JP2008220020A - 可動磁石型リニアモータ - Google Patents
可動磁石型リニアモータ Download PDFInfo
- Publication number
- JP2008220020A JP2008220020A JP2007052455A JP2007052455A JP2008220020A JP 2008220020 A JP2008220020 A JP 2008220020A JP 2007052455 A JP2007052455 A JP 2007052455A JP 2007052455 A JP2007052455 A JP 2007052455A JP 2008220020 A JP2008220020 A JP 2008220020A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- core coil
- air
- yoke
- linear motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
- Linear Motors (AREA)
Abstract
【課題】可動体が軽量で応答性が良く、かつ空芯コイルに与えられる駆動電流による発熱を除去するとともに、渦電流の発生を減少させて効率よく大きな推力を得ることができる可動磁石型リニアモータを提供する。
【解決手段】可動磁石型リニアモータにおいて、冷却パイプは、空芯コイルがマグネットヨークの中心軸方向に直角な方向に延在する部分にて、空芯コイルに対して高熱伝導部材を介して熱的に密に接合されるものであり、該高熱伝導部材は、一端部が前記冷却パイプの外側面形状に倣うとともに他端部が前記空芯コイルの外側面形状に倣う複数の非磁性金属片を、相互に絶縁して前記中心軸方向に直角な方向に積層した構造であることである。
【選択図】 図1
【解決手段】可動磁石型リニアモータにおいて、冷却パイプは、空芯コイルがマグネットヨークの中心軸方向に直角な方向に延在する部分にて、空芯コイルに対して高熱伝導部材を介して熱的に密に接合されるものであり、該高熱伝導部材は、一端部が前記冷却パイプの外側面形状に倣うとともに他端部が前記空芯コイルの外側面形状に倣う複数の非磁性金属片を、相互に絶縁して前記中心軸方向に直角な方向に積層した構造であることである。
【選択図】 図1
Description
本発明は、例えば工作機械、電気部品実装装置或いは半導体関連装置などの各種産業機械に使われるリニアモータに関し、特に界磁を可動子とし、電機子を固定子として構成する可動磁石型リニアモータに関する。
磁石の方を可動子とし電機子(空芯コイル)を固定子とする可動磁石型リニアモータとして、特許文献1に記載されるものが知られている。これは、穴あき柱状永久磁石に貫通軸体を貫通させて固定して磁石可動体を構成し、前記貫通軸体を軸受部材で摺動自在に支持して当該軸受部材に対し固定した位置関係にある空芯コイルの内側に前記磁石可動体を移動自在に設けたものである。この場合、磁石可動体に発生する推力は、基本的にはフレミングの左手の法則に準ずるものである。(ただし、フレミングの左手の法則は空芯コイルに対して適用されるが、ここでは空芯コイルが固定のため、磁石可動体に空芯コイルに作用する力の反力としての推力が発生する。)そして、推力に寄与するのは、磁石可動体が有する永久磁石の磁束の垂直成分(永久磁石の軸方向に直交する成分)である。
また、可動磁石型のリニアモータとして、特許文献2に記載されるものが知られている。これは固定子側の複数の空芯コイルで可動子側の磁石に推力を与える多相タイプであるが、移動方向に配列される空芯コイルの両側を棒状の支持部材で固定し、空芯コイルの両側を固定する支持部材間に磁石を対向させて配置し、前記支持部材の内部には冷媒を流すための管路を移動方向に沿って設けることとしたものである。この管路に冷媒を循環させることにより、空芯コイルに生ずる駆動電流による発熱を除去することを可能とするものである。
実開平7−30585号公報
特開平1−270763号公報
しかし、上記特許文献1の技術では、貫通軸体の外周をぐるりと廻る柱状の永久磁石で可動体を構成しているため、磁石可動体の質量が大きくなり応答性が悪いという不具合があった。また、特許文献2の技術では、冷媒を流す管路を固定する支持部材の断面積が大きく空芯コイルの熱が支持部材全体に拡散してしまい、空芯コイルと冷媒との間の熱の伝導効率が悪いという不具合があった。また、磁束を金属が横切ると、渦電流が発生して可動体の推力を減少させるという普遍的な問題も考慮する必要があった。
本発明は係る従来の問題点に鑑みてなされたものであり、可動体が軽量で応答性が良く、かつ空芯コイルに与えられる駆動電流による発熱を除去するとともに、渦電流の発生を減少させて効率よく大きな推力を得ることができる可動磁石型リニアモータを提供することである。
上述した課題を解決するために、請求項1に係る発明の構成上の特徴は、複数平面壁により偶数多角筒状を成し、該偶数多角筒状の中心軸方向に可動するマグネットヨークと、該マグネットヨークの各平面壁の外壁に取り付けられ複数の永久磁石から構成される複数のマグネット構成体と、前記マグネットヨークを取り囲むように設けられた固定子ベースと、該固定子ベースに取り付けられ前記複数のマグネット構成体に夫々磁気的空隙を介して対向するように配置された複数の空芯コイルと、該空芯コイルに沿うように前記固定子ベースに取り付けられ内部に冷媒が流通されて前記空芯コイルを冷却する冷却パイプと、を備えた可動磁石型リニアモータにおいて、前記冷却パイプは、前記空芯コイルが前記中心軸方向に直角な方向に延在する部分にて、該空芯コイルに対して高熱伝導部材を介して熱的に密に接合されるものであり、該高熱伝導部材は、一端部が前記冷却パイプの外側面形状に倣うとともに他端部が前記空芯コイルの外側面形状に倣う複数の非磁性金属片を、相互に絶縁して前記中心軸方向に直角な方向に積層する構造であることである。
請求項2に係る発明の構成上の特徴は、請求項1において、前記マグネット構成体は、前記中心軸方向に直角な方向に着磁された第1の永久磁石と、該第1の永久磁石の着磁方向に平行な方向であって、第1の永久磁石とは反対の磁極で着磁され、前記第1の永久磁石に前記中心軸方向に対向する第2の永久磁石と、を有し、これらのマグネット構成体は、前記マグネットヨークの周方向に隣り合うマグネット構成体の前記永久磁石の磁極が互いに反対の極であることである。
請求項1に係る発明によると、空芯コイルと冷媒間の熱の交換が高熱伝導部材によって拡散することなく、直接的におこなうことができるので、空芯コイルに与えられる駆動電流による発熱は、効率よく冷却パイプに流通する冷媒によって除去することができる。そして、高熱伝導部材は、互いに絶縁された積層構造とすることで、磁束を横切る一つ一つの非磁性金属片の厚みを小さく形成することができるので、大きな渦電流の発生を抑えて効率よく大きな推力を得ることができる。
請求項2に係る発明によると、マグネット構成体のそれぞれの永久磁石の磁極から発生する磁束は隣り合う反対の磁極に向かって流れる。そのため、マグネットヨークの周面に沿った2方向及びそれに直角な方向に分流して、マグネットヨークを通る磁束を3つに分散することができ、これによって、飽和磁束を生じさせることなくマグネットヨークの肉厚を薄くでき、可動磁石型でありながら、リニアモータを小型化かつ軽量化することができる。そして、可動体の応答精度を高めることができる。また、一つの磁極から上記のように3つに分流された磁束は、夫々異なった3つの反対の磁極を通過する。そして、1つの反対の磁極では、異なった3つの磁極からの磁束が1つにまとまって通過することとなる。そのため、空芯コイルを横切る磁束は、上記分流によって減少することが無いので、マグネットヨークの軽量化を図りながら強い推力を発揮させることができる。
本発明に係る可動磁石型リニアモータを備えた工具移動装置の実施形態を図面に基づいて以下に説明する。図1は工具移動装置の構造を断面で示した正面からの概念図であり、図2は同断面で示す側面からの概念図である。前記リニアモータ2は、固定側の一次側要素と、一次側要素に対して相対移動可な可動側の二次側要素とから構成されている。
この工具移動装置4は、図1に示すように、例えば磁性体である鉄製からなる中空箱型形状のマグネットヨーク6と、マグネットヨーク6の外周面に取り付けられた永久磁石からなる複数のマグネット構成体8と、マグネットヨークの両端開口部に夫々取付けられた角型の支持部10,12とからなる可動体14を備え、この可動体14によりリニアモータ2の二次側要素を構成している。この可動体14の一方の支持部10の端部(先端側端部)には、工作物を高精度に切削加工するバイト等を保持する工具保持装置16が取り付けられている。他方の支持部12の端部(基端側端部)にはリニアスケール(位置検出装置)17が設けられ、可動体14の後述する支持台18に対する相対的な移動位置を検出するようになっている。
また、工具移動装置4は、可動体14に対して相対移動可能に固定設置された例えば非磁性体からなる支持台18を備えている。支持台18は可動体14の4面に対向する平壁部を図略のフレーム部材により連結させて、可動体14を囲むように設けられている。 支持台18には可動体14の各支持部10,12を油の静圧力によってX軸方向(可動体14の中空軸線方向)に摺動のみ可能に支持する流体軸受20,22と、マグネットヨーク6を取り囲むように配設された例えば磁性体である鉄製のコイルヨーク24とが設けられ、コイルヨーク24の内壁面には、各マグネット構成体8に夫々対向して取り付けられた空芯コイル26が設けられている。空芯コイル26は平角線を重ねて積層したもので、銅からなる導体部と絶縁層が密な状態で重なって構成されているため、熱抵抗が小さい。また、コイルの外側面(推力発生部)を略フラットに形成し、該フラット面と高熱伝導率接着剤を介して密に高熱伝導部材を設けている。空芯コイル26は、例えばガラスエポキシからなる被巻回部36に平角線により略矩形状に複数巻回されて形成される。空芯コイル26とコイルヨーク24との間には、例えばガラスエポキシ等による絶縁板28が挿入されて電気的絶縁が図られている。空芯コイル26を取り付けたコイルヨーク24によって、リニアモータ2の一次側要素を構成している。また、空芯コイル26には図略の直流電源に連結される電流制御回路50に接続され、図7に示すように、電流制御回路50は前記リニアスケール17からの信号が制御装置(CPU)52からの信号によって、直流電源からの電流値が制御されるようになっている。電流制御回路50として、例えばIGBT(Inerted Gate Bipolar Transistor)等のスイッチング素子等で構成されるアンプが考えられる。
また、各空芯コイル26には、図3に示すように、冷却パイプ30が略矩形状の空芯コイル26の三方の辺(前記X軸方向に平行な一辺とそれに直角な二辺)に沿うように並べて配置されている。冷却パイプ30は、空芯コイル26が前記X軸方向に直角な方向に延在する2箇所(二辺)の部分において、高熱伝導接着剤により接着された高熱伝導部材32を介して空芯コイル26に接合されている。高熱伝導部材32は、図3及び図4に示すように、長手側の一端部が冷却パイプ30の外側面に倣う湾曲面状に形成され、長手側の他端部が空芯コイル26(平角線)の外側面に倣う平面状に形成された、例えば銅製の複数の金属片34からなっている。そして、これらの金属片34は、図8に示すように、前記X軸方向に直角な方向に積層され、それらの表面は例えばエポキシ系、珪素系等の皮膜でコーティングされて、重ねられたときに相互に電気的絶縁が図られている。
空芯コイル26と高熱伝導部材32との間は、高熱伝導性の接着剤34により接着されている。冷却パイプ30には図略のポンプにより冷媒としての冷水が流通されるようになっている。この冷却パイプ30は、例えば銅製で、対向するマグネット構成体8から前記X軸方向に外れる位置に配されるとともに、管の断面が薄肉に形成されることにより、マグネット構成体8の磁力線による渦電流の発生を和らげるようになっている。
多角筒状のマグネットヨーク6は、実施形態においては4つの平面壁38により4角筒状に構成され、図2及び図6に示すように、平面壁38の外周面には第1乃至第4のマグネット構成体8a〜8dが、夫々取り付けられている。マグネット構成体8a〜8dは、第1及び第2の永久磁石40,42と補助磁石44とから構成される。第1及び第2の永久磁石40,42は、例えば希土類より直方体形状に形成され、これらの永久磁石は着磁方向(単体の磁石において対応する反対の極の中心を結ぶ線の方向)が、前記X軸方向に直角な方向となるよう配置されている。そして、図1及び図5に示すように、マグネットヨーク6上部の先端部側(図1及び図5において右側)には、第1の永久磁石40の外側(図1において上側)がS極、内側がN極に、同基端部側(図1及び図5において左側)には、第2の永久磁石42の外側がN極、内側がS極になるよう配設されている。また、第1の永久磁石40と第2の永久磁石42との間には直方体形状の補助磁石44が、着磁方向を前記X軸方向に平行にして配設されている。各補助磁石44は、例えば、先端部側(図5において右側)がS極、基端部側(図5において左側)がN極という具合に、前記第1及び第2の永久磁石40,42の内側の磁極と反対の磁極が接近するように並べられて固定されている。このように補助磁石44配置することにより、図5に示すように、磁束の漏洩を防止すると共に、空芯コイル26を横切る磁束数を増加させて、大きな推力を発揮させることができる。また、マグネット構成体8の永久磁石40,42は、図2及び図6に示すように、マグネットヨーク6の周方向に隣り合うマグネット構成体8の永久磁石40,42の磁極が互いに反対の極となるよう配設されている。
次に、上記のように構成された可動磁石型リニアモータの作動について、以下に説明する。図5において、空芯コイル26にマグネットヨーク6から見て時計回りに電流を流すと、フレミングの左手の法則に従い空芯コイル26には先端部側(図5において右側)への力が生じ、マグネット構成体8aにはその反作用として基端部側(図5において左側)への力が加わる。他のマグネット構成体8b,8c,8dにも同様にして、基端部側への力が加わるように対向する空芯コイル26に夫々通電することにより、マグネットヨーク6には基端部側へ移動させる推力が働き、マグネットヨーク6は電流量に応じた距離だけ基端部側(図1及び図5において左側)へ移動する。また、前記IGBT等により逆向き回りの通電をすると、マグネットヨーク6は図1及び図5において右側へ移動する。この移動位置はリニアスケール17により検出され、検出位置の信号がCPU52に送られて、前記IGBT等により通電方向及び通電量が定められてマグネットヨーク6の移動量が制御される。
本実施形態では、空芯コイル26と冷却パイプ30の冷媒間との熱の交換が高熱伝導接着剤を経由して高熱伝導部材32によって拡散することなく、直接的におこなうことができるので、空芯コイル26に与えられる駆動電流による発熱は、効率よく冷却パイプ30に流通する冷媒によって除去することができる。そして、高熱伝導部材32は、互いに絶縁された積層構造とすることで、磁束を横切る一つ一つの非磁性金属片34の厚みを小さく形成することができるので、大きな渦電流の発生を抑えることができる。
また、本実施形態では、マグネット構成体8のそれぞれの永久磁石40,42から発生する磁束を、図7に示すように、マグネットヨーク6の周面に沿った2方向B,C及びそれに直角な方向Aに分流して、マグネットヨーク6を通る磁束を3つに分散することができ、これによって、飽和磁束密度を生じさせることなくマグネットヨーク6の肉厚を3分の1程度に薄くでき、可動磁石型でありながら、リニアモータ2を小型化かつ軽量化することができる。そして、可動体14の応答精度を高めることができる。そして、1つのN極から3つに分流された磁束は、夫々別の3つのS極を通過する。一方、1つのS極においては、別の3つのN極からの磁束a,b,cが1つにまとまって通過することとなる。そのため、空芯コイル26を横切る磁束は、上記分流によって減少することが無いので、マグネットヨーク24を軽量としながら強い推力を発揮させることができる。
なお、空芯コイルは、実施形態において平角線としたが、これに限定されず、例えば丸線でもよい。この場合は、高熱伝導部材はかかる丸線の外側面に倣う形状に形成される。
冷却パイプや高熱伝導部材は、銅製に限定されず、例えばアルミニウム合金のような熱伝導率が高く非磁性材料であればよい。
マグネットヨークは、4角筒状に限定されず、例えば6角、8角等の偶数多角筒状であればよい。また、偶数多角筒状のマグネットヨークの強度向上のため、中空部に梁部材を設ける構造としてもよい。
また、本実施形態においては、第1及び第2の永久磁石の間に補助磁石を配置する構成としたが、これに限定されず、補助磁石はなくてもよい。
コイルヨークは、支持台に個別に取り付けるものとしたが、これに限定されず、例えばマグネットヨークの形状に対応する偶数多角筒状のものでもよい。
また、冷却パイプは、コイルヨークに取り付けられた4箇所の空芯コイルにおいて、熱的に密に接合されるものとするが、これに限定されず、例えば、1箇所、2箇所の空芯コイルに対して、熱的に密に接合されるものでもよい。また、空芯コイルの一方の外側面に高熱伝導部材が当接するものとしたが、これに限定されず、例えば空芯コイルの両方の外側面に高熱伝導部材が当接するものでもよい。
2…リニアモータ、6…マグネットヨーク、8…マグネット構成体、18…固定ベース(支持台)、24…固定ベース(コイルヨーク)、26…空芯コイル、30…冷却パイプ、32…高熱伝導部材、38…平面壁、40…第1の永久磁石、42…第2の永久磁石。
Claims (2)
- 複数平面壁により偶数多角筒状を成し、該偶数多角筒状の中心軸方向に可動するマグネットヨークと、該マグネットヨークの各平面壁の外壁に取り付けられ複数の永久磁石から構成される複数のマグネット構成体と、前記マグネットヨークを取り囲むように設けられた固定子ベースと、該固定子ベースに取り付けられ前記複数のマグネット構成体に夫々磁気的空隙を介して対向するように配置された複数の空芯コイルと、該空芯コイルに沿うように前記固定子ベースに取り付けられ内部に冷媒が流通されて前記空芯コイルを冷却する冷却パイプと、
を備えた可動磁石型リニアモータにおいて、
前記冷却パイプは、前記空芯コイルが前記中心軸方向に直角な方向に延在する部分にて、該空芯コイルに対して高熱伝導部材を介して熱的に密に接合されるものであり、
該高熱伝導部材は、一端部が前記冷却パイプの外側面形状に倣うとともに他端部が前記空芯コイルの外側面形状に倣う複数の非磁性金属片を、相互に絶縁して前記中心軸方向に直角な方向に積層した構造であることを特徴とする可動磁石型リニアモータ。 - 請求項1において、前記マグネット構成体は、前記中心軸方向に直角な方向に着磁された第1の永久磁石と、
該第1の永久磁石の着磁方向に平行な方向であって、第1の永久磁石とは反対の磁極で着磁され、前記第1の永久磁石に前記中心軸方向に対向する第2の永久磁石と、を有し、
これらのマグネット構成体は、前記マグネットヨークの周方向に隣り合うマグネット構成体の前記永久磁石の磁極が互いに反対の極であることを特徴とする可動磁石型リニアモータ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007052455A JP2008220020A (ja) | 2007-03-02 | 2007-03-02 | 可動磁石型リニアモータ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007052455A JP2008220020A (ja) | 2007-03-02 | 2007-03-02 | 可動磁石型リニアモータ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008220020A true JP2008220020A (ja) | 2008-09-18 |
Family
ID=39839383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007052455A Pending JP2008220020A (ja) | 2007-03-02 | 2007-03-02 | 可動磁石型リニアモータ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008220020A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010246188A (ja) * | 2009-04-01 | 2010-10-28 | Canon Inc | リニアモータおよびそれを用いたステージ装置、露光装置およびデバイス製造方法 |
US8723376B2 (en) | 2009-01-23 | 2014-05-13 | Hitachi Metals, Ltd. | Mover and linear motor |
US11411480B2 (en) * | 2019-04-30 | 2022-08-09 | Topray Mems Inc. | Linear vibration actuator motor |
US11469656B2 (en) * | 2016-02-05 | 2022-10-11 | Goertek Inc. | Linear vibrating motor |
-
2007
- 2007-03-02 JP JP2007052455A patent/JP2008220020A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8723376B2 (en) | 2009-01-23 | 2014-05-13 | Hitachi Metals, Ltd. | Mover and linear motor |
US9071124B2 (en) | 2009-01-23 | 2015-06-30 | Hitachi Metals, Ltd. | Mover and linear motor |
JP2010246188A (ja) * | 2009-04-01 | 2010-10-28 | Canon Inc | リニアモータおよびそれを用いたステージ装置、露光装置およびデバイス製造方法 |
US8605251B2 (en) | 2009-04-01 | 2013-12-10 | Canon Kabushiki Kaisha | Linear motor, and stage apparatus, exposure apparatus, and method for manufacturing device using the same |
US11469656B2 (en) * | 2016-02-05 | 2022-10-11 | Goertek Inc. | Linear vibrating motor |
US11411480B2 (en) * | 2019-04-30 | 2022-08-09 | Topray Mems Inc. | Linear vibration actuator motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5292707B2 (ja) | 可動磁石型リニアモータ | |
JP4672315B2 (ja) | リニアモータおよびリニア移動ステージ装置 | |
KR100844759B1 (ko) | 코어리스 리니어 모터 | |
JP2016537963A (ja) | 平型ボイスコイルモータ | |
JP5072064B2 (ja) | 円筒型リニアモータ | |
JP2008228545A (ja) | 可動磁石型リニアモータ | |
JP2008220020A (ja) | 可動磁石型リニアモータ | |
JP2005176464A (ja) | リニアモータ | |
JPWO2011001668A1 (ja) | アクチュエータ及びアクチュエータユニット | |
JP2011155757A (ja) | リニアモータ | |
JP2010148233A (ja) | リニアモータ駆動送り装置 | |
JP6788664B2 (ja) | リニアモータ、ボイスコイルモータ、ステージ装置 | |
JP5347596B2 (ja) | キャンド・リニアモータ電機子およびキャンド・リニアモータ | |
JP5369265B2 (ja) | リニアモータ及びリニア移動ステージ装置 | |
JPH11243677A (ja) | 同軸リニアモータ | |
JP5447308B2 (ja) | リニアモータ | |
JP5126652B2 (ja) | 可動コイル型リニアモータ | |
JP2008206356A (ja) | 可動磁石型リニアアクチュエータ | |
JP2505857B2 (ja) | 可動磁石型多相リニアモ―タ | |
JP3661978B2 (ja) | 可動コイル形リニアモータ | |
JP4721211B2 (ja) | コアレス・リニアモータ | |
JP3835946B2 (ja) | 可動コイル形リニアモータ | |
JP2002247831A (ja) | リニアモータ | |
JP2004312869A (ja) | リニアモータ | |
JP2005094902A (ja) | 移動装置 |