスの上面図と平面図である。It is the top view and top view of a lamination type electric power storage device by Embodiment 6 concerning this invention. この発明に係る実施の形態7による積層型電力貯蔵デバイスの上面図である。It is a top view of the laminated power storage device according to the seventh embodiment of the present invention. この発明に係る実施の形態7による積層型電力貯蔵デバイスの模式図である。It is a schematic diagram of the laminated power storage device according to the seventh embodiment of the present invention.

符号の説明Explanation of symbols

1、1L、1R 電力貯蔵セル、4 共通伝熱外装板、5 共通伝熱外装板背面部、6 共通伝熱外装板正面部、7 共通伝熱外装板側部、8 共通伝熱外装板上面部、9 負極セル端子、10 正極セル端子、11 電気絶縁プレート、12 負極電流端子、13 正極電流端子、14 ガス放出弁、15 保護回路、16 共通伝熱外装板底面部、17 共通伝熱外装板側面部、18 共通伝熱外装板底側面部、19 共通伝熱外装板隔壁部。   1, 1L, 1R Power storage cell, 4 Common heat transfer exterior plate, 5 Common heat transfer exterior plate back, 6 Common heat transfer exterior plate front, 7 Common heat transfer exterior plate side, 8 Common heat transfer exterior plate top 9, negative electrode cell terminal, 10 positive cell terminal, 11 electrical insulating plate, 12 negative current terminal, 13 positive current terminal, 14 gas release valve, 15 protection circuit, 16 common heat transfer exterior plate bottom, 17 common heat transfer exterior Plate side surface part, 18 Common heat transfer exterior plate bottom side surface part, 19 Common heat transfer exterior plate partition part.

Claims (6)

金属ラミネート容器に収納された形状が直方体であるとともに一つの面に正極セル端子および負極セル端子とを有し、且つ平面内に直線状に並べられ電気的に直列に接続された複数の電力貯蔵セルを備える積層型電力貯蔵デバイスにおいて、
複数の折り曲げ部を有する1枚のブランクを上記折り曲げ部に沿って折り曲げることにより上記電力貯蔵セルを収容する枡状の収容空間が形成された共通伝熱外装板を備えることを特徴とする積層型電力貯蔵デバイス。
A plurality of power storages in which the shape housed in the metal laminate container is a rectangular parallelepiped, has a positive electrode cell terminal and a negative electrode cell terminal on one surface, and is arranged linearly in a plane and electrically connected in series In a stacked power storage device comprising a cell,
A laminated type comprising a common heat transfer exterior plate in which a blank containing space for accommodating the power storage cell is formed by bending a blank having a plurality of bent portions along the bent portion. Power storage device.
上記電力貯蔵セルは、上記正極セル端子と上記負極セル端子とが引き出される上面と上記上面と対向する底面とを有し、
上記共通伝熱外装板は、上記底面が対面する底面部と、上記正極セル端子および上記負極セル端子に電気的に接触しないとともに上記上面の一部に接して上記電力貯蔵セルを固定する上面部と、を有することを特徴とする請求項1に記載の積層型電力貯蔵デバイス。
The power storage cell has a top surface from which the positive cell terminal and the negative cell terminal are drawn, and a bottom surface facing the top surface,
The common heat transfer exterior plate includes a bottom surface portion that faces the bottom surface, and an upper surface portion that is not in electrical contact with the positive electrode cell terminal and the negative electrode cell terminal and that is in contact with a part of the upper surface and fixes the power storage cell. The stacked power storage device according to claim 1, further comprising:
上記電力貯蔵セルは、上記底面に直交し互いに対向する主要面および副面を有し、
上記共通伝熱外装板は、上記収容空間に収容された上記電力貯蔵セルの副面に対峙するとともに側面部を介在して1方向に並んだ背面部と、上記背面部の並びと並行して並ぶとともに上記背面部に上記底面部を介在して連なる正面部と、を有し、
上記電力貯蔵セルの主要面が交互に上記正面部の甲面と乙面とに対峙するように上記電力貯蔵セルが上記収容空間に収容されることを特徴とする請求項2に記載の積層型電力貯蔵デバイス。
The power storage cell has a main surface and a sub surface orthogonal to the bottom surface and facing each other,
The common heat transfer exterior plate faces the sub-surface of the power storage cell accommodated in the accommodation space and is arranged in one direction with a side portion interposed therebetween, and in parallel with the arrangement of the back surface portion. And having a front portion connected to the back portion with the bottom portion interposed therebetween,
3. The stacked type according to claim 2, wherein the power storage cell is accommodated in the accommodation space such that a main surface of the power storage cell alternately faces the upper surface and the second surface of the front portion. Power storage device.
上記主要面が甲面に対峙した電力貯蔵セルの上記正極セル端子と上記負極セル端子との位置関係が、上記主要面が乙面に対峙した電力貯蔵セルの上記正極セル端子と上記負極セル端子との位置関係と線対称の関係にあることを特徴とする請求項3に記載の積層型電力貯蔵デバイス。   The positional relationship between the positive cell terminal and the negative cell terminal of the power storage cell with the main surface facing the upper surface is the positive cell terminal and the negative cell terminal of the power storage cell with the main surface facing the front surface. The stacked power storage device according to claim 3, wherein the stacked power storage device is in a line-symmetric relationship with the positional relationship between 上記上面に面するとともに上記正極セル端子または上記負極セル端子が貫通する貫通孔を有する電気絶縁ボードを備え、
上記正極セル端子および負極セル端子は、折り曲げられ、隣接する上記電力貯蔵セルの上記正極セル端子または上記負極セル端子に接続されることを特徴とする請求項2乃至4のいずれか一項に記載の積層型電力貯蔵デバイス。
An electrical insulating board having a through hole facing the upper surface and through which the positive cell terminal or the negative cell terminal passes,
5. The positive electrode cell terminal and the negative electrode cell terminal are bent and connected to the positive electrode cell terminal or the negative electrode cell terminal of the adjacent power storage cell. 6. Stacked power storage device.
請求項1乃至5のいずれか一項に記載の複数の積層型電力貯蔵デバイスを、熱伝熱外装板の正面部または背面部が隣接する熱伝熱外装板の正面部または背面部に対峙するように配列するとともに電気的に直列または並列に接続することを特徴とする積層型電力貯蔵デバイス。   The plurality of stacked power storage devices according to any one of claims 1 to 5 are confronted with a front portion or a back portion of a heat-transfer exterior plate adjacent to a front portion or a back portion of the heat-transfer exterior plate. And an electrical connection in series or in parallel.
JP2007108223A 2007-04-17 2007-04-17 Device for storing laminated electrical power Pending JP2008270350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108223A JP2008270350A (en) 2007-04-17 2007-04-17 Device for storing laminated electrical power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108223A JP2008270350A (en) 2007-04-17 2007-04-17 Device for storing laminated electrical power

Publications (1)

Publication Number Publication Date
JP2008270350A true JP2008270350A (en) 2008-11-06

Family

ID=40049500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108223A Pending JP2008270350A (en) 2007-04-17 2007-04-17 Device for storing laminated electrical power

Country Status (1)

Country Link
JP (1) JP2008270350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108613A (en) * 2009-11-18 2011-06-02 Samsung Sdi Co Ltd Connecting tab for connecting battery cells, and battery module using the same
WO2011093639A3 (en) * 2010-02-01 2011-11-10 주식회사 엘지화학 Battery cell binding body having a novel structure and a battery pack comprising the same
WO2011149224A3 (en) * 2010-05-28 2012-01-12 주식회사 엘지화학 Battery pack having compact structure
WO2011149223A3 (en) * 2010-05-28 2012-01-12 주식회사 엘지화학 Battery pack having novel structure
FR2977971A1 (en) * 2011-07-13 2013-01-18 Hutchinson SUPERCONDENSER CELL AND SUPERCAPACITIVE MODULE INCORPORATING A PLURALITY OF THESE CELLS.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108613A (en) * 2009-11-18 2011-06-02 Samsung Sdi Co Ltd Connecting tab for connecting battery cells, and battery module using the same
US9088038B2 (en) 2009-11-18 2015-07-21 Samsung Sdi Co., Ltd. Connection tab for connecting battery cells and battery module using the same
WO2011093639A3 (en) * 2010-02-01 2011-11-10 주식회사 엘지화학 Battery cell binding body having a novel structure and a battery pack comprising the same
US9917294B2 (en) 2010-02-01 2018-03-13 Lg Chem, Ltd. Battery cell assembly of novel structure and battery pack employed with the same
WO2011149224A3 (en) * 2010-05-28 2012-01-12 주식회사 엘지화학 Battery pack having compact structure
WO2011149223A3 (en) * 2010-05-28 2012-01-12 주식회사 엘지화학 Battery pack having novel structure
CN102918681A (en) * 2010-05-28 2013-02-06 株式会社Lg化学 Battery pack having novel structure
US9331313B2 (en) 2010-05-28 2016-05-03 Lg Chem, Ltd. Battery pack of compact structure
US9520620B2 (en) 2010-05-28 2016-12-13 Lg Chem, Ltd. Battery pack of novel structure
FR2977971A1 (en) * 2011-07-13 2013-01-18 Hutchinson SUPERCONDENSER CELL AND SUPERCAPACITIVE MODULE INCORPORATING A PLURALITY OF THESE CELLS.
EP2557579A1 (en) * 2011-07-13 2013-02-13 Hutchinson Supercapacitor cell and supercapacitor module including a plurality of these cells.
US8879239B2 (en) 2011-07-13 2014-11-04 Hutchinson Supercapacitor cell and supercapacitive module incorporating a plurality of these cells

Similar Documents

Publication Publication Date Title
JP6780018B2 (en) Cooling array for energy storage
US8455122B2 (en) Voltage sensing assembly for battery module and battery module employed with the same
JP5889418B2 (en) Battery module assembly with improved reliability and medium-to-large battery pack including the same
US10804578B2 (en) Battery module, battery pack and vehicle having same
CN107369863B (en) Subassembly and battery pack having the same
KR101560217B1 (en) Battery Module of Improved Cooling Efficiency
US10916795B2 (en) Battery module assembly and manufacturing method therefor
CN108140771B (en) Terminal arrangement for an energy storage device
KR101761825B1 (en) Battery module, and battery pack including the same
JP2018531491A6 (en) Terminal device for energy storage device
KR20180085129A (en) Battery Cell Comprising Electrode Lead Facing Outer Surface of Electrode Assembly
KR20170022741A (en) Battery module
KR20220114483A (en) Battery pack
JP2006338934A (en) Package structure of storage capacitor cell
CN115066795A (en) Battery pack and apparatus including the same
JP2010186715A (en) Heat radiation structure of battery pack, and battery pack
JP7258410B2 (en) Battery module and battery pack containing same
JP2008270350A (en) Device for storing laminated electrical power
WO2016067487A1 (en) Power supply device
WO2018062226A1 (en) Battery module, and battery pack
KR20230082218A (en) Secondary battery module
EP3540820B1 (en) Battery pack
CN113711421B (en) Battery module and battery pack including the same
JP2024537972A (en) Battery module with cooling function and battery pack including same
KR20240030990A (en) Battery pack and vehicle including same