JP2008207988A - Ferrite powder, ferrite sintered body, and their production method and ferrite core - Google Patents

Ferrite powder, ferrite sintered body, and their production method and ferrite core Download PDF

Info

Publication number
JP2008207988A
JP2008207988A JP2007045793A JP2007045793A JP2008207988A JP 2008207988 A JP2008207988 A JP 2008207988A JP 2007045793 A JP2007045793 A JP 2007045793A JP 2007045793 A JP2007045793 A JP 2007045793A JP 2008207988 A JP2008207988 A JP 2008207988A
Authority
JP
Japan
Prior art keywords
mol
powder
ferrite
less
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045793A
Other languages
Japanese (ja)
Inventor
Naganobu Fukuo
長延 福尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007045793A priority Critical patent/JP2008207988A/en
Publication of JP2008207988A publication Critical patent/JP2008207988A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferrite powder with a high powder bulk density and capable of producing a granulated powder hardly generating cracks during forming. <P>SOLUTION: The ferrite powder is comprised of an oxide containing Si in the range of 3-8 parts by mass by SiO<SB>2</SB>conversion per 100 parts by mass of the main component containing Fe in the range of 35-45 mol% by Fe<SB>2</SB>O<SB>3</SB>conversion, Ni in the range of 45-55 mol% by NiO conversion, Cu in the range of 0.1-2 mol% by CuO conversion, Mg in the range of 5-10 mol% by MgO conversion, and Mn in the range of 0.1-0.5 mol% by MnO conversion. When X<SB>1</SB>is the peak strength belonging to face (222) of forsterite in X-ray diffraction, X<SB>2</SB>is the peak strength belonging to face (311) of nickel ferrite, X<SB>3</SB>is the peak strength belonging to face (101) of silica, and X<SB>4</SB>is the peak strength belonging to face (224) of copper manganese silicate, then X<SB>1</SB>/X<SB>2</SB>≤0.011 (except 0), X<SB>3</SB>/X<SB>2</SB>≥0.02, and X<SB>4</SB>/X<SB>2</SB>≥0.01. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フェライト粉末およびフェライト粉末を用いてなるフェライト質焼結体とこれらの製造方法、およびこのフェライト質焼結体を用いてなるフェライトコアに関する。   The present invention relates to a ferrite powder, a ferrite sintered body using the ferrite powder, a manufacturing method thereof, and a ferrite core using the ferrite sintered body.

Ni−Zn系のフェライト質焼結体は、インダクター、変圧器、安定器、電磁石、ノイズ除去のフェライトコアとして多用されている。Ni−Zn系のフェライト質焼結体は、先ず、フェライト粉末をボールミルやビーズミルにて湿式粉砕してスラリーを得、このスラリーに所定のバインダー等を添加した後、噴霧乾燥する造粒工程を経て成形用原料を得、次いで、得られた成形用原料を所定形状に成形して成形体を得、この成形体を焼成することで焼結体を得られるものである。また、前記フェライト粉末は、所定の原料粉末を調合して混合粉末とし、この混合粉末を造粒して顆粒を得、得られた顆粒を仮焼、粉砕して得られるものである。   Ni-Zn ferrite sintered bodies are widely used as inductors, transformers, ballasts, electromagnets, and noise-removing ferrite cores. The Ni-Zn ferritic sintered body first undergoes a granulation process in which ferrite powder is wet-ground by a ball mill or bead mill to obtain a slurry, and a predetermined binder is added to the slurry, followed by spray drying. A molding raw material is obtained, and then the obtained molding raw material is molded into a predetermined shape to obtain a molded body, and the molded body is fired to obtain a sintered body. The ferrite powder is obtained by blending a predetermined raw material powder into a mixed powder, granulating the mixed powder to obtain granules, and calcining and pulverizing the obtained granules.

Ni−Zn系のフェライト質焼結体を得るためのフェライト粉末は、例えば特許文献1では、Fe、Ni、Cu、Mg、Mn、Bi、Si、Zr、Coを含むMg−Mn−Ni−Cu系の酸化物を混合した後、800〜950℃で仮焼して得られることが示されている。特許文献2には、Fe、Ni、Zn、Cuを主成分とするNi−Zn−Cu系の酸化物を混合した後、900℃以上で仮焼し、仮焼後の粉体のBET粒径を0.7μm以上に調整して得ることで、得られたフェライト粉末を用いて作製されたフェライト質焼結体は、電力損失の小さなフェライト焼結体を得ることが記載されている。
特開2001−102209号公報 特開2002−343621号公報
For example, in Patent Document 1, a ferrite powder for obtaining a Ni—Zn-based ferrite sintered body is Mg—Mn—Ni—Cu containing Fe, Ni, Cu, Mg, Mn, Bi, Si, Zr, and Co. It is shown that it is obtained by mixing the system oxide and calcining at 800 to 950 ° C. In Patent Document 2, a Ni—Zn—Cu-based oxide containing Fe, Ni, Zn, and Cu as main components is mixed and calcined at 900 ° C. or higher, and the BET particle size of the calcined powder is It is described that a ferrite sintered body produced by using the obtained ferrite powder can obtain a ferrite sintered body with a small power loss by adjusting the thickness to 0.7 μm or more.
JP 2001-102209 A JP 2002-343621 A

特許文献1のフェライト質焼結体は、フェライト粉末を得る際に800〜950℃で仮焼しているものの、得られた粉末を用いた成形体にクラックが発生しやすいという問題を有していた。これは、造粒後の平均粒径が大きく、または仮焼温度が低く、その結果、フェライト粉末を用いたスラリーを噴霧乾燥することで得られる成形用原料は、粉体嵩密度が低いものであったためと考えられる。粉体嵩密度とは、一定容積中に占める粉末の重量のことであり、粉体嵩密度の低い顆粒は成形時に圧縮比が著しく大きくなるため、金型内に封入された空気に起因するラミネーションクラックが発生するという欠点を有している。この場合、圧縮比とは、プレス用の金型に充填された粉体の厚みを、成形後の成形体の厚みで割った値を言う。成形における圧縮比を小さくするためには顆粒の粉体嵩密度は高い方が良いが、逆に粉体嵩密度の高い顆粒は硬くなりつぶれにくいので高い成形圧を必要とする。   Although the ferrite sintered body of Patent Document 1 is calcined at 800 to 950 ° C. when obtaining a ferrite powder, it has a problem that cracks are likely to occur in a molded body using the obtained powder. It was. This is because the average particle diameter after granulation is large or the calcining temperature is low, and as a result, the raw material for molding obtained by spray drying a slurry using ferrite powder has a low powder bulk density. It is thought that there was. Powder bulk density is the weight of powder in a certain volume, and granules with low powder bulk density have a significantly large compression ratio during molding, so lamination caused by air enclosed in the mold It has the disadvantage that cracks occur. In this case, the compression ratio refers to a value obtained by dividing the thickness of the powder filled in the press mold by the thickness of the molded body after molding. In order to reduce the compression ratio in the molding, it is better that the powder has a high powder bulk density. On the other hand, a granule having a high powder bulk density is hard and is not easily crushed, so that a high molding pressure is required.

特許文献2のフェライト質焼結体は、フェライト粉末を得る際に仮焼温度と仮焼後の粉体の粒径を調整しているが、仮焼前の粉体の粒径が大きいと、仮焼合成が不十分となる場合がある。合成が不十分となる原因はFe、NiO、ZnO、CuOの各粉末が未反応のまま存在するためであり、仮焼合成が不十分な場合、後に粉砕、造粒しても成形用原料の粉体嵩密度が低くなりやすく、成形体にクラックが発生しやすいという問題を有している。一方、仮焼を十分に行いすぎた場合、仮焼粉の粉砕を十分に行わないと過度に大きな粒径のフェライト粉末が多くなり、焼成した際に結晶構造が十分規則化した焼結体が得られない。さらにこの場合、高い粉体嵩密度は得られるが、上記と同様に成形用原料が硬いためにつぶれにくく、高い成形圧を必要とする。このように仮焼温度や仮焼後の粉体の粒径、さらにはBET粒径を所定範囲にしたとしても、仮焼合成が適度に行われたか判断できないことがある。 The ferrite sintered body of Patent Document 2 adjusts the calcination temperature and the particle size of the powder after calcination when obtaining the ferrite powder, but when the particle size of the powder before calcination is large, Calcination synthesis may be insufficient. The cause of insufficient synthesis is that each powder of Fe 2 O 3 , NiO, ZnO, and CuO is left unreacted. If the calcination synthesis is insufficient, molding is performed even if pulverized and granulated later. There is a problem that the powder bulk density of the raw materials for use is likely to be low, and cracks are likely to occur in the molded body. On the other hand, if the calcination is sufficiently performed, if the calcination powder is not sufficiently pulverized, the ferrite powder having an excessively large particle size increases, and a sintered body having a well-ordered crystal structure when fired is obtained. I can't get it. Further, in this case, a high powder bulk density can be obtained, but the molding raw material is hard as in the above case, so that it is difficult to be crushed and a high molding pressure is required. Thus, even if the calcination temperature, the particle size of the powder after calcination, and the BET particle size are set within a predetermined range, it may not be possible to determine whether the calcination synthesis has been performed appropriately.

本発明は、上記問題に鑑み、粉体嵩密度が大きく、成形時にクラックが発生しにくい顆粒を製造することができるフェライト粉末を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a ferrite powder capable of producing a granule having a large powder bulk density and hardly causing cracks during molding.

本発明は、FeをFe換算で35mol%以上45mol%以下、NiをNiO換算で45mol%以上55mol%以下、CuをCuO換算で0.1mol%以上2mol%以下、MgをMgO換算で5mol%以上10mol%以下、MnをMnO換算で0.1mol%以上0.5mol%以下の範囲で含有する主成分100質量部に対して、SiをSiO換算で3質量部以上8質量部以下の範囲で含有する酸化物からなるフェライト粉末であって、X線回折におけるフォルステライト(2MgO・SiO)の(222)面に帰属するX線回折ピーク強度をX、ニッケルフェライト(NiFe4)の(311)面に帰属するX線回折ピーク強度をX、シリカ(SiO)の(101)面に帰属するX線回折ピーク強度をX3、銅マンガンシリケート(CuMn6SiO12)の(224)面に帰属するX線回折ピーク強度をX4とするとき、X1/X2≦0.011(ゼロを除く)、
3/X2≧0.02、X4/X2≧0.01であることを特徴とする。
In the present invention, Fe is 35 mol% to 45 mol% in terms of Fe 2 O 3 , Ni is 45 mol% to 55 mol% in terms of NiO, Cu is 0.1 mol% to 2 mol% in terms of CuO, and Mg is in terms of MgO. With respect to 100 parts by mass of the main component containing 5 mol% or more and 10 mol% or less and Mn in the range of 0.1 mol% or more and 0.5 mol% or less in terms of MnO, Si is 3 parts by mass or more and 8 parts by mass or less in terms of SiO 2. X-ray diffraction peak intensity attributed to the (222) plane of forsterite (2MgO.SiO 2 ) in X-ray diffraction is represented by X 1 , nickel ferrite (NiFe 2 O the X-ray diffraction peak intensity attributed to the (311) plane 4) X 2, silica (X-ray diffraction attributable to (101) plane of SiO 2) Over click intensity X 3, when the X-ray diffraction peak intensity attributed to the (224) plane of the copper-manganese silicate (CuMn 6 SiO 12) and X 4, X 1 / X 2 ≦ 0.011 ( excluding zero) ,
X 3 / X 2 ≧ 0.02 and X 4 / X 2 ≧ 0.01.

本発明は、前記X1、X2、X3、Xは、0.004≦X1/X2、X3/X2≦0.030、X4/X2≦0.025であることを特徴とする。 In the present invention, X 1 , X 2 , X 3 , and X 4 are 0.004 ≦ X 1 / X 2 , X 3 / X 2 ≦ 0.030, and X 4 / X 2 ≦ 0.025. It is characterized by.

本発明のフェライト粉末の製造方法は、Fe、Ni、Cu、Mg、Mn、Siの各金属元素の酸化物または加熱によりこれら金属元素の酸化物を生成する化合物から選択される原料粉末を混合して混合粉末を得る工程と、前記混合粉末を造粒することにより平均粒径1mm以上20mm以下の顆粒を得る工程と、前記顆粒を850℃以上で仮焼、粉砕する工程とを有することを特徴とする。   The method for producing a ferrite powder of the present invention comprises mixing raw material powder selected from oxides of metal elements of Fe, Ni, Cu, Mg, Mn, and Si or compounds that generate oxides of these metal elements by heating. A step of obtaining a mixed powder, a step of obtaining granules having an average particle size of 1 mm to 20 mm by granulating the mixed powder, and a step of calcining and pulverizing the granules at 850 ° C. or higher. And

さらに、本発明のフェライト質焼結体の製造方法は、上述の製造方法によりフェライト粉末を得た後、該フェライト粉末を造粒することにより成形用原料を得る工程と、前記成形用原料を所定形状に成形して成形体を得る工程と、前記成形体を焼成する工程とを有することを特徴とする。   Furthermore, the method for producing a ferrite sintered body according to the present invention includes a step of obtaining a molding raw material by granulating the ferrite powder after obtaining the ferrite powder by the above-described production method, It has the process of shape | molding in a shape and obtaining a molded object, and the process of baking the said molded object.

本発明は、これらフェライト粉末を用いたフェライト質焼結体、さらにはこのフェライト質焼結体を用いて成るフェライトコアであることを特徴とする。   The present invention is characterized in that it is a ferrite sintered body using these ferrite powders, and further a ferrite core using this ferrite sintered body.

本発明のフェライト粉末によれば、X線回折におけるフォルステライト(2MgO・SiO)の(222)面に帰属するX線回折ピーク強度をX、ニッケルフェライト(NiFe4)の(311)面に帰属するX線回折ピーク強度をX2、シリカ(SiO)の(101)面に帰属するX線回折ピーク強度をX3、銅マンガンシリケート(CuMn6SiO12)の(224)面に帰属するX線回折ピーク強度をX4とするとき、X1/X2≦0.011(ゼロを除く)、X3/X2≧0.020、X4/X2≧0.010であることから、このフェライト粉末を造粒して得られる成形用原料の粉体嵩密度を高くできるため、成形時にクラックの発生を抑制することができる。 According to the ferrite powder of the present invention, the X-ray diffraction peak intensity attributed to the (222) plane of forsterite (2MgO.SiO 2 ) in X-ray diffraction is X 1 , and (311) of nickel ferrite (NiFe 2 O 4 ). The X-ray diffraction peak intensity attributed to the plane is X 2 , the X-ray diffraction peak intensity attributed to the (101) plane of silica (SiO 2 ) is X 3 , and the (224) plane of copper manganese silicate (CuMn 6 SiO 12 ). When the assigned X-ray diffraction peak intensity is X 4 , X 1 / X 2 ≦ 0.011 (excluding zero), X 3 / X 2 ≧ 0.020, X 4 / X 2 ≧ 0.010 Therefore, since the powder bulk density of the molding raw material obtained by granulating this ferrite powder can be increased, the generation of cracks during molding can be suppressed.

このフェライト粉末は、さらに上述のX線回折において0.004≦X1/X2、X3/X2≦0.030、X4/X2≦0.025とすることで、成形用原料の粉体嵩密度のばらつきを小さくすることができるため、成形時のクラックの発生を特に抑制することができるとともに、低圧での成形が可能になる。 This ferrite powder is further made into a raw material for molding by setting 0.004 ≦ X 1 / X 2 , X 3 / X 2 ≦ 0.030, and X 4 / X 2 ≦ 0.025 in the above-mentioned X-ray diffraction. Since the variation in powder bulk density can be reduced, the generation of cracks during molding can be particularly suppressed, and molding at a low pressure is possible.

これらフェライト粉末を用いて成る本発明のフェライト質焼結体は、周波数150MHz以上でのQ値が100以上、透磁率が6以上、透磁率の温度係数((80℃における透磁率−20℃における透磁率)/20℃における透磁率)が150ppm/℃以下と優れた特性を有する焼結体とすることができる。   The ferrite sintered body of the present invention using these ferrite powders has a Q value of 100 or more at a frequency of 150 MHz or more, a permeability of 6 or more, and a temperature coefficient of permeability ((permeability at 80 ° C.−at 20 ° C. A sintered body having excellent characteristics of (permeability) / permeability at 20 ° C.) of 150 ppm / ° C. or less can be obtained.

本発明のフェライト粉末の製造方法は、Fe、Ni、Cu、Mg、Mn、Siの各金属元素の酸化物または加熱によりこれら金属元素の酸化物を生成する化合物から選択される原料粉末を混合して混合粉末を得る工程と、前記混合粉末を造粒することにより平均粒径1mm以上20mm以下の顆粒を得る工程と、前記顆粒を850℃以上で仮焼、粉砕する工程とを有することから、この製造方法によって得られたフェライト粉末を造粒して得られる成形用原料の粉体嵩密度を高くすることが可能となり、成形の際のクラックの発生を抑制することができる。   The method for producing a ferrite powder of the present invention comprises mixing raw material powder selected from oxides of metal elements of Fe, Ni, Cu, Mg, Mn, and Si or compounds that generate oxides of these metal elements by heating. A step of obtaining a mixed powder, a step of obtaining a granule having an average particle diameter of 1 mm or more and 20 mm or less by granulating the mixed powder, and a step of calcining and pulverizing the granule at 850 ° C. or higher. It becomes possible to increase the powder bulk density of the raw material for molding obtained by granulating the ferrite powder obtained by this production method, and to suppress the occurrence of cracks during molding.

本発明のフェライト質焼結体の製造方法は、上述の製造方法によりフェライト粉末を得た後、該フェライト粉末を造粒することにより成形用原料を得る工程と、前記成形用原料を所定形状に成形して成形体を得る工程と、前記成形体を焼成する工程とを有することから、上述と同様に成形用原料の粉体嵩密度を高くすることが可能となり、この成形用原料を用いて成形した際のクラックの発生を抑制することができる。   The method for producing a ferrite sintered body according to the present invention includes a step of obtaining a molding raw material by granulating the ferrite powder after obtaining the ferrite powder by the above-described production method, and forming the molding raw material into a predetermined shape. Since it has the process of shape | molding and obtaining a molded object, and the process of baking the said molded object, it becomes possible to make high the powder bulk density of the raw material for shaping | molding similarly to the above, and using this raw material for shaping | molding The generation of cracks during molding can be suppressed.

また、本発明のフェライトコアは、得られたフェライト質焼結体を用いて成ることから、高周波で使用しても電力損失を少なくすることが可能となり、このフェライトコアを信号用チップインダクタ等に用いた場合、移動体通信機器や基地局、各種コンピュータの高周波化に貢献することができる。   Further, since the ferrite core of the present invention is formed by using the obtained ferrite sintered body, it becomes possible to reduce power loss even when used at a high frequency, and this ferrite core can be used as a signal chip inductor or the like. When used, it can contribute to higher frequencies of mobile communication devices, base stations, and various computers.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明のフェライト粉末およびこのフェライト粉末を用いたフェライト質焼結体は、各成分を以下の範囲で含有するものである。   The ferrite powder of the present invention and the ferrite sintered body using this ferrite powder contain each component in the following ranges.

FeをFe換算で35mol%以上45mol%以下、
NiをNiO換算で45mol%以上55mol%以下、
CuをCuO換算で0.1mol%以上2mol%以下、
MgをMgO換算で5mol%以上10mol%以下、
MnをMnO換算で0.1mol%以上0.5mol%以下
の範囲で含有する主成分100質量部に対して、
SiをSiO換算で3質量部以上8質量部以下の範囲で含有する酸化物からなる。
Fe is 35 mol% or more and 45 mol% or less in terms of Fe 2 O 3 ,
Ni is 45 mol% or more and 55 mol% or less in terms of NiO,
Cu is 0.1 mol% or more and 2 mol% or less in terms of CuO,
Mg is 5 mol% or more and 10 mol% or less in terms of MgO,
For 100 parts by mass of the main component containing Mn in the range of 0.1 mol% or more and 0.5 mol% or less in terms of MnO,
It consists of an oxide containing Si in a range of 3 parts by mass or more and 8 parts by mass or less in terms of SiO 2 .

このフェライト粉末におけるFe、Ni、Cu、Mg、Mn、Siの含有量は、上述の範囲を外れるとフェライト粉末を用いて得られるフェライト質焼結体の周波数150MHz以上でのQ値、透磁率および透磁率の温度係数の各特性を低下させやすい。Feの含有量が35mol%未満では透磁率が低下し、45mol%を超えるとQ値が低下する。NiOの含有量が45mol%未満ではQ値が低下し、55mol%を超えると透磁率が低下する。CuOの含有量が0.1mol%未満では焼結性が低下し、2mol%を超えると温度係数が大きくなる。MgOの含有量が5mol%未満ではQ値が低下し、10mol%を超えると透磁率が低下する。MnOの含有量が0.1mol%未満では透磁率が低下し、0.5mol%を超えるとQ値が低下する。SiOの含有量が3質量部未満では透磁率の温度係数が大きくなり、8質量部を超えると透磁率が低下する。したがって、フェライト粉末およびこのフェライト粉末を用いたフェライト質焼結体は、各成分を上述の範囲で含有することに特定される。 When the content of Fe, Ni, Cu, Mg, Mn, and Si in the ferrite powder is out of the above range, the Q value at a frequency of 150 MHz or more, the magnetic permeability, and the ferrite sintered body obtained using the ferrite powder. It is easy to reduce each characteristic of the temperature coefficient of permeability. When the content of Fe 2 O 3 is less than 35 mol%, the magnetic permeability decreases, and when it exceeds 45 mol%, the Q value decreases. When the content of NiO is less than 45 mol%, the Q value decreases, and when it exceeds 55 mol%, the magnetic permeability decreases. When the content of CuO is less than 0.1 mol%, the sinterability decreases, and when it exceeds 2 mol%, the temperature coefficient increases. When the content of MgO is less than 5 mol%, the Q value decreases, and when it exceeds 10 mol%, the magnetic permeability decreases. When the content of MnO is less than 0.1 mol%, the magnetic permeability decreases, and when it exceeds 0.5 mol%, the Q value decreases. When the content of SiO 2 is less than 3 parts by mass, the temperature coefficient of permeability increases, and when it exceeds 8 parts by mass, the permeability decreases. Therefore, the ferrite powder and the ferrite sintered body using this ferrite powder are specified to contain each component in the above-mentioned range.

なお、フェライト粉末中におけるFe、Ni、Cu、Mg、Mn、Siの含有量の測定は、フェライト粉末にホウ酸と炭酸ナトリウムを加え、塩酸溶液に溶解させ、溶液中のFe、Ni、Cu、Mg、Mn、SiをICP発行分光分析装置(株式会社島津製作所製 ICPS−8100)にて定量分析を行えばよい。   In addition, the measurement of the content of Fe, Ni, Cu, Mg, Mn, and Si in the ferrite powder is performed by adding boric acid and sodium carbonate to the ferrite powder and dissolving it in a hydrochloric acid solution, and then adding Fe, Ni, Cu, Mg, Mn, and Si may be quantitatively analyzed with an ICP issuing spectroscopic analyzer (ICPS-8100, manufactured by Shimadzu Corporation).

このように各成分を所定量含有するフェライト粉末は、X線回折におけるフォルステライト(2MgO・SiO)の(222)面に帰属するX線回折ピーク強度をX、ニッケルフェライト(NiFe4)の(311)面に帰属するX線回折ピーク強度をX、シリカ(SiO)の(101)面に帰属するX線回折ピーク強度をX3、銅マンガンシリケート(CuMn6SiO12)の(224)面に帰属するX線回折ピーク強度をX4とするとき、X1/X2≦0.011(ゼロを除く)、X3/X2≧0.020、X4/X2≧0.010とすることが重要である。 Thus, the ferrite powder containing a predetermined amount of each component has an X-ray diffraction peak intensity attributed to the (222) plane of forsterite (2MgO.SiO 2 ) in X-ray diffraction as X 1 , nickel ferrite (NiFe 2 O 4). ) Of X3 diffraction peak intensity attributed to the (311) plane of X 2 , X 3 diffraction peak intensity attributed to the (101) plane of silica (SiO 2 ), and copper manganese silicate (CuMn 6 SiO 12 ). When the X-ray diffraction peak intensity attributed to the (224) plane is X 4 , X 1 / X 2 ≦ 0.011 (excluding zero), X 3 / X 2 ≧ 0.020, X 4 / X 2 ≧ It is important to set it to 0.010.

X線回折において、それぞれX〜Xを規定した理由は、各ピーク比が仮焼温度、しいては仮焼状態の変化に敏感に反応するためである。 The reason why X 1 to X 4 are defined in X-ray diffraction is that each peak ratio reacts sensitively to changes in the calcination temperature, or calcination state.

フォルステライト(2MgO・SiO)は、例えばJCPDS−ICDDのNo.34−0189に記載された化合物であり、Cu−Kα線によるX線回折では(222)面に帰属するピークの回折角2θは52〜53°付近に現れ、その回折ピーク強度をXとする。ニッケルフェライト(NiFe4)は、例えばJCPDS−ICDDのNo.44−1485に記載された化合物であり、Cu−Kα線によるX線回折では(311)面に帰属するピークの回折角2θは35〜36℃付近に現れ、その回折ピーク強度をX2とする。シリカ(SiO)は、例えばJCPDS−ICDDのNo.05−0490に記載された化合物であり、Cu−Kα線によるX線回折では(101)面に帰属するピークの回折角2θは26〜27℃付近に現れ、その回折ピーク強度をX3とする。銅マンガンシリケート(CuMn6SiO12)、例えばJCPDS−ICDDのNo.41−0576に記載された化合物であり、Cu−Kα線によるX線回折では(224)面に帰属するピークの回折角2θは33〜34℃付近に現れ、その回折ピーク強度をX4とする。 Forsterite (2MgO.SiO 2 ) is, for example, JCPDS-ICDD No. In the X-ray diffraction by Cu-Kα ray, the diffraction angle 2θ of the peak attributed to the (222) plane appears in the vicinity of 52 to 53 °, and the diffraction peak intensity is X 1 . . Nickel ferrite (NiFe 2 O 4 ) is, for example, JCPDS-ICDD No. In the X-ray diffraction by Cu-Kα ray, the diffraction angle 2θ of the peak attributed to the (311) plane appears in the vicinity of 35 to 36 ° C., and the diffraction peak intensity is X 2 . . Silica (SiO 2 ) is, for example, JCPDS-ICDD No. In the X-ray diffraction using Cu—Kα ray, the diffraction angle 2θ of the peak attributed to the (101) plane appears in the vicinity of 26 to 27 ° C., and the diffraction peak intensity is X 3 . . Copper manganese silicate (CuMn 6 SiO 12 ), for example, JCPDS-ICDD No. In the X-ray diffraction by Cu-Kα ray, the diffraction angle 2θ of the peak attributed to the (224) plane appears in the vicinity of 33 to 34 ° C., and the diffraction peak intensity is X 4 . .

このように規定されるX〜Xを、X/X≦0.011(ゼロを除く)、X/X≧0.02、X/X≧0.01とすることで、このフェライト粉末を用いてフェライト質焼結体を得る際に生成される成形用原料の粉体嵩密度を1.5g/cmより高くすることができ、この成形用原料を用いて成形する際のクラックの発生を十分に抑制することができる。同時に、このフェライト粉末を用いて得られるフェライト質焼結体の周波数150MHz以上でのQ値を100以上、透磁率を6以上、透磁率の温度係数((80℃における透磁率−20℃における透磁率)/20℃における透磁率)を150ppm/℃以下とすることができる。 The X 1 to X 4 this is defined as, (excluding zero) X 1 / X 2 ≦ 0.011 , X 3 / X 2 ≧ 0.02, be X 4 / X 2 ≧ 0.01 Thus, the powder bulk density of the forming raw material produced when obtaining a ferrite sintered body using this ferrite powder can be made higher than 1.5 g / cm 3 , and the forming raw material is formed using this forming raw material. It is possible to sufficiently suppress the occurrence of cracks during the process. At the same time, the ferrite sintered body obtained using this ferrite powder has a Q value of 100 or more at a frequency of 150 MHz or more, a permeability of 6 or more, and a temperature coefficient of permeability ((permeability at 80 ° C.−permeability at 20 ° C. Magnetic permeability) / permeability at 20 ° C.) can be 150 ppm / ° C. or less.

フェライト粉末を用いてフェライト質焼結体を得る工程について、詳細は後述するが、フェライト粉末を湿式粉砕等によりスラリーを得、このスラリーにバインダー等を添加して噴霧乾燥する造粒工程を経て成形用原料を得る。その後、この成形用原料を所定形状に成形して成形体を得、成形体を焼成することでフェライト質焼結体を得ることができる。なお、前記粉体嵩密度は、フェライト粉末を造粒した後に得られる成形用原料の粉体嵩密度を示すものであり、粉体嵩密度とは、一定容積中に占める粉末の重量のことであり、粉体嵩密度の低い成形用原料は成形時に圧縮比が著しく大きくなるため、成形用の金型内に封入された空気に起因するラミネーションクラックが発生するという欠点を有する。ここで、圧縮比とは、成形用の金型に充填された成形用原料の厚みを成形後の成形体の厚みで割った値、即ち成形前後の厚みの比である。成形における圧縮比を小さくするためには成形用原料の粉体嵩密度は高い方が良いが、逆に粉体嵩密度の高い成形用原料は硬くなるために変形しにくく高い成形圧を必要とする。したがって、成形用原料の粉体嵩密度は1.6g/cm以下とすることが好ましく、上述で規定されたX〜Xが0.004≦X1/X2、X3/X2≦0.030、X4/X2≦0.025とすることで得られる。これにより、成形時のクラックの発生を十分に抑制することができ、圧縮比、成形圧のバラツキが小さくなる。さらに、成形時のクラックの発生を抑制し、圧縮比、成形圧のバラツキをより小さくするために、成形用原料の粉体嵩密度を1.52g/cm以上1.6g/cm以下とすることが好ましく、上述で規定されたX〜Xが0.004≦X1/X2、X3/X2≦0.030、X4/X2≦0.025とすることで得られる。これにより、成形時のクラックの発生を十分に抑制することができ、圧縮比、成形圧のバラツキが小さくなる。 The process of obtaining a ferrite-based sintered body using ferrite powder will be described in detail later. A ferrite powder is obtained by wet pulverization or the like, and a slurry is formed by adding a binder to the slurry and spray-drying and forming. Get raw materials. Thereafter, the molding raw material is molded into a predetermined shape to obtain a molded body, and the molded body is fired to obtain a ferrite sintered body. The powder bulk density indicates the powder bulk density of the forming raw material obtained after granulating the ferrite powder, and the powder bulk density is the weight of the powder in a certain volume. In addition, a molding raw material having a low powder bulk density has a disadvantage that a compression ratio is remarkably increased at the time of molding, so that a lamination crack is generated due to air enclosed in a molding die. Here, the compression ratio is a value obtained by dividing the thickness of the molding raw material filled in the molding die by the thickness of the molded body after molding, that is, the ratio of the thickness before and after molding. In order to reduce the compression ratio in the molding, the powder bulk density of the molding raw material should be high, but conversely, the molding raw material with a high powder bulk density is hard and therefore difficult to deform and requires a high molding pressure. To do. Accordingly, the powder bulk density of the forming raw material is preferably 1.6 g / cm 3 or less, and X 1 to X 4 defined above are 0.004 ≦ X 1 / X 2 , X 3 / X 2. ≦ 0.030 and X 4 / X 2 ≦ 0.025. Thereby, generation | occurrence | production of the crack at the time of shaping | molding can fully be suppressed, and the dispersion | variation in a compression ratio and molding pressure becomes small. Furthermore, in order to suppress the occurrence of cracks during molding and to reduce the variation in compression ratio and molding pressure, the bulk density of the raw material for molding is 1.52 g / cm 3 or more and 1.6 g / cm 3 or less. Preferably, X 1 to X 4 defined above are obtained by setting 0.004 ≦ X 1 / X 2 , X 3 / X 2 ≦ 0.030, and X 4 / X 2 ≦ 0.025. It is done. Thereby, generation | occurrence | production of the crack at the time of shaping | molding can fully be suppressed, and the dispersion | variation in a compression ratio and molding pressure becomes small.

上述のようにX〜XをX/X≦0.011(ゼロを除く)、X/X≧0.02、X/X≧0.01としたフェライト粉末を用いて得られた成形用原料の粉体嵩密度を1.5g/cmより高くできる根拠は明確には不明であるが、フェライト粉末が上述のようなX線回折により観察される複数の結晶相を有し、これらが所定範囲にあることに起因するものと考えられる。また、フェライト粉末のX〜Xを、X/X≦0.011(ゼロを除く)、X/X≧0.02、X/X≧0.01とするには、詳細は後述するが、フェライト粉末を得る際の造粒後の顆粒の平均粒径および顆粒を仮焼するときの仮焼温度を調整することで得ることができる。 As described above, a ferrite powder in which X 1 to X 4 are set to X 1 / X 2 ≦ 0.011 (excluding zero), X 3 / X 2 ≧ 0.02, and X 4 / X 2 ≧ 0.01 is used. The reason why the powder bulk density of the molding raw material obtained in this way can be made higher than 1.5 g / cm 3 is clearly unknown, but the ferrite powder is a plurality of crystal phases observed by X-ray diffraction as described above. It is considered that these are caused by being in a predetermined range. To make X 1 to X 4 of the ferrite powder X 1 / X 2 ≦ 0.011 (excluding zero), X 3 / X 2 ≧ 0.02, and X 4 / X 2 ≧ 0.01 As will be described in detail later, it can be obtained by adjusting the average particle diameter of the granulated granules when obtaining the ferrite powder and the calcining temperature when calcining the granules.

一方、上述で規定されたX〜XがX/X>0.011、0.02>X/X、0.01>X4/X2の場合は、成形用原料の粉体嵩密度が1.5g/cmより低くなるため、成形用原料が成形用の金型に緻密に充填されにくく、成形時にクラックが発生しやすい。 On the other hand, when X 1 to X 4 defined above are X 1 / X 2 > 0.011, 0.02> X 3 / X 2 , 0.01> X 4 / X 2 , Since the bulk density of the powder is lower than 1.5 g / cm 3 , it is difficult for the molding raw material to be densely filled in the molding die, and cracks are likely to occur during molding.

/X<0.004(ゼロを除く)、X/X>0.030、X/X>0.025の場合は、顆粒の粉体嵩密度が1.600g/cm以上になる。この場合、成形時の圧縮比はより小さくなるものの、顆粒は硬くなりつぶれにくく、成形圧が高くなり、また成形体内に空孔が残りやすく、高密度な焼結体を得ることができないおそれがある。 In the case of X 1 / X 2 <0.004 (excluding zero), X 3 / X 2 > 0.030, and X 4 / X 2 > 0.025, the powder bulk density of the granules is 1.600 g / cm It becomes 3 or more. In this case, although the compression ratio at the time of molding becomes smaller, the granules are hard and difficult to crush, the molding pressure becomes high, and pores are likely to remain in the molded body, so there is a possibility that a high-density sintered body cannot be obtained. is there.

なお、0.009<X1/X2<0.011、0.020<X/X<0.022、0.01<X/X<0.012の場合は、顆粒の粉体嵩密度が1.500−1.520g/cmとなり、成形時にクラックを発生させないという効果は得られるが、圧縮比を小さくできないおそれがある。 In the case of 0.009 <X 1 / X 2 <0.011, 0.020 <X 3 / X 2 <0.022, 0.01 <X 4 / X 2 <0.012, the granular powder The body bulk density is 1.500-1.520 g / cm 3 , and the effect of not generating cracks during molding can be obtained, but the compression ratio may not be reduced.

なお、フェライト粉末のX線回折は、X線回折装置(スペクトリス社製 PW3050)を用い、回折角2θ=20〜70°にて測定を行うことができる。   In addition, X-ray diffraction of ferrite powder can be measured using a X-ray diffractometer (Spectris PW3050) at a diffraction angle 2θ = 20 to 70 °.

本発明のフェライト粉末およびこのフェライト粉末を用いたフェライト質焼結体の製造方法について図1を用いて説明する。   The ferrite powder of the present invention and a method for producing a ferrite sintered body using the ferrite powder will be described with reference to FIG.

本発明のフェライト粉末の製造方法は、図1に示すように、得られるフェライト粉末のFeをFe換算で35mol%以上45mol%以下、NiをNiO換算で45mol%以上55mol%以下、CuをCuO換算で0.1mol%以上2mol%以下、MgをMgO換算で5mol%以上10mol%以下、MnをMnO換算で0.1mol%以上0.5mol%以下の範囲で含有する主成分100質量部に対して、SiをSiO換算で3質量部以上8質量部以下の範囲で含有するように、Fe、Ni、Cu、Mg、Mn、Siの各金属元素の酸化物または加熱によりこれら金属元素の酸化物を生成する化合物から選択される原料粉末を混合して混合粉末を得る工程と、前記混合粉末を造粒することにより平均粒径1mm以上20mm以下の顆粒を得る工程と、前記顆粒を850℃以上で仮焼、粉砕する工程とを有する。 As shown in FIG. 1, the method for producing a ferrite powder of the present invention is such that Fe of the obtained ferrite powder is 35 mol% or more and 45 mol% or less in terms of Fe 2 O 3 , Ni is 45 mol% or more and 55 mol% or less in terms of NiO, Cu 100 parts by mass of a main component containing 0.1 mol% or more and 2 mol% or less in terms of CuO, Mg in a range of 5 mol% or more and 10 mol% or less in terms of MgO, and Mn in a range of 0.1 mol% or more and 0.5 mol% or less in terms of MnO In contrast, Fe, Ni, Cu, Mg, Mn, Si metal oxides or these metal elements by heating so as to contain Si in a range of 3 parts by mass or more and 8 parts by mass or less in terms of SiO 2 Mixing a raw material powder selected from the compounds that generate oxides of the above to obtain a mixed powder, and granulating the mixed powder to obtain an average particle size of 1 mm A step of obtaining a granule having an upper diameter of 20 mm or less and a step of calcining and pulverizing the granule at 850 ° C. or higher.

原料粉末としては、例えば、酸化鉄粉末と、酸化ニッケル粉末と、酸化銅粉末と、水酸化マグネシウム粉末と、酸化マンガン粉末または炭酸マンガン粉末のうち少なくとも1種と、酸化珪素とを用いることができる。化合物としては、例えば水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩を選択することができる。これら原料粉末を得られるフェライト粉末の各成分の含有量は上述の範囲になるように調合し混合粉末を得る。   As the raw material powder, for example, iron oxide powder, nickel oxide powder, copper oxide powder, magnesium hydroxide powder, at least one of manganese oxide powder or manganese carbonate powder, and silicon oxide can be used. . As the compound, for example, a hydroxide, carbonate, nitrate, sulfate, or oxalate can be selected. The content of each component of the ferrite powder from which these raw material powders are obtained is blended so as to be in the above range to obtain a mixed powder.

次いで、得られた混合粉末を造粒する。造粒の工程は、先ず混合粉末を乾式の場合は振動ミルで湿式の場合は混合粉末に水やバインダーを添加してアトライター、ボールミルまたは振動ミルを用いて粉砕した後に脱水を行う。このように粉砕混合された粉体に〜〜〜等を添加して転動造粒機等を用いて平均粒径1mm以上20mm以下の顆粒を得るための造粒を行う。   Next, the obtained mixed powder is granulated. In the granulation step, first, the mixed powder is pulverized using a vibration mill in the case of a dry type, and water or a binder is added to the mixed powder after pulverization using an attritor, ball mill or vibration mill in the case of a wet type. Granulation is performed to obtain granules having an average particle diameter of 1 mm or more and 20 mm or less using a rolling granulator or the like after adding ~~~ etc. to the powder thus pulverized and mixed.

次いで、得られた顆粒を、加熱され、回転する筒内を粉体が通過して仮焼が行われる炉内で850℃以上で仮焼する。   Next, the obtained granules are heated and calcined at 850 ° C. or higher in a furnace in which the powder passes through the rotating cylinder and calcining is performed.

その後、スチールボール等を粉砕用メディアとして用いた振動ミル等で粉砕することによって、本発明のフェライト粉末を製造する。   Thereafter, the ferrite powder of the present invention is produced by grinding with a vibration mill or the like using a steel ball or the like as a grinding medium.

ここで、顆粒の平均粒径を1mm以上20mm以下とするのは、平均粒径がこの範囲内であると、仮焼温度が850℃以上の場合に、得られたフェライト粉末を用いてフェライト質焼結体とする工程で得られる成形用原料の粉体嵩密度を1.5g/cm以上とすることができるからである。一方、平均粒径が20mmを超える場合または仮焼温度が850℃未満の場合には、得られる成形用原料の粉体嵩密度が1.5g/cm未満となってしまう。このような条件で造粒、仮焼することにより得られるフェライト粉末は上述で規定されたX線回折におけるX〜XをX1/X2≦0.011(ゼロを除く)、X3/X2≧0.02、X4/X2≧0.01の範囲とすることができる。 Here, the average particle size of the granules is set to 1 mm or more and 20 mm or less. When the average particle size is within this range, when the calcining temperature is 850 ° C. or more, the obtained ferrite powder is used as a ferrite material. This is because the powder bulk density of the forming raw material obtained in the step of forming the sintered body can be 1.5 g / cm 3 or more. On the other hand, when the average particle diameter exceeds 20 mm or when the calcining temperature is less than 850 ° C., the powder bulk density of the obtained molding raw material becomes less than 1.5 g / cm 3 . The ferrite powder obtained by granulation and calcining under such conditions is such that X 1 to X 4 in the X-ray diffraction defined above are X 1 / X 2 ≦ 0.011 (excluding zero), X 3 / X 2 ≧ 0.02 and X 4 / X 2 ≧ 0.01.

また、顆粒の平均粒径は5mm以上15mm以下とすることがより好ましく、仮焼温度は850℃以上910℃以下とすることがより好ましい。これにより、得られる成形用原料の粉体嵩密度を1.52g/cm以上1.6g/cm以下とすることができる。これは、フェライト化した結晶の粒度分布を略一定にでき、さらに顆粒が緻密に充填されやすいからであると考えられる。これにより得られるフェライト粉末は上述で規定されたX線回折におけるX〜Xを0.004≦X1/X2、X3/X2≦0.030、X4/X2≦0.025とすることができる。 The average particle size of the granules is more preferably from 5 mm to 15 mm, and the calcining temperature is more preferably from 850 ° C. to 910 ° C. Thus, the powder bulk density of the molding material obtained can be 1.52 g / cm 3 or more 1.6 g / cm 3 or less. This is presumably because the particle size distribution of the ferrited crystals can be made substantially constant and the granules are more easily packed densely. The ferrite powder thus obtained has X 1 to X 4 in the X-ray diffraction specified above of 0.004 ≦ X 1 / X 2 , X 3 / X 2 ≦ 0.030, and X 4 / X 2 ≦ 0. 025.

このようにして得られたフェライト粉末を用いてフェライト質焼結体を得るには、図1に示すように、フェライト粉末を造粒することにより成形用原料を得る工程と、前記成形用原料を所定形状に成形して成形体を得る工程と、前記成形体を焼成する工程とを有する。先ず、フェライト粉末をボールミルやビーズミルで湿式粉砕してスラリーを得、得られたスラリーにバインダーとしてポリビニルアルコール(PVA)、ポリエチレングリコール、アクリル、トリエチレングリコール、ワックス等から選択される少なくとも1種を所定量添加して、噴霧乾燥した後、平均粒径が約80μmの成形用原料を得る。なお、上述の粉体嵩密度とはこの成形用原料の粉体嵩密度を示すものである。   In order to obtain a ferrite sintered body using the ferrite powder thus obtained, as shown in FIG. 1, a step of obtaining a molding raw material by granulating ferrite powder, and the molding raw material It has the process of shape | molding in a predetermined shape and obtaining a molded object, and the process of baking the said molded object. First, a ferrite powder is wet-ground with a ball mill or a bead mill to obtain a slurry, and at least one selected from polyvinyl alcohol (PVA), polyethylene glycol, acrylic, triethylene glycol, wax and the like is used as a binder in the obtained slurry. After quantitative addition and spray drying, a molding raw material having an average particle size of about 80 μm is obtained. The above-mentioned powder bulk density refers to the powder bulk density of this forming raw material.

次いで、成形用原料を金型にて所定形状にプレス成形し、成形体を得る。   Next, the molding material is press-molded into a predetermined shape using a mold to obtain a molded body.

最後に、成形体を焼成炉にて例えば950℃以上1200℃以下で焼成することによってフェライト焼結体が製造できる。   Finally, the sintered compact can be produced by firing the compact in a firing furnace at, for example, 950 ° C. or more and 1200 ° C. or less.

このような方法にて得られたフェライト質焼結体は、周波数150MHz以上でのQ値が100以上で、6以上の透磁率を有し、透磁率の温度係数((80℃における透磁率−20℃における透磁率)/20℃における透磁率)が150ppm/℃以下の特性を有し、図2(a)に示すようなリング状のトロイダルコア1、あるいは図2(b)に示すようなボビン状コア2等のフェライトコアとして好適に用いられ、フェライトコアのそれぞれの巻き線部1a、2aに巻き線を施すことによってコイルとすることができる。これらコイルはチップインダクタ等に用いられ、高周波領域で高いQ値が要求される移動体通信機器やコンピュータ等の信号処理系の部品として利用することができる。   The ferrite sintered body obtained by such a method has a Q value of 100 or more at a frequency of 150 MHz or more, a permeability of 6 or more, and a temperature coefficient of permeability ((permeability at 80 ° C.− (Permeability at 20 ° C.) / Permeability at 20 ° C.) of 150 ppm / ° C. or less, and the ring-shaped toroidal core 1 as shown in FIG. 2 (a) or as shown in FIG. 2 (b) It can be suitably used as a ferrite core such as the bobbin-shaped core 2 and can be formed into a coil by winding the winding portions 1a and 2a of the ferrite core. These coils are used for chip inductors and the like, and can be used as signal processing parts for mobile communication devices and computers that require a high Q value in a high frequency region.

(実施例1)
酸化鉄粉末、酸化ニッケル粉末、酸化銅粉末、水酸化マグネシウム粉末、炭酸マンガン粉末、酸化珪素粉末をアトライターで粉砕混合した後、フィルタープレスで脱水した。脱水後、ロータリードライヤーで平均粒径が10mmになるように造粒した後、890℃で仮焼した。得られた仮焼粉をビーズミルにて粉砕した後、仮焼粉100質量部に対して、PVA1重量部、ポリエチレングリコール1重量部、パラフィンワックス1重量部をそれぞれ加えて、スプレードライヤーにより噴霧乾燥して、得られた成形用原料を金型を用いてトロイダルコアの形状に20個づつ加圧成形し、得られた各成形体を950〜1200℃で焼成し、大きさが外径14mm、内径8mm、厚み3.5mmの試料No.1〜24を作製した。
(Example 1)
Iron oxide powder, nickel oxide powder, copper oxide powder, magnesium hydroxide powder, manganese carbonate powder and silicon oxide powder were pulverized and mixed with an attritor and then dehydrated with a filter press. After dehydration, the mixture was granulated with a rotary dryer so that the average particle size was 10 mm, and calcined at 890 ° C. After pulverizing the obtained calcined powder with a bead mill, 1 part by weight of PVA, 1 part by weight of polyethylene glycol and 1 part by weight of paraffin wax are added to 100 parts by mass of the calcined powder, and spray-dried with a spray dryer. The molding raw material thus obtained was pressure-molded into 20 toroidal cores using a mold, and the resulting molded bodies were fired at 950 to 1200 ° C., with a size of 14 mm outer diameter and inner diameter. Sample No. 8 having a thickness of 8 mm and a thickness of 3.5 mm. 1-24 were produced.

また、表1、2に示した条件以外は、上述の実施例と同様にして本発明の範囲外の試料を作製し、実施例と同様に比較例として評価する。   Samples outside the scope of the present invention were prepared in the same manner as in the above examples except for the conditions shown in Tables 1 and 2, and evaluated as comparative examples in the same manner as in the examples.

表1に示す得られたフェライト粉末におけるFe、Ni、Cu、Mg、Mn、Siの含有量の測定は、フェライト粉末にホウ酸と炭酸ナトリウムを加え、塩酸溶液に溶解させ、溶液中のFe、Ni、Cu、Mg、Mn、SiをICP発行分光分析装置(株式会社島津製作所製 ICPS−8100)にて定量分析により測定し、X線回折における各比は、実施形態に示した方法にて測定した。   The content of Fe, Ni, Cu, Mg, Mn, and Si in the obtained ferrite powder shown in Table 1 was measured by adding boric acid and sodium carbonate to the ferrite powder and dissolving it in a hydrochloric acid solution. Ni, Cu, Mg, Mn, and Si are measured by quantitative analysis with an ICP issuing spectroscopic analyzer (ICPS-8100 manufactured by Shimadzu Corporation), and each ratio in X-ray diffraction is measured by the method described in the embodiment. did.

表2に示すフェライト粉末を製造する過程における造粒後の顆粒の平均粒径は、マイクロメーターにより測定した。また、仮焼粉の平均粒径D50の測定は日機装製マイクロトラックを用いて測定し、BETは一点法でマイクロメトリックス製フローソープII2300を用いて測定した。フェライト粉末を用いて造粒して得られた成形用原料の粉体嵩密度は、粉体を容器の中に自然落下させて充填し、一定容積を与える重量から求めることにより測定した。 The average particle size of the granulated granules in the process of producing the ferrite powder shown in Table 2 was measured with a micrometer. Also, measurement of the average particle diameter D 50 of the calcined powder was measured using Microtrac manufactured by Nikkiso, BET was measured using a micro-metric steel flow soap II2300 one point method. The powder bulk density of the forming raw material obtained by granulation using ferrite powder was measured by determining the weight from the weight giving a certain volume by naturally dropping the powder into a container and filling it.

得られた試料の評価は、先ず成形性の評価は、成形体を双眼顕微鏡で観察して、クラックが発生している成形体の個数割合を求め、この割合を発生率とする方法により行った。◎(特に良好)は成形体のクラック発生率が0.5%未満、○(良好)はクラック発生率が0.5%以上1%未満、×(悪い)はクラックの発生率が1%以上である。また、成形圧の評価は、生密度が3.2g/cm以上となる成形圧が200MPa未満の場合に◎(特に良好)、200MPa以上の場合に○(良好)とした。また、焼結性の良否は、1200℃以下で焼結密度が5g/cm以上の焼結体が得られた場合を○(良い)、1200℃よりも高い温度範囲のみで焼結密度が5g/cm以上の焼結体が得られた場合を×(悪い)とした。 The evaluation of the obtained sample was performed by a method of first evaluating the moldability by observing the molded body with a binocular microscope, obtaining the number ratio of the molded body in which cracks occurred, and using this ratio as the incidence . ◎ (particularly good) indicates a crack occurrence rate of less than 0.5%, ○ (good) indicates a crack occurrence rate of 0.5% to less than 1%, and X (poor) indicates a crack occurrence rate of 1% or more. It is. Further, the molding pressure was evaluated as ◎ (particularly good) when the molding pressure at which the green density was 3.2 g / cm 3 or more was less than 200 MPa, and ◯ (good) when it was 200 MPa or more. In addition, the quality of the sinterability is obtained when a sintered body having a sintering density of 5 g / cm 3 or more is obtained at 1200 ° C. or less. The case where a sintered body of 5 g / cm 3 or more was obtained was evaluated as x (bad).

次いで、得られたトロイダルコアに線径0.2mmの被膜銅線を巻き付けて、以下の各特性を測定した。100kHzの透磁率はLCRメーター(ヒューレットパッカード製HP4285A)を用いてJIS C−2561に準拠して評価した。また、150MHzのQ値は、Qメーター(目黒電波測器製MQ−171)を用いて測定した。温度係数はLCRメーター(ヒューレットパッカード製 HP4285A)を用い、基準温度を20℃、測定温度範囲を、20〜80℃としてJIS C−2561の規格に従い評価した。   Next, a coated copper wire having a wire diameter of 0.2 mm was wound around the obtained toroidal core, and the following characteristics were measured. The magnetic permeability at 100 kHz was evaluated based on JIS C-2561 using an LCR meter (HP4285A manufactured by Hewlett Packard). Further, the Q value at 150 MHz was measured using a Q meter (MQ-171, MQ-171). The temperature coefficient was evaluated according to the standard of JIS C-2561 using an LCR meter (HP4285A, manufactured by Hewlett-Packard) with a reference temperature of 20 ° C. and a measurement temperature range of 20 to 80 ° C.

結果は表1、2に示す通りである。

Figure 2008207988
Figure 2008207988
The results are as shown in Tables 1 and 2.
Figure 2008207988
Figure 2008207988

本発明の実施例(No.13〜24)は顆粒の粉体嵩密度が1.500g/cmよりも高く、クラックの発生率は1%以下であった。特に、0.004≦X1/X2≦0.009、0.022≦X/X≦0.03、0.012≦X/X≦0.025であった実施例(No.13−24)では成形用原料の粉体嵩密度が1.520−1.600g/cmの範囲となり、クラックの発生率は0.5%以下であった。さらに、本発明のフェライト粉末を用いて得られた焼結体は、周波数150MHz以上でのQ値が100以上となり、6以上の透磁率を有し、透磁率の温度係数((80℃における透磁率−20℃における透磁率)/20℃における透磁率)が150ppm/℃以下となり、1200℃以下で焼結するものであることがわかった。 In Examples (Nos. 13 to 24) of the present invention, the powder bulk density of the granules was higher than 1.500 g / cm 3 , and the crack generation rate was 1% or less. In particular, Examples in which 0.004 ≦ X 1 / X 2 ≦ 0.009, 0.022 ≦ X 3 / X 2 ≦ 0.03, 0.012 ≦ X 4 / X 2 ≦ 0.025 (No .13-24), the bulk density of the raw material for molding was in the range of 1.520-1.600 g / cm 3 , and the crack generation rate was 0.5% or less. Further, the sintered body obtained using the ferrite powder of the present invention has a Q value of 100 or more at a frequency of 150 MHz or more, a permeability of 6 or more, and a temperature coefficient of permeability ((permeability at 80 ° C. It was found that the magnetic permeability (permeability at −20 ° C.) / Permeability at 20 ° C.) was 150 ppm / ° C. or lower, and sintering was performed at 1200 ° C. or lower.

これに対し、比較例(No.1〜12)は、クラックの発生率は0.5%以下であり、成形圧も200MPa以下であったものの、Fe、Ni、Cu、Mg、Mn、Siの含有量が本発明の範囲外の試料の結果は、次の通りであった。   On the other hand, in the comparative examples (Nos. 1 to 12), although the occurrence rate of cracks was 0.5% or less and the molding pressure was 200 MPa or less, Fe, Ni, Cu, Mg, Mn, and Si were used. The result of the sample whose content is outside the range of the present invention was as follows.

Feの含有量が35mol%未満のもの(No.1)では透磁率が低くなった。Feの含有量が45mol%を超えるもの(No.2)ではQ値が低かった。NiOの含有量が45mol%未満のもの(No.3)ではQ値が低く、55mol%を超えるもの(No.4)は透磁率が低かった。CuOの含有量が0.1mol%未満のもの(No.5)では焼結性が悪く、1200℃以下で焼結せず、CuOの含有量が2mol%を超えるもの(No.6)では透磁率の温度係数が大きかった。MgOの含有量が5mol%未満のもの(No.7)ではQ値が低く、10mol%を超えるもの(No.8)では透磁率が低かった。MnOの含有量が0.1mol%未満のもの(No.9)では透磁率が低く、0.5mol%を超えるもの(No.10)ではQ値が低かった。SiOの含有量が3質量部未満のもの(No.11)では透磁率の温度係数が大きく、10質量部を超えるもの(No.12)では透磁率が低かった。 When the content of Fe 2 O 3 was less than 35 mol% (No. 1), the magnetic permeability was low. In the case where the content of Fe 2 O 3 exceeds 45 mol% (No. 2), the Q value was low. When the content of NiO was less than 45 mol% (No. 3), the Q value was low, and when the content was more than 55 mol% (No. 4), the magnetic permeability was low. When the CuO content is less than 0.1 mol% (No. 5), the sinterability is poor, and sintering does not occur at 1200 ° C. or less, and when the CuO content exceeds 2 mol% (No. 6) The temperature coefficient of magnetic susceptibility was large. When the content of MgO was less than 5 mol% (No. 7), the Q value was low, and when the content exceeded 10 mol% (No. 8), the magnetic permeability was low. When the MnO content was less than 0.1 mol% (No. 9), the magnetic permeability was low, and when the content was more than 0.5 mol% (No. 10), the Q value was low. When the content of SiO 2 was less than 3 parts by mass (No. 11), the temperature coefficient of permeability was large, and when the content exceeded 10 parts by mass (No. 12), the permeability was low.

(実施例2)
次に主成分として41mol%のFe、50mol%のNiO、0.8mol%のCuO、8.0mol%のMgO、0.2mol%のMnO、主成分100質量部に対してSiOを5質量部に固定し、造粒平均径と仮焼温度を表2の範囲で変化させ、その他の条件は上記実施例1と同様にして、試料No.30−33、35−38、40−43、45−48、50−53を得た。
(Example 2)
Next, as a main component, 41 mol% Fe 2 O 3 , 50 mol% NiO, 0.8 mol% CuO, 8.0 mol% MgO, 0.2 mol% MnO, SiO 2 with respect to 100 parts by mass of the main component. 5 parts by mass, the granulation average diameter and the calcining temperature were changed within the range shown in Table 2, and the other conditions were the same as in Example 1 above. 30-33, 35-38, 40-43, 45-48, 50-53 were obtained.

表3に示す得られたフェライト粉末におけるFe、Ni、Cu、Mg、Mn、Siの含有量の測定、X線回折における各比の測定、表4に示すフェライト粉末を製造する過程における造粒後の顆粒の平均粒径は、仮焼粉の平均粒径D50、BETは実施例1と同様の方法にて測定した。 Measurement of content of Fe, Ni, Cu, Mg, Mn, Si in the obtained ferrite powder shown in Table 3, measurement of each ratio in X-ray diffraction, after granulation in the process of producing ferrite powder shown in Table 4 The average particle size of the granules was measured by the same method as in Example 1, and the average particle size D 50 and BET of the calcined powder were measured.

また、成形性、成形圧、そして焼結性の評価は実施例1と同様に行い、得られた焼結体に対して、実施例1と同様にして150MHzのQ値、100kHzの透磁率、温度係数を測定し、評価した。   In addition, the moldability, molding pressure, and sinterability were evaluated in the same manner as in Example 1. For the obtained sintered body, a Q value of 150 MHz, a magnetic permeability of 100 kHz, as in Example 1, The temperature coefficient was measured and evaluated.

結果は表3,4に示す通りである。

Figure 2008207988
Figure 2008207988
The results are as shown in Tables 3 and 4.
Figure 2008207988
Figure 2008207988

1/X2≦0.011(ゼロを除く)、X3/X2≧0.020、X4/X2≧0.010であった本発明の実施例は、顆粒の粉体嵩密度が1.500g/cmよりも高く、クラックの発生率は1%以下であった。その実施例は、造粒後の顆粒の平均粒径が1〜20mm以下、仮焼温度が850℃以上の時に得られていることがわかった。 Examples of the present invention in which X 1 / X 2 ≦ 0.011 (excluding zero), X 3 / X 2 ≧ 0.020, and X 4 / X 2 ≧ 0.010 are the powder bulk density of granules. Was higher than 1.500 g / cm 3 and the occurrence rate of cracks was 1% or less. It was found that the examples were obtained when the granulated granules had an average particle size of 1 to 20 mm or less and a calcining temperature of 850 ° C. or more.

さらに、0.004≦X1/X≦0.009、0.022≦X/X≦0.03、0.012≦X/X≦0.025であった本発明の実施例(No.31、32、36、37、41、42、46、47)では成形用原料の粉体嵩密度が1.520−1.600g/cmの範囲となり、クラックの発生率は0.5%以下で、より少ないことが分かった。また、200MPa以下での成形も可能であった。その実施例は造粒平均径が5−15mm、仮焼温度が850−910℃の時に得られていることがわかった。 Furthermore, the implementation of the present invention was 0.004 ≦ X 1 / X 2 ≦ 0.009, 0.022 ≦ X 3 / X 2 ≦ 0.03, 0.012 ≦ X 4 / X 2 ≦ 0.025 In the examples (No. 31, 32, 36, 37, 41, 42, 46, 47), the powder bulk density of the forming raw material was in the range of 1.520-1.600 g / cm 3 , and the crack generation rate was 0. It was found to be less at 5% or less. Also, molding at 200 MPa or less was possible. It was found that the examples were obtained when the granulation average diameter was 5-15 mm and the calcining temperature was 850-910 ° C.

次に、表3、4に示す以外は実施例と同様にして、X1/X、X/X、X/Xが本発明の範囲外の試料を作製し、実施例と同様に評価した。結果は次の通りであった。 Next, samples having X 1 / X 2 , X 5 / X 2 , and X 4 / X 2 outside the scope of the present invention were prepared in the same manner as in the Examples except for those shown in Tables 3 and 4. Evaluation was performed in the same manner. The results were as follows.

/X2>0.011、0.02>X3/X2、0.01>X4/X2の試料(No.25−29、34、39、44、49、54)は、成形用原料の粉体嵩密度が1.500g/cmよりも低くなり、クラックの発生率は1%以上であった。これらの試料は、仮焼温度が850℃以下では造粒平均径1−25mmの範囲で得られ、仮焼温度が850℃以上では造粒平均径25mmの時に得られていることがわかった。 X 1 / X 2>0.011,0.02> X 3 / X 2, 0.01> sample X 4 / X 2 (No.25-29,34,39,44,49,54) is The powder bulk density of the forming raw material was lower than 1.500 g / cm 3 , and the crack generation rate was 1% or more. It was found that these samples were obtained when the calcining temperature was 850 ° C. or lower and the granulation average diameter was 1-25 mm, and when the calcining temperature was 850 ° C. or higher, the granulation average diameter was 25 mm.

本発明のフェライト粉末およびフェライト質焼結体の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the ferrite powder and ferritic sintered compact of this invention. (a)、(b)は本発明のフェライト質焼結体からなるフェライトコアを示す斜視図である。(A), (b) is a perspective view which shows the ferrite core which consists of a ferrite sintered compact of this invention.

符号の説明Explanation of symbols

1:トロイダルコア
1a:巻き線部
2:ボビンコア
2a:巻き線部
1: Toroidal core 1a: Winding part 2: Bobbin core 2a: Winding part

Claims (6)

FeをFe換算で35mol%以上45mol%以下、
NiをNiO換算で45mol%以上55mol%以下、
CuをCuO換算で0.1mol%以上2mol%以下、
MgをMgO換算で5mol%以上10mol%以下、
MnをMnO換算で0.1mol%以上0.5mol%以下の範囲で含有する主成分100質量部に対して、SiをSiO換算で3質量部以上8質量部以下の範囲で含有する酸化物からなるフェライト粉末であって、X線回折におけるフォルステライト(2MgO・SiO)の(222)面に帰属するX線回折ピーク強度をX、ニッケルフェライト(NiFe4)の(311)面に帰属するX線回折ピーク強度をX、シリカ(SiO)の(101)面に帰属するX線回折ピーク強度をX3、銅マンガンシリケート(CuMn6SiO12)の(224)面に帰属するX線回折ピーク強度をX4とするとき、X1/X2≦0.011(ゼロを除く)、X3/X2≧0.02、X4/X2≧0.01であることを特徴とするフェライト粉末。
Fe is 35 mol% or more and 45 mol% or less in terms of Fe 2 O 3 ,
Ni is 45 mol% or more and 55 mol% or less in terms of NiO,
Cu is 0.1 mol% or more and 2 mol% or less in terms of CuO,
Mg is 5 mol% or more and 10 mol% or less in terms of MgO,
An oxide containing Si in a range of 3 parts by mass or more and 8 parts by mass or less in terms of SiO 2 with respect to 100 parts by mass of the main component containing Mn in a range of 0.1 mol% or more and 0.5 mol% or less in terms of MnO. X-ray diffraction peak intensity attributed to the (222) plane of forsterite (2MgO.SiO 2 ) in X-ray diffraction is X 1 , and the (311) plane of nickel ferrite (NiFe 2 O 4 ) X-ray diffraction peak intensity attributed to X 2 , X-ray diffraction peak intensity attributed to the (101) plane of silica (SiO 2 ) X 3 , X-ray diffraction peak intensity attributed to the (224) plane of copper manganese silicate (CuMn 6 SiO 12 ) X 1 / X 2 ≦ 0.011 (excluding zero), X 3 / X 2 ≧ 0.02 and X 4 / X 2 ≧ 0.01, where X 4 diffraction peak intensity is X 4 Characterized by Ferrite powder.
前記X1、X2、X3、Xは、0.004≦X1/X2、X3/X2≦0.030、X4/X2≦0.025であることを特徴とする請求項1に記載のフェライト粉末。 X 1 , X 2 , X 3 and X 4 are 0.004 ≦ X 1 / X 2 , X 3 / X 2 ≦ 0.030, and X 4 / X 2 ≦ 0.025. The ferrite powder according to claim 1. 請求項1または2に記載のフェライト粉末を用いたことを特徴とするフェライト質焼結体。 A ferrite sintered body using the ferrite powder according to claim 1. FeをFe換算で35mol%以上45mol%以下、
NiをNiO換算で45mol%以上55mol%以下、
CuをCuO換算で0.1mol%以上2mol%以下、
MgをMgO換算で5mol%以上10mol%以下、
MnをMnO換算で0.1mol%以上0.5mol%以下の範囲で含有する主成分100質量部に対して、SiをSiO換算で3質量部以上8質量部以下の範囲で含有する酸化物からなるフェライト粉末の製造方法であって、Fe、Ni、Cu、Mg、Mn、Siの各金属元素の酸化物または加熱によりこれら金属元素の酸化物を生成する化合物から選択される原料粉末を混合して混合粉末を得る工程と、前記混合粉末を造粒することにより平均粒径1mm以上20mm以下の顆粒を得る工程と、前記顆粒を850℃以上で仮焼、粉砕する工程と、を有することを特徴とするフェライト粉末の製造方法。
Fe is 35 mol% or more and 45 mol% or less in terms of Fe 2 O 3 ,
Ni is 45 mol% or more and 55 mol% or less in terms of NiO,
Cu is 0.1 mol% or more and 2 mol% or less in terms of CuO,
Mg is 5 mol% or more and 10 mol% or less in terms of MgO,
An oxide containing Si in a range of 3 parts by mass or more and 8 parts by mass or less in terms of SiO 2 with respect to 100 parts by mass of the main component containing Mn in a range of 0.1 mol% or more and 0.5 mol% or less in terms of MnO. A method for producing a ferrite powder comprising: mixing raw material powder selected from oxides of metal elements of Fe, Ni, Cu, Mg, Mn, and Si or oxides of these metal elements upon heating And obtaining the mixed powder, granulating the mixed powder to obtain granules having an average particle size of 1 mm or more and 20 mm or less, and calcining and pulverizing the granules at 850 ° C. or more. A method for producing a ferrite powder characterized by
請求項4に記載の製造方法によりフェライト粉末を得た後、該フェライト粉末を造粒することにより成形用原料を得る工程と、前記成形用原料を所定形状に成形して成形体を得る工程と、前記成形体を焼成する工程とを有することを特徴とするフェライト質焼結体の製造方法。 After obtaining a ferrite powder by the manufacturing method according to claim 4, a step of obtaining a forming raw material by granulating the ferrite powder, and a step of obtaining the formed body by forming the forming raw material into a predetermined shape; And a step of firing the molded body. A method for producing a ferritic sintered body, comprising: 請求項3に記載のフェライト質焼結体を用いて成ることを特徴とするフェライトコア。 A ferrite core comprising the ferrite sintered body according to claim 3.
JP2007045793A 2007-02-26 2007-02-26 Ferrite powder, ferrite sintered body, and their production method and ferrite core Pending JP2008207988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045793A JP2008207988A (en) 2007-02-26 2007-02-26 Ferrite powder, ferrite sintered body, and their production method and ferrite core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045793A JP2008207988A (en) 2007-02-26 2007-02-26 Ferrite powder, ferrite sintered body, and their production method and ferrite core

Publications (1)

Publication Number Publication Date
JP2008207988A true JP2008207988A (en) 2008-09-11

Family

ID=39784630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045793A Pending JP2008207988A (en) 2007-02-26 2007-02-26 Ferrite powder, ferrite sintered body, and their production method and ferrite core

Country Status (1)

Country Link
JP (1) JP2008207988A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263443A (en) * 1996-03-27 1997-10-07 Kyocera Corp Ferrite material
JP2001093718A (en) * 1999-09-20 2001-04-06 Tdk Corp Magnetic ferrite composition and method for manufacturing thereof
JP2001102209A (en) * 1999-09-29 2001-04-13 Kyocera Corp Small high frequency loss ferrite material and ferrite core using it
JP2003321273A (en) * 2002-04-26 2003-11-11 Tdk Corp Method for producing spinel-type ferrite core and spinel- type ferrite core produced thereby
JP2004165217A (en) * 2002-11-08 2004-06-10 Tdk Corp Ferrite core and method of manufacturing
JP2005097048A (en) * 2003-09-25 2005-04-14 Kyocera Corp Ferrite sintered compact, and ferrite core and ferrite coil using the same
JP2006282436A (en) * 2005-03-31 2006-10-19 Tdk Corp Ceramic granule, compacted body, sintered compact, and electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263443A (en) * 1996-03-27 1997-10-07 Kyocera Corp Ferrite material
JP2001093718A (en) * 1999-09-20 2001-04-06 Tdk Corp Magnetic ferrite composition and method for manufacturing thereof
JP2001102209A (en) * 1999-09-29 2001-04-13 Kyocera Corp Small high frequency loss ferrite material and ferrite core using it
JP2003321273A (en) * 2002-04-26 2003-11-11 Tdk Corp Method for producing spinel-type ferrite core and spinel- type ferrite core produced thereby
JP2004165217A (en) * 2002-11-08 2004-06-10 Tdk Corp Ferrite core and method of manufacturing
JP2005097048A (en) * 2003-09-25 2005-04-14 Kyocera Corp Ferrite sintered compact, and ferrite core and ferrite coil using the same
JP2006282436A (en) * 2005-03-31 2006-10-19 Tdk Corp Ceramic granule, compacted body, sintered compact, and electronic component

Similar Documents

Publication Publication Date Title
JP2016060656A (en) Ferrite composition for electromagnetic wave absorber and electromagnetic wave absorber
JP5734078B2 (en) Ferrite sintered body and noise filter including the same
JP5836887B2 (en) Ferrite sintered body and noise filter including the same
JP4683718B2 (en) Ferrite material and ferrite core using the same
KR101931635B1 (en) Method for producing Ferrite core and the Ferrite core
JP4826093B2 (en) Ferrite, electronic component and manufacturing method thereof
JP5737117B2 (en) Ferrite composition, ferrite core and electronic component
CN110418775A (en) MnCoZn class ferrite and its manufacturing method
JP2008207988A (en) Ferrite powder, ferrite sintered body, and their production method and ferrite core
JP2016063010A (en) Ferrite composition for electromagnetic wave absorber, and electromagnetic wave absorber
CN116323491A (en) MnZn ferrite and method for producing same
JP2015113247A (en) Ferrite composition, ferrite core and electronic component
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP4587541B2 (en) Ferrite material and ferrite core using the same
JP5733995B2 (en) Ferrite sintered body and noise filter including the same
JP5831256B2 (en) Ferrite composition, ferrite core and electronic component
JP2010215453A (en) NiCuZn FERRITE
JP2002179460A (en) Ferrite material and ferrite core by using the same
JP2016094321A (en) Ferrite sintered body and noise filter
JP2005194134A (en) Ferrite core and its production method
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JP5672974B2 (en) Ferrite sintered body and electronic parts
JP2000109325A (en) Production of nickel-copper-zinc ferrite material
WO2024225347A1 (en) Ferrite powder, ferrite resin composite material, ferrite resin composite body, and electromagnetic wave absorber
JP6064525B2 (en) Ferrite composition, ferrite core and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203