JP2008240077A - Ald apparatus and film deposition method using the same - Google Patents

Ald apparatus and film deposition method using the same Download PDF

Info

Publication number
JP2008240077A
JP2008240077A JP2007083299A JP2007083299A JP2008240077A JP 2008240077 A JP2008240077 A JP 2008240077A JP 2007083299 A JP2007083299 A JP 2007083299A JP 2007083299 A JP2007083299 A JP 2007083299A JP 2008240077 A JP2008240077 A JP 2008240077A
Authority
JP
Japan
Prior art keywords
substrate
chamber
reactive gas
film
ald
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007083299A
Other languages
Japanese (ja)
Inventor
Osamu Okada
修 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2007083299A priority Critical patent/JP2008240077A/en
Publication of JP2008240077A publication Critical patent/JP2008240077A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus capable of efficiently depositing a film without necessitating frequent maintenance of a film deposition chamber, in vacuum film deposition by an ALD (atomic layer deposition) method. <P>SOLUTION: The vacuum film deposition is performed by the ALD method which comprises repeating a process for adsorbing a gaseous raw material onto a substrate 4 and a process for reacting a reactive gas with the raw material adsorbed on the substrate 4 while alternately inserting the substrate 4 into a raw material gas adsorption chamber 1 and a reactive gas irradiation chamber 2, wherein the raw material gas adsorption chamber 1 and the reactive gas irradiation chamber 2 are installed to put a substrate exchange chamber 3 between them. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ALD(原子層堆積;Atomic Layer Dposition)法により真空成膜を行うALD装置と、該装置を用いた成膜方法に関する。   The present invention relates to an ALD apparatus that performs vacuum film formation by an ALD (Atomic Layer Deposition) method, and a film formation method using the apparatus.

CVD(化学気相成長;Chemical Vapour Deposition)法による真空成膜の一形態として、ALD(原子層堆積;Atomic Layer Dposition)法が知られている。ALD法は、原料ガスと反応性ガスを交互に基板に供給して成膜を行う方法である。例えば、ALD法によりTiN膜を成膜する場合、原料ガスとしてTiCl4ガスを、反応性ガスとしてNH3ガスを用い、さらにパージ用Arガスを用いる。先ず、適当な温度の基板にTiCl4ガスを照射して吸着させ、次いで、Arガスを導入してパージを行い、NH3ガスに切り替えて基板に吸着したTiCl4分子と反応させ、再びArガスでパージを行う工程を、複数回繰り返して成膜する。この時、Clなどの膜の残留不純物を低減するため、或いは、膜特性の向上のため、NH3プラズマを照射する、或いは、NH3から生成されるラジカルを照射する方法も知られている。また、水素プラズマや水素ラジカルを用いると、TiやTa、Cuなどの金属膜の成膜も可能であることが知られている。 An ALD (Atomic Layer Deposition) method is known as one form of vacuum film formation by a CVD (Chemical Vapor Deposition) method. The ALD method is a method of forming a film by alternately supplying a source gas and a reactive gas to a substrate. For example, when forming a TiN film by the ALD method, TiCl 4 gas is used as a source gas, NH 3 gas is used as a reactive gas, and a purge Ar gas is used. First, TiCl 4 gas is irradiated and adsorbed on a substrate at an appropriate temperature, then purged by introducing Ar gas, switched to NH 3 gas, reacted with TiCl 4 molecules adsorbed on the substrate, and again Ar gas The process of purging is repeated for a plurality of times. At this time, a method of irradiating NH 3 plasma or irradiating radicals generated from NH 3 is also known in order to reduce residual impurities of the film such as Cl or improve film characteristics. It is also known that metal films such as Ti, Ta, and Cu can be formed using hydrogen plasma or hydrogen radicals.

特許文献1には、金属アルコラートを吸着させる工程と、基板に吸着させた金属アルコラートを酸化させる工程とを繰り返して低温で成膜するALD法が開示されている。   Patent Document 1 discloses an ALD method in which a film is formed at a low temperature by repeating a process of adsorbing a metal alcoholate and a process of oxidizing the metal alcoholate adsorbed on a substrate.

特開平1−179423号公報JP-A-1-179423

従来のALD装置においては、成膜室の壁面にも成膜されてしまうという問題があった。この成膜は、基板への成膜と同等程度の成膜速度を持ち、成膜工程を繰り返すことで堆積が進行し、堆積膜が厚くなってしまう。厚い堆積膜は膜剥がれを起こし、パーティクルを形成して基板上に成膜される膜に欠陥を形成するという問題を引き起こす。   The conventional ALD apparatus has a problem that a film is also formed on the wall surface of the film forming chamber. This film formation has a film formation speed comparable to the film formation on the substrate, and the deposition proceeds by repeating the film formation process, and the deposited film becomes thick. A thick deposited film peels off and causes a problem of forming particles and forming defects in the film formed on the substrate.

特に、反応性ガスとしてプラズマやラジカルを用いた場合には、反応性が高いため膜形成が広い範囲で強力に進行し、プラズマやラジカルの生成が不安定になるという問題があった。このような問題を抑制するべく、広い面積に高い密度のプラズマやラジカルを生成することや、プラズマによるダメージを制御することは困難であった。   In particular, when plasma or radical is used as the reactive gas, there is a problem that film formation proceeds strongly in a wide range because of high reactivity, and generation of plasma or radical becomes unstable. In order to suppress such problems, it has been difficult to generate high-density plasma and radicals over a large area, and to control damage caused by plasma.

従って、従来のALD装置においては、成膜室の壁面に堆積した膜を除去するためのメンテナンスが頻繁に必要であり、成膜効率の向上を阻む一因となっていた。   Therefore, in the conventional ALD apparatus, maintenance for removing the film deposited on the wall surface of the film forming chamber is frequently required, which is one factor that hinders the improvement of the film forming efficiency.

本発明の課題は、ALD法による真空成膜において、成膜室の頻繁なメンテナンスが不要で効率良く成膜しうる装置及び方法を提供することにある。   An object of the present invention is to provide an apparatus and a method capable of forming a film efficiently without requiring frequent maintenance of a film formation chamber in vacuum film formation by the ALD method.

本発明の第1は、基板上に薄膜を形成するALD装置であって、
少なくとも一種類の原料ガスを基板に吸着させる原料ガス吸着室と、
少なくとも一種類の反応性ガスを基板に照射する反応性ガス照射室と、
上記原料ガス吸着室と反応性ガス照射室との間で基板を入れ替える手段と、
を有することを特徴とする。
A first aspect of the present invention is an ALD apparatus for forming a thin film on a substrate,
A source gas adsorption chamber for adsorbing at least one type of source gas to the substrate;
A reactive gas irradiation chamber for irradiating the substrate with at least one kind of reactive gas;
Means for replacing the substrate between the source gas adsorption chamber and the reactive gas irradiation chamber;
It is characterized by having.

本発明のALD装置においては、上記反応性ガス照射室がリモートプラズマにおいて用いられるラジカル源を備えている、或いは、CAT−CVD法において用いられるワイヤを備えていることが好ましい。   In the ALD apparatus of the present invention, it is preferable that the reactive gas irradiation chamber has a radical source used in remote plasma or a wire used in a CAT-CVD method.

本発明の第2は、上記本発明の第1のALD装置を用い、原料ガス吸着室と反応性ガス照射室とに1枚の基板を交互に入れ、原料ガス吸着室において少なくとも一種類の原料ガスを基板に吸着させる工程と、反応性ガス照射室において少なくとも一種類の反応性ガスを基板に照射する工程とを交互に行うことを特徴とする成膜方法である。   A second aspect of the present invention uses the first ALD apparatus of the present invention described above, and alternately inserts a single substrate into the source gas adsorption chamber and the reactive gas irradiation chamber, and at least one kind of source material in the source gas adsorption chamber. A film forming method comprising alternately performing a step of adsorbing a gas on a substrate and a step of irradiating the substrate with at least one kind of reactive gas in a reactive gas irradiation chamber.

本発明の成膜方法においては、基板を最初に反応性ガス照射室に入れて行うことが好ましい。   In the film forming method of the present invention, it is preferable that the substrate is first placed in a reactive gas irradiation chamber.

本発明においては、必要な工程毎に成膜室を分けたことにより、原料ガス吸着室、反応性ガス照射室のいずれにおいても、室内の壁面に成膜されることがなく、従来のような成膜室のメンテナンスが不要になる。また、成膜室を分けたことにより、反応性の高いラジカルを有効に使うことが可能となる。   In the present invention, since the film forming chamber is divided for each necessary process, neither the source gas adsorption chamber nor the reactive gas irradiation chamber is formed on the wall surface of the room, Maintenance of the film formation chamber becomes unnecessary. Further, by separating the film formation chamber, it is possible to effectively use highly reactive radicals.

本発明は、従来の成膜室を二つに分け、一方を原料ガス吸着室、他方を反応性ガス照射室とし、基板をこれらの二室に交互に入れて原料ガスを基板に吸着させる工程と、基板に吸着させた原料に反応性ガスを反応させる工程とを繰り返すことに特徴を有する。   The present invention divides a conventional film formation chamber into two, one is a source gas adsorption chamber, the other is a reactive gas irradiation chamber, and a substrate is alternately placed in these two chambers to adsorb the source gas to the substrate And the step of reacting the reactive gas with the raw material adsorbed on the substrate.

本発明は、例えば、Siやガラスなどの基板上に、TiNなどの薄膜を真空成膜する際に用いられる。以下に、TiN膜を形成する場合を例に挙げて本発明を具体的に説明する。   The present invention is used, for example, when a thin film such as TiN is vacuum-deposited on a substrate such as Si or glass. Hereinafter, the present invention will be described in detail by taking the case of forming a TiN film as an example.

図1は、本発明のALD装置の好ましい一例の概略構成図であり、1は原料ガス吸着室、2は反応性ガス照射室、3は基板交換室、4は基板、5はゲートバルブ、1a,2aは基板ホルダー、2bはWホットワイヤである。   FIG. 1 is a schematic configuration diagram of a preferred example of an ALD apparatus according to the present invention, wherein 1 is a source gas adsorption chamber, 2 is a reactive gas irradiation chamber, 3 is a substrate exchange chamber, 4 is a substrate, 5 is a gate valve, 1a , 2a is a substrate holder, and 2b is a W hot wire.

原料ガス吸着室1には、原料ガスとしてテトラ(ジエチルアミノ)チタン(TDEAT)がArガスをキャリアガスとして導入される。基板4は基板ホルダー1a上に設置され、150から200℃の範囲の一定温度に制御される。   Tetra (diethylamino) titanium (TDEAT) is introduced into the source gas adsorption chamber 1 as source gas using Ar gas as a carrier gas. The substrate 4 is placed on the substrate holder 1a and controlled to a constant temperature in the range of 150 to 200 ° C.

反応性ガス照射室2には、反応性ガスとしてNH3ガスが供給される。本例では、反応をより劇的にするため、W(タングステン)ワイヤ2bを1800℃に加熱してNHxラジカルを形成し、基板4に照射する。基板温度は原料ガス吸着室1とほぼ同じ温度に制御される。 The reactive gas irradiation chamber 2 is supplied with NH 3 gas as a reactive gas. In this example, in order to make the reaction more dramatic, the W (tungsten) wire 2b is heated to 1800 ° C. to form NH x radicals, and the substrate 4 is irradiated. The substrate temperature is controlled to be substantially the same as that of the source gas adsorption chamber 1.

原料ガス吸着室1と反応性ガス照射室2とは基板交換室3を挟んで設置され、基板交換室3内に組み込まれた基板搬送ロボット(図示しない)によって、基板4が二つの部屋に交互に挿入される。   The source gas adsorption chamber 1 and the reactive gas irradiation chamber 2 are installed with the substrate exchange chamber 3 interposed therebetween, and the substrate 4 is alternately turned into two chambers by a substrate transfer robot (not shown) incorporated in the substrate exchange chamber 3. Inserted into.

原料ガス吸着室1、反応性ガス照射室2の圧力は、例えば10Pa程度が適している。基板交換室3の圧力は10-4Pa以下に保たれる。原料ガス吸着室1、反応性ガス照射室2はそれぞれの工程後、10-3Pa以下まで排気してからゲートバルブ5を開き、基板4の交換を行う。 The pressure in the source gas adsorption chamber 1 and the reactive gas irradiation chamber 2 is suitably about 10 Pa, for example. The pressure in the substrate exchange chamber 3 is maintained at 10 −4 Pa or less. After each step, the source gas adsorption chamber 1 and the reactive gas irradiation chamber 2 are evacuated to 10 −3 Pa or less, and then the gate valve 5 is opened to replace the substrate 4.

上記条件で、原料ガスの吸着時間は0.5secから2sec程度、反応ガスの照射時間は0.5secから3sec程度が適当である。基板の交換時間としては約10sec必要である。従って、1サイクルに要する時間は約20secである。1サイクルで1.5Å成膜できるとすると、50Åの成膜を行うためには660sec必要である。2室に各1枚ずつ、2枚の基板を平行して処理できるので、基板1枚当たり330secとなる。従って、50Å程度の薄膜であれば、1時間当たり約10枚のスループットである。Cu微細配線のバリア膜やゲート酸化膜などは必要膜厚が50Åとか10Åであるので、その用途には実用的な装置となる。スループットを向上させるには、室数を2倍、3倍とすることで対応できる。   Under the above conditions, it is appropriate that the adsorption time of the source gas is about 0.5 sec to 2 sec and the irradiation time of the reaction gas is about 0.5 sec to 3 sec. It takes about 10 seconds as a substrate replacement time. Therefore, the time required for one cycle is about 20 seconds. Assuming that a film thickness of 1.5 mm can be formed in one cycle, it takes 660 sec to form a film of 50 mm. Since two substrates can be processed in parallel in each of the two chambers, the time is 330 sec per substrate. Therefore, a thin film of about 50 mm has a throughput of about 10 sheets per hour. Since the required film thickness of the barrier film, gate oxide film, etc. of the Cu fine wiring is 50 mm or 10 mm, it becomes a practical device for the application. In order to improve the throughput, the number of rooms can be doubled or tripled.

基板交換室3は、図2に示すようにロードロック室6を設けることでALD専用装置とすることができる。或いは、図3に示すように、新たな基板交換室8を設けることによって、他のプロセスモジュール7と一緒にクラスタ装置を構成することも可能である。   The substrate exchange chamber 3 can be an ALD dedicated apparatus by providing a load lock chamber 6 as shown in FIG. Alternatively, as shown in FIG. 3, it is possible to configure a cluster apparatus together with other process modules 7 by providing a new substrate exchange chamber 8.

上記においては、TDEATとWホットワイヤを用いてNHxラジカルによりTiN膜を成膜する例を述べたが、本発明はこの材料系に限定されるものではなく、ALDが可能であれば他の材料系にも好ましく適用される。 In the above, an example in which a TiN film is formed by NH x radicals using TDEAT and a W hot wire has been described. However, the present invention is not limited to this material system. The present invention is also preferably applied to a material system.

また、反応性ガスとしては好ましくはプラズマやラジカルが用いられる。プラズマの形成には、従来から知られている平行平板型、ICP(Inductively Coupled Plasma)型、ECR(Electron Cyclotron Resonance)型などが用いられる。しかしながらイオン衝撃が大きい場合には、先に基板に吸着した分子が飛ばされてしまうので、好ましくない。望ましい形態は、いわゆるリモートプラズマである。より望ましくはRS(Radical Shower)−CVD法のラジカル源やCAT(Catalytic Chemical Vapor Deposition)−CVD法のホットワイヤによるラジカルである。これらのラジカルはプラズマを含まず、イオン衝撃が全く存在せず、ラジカル量も大きい。また、広い面積に均一にラジカルを供給できるため、本発明には最適である。   As the reactive gas, preferably plasma or radical is used. For forming plasma, conventionally known parallel plate type, ICP (Inductively Coupled Plasma) type, ECR (Electron Cyclotron Resonance) type, and the like are used. However, when the ion bombardment is large, the molecules previously adsorbed on the substrate are skipped, which is not preferable. A desirable form is so-called remote plasma. More preferably, it is a radical source by RS (Radial Shower) -CVD method or a radical by hot wire of CAT (Catalytic Chemical Vapor Deposition) -CVD method. These radicals do not contain plasma, have no ion bombardment, and have a large amount of radicals. Moreover, since radicals can be supplied uniformly over a wide area, it is optimal for the present invention.

ALDにおいては、最初の一層を形成することが重要であるが、本発明において反応性ガス照射室を基板の表面の初期化に用いることができる。即ち、TiN膜の成膜工程において、最初に基板を反応性ガス照射室に入れ、基板の表面を水素ラジカル処理するなどにより、表面クリーニングする。これにより、最初の一層の成膜を良好に行うことができる。   In ALD, it is important to form the first layer, but in the present invention, the reactive gas irradiation chamber can be used to initialize the surface of the substrate. That is, in the TiN film forming step, the substrate is first cleaned by putting the substrate in a reactive gas irradiation chamber and treating the surface of the substrate with hydrogen radicals. Thereby, the first layer of film can be formed satisfactorily.

本発明のALD装置の一例の概略構成図である。It is a schematic block diagram of an example of the ALD apparatus of this invention. 本発明のALD装置をALD専用装置として構成した場合の平面模式図である。It is a plane schematic diagram at the time of configuring the ALD apparatus of the present invention as an ALD dedicated apparatus. 本発明のALD装置を他のプロセスモジュールと組み合わせてクラスタ装置を構成した場合の平面模式図である。It is a plane schematic diagram when a cluster device is configured by combining the ALD device of the present invention with other process modules.

符号の説明Explanation of symbols

1 原料ガス吸着室
2 反応性ガス照射室
1a,2a 基板ホルダー
2b Wホットワイヤ
3 基板交換室
4 基板
5 ゲートバルブ
6 ロードロック室
7 ALD以外のプロセスモジュール
8 基板交換室
DESCRIPTION OF SYMBOLS 1 Source gas adsorption chamber 2 Reactive gas irradiation chamber 1a, 2a Substrate holder 2b W hot wire 3 Substrate exchange chamber 4 Substrate 5 Gate valve 6 Load lock chamber 7 Process module other than ALD 8 Substrate exchange chamber

Claims (5)

基板上に薄膜を形成するALD装置であって、
少なくとも一種類の原料ガスを基板に吸着させる原料ガス吸着室と、
少なくとも一種類の反応性ガスを基板に照射する反応性ガス照射室と、
上記原料ガス吸着室と反応性ガス照射室との間で基板を入れ替える手段と、
を有することを特徴とするALD装置。
An ALD apparatus for forming a thin film on a substrate,
A source gas adsorption chamber for adsorbing at least one type of source gas on the substrate;
A reactive gas irradiation chamber for irradiating the substrate with at least one kind of reactive gas;
Means for replacing the substrate between the source gas adsorption chamber and the reactive gas irradiation chamber;
An ALD apparatus comprising:
反応性ガス照射室が、リモートプラズマにおいて用いられるラジカル源を備えている請求項1に記載のALD装置。   The ALD apparatus according to claim 1, wherein the reactive gas irradiation chamber includes a radical source used in remote plasma. 反応性ガス照射室が、CAT−CVD法において用いられるホットワイヤを備えている請求項1に記載のALD装置。   The ALD apparatus according to claim 1, wherein the reactive gas irradiation chamber includes a hot wire used in a CAT-CVD method. 請求項1乃至3のいずれかに記載のALD装置を用い、原料ガス吸着室と反応性ガス照射室とに1枚の基板を交互に入れ、原料ガス吸着室において少なくとも一種類の原料ガスを基板に吸着させる工程と、反応性ガス照射室において少なくとも一種類の反応性ガスを基板に照射する工程とを交互に行うことを特徴とする成膜方法。   Using the ALD apparatus according to any one of claims 1 to 3, one substrate is alternately placed in the source gas adsorption chamber and the reactive gas irradiation chamber, and at least one type of source gas is placed in the source gas adsorption chamber. And a step of irradiating the substrate with at least one kind of reactive gas in the reactive gas irradiation chamber. 基板を最初に反応性ガス照射室に入れて行う請求項4に記載の成膜方法。   The film forming method according to claim 4, wherein the substrate is first placed in a reactive gas irradiation chamber.
JP2007083299A 2007-03-28 2007-03-28 Ald apparatus and film deposition method using the same Withdrawn JP2008240077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083299A JP2008240077A (en) 2007-03-28 2007-03-28 Ald apparatus and film deposition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083299A JP2008240077A (en) 2007-03-28 2007-03-28 Ald apparatus and film deposition method using the same

Publications (1)

Publication Number Publication Date
JP2008240077A true JP2008240077A (en) 2008-10-09

Family

ID=39911760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083299A Withdrawn JP2008240077A (en) 2007-03-28 2007-03-28 Ald apparatus and film deposition method using the same

Country Status (1)

Country Link
JP (1) JP2008240077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103751A1 (en) 2009-03-10 2010-09-16 三井造船株式会社 Atomic layer deposition apparatus and thin film forming method
JP2011082560A (en) * 2007-06-08 2011-04-21 Tokyo Electron Ltd Method of forming fine pattern
JP2012184449A (en) * 2011-03-03 2012-09-27 Taiyo Nippon Sanso Corp Method for forming metal thin film, metal thin film, and device for forming metal thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082560A (en) * 2007-06-08 2011-04-21 Tokyo Electron Ltd Method of forming fine pattern
WO2010103751A1 (en) 2009-03-10 2010-09-16 三井造船株式会社 Atomic layer deposition apparatus and thin film forming method
US9068261B2 (en) 2009-03-10 2015-06-30 Mitsui Engineering & Shipbuilding Co., Ltd. Atomic layer deposition apparatus and thin film forming method
TWI500807B (en) * 2009-03-10 2015-09-21 Mitsui Shipbuilding Eng Atomic layer deposition apparatus and thin film forming method
JP2012184449A (en) * 2011-03-03 2012-09-27 Taiyo Nippon Sanso Corp Method for forming metal thin film, metal thin film, and device for forming metal thin film

Similar Documents

Publication Publication Date Title
US11735420B2 (en) Wafer treatment for achieving defect-free self-assembled monolayers
US8815014B2 (en) Method and system for performing different deposition processes within a single chamber
US9252024B2 (en) Deposition chambers with UV treatment and methods of use
JP5209197B2 (en) Apparatus and method of operation for thermal and plasma enhanced deposition
JP7320646B2 (en) Method for processing an object to be processed
JP4651955B2 (en) Deposition method
JP2007177323A (en) Apparatus for thermal and plasma enhanced vapor deposition and method of operating
US20050115504A1 (en) Method and apparatus for forming thin films, method for manufacturing solar cell, and solar cell
JP7071175B2 (en) How to process the object to be processed
KR100819639B1 (en) Substrate treatment appratus and method of manufacturing semiconductor device
US7727912B2 (en) Method of light enhanced atomic layer deposition
KR20160083049A (en) Adhesion improvements for oxide-silicon stack
KR20040037079A (en) Film formation method for semiconductor processing
US7399357B2 (en) Atomic layer deposition using multilayers
JP2008240077A (en) Ald apparatus and film deposition method using the same
JP2021106216A (en) Film formation method and system
WO2022080153A1 (en) Substrate processing method and substrate processing apparatus
CN112391612B (en) Film forming method and film forming apparatus
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
KR100422396B1 (en) Method of forming a thin film in a semiconductor device using atomic layer deposition
TW522475B (en) Method for improving chemical vapor deposition processing
CN112601836A (en) Selective deposition using methylation processes
US12074022B2 (en) Method and system for forming patterned structures using multiple patterning process
US20230395372A1 (en) Method and system for forming patterned structures using multiple patterning process
JP2022015848A (en) Film deposition apparatus and film deposition method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601