JP2008172020A - Semiconductor photodetector - Google Patents
Semiconductor photodetector Download PDFInfo
- Publication number
- JP2008172020A JP2008172020A JP2007003729A JP2007003729A JP2008172020A JP 2008172020 A JP2008172020 A JP 2008172020A JP 2007003729 A JP2007003729 A JP 2007003729A JP 2007003729 A JP2007003729 A JP 2007003729A JP 2008172020 A JP2008172020 A JP 2008172020A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light
- semiconductor layer
- light receiving
- type semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
本発明は、光を受光して電気信号を出力可能な半導体受光素子に関する。 The present invention relates to a semiconductor light receiving element capable of receiving light and outputting an electrical signal.
従来、携帯電話の液晶モニターや液晶テレビのバックライトの輝度は、使用環境に応じて節電或いは目の保護のため自動的に調整できるように構成されている場合が多い。このように構成する場合、赤外線領域や紫外線領域の光を受光して電気信号を出力可能な半導体受光素子により周りの光を検出してバックライトの輝度を調整する技術が知られている。しかしながら、白熱灯や蛍光灯から照射される紫外線領域及び赤外線領域の光は人間の目では感じることができないので、前述した半導体受光素子では、実際に人間の目で感じる視感度に対応した電気信号を出力することができない。 Conventionally, the brightness of the backlight of a liquid crystal monitor of a mobile phone or a liquid crystal television is often configured to be automatically adjustable for power saving or eye protection according to the usage environment. In the case of such a configuration, a technique is known in which ambient light is detected by a semiconductor light receiving element capable of receiving light in the infrared region and ultraviolet region and outputting an electrical signal to adjust the luminance of the backlight. However, since the light in the ultraviolet region and the infrared region irradiated from incandescent lamps and fluorescent lamps cannot be sensed by the human eye, the above-described semiconductor light receiving element has an electrical signal corresponding to the visual sensitivity actually felt by the human eye. Cannot be output.
ここで、波長領域によって受光感度が異なる2つの半導体受光素子と、これらの半導体受光素子の出力差をICチップで演算させて可視光領域に擬似的に受光感度を持たせる技術も知られているが、ICチップにより部品コストの増大や装置の巨大化といった問題が新たに生じていた。 Here, two semiconductor light-receiving elements having different light-receiving sensitivities depending on the wavelength region, and a technique for giving a pseudo-light-receiving sensitivity in the visible light region by calculating an output difference between these semiconductor light-receiving devices with an IC chip are also known. However, problems such as an increase in component costs and an increase in the size of the device have arisen due to the IC chip.
そこで、近年、可視光領域の光のみを選択的に受光して電気信号を出力可能な半導体受光素子が要望されている。例えば、特許文献1には、InGaN層からなる受光層を備えた半導体受光素子が開示されている。この半導体受光素子では、Inの比率を変化させることによって、約365nm〜約635nmの波長を有する光を受光することができる。このように可視光を受光可能に構成することにより、人間が実際に感じる輝度に対応させた出力を可能な半導体受光素子を実現することができた。
しかしながら、特許文献1の半導体受光素子では、受光層を構成するInGaN層内のInの比率を増やすことによって長波長側の光である可視光を受光可能に構成しているが、InGaN内のInの比率を増加させると、InGaN層の結晶性が低下する。この結果、半導体受光素子の特性のばらつきが大きくなるといった課題がある。 However, the semiconductor light receiving element of Patent Document 1 is configured to be able to receive visible light, which is light on the long wavelength side, by increasing the ratio of In in the InGaN layer that constitutes the light receiving layer. Increasing the ratio decreases the crystallinity of the InGaN layer. As a result, there is a problem that variation in characteristics of the semiconductor light receiving element becomes large.
本発明は、上述した課題を解決するために創案されたものであり、受光層の結晶性が高く、特性のばらつきが小さい半導体受光素子を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a semiconductor light-receiving element in which the light-receiving layer has high crystallinity and small variations in characteristics.
上記目的を達成するために、請求項1に記載の発明は、光を受光して電気信号を出力可能な半導体受光素子において、AlGaInP系半導体層又はZnSeTe系半導体層のうちから選択された少なくとも1種を有する受光層を備えたことを特徴とする半導体受光素子である。 To achieve the above object, according to a first aspect of the present invention, there is provided a semiconductor light receiving element capable of receiving light and outputting an electrical signal, wherein at least one selected from an AlGaInP-based semiconductor layer and a ZnSeTe-based semiconductor layer. A semiconductor light-receiving element comprising a light-receiving layer having a seed.
また、請求項2に記載の発明は、前記受光層の受光側には、紫外線を吸収可能な紫外線吸収層が形成されていることを特徴とする請求項1に記載の半導体受光素子である。 The invention according to claim 2 is the semiconductor light receiving element according to claim 1, wherein an ultraviolet absorbing layer capable of absorbing ultraviolet rays is formed on the light receiving side of the light receiving layer.
また、請求項3に記載の発明は、前記紫外線吸収層は、AlGaInP系半導体層、ZnSe系半導体層又はAlGaAs系半導体層のうちから選択される少なくとも1種からなることを特徴とする請求項2に記載の半導体受光素子である。 According to a third aspect of the present invention, the ultraviolet absorbing layer is made of at least one selected from an AlGaInP-based semiconductor layer, a ZnSe-based semiconductor layer, and an AlGaAs-based semiconductor layer. It is a semiconductor light receiving element as described in above.
本発明による半導体受光素子では、可視光を受光可能なGaP系半導体層又はZnSeTe系半導体層を有する受光層を設けているので、人間の視感度に対応した出力を可能とするとともに、白熱灯や蛍光灯などの照明装置の違いによる出力の変化を抑制することができる。 In the semiconductor light-receiving element according to the present invention, since the light-receiving layer having a GaP-based semiconductor layer or a ZnSeTe-based semiconductor layer capable of receiving visible light is provided, an output corresponding to human visibility can be achieved, and an incandescent lamp, Changes in output due to differences in lighting devices such as fluorescent lamps can be suppressed.
ここで、受光層をInGaN層により構成した場合、Inの比率を大きくすることにより人間の視感度にある程度対応させることができるが、Inの比率を大きくするとInGaN層の結晶性が低くなり、特性の高い半導体受光素子を製造することが困難である。一方、本発明による半導体受光素子では、GaP系半導体層又はZnSeTe系半導体層により受光層を構成することによって、受光層の結晶性を高めて、特性のばらつきを小さくすることができる。 Here, when the light receiving layer is composed of an InGaN layer, it is possible to cope with human visibility to some extent by increasing the In ratio. However, when the In ratio is increased, the crystallinity of the InGaN layer is lowered and the characteristics are reduced. It is difficult to manufacture a semiconductor light receiving element having a high height. On the other hand, in the semiconductor light-receiving element according to the present invention, by forming the light-receiving layer with the GaP-based semiconductor layer or the ZnSeTe-based semiconductor layer, the crystallinity of the light-receiving layer can be increased and the variation in characteristics can be reduced.
また、紫外線吸収層を受光層の受光側に形成することによって、人間の目で感じることができない紫外線が受光層に入射することを抑制できるので、より人間の視感度に近い出力を実現することができる。 In addition, by forming an ultraviolet absorbing layer on the light receiving side of the light receiving layer, it is possible to suppress the ultraviolet light that cannot be felt by the human eye from entering the light receiving layer, thereby realizing an output closer to human visibility. Can do.
また、高温で成長させなければならないGaN層などを紫外線吸収層とした場合、紫外線吸収層を成長させることにより受光層の結晶性が低下するが、本発明による半導体受光素子では、紫外線吸収層を低温で成長可能なGaP系半導体層、ZnSe系半導体層又はAlGaAs系半導体層のいずれかにより構成することによって、紫外線吸収層の成長後も、受光層の結晶性を維持することができる。 In addition, when a GaN layer or the like that must be grown at a high temperature is used as an ultraviolet absorbing layer, the crystallinity of the light receiving layer is lowered by growing the ultraviolet absorbing layer. By comprising any one of the GaP-based semiconductor layer, ZnSe-based semiconductor layer, and AlGaAs-based semiconductor layer that can be grown at a low temperature, the crystallinity of the light-receiving layer can be maintained even after the ultraviolet absorbing layer is grown.
以下、図面を参照して本発明の一実施形態を説明する。図1は、本発明の実施形態による半導体受光素子の断面図を示す。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a semiconductor light receiving element according to an embodiment of the present invention.
図1に示すように、半導体受光素子1は、基板2と、基板2上に順次積層された受光層3と、紫外線吸収層4とを備えている。尚、紫外線吸収層4の上面にはp側電極(図示略)が形成され、基板2の裏面にはn側電極(図示略)が形成されている。 As shown in FIG. 1, the semiconductor light receiving element 1 includes a substrate 2, a light receiving layer 3 that is sequentially laminated on the substrate 2, and an ultraviolet absorbing layer 4. A p-side electrode (not shown) is formed on the upper surface of the ultraviolet absorbing layer 4, and an n-side electrode (not shown) is formed on the back surface of the substrate 2.
基板2は、n型のGaAsからなる。 The substrate 2 is made of n-type GaAs.
受光層3は、受光した所定の波長を有する光を電気信号に変換して出力するためのものである。受光層3は、基板2側からn型半導体層6と、i型半導体層7と、p型半導体層8とが順次積層されている。 The light receiving layer 3 is for converting the received light having a predetermined wavelength into an electric signal and outputting it. In the light receiving layer 3, an n-type semiconductor layer 6, an i-type semiconductor layer 7, and a p-type semiconductor layer 8 are sequentially stacked from the substrate 2 side.
n型半導体層6は、約0.1μm〜数μmの厚みを有し、n型の不純物であるSi又はSeがドープされた(AlxGa1−x)0.5In0.5P層(0≦x≦0.6)からなる。i型半導体層7は、約0.1μm〜数μmの厚みを有し、不純物がドープされていない(AlxGa1−x)0.5In0.5P層(0≦x≦0.6)からなる。p型半導体層8は、約0.1μm〜数μmの厚みを有し、p型の不純物であるZnがドープされた(AlxGa1−x)0.5In0.5P層(0≦x≦0.6)からなる。 The n-type semiconductor layer 6 has a thickness of about 0.1 μm to several μm, and is doped with an n-type impurity Si or Se (Al x Ga 1-x ) 0.5 In 0.5 P layer. (0 ≦ x ≦ 0.6). The i-type semiconductor layer 7 has a thickness of about 0.1 μm to several μm and is not doped with an impurity (Al x Ga 1-x ) 0.5 In 0.5 P layer (0 ≦ x ≦ 0. 6). The p-type semiconductor layer 8 has a thickness of about 0.1 μm to several μm and is doped with Zn which is a p-type impurity (Al x Ga 1-x ) 0.5 In 0.5 P layer (0 ≦ x ≦ 0.6).
紫外線吸収層4は、外部から入射する光のうち紫外線を吸収するためのものである。紫外線吸収層4は、受光層3の受光側の面に形成され、p型の不純物であるZnがドープされた数μmの厚みを有するp型GaP層からなる。 The ultraviolet absorbing layer 4 is for absorbing ultraviolet rays of light incident from the outside. The ultraviolet absorbing layer 4 is formed on the light receiving side surface of the light receiving layer 3 and is made of a p-type GaP layer having a thickness of several μm doped with Zn which is a p-type impurity.
次に、上述した半導体受光素子の動作説明をする。 Next, the operation of the semiconductor light receiving element described above will be described.
半導体受光素子1では、白熱灯や蛍光灯などから照射された光が、上部から紫外線吸収層4に入射すると紫外線領域の光が吸収される。次に、吸収されて紫外線が除去された光は、紫外線吸収層4を透過して受光層3に入射する。受光層3では、電子と正孔とが入射した光によって励起され、これらの電子と正孔が外部に電気信号(電流)として出力される。ここで、受光層3は、約500nm〜約600nmの光に対応したバンドギャップを有するAlGaInP層からなるので、赤外線領域の光はほとんど受光されることなく、人間の視感度が最も高い約555nm前後の波長を有する光を中心に受光される。この結果、半導体受光素子1からは、人間の視感度に対応した電気信号が外部へ出力される。 In the semiconductor light receiving element 1, when light irradiated from an incandescent lamp or a fluorescent lamp enters the ultraviolet absorbing layer 4 from above, the light in the ultraviolet region is absorbed. Next, the light from which the ultraviolet rays have been absorbed is transmitted through the ultraviolet absorbing layer 4 and incident on the light receiving layer 3. In the light receiving layer 3, electrons and holes are excited by the incident light, and these electrons and holes are output to the outside as electrical signals (currents). Here, since the light receiving layer 3 is composed of an AlGaInP layer having a band gap corresponding to light of about 500 nm to about 600 nm, almost no light in the infrared region is received, and about 555 nm, which has the highest human visibility. Is received centering on light having a wavelength of. As a result, an electrical signal corresponding to human visibility is output from the semiconductor light receiving element 1 to the outside.
次に、上述した半導体受光素子の製造方法について説明する。 Next, a method for manufacturing the semiconductor light receiving element described above will be described.
まず、n型GaAsからなる基板2をMOCVD装置に搬入する。 First, the substrate 2 made of n-type GaAs is carried into the MOCVD apparatus.
次に、成長温度を約650℃〜約700℃に設定した状態で、キャリアガス(H2ガス)によりTMA(トリメチルアルミニウム)、TMG(トリメチルガリウム)、TMI(トリメチルインジウム)、ホスフィン及びモノシランを成長室内に供給して、Siがドープされたn型(AlxGa1−x)0.5In0.5P層からなるn型半導体層6を形成する。次に、モノシランの供給を停止し、それ以外の原料ガスの供給を継続することによってi型(AlxGa1−x)0.5In0.5P層からなるi型半導体層7を形成する。その後、前述した原料ガスとともにジメチル亜鉛を供給することによって、Znがドープされたp型(AlxGa1−x)0.5In0.5P層からなるp型半導体層8を形成する。 Next, TMA (trimethylaluminum), TMG (trimethylgallium), TMI (trimethylindium), phosphine and monosilane are grown with a carrier gas (H 2 gas) in a state where the growth temperature is set to about 650 ° C. to about 700 ° C. An n-type semiconductor layer 6 made of an n-type (Al x Ga 1-x ) 0.5 In 0.5 P layer doped with Si is formed. Next, the supply of monosilane is stopped, and the supply of other source gases is continued to form the i-type semiconductor layer 7 composed of an i - type (Al x Ga 1-x ) 0.5 In 0.5 P layer. To do. Thereafter, by supplying dimethylzinc together with the above-described source gas, the p-type semiconductor layer 8 composed of a p-type (Al x Ga 1-x ) 0.5 In 0.5 P layer doped with Zn is formed.
次に、成長温度を約300℃〜約400℃に設定した状態で、TMG、ホスフィン及びジメチル亜鉛を供給することによって、Znがドープされたp型GaP層からなる紫外線吸収層4を形成する。 Next, in a state where the growth temperature is set to about 300 ° C. to about 400 ° C., TMG, phosphine and dimethyl zinc are supplied to form the ultraviolet absorption layer 4 made of a p-type GaP layer doped with Zn.
次に、p側電極及びn側電極を形成した後、各素子単位に分割することによって、半導体受光素子1が完成する。 Next, after forming the p-side electrode and the n-side electrode, the semiconductor light-receiving element 1 is completed by dividing it into element units.
次に、上述した本発明による半導体受光素子の各波長での出力と人間の比視感度とを比較した第1実験について説明する。尚、比視感度とは、光に対する人間の目の感度である視感度を最大値に対する比率で表したものであり、国際照明委員会で規定されたものである。 Next, a first experiment in which the output at each wavelength of the above-described semiconductor light-receiving element according to the present invention is compared with human specific luminous efficiency will be described. The specific visibility is the visual sensitivity, which is the sensitivity of the human eye to light, expressed as a ratio to the maximum value, and is defined by the International Commission on Illumination.
第1実験では、本発明に対応する試料として以下の2つの実施例を作製した。 In the first experiment, the following two examples were prepared as samples corresponding to the present invention.
第1実施例は、n型GaAsの基板上に、約0.8μmの厚みを有するn型(Al0.2Ga0.8)0.5In0.5P層からなるn型半導体層、約0.8μmの厚みを有するi型(Al0.2Ga0.8)0.5In0.5P層からなるi型半導体層及び約0.8μmの厚みを有するp型(Al0.2Ga0.8)0.5In0.5P層からなるp型半導体層が基板側から順次積層された受光層と、約6μmの厚みを有するp型GaP層からなる紫外線吸収層とを基板側から順次積層したものである。 In the first embodiment, an n-type semiconductor layer made of an n-type (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P layer having a thickness of about 0.8 μm on an n-type GaAs substrate, An i-type semiconductor layer composed of an i-type (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P layer having a thickness of about 0.8 μm and a p-type (Al 0. A light-receiving layer in which p-type semiconductor layers composed of 2 Ga 0.8 ) 0.5 In 0.5 P layers are sequentially stacked from the substrate side, and an ultraviolet absorbing layer composed of a p-type GaP layer having a thickness of about 6 μm. The layers are sequentially stacked from the substrate side.
第2実施例は、n型GaAsの基板上に、約0.8μmの厚みを有するn型Ga0.5In0.5P層からなるn型半導体層、約0.8μmの厚みを有するi型Ga0.5In0.5P層からなるi型半導体層及び約0.8μmの厚みを有するp型Ga0.5In0.5P層からなるp型半導体層が基板側から順次積層された受光層と、約10μmの厚みを有するp型GaP層からなる紫外線吸収層とを基板側から順次積層したものである。 In the second embodiment, an n-type semiconductor layer composed of an n-type Ga 0.5 In 0.5 P layer having a thickness of about 0.8 μm on an n-type GaAs substrate, i having a thickness of about 0.8 μm. successively laminated p-type semiconductor layer made of p-type Ga 0.5 in 0.5 P layer having i-type semiconductor layer and about 0.8μm in thickness consisting of type Ga 0.5 in 0.5 P layer from the substrate side The light receiving layer and an ultraviolet absorbing layer made of a p-type GaP layer having a thickness of about 10 μm are sequentially laminated from the substrate side.
第1実験では、照射する光の波長を変化させて各波長における第1実施例及び第2実施例の出力(電流)を測定した。尚、各実施例の出力は、それぞれの出力の最大値を1とし、その最大値の比率として表している。第1実験の結果を図2に示す。図2における縦軸は出力(電流)を示し、横軸は光の波長を示す。また、図2において、第1実施例及び第2実施例の実験結果を実線で、人間の比視感度を点線で示す。 In the first experiment, the output (current) of the first and second examples at each wavelength was measured while changing the wavelength of light to be irradiated. The output of each embodiment is expressed as a ratio of the maximum value with the maximum value of each output being 1. The result of the first experiment is shown in FIG. The vertical axis in FIG. 2 indicates output (current), and the horizontal axis indicates the wavelength of light. In FIG. 2, the experimental results of the first and second embodiments are indicated by a solid line, and the human specific visual sensitivity is indicated by a dotted line.
図2に示すように、第1実施例及び第2実施例は、出力のピークの波長はそれぞれ約560nm及び約570nmとなっており、人間の視感度が最も高くなる波長である約555nmと略一致する。また、人間の目ではほとんど感じることのできない紫外線領域を含む400nm以下の波長の光や赤外線領域を含む700nm以上の波長の光に対しては、第1実施例及び第2実施例ともに出力が「0」である。これらの実験結果から、第1実施例及び第2実施例は、人間の視感度に対応した出力が可能なことがわかる。 As shown in FIG. 2, in the first and second embodiments, the peak wavelengths of the output are about 560 nm and about 570 nm, respectively, which is about 555 nm, which is the wavelength at which human visibility is highest. Match. In addition, for the light with a wavelength of 400 nm or less including the ultraviolet region and the light with a wavelength of 700 nm or more including the infrared region which can hardly be felt by human eyes, both the first and second embodiments output “ 0 ". From these experimental results, it can be seen that the first and second embodiments are capable of output corresponding to human visual sensitivity.
次に、白熱灯及び蛍光灯における出力の変化について調べた第2実験について説明する。 Next, a second experiment in which changes in output in incandescent lamps and fluorescent lamps are examined will be described.
第2実験では、第1実験で使用した第1実施例及び第2実施例以外に、比較用の試料として受光層をアモルファスシリコンにより構成した比較例を作製した。 In the second experiment, in addition to the first and second examples used in the first experiment, a comparative example in which the light receiving layer was made of amorphous silicon was prepared as a comparative sample.
第2実験では、白熱灯及び蛍光灯の照度を変化させて各照度におけるそれぞれの試料の出力を測定した。第2実験の結果を図3〜図5に示す。図3は、第1実施例の実験結果を示し、図4は、第2実施例の実験結果を示し、図5は、比較例の実験結果を示す。尚、図3〜図5における縦軸は出力(電流、単位:nA)を示し、横軸は光の照度(単位:lx)を示す。また、各図において、●及び実線が白熱灯による実験結果を示し、▲及び点線が蛍光灯による実験結果を示す。尚、図3〜図5における実線及び点線は、それぞれの測定値を最小2乗法により線形近似したものである。 In the second experiment, the output of each sample at each illuminance was measured by changing the illuminance of the incandescent lamp and the fluorescent lamp. The results of the second experiment are shown in FIGS. FIG. 3 shows the experimental results of the first example, FIG. 4 shows the experimental results of the second example, and FIG. 5 shows the experimental results of the comparative example. 3 to 5, the vertical axis represents output (current, unit: nA), and the horizontal axis represents light illuminance (unit: lx). In each figure, the solid circles and solid lines show the experimental results with incandescent lamps, and the solid triangles and dotted lines show the experimental results with fluorescent lamps. Note that the solid line and the dotted line in FIGS. 3 to 5 are obtained by linearly approximating each measured value by the least square method.
図3に示すように、本発明による第1実施例では、白熱灯による出力の近似直線の傾きと蛍光灯による出力の近似直線の傾きとを比較した場合、約10%の違いがあった。また、図4に示すように、本発明による第2実施例では、白熱灯による出力の近似直線の傾きと蛍光灯による出力の近似直線の傾きとを比較した場合、約10%の違いがあった。一方、比較例では、白熱灯による出力の近似直線の傾きと蛍光灯による出力の近似直線の傾きとを比較した場合、約70%もの違いがあった。この結果から、本発明による第1実施例及び第2実施例では、白熱灯及び蛍光灯などの照明装置の違いに関わらず略同様の出力が可能であるのに対し、アモルファスシリコンからなる比較例では白熱灯及び蛍光灯などの照明装置の違いによって出力が大きく異なることがわかる。 As shown in FIG. 3, in the first embodiment according to the present invention, there was a difference of about 10% when the inclination of the approximate straight line of the output from the incandescent lamp and the slope of the approximate straight line of the output from the fluorescent lamp were compared. Further, as shown in FIG. 4, in the second embodiment according to the present invention, there is a difference of about 10% when the inclination of the approximate straight line of the output from the incandescent lamp is compared with the slope of the approximate straight line of the output from the fluorescent lamp. It was. On the other hand, in the comparative example, when the inclination of the approximate straight line of the output from the incandescent lamp was compared with the slope of the approximate straight line of the output from the fluorescent lamp, there was a difference of about 70%. From this result, in the first and second embodiments according to the present invention, substantially the same output is possible regardless of the difference in lighting devices such as incandescent lamps and fluorescent lamps, whereas the comparative example made of amorphous silicon. Thus, it can be seen that the output varies greatly depending on the illumination device such as an incandescent lamp and a fluorescent lamp.
上述したように半導体受光素子1では、視感度が最大となる波長の近傍で電気信号の出力が最大になり、且つ、赤外線領域の光をほとんど受光しない(AlxGa1−x)0.5In0.5P層(0≦x≦0.6)により受光層3を構成することによって、人間の視感度に対応した出力を可能とするとともに、白熱灯や蛍光灯などの照明装置の違いによる出力の変化を抑制することができる。 As described above, in the semiconductor light-receiving element 1, the output of the electric signal is maximized near the wavelength where the visibility is maximized, and hardly receives light in the infrared region (Al x Ga 1-x ) 0.5. By configuring the light receiving layer 3 with an In 0.5 P layer (0 ≦ x ≦ 0.6), output corresponding to human visual sensitivity can be achieved, and differences in lighting devices such as incandescent lamps and fluorescent lamps It is possible to suppress the change in output due to.
ここで、受光層をInGaN層により構成した場合、Inの比率を大きくすることにより人間の視感度にある程度対応させることができるが、Inの比率を大きくするとInGaN層の結晶性が低くなり、半導体受光素子の特性のばらつきが大きくなる。一方、本発明による半導体受光素子1では、(AlxGa1−x)0.5In0.5P層により受光層3を構成することによって、結晶性を高めて、特性のばらつきを小さくすることができる。 Here, when the light receiving layer is composed of an InGaN layer, it is possible to cope with human visual sensitivity to some extent by increasing the In ratio. However, if the In ratio is increased, the crystallinity of the InGaN layer decreases, and the semiconductor The variation in the characteristics of the light receiving element is increased. On the other hand, in the semiconductor light-receiving element 1 according to the present invention, the light - receiving layer 3 is composed of the (Al x Ga 1-x ) 0.5 In 0.5 P layer, thereby improving the crystallinity and reducing the variation in characteristics. be able to.
また、紫外線吸収層4を受光層3の受光側に形成することによって、人間の目で感じることができない紫外線が受光層3に入射することを抑制できるので、より人間の視感度に近い出力を実現することができる。 Further, by forming the ultraviolet absorbing layer 4 on the light receiving side of the light receiving layer 3, it is possible to suppress the ultraviolet light that cannot be felt by human eyes from entering the light receiving layer 3, so that an output closer to human visual sensitivity can be obtained. Can be realized.
また、高温で成長させなければならないGaN層などを紫外線吸収層とした場合、紫外線吸収層を成長させることにより受光層の結晶性が低下するが、半導体受光素子1では紫外線吸収層4を低温で成長可能なp型GaP層により構成することによって、紫外線吸収層4の成長後も、受光層3の結晶性を維持することができる。 Further, when a GaN layer or the like that must be grown at a high temperature is used as an ultraviolet absorbing layer, the crystallinity of the light receiving layer is lowered by growing the ultraviolet absorbing layer. However, in the semiconductor light receiving element 1, the ultraviolet absorbing layer 4 is formed at a low temperature. By constituting the p-type GaP layer that can be grown, the crystallinity of the light-receiving layer 3 can be maintained even after the ultraviolet absorbing layer 4 is grown.
以上、実施形態を用いて本発明を詳細に説明したが、本発明は本明細書中に説明した実施形態に限定されるものではない。本発明の範囲は、特許請求の範囲の記載及び特許請求の範囲の記載と均等の範囲により決定されるものである。以下、上記実施形態を一部変更した変更形態について説明する。 As mentioned above, although this invention was demonstrated in detail using embodiment, this invention is not limited to embodiment described in this specification. The scope of the present invention is determined by the description of the claims and the scope equivalent to the description of the claims. Hereinafter, modified embodiments in which the above-described embodiment is partially modified will be described.
例えば、上述の半導体受光素子1では、受光層3を(AlxGa1−x)0.5In0.5P層により構成したが、他のGaP系半導体層やZnSeTe系半導体層により構成してもよい。尚、他のGaP系半導体層としてはGaAsP層を適用することができる。また、ZnSeTe系半導体層としては、ZnSeTe層、MgZnSeTe層、CdZnSeTe層などを適用することができる。 For example, in the semiconductor light-receiving element 1 described above, the light-receiving layer 3 is composed of an (Al x Ga 1-x ) 0.5 In 0.5 P layer, but is composed of another GaP-based semiconductor layer or a ZnSeTe-based semiconductor layer. May be. As another GaP-based semiconductor layer, a GaAsP layer can be applied. As the ZnSeTe-based semiconductor layer, a ZnSeTe layer, a MgZnSeTe layer, a CdZnSeTe layer, or the like can be applied.
また、上述の半導体受光素子1では、紫外線吸収層4をGaP層により構成したが、GaAsP層、ZnSe層、AlGaAs層などにより構成してもよい。 Further, in the semiconductor light receiving element 1 described above, the ultraviolet absorption layer 4 is configured by a GaP layer, but may be configured by a GaAsP layer, a ZnSe layer, an AlGaAs layer, or the like.
また、上述の半導体受光素子1では、n型半導体層6、i型半導体層7及びp型半導体層8を順次積層することにより受光層3を形成したが、i型半導体層7を省略し、n型半導体層6及びp型半導体層8により受光層を構成してもよい。 In the semiconductor light receiving element 1 described above, the light receiving layer 3 is formed by sequentially stacking the n-type semiconductor layer 6, the i-type semiconductor layer 7, and the p-type semiconductor layer 8, but the i-type semiconductor layer 7 is omitted. The n-type semiconductor layer 6 and the p-type semiconductor layer 8 may constitute a light receiving layer.
1 半導体受光素子
2 基板
3 受光層
4 紫外線吸収層
6 n型半導体層
7 i型半導体層
8 p型半導体層
DESCRIPTION OF SYMBOLS 1 Semiconductor light receiving element 2 Substrate 3 Light receiving layer 4 Ultraviolet absorption layer 6 n-type semiconductor layer 7 i-type semiconductor layer 8 p-type semiconductor layer
Claims (3)
AlGaInP系半導体層又はZnSeTe系半導体層のうちから選択された少なくとも1種を有する受光層を備えたことを特徴とする半導体受光素子。 In a semiconductor light receiving element that can receive light and output an electrical signal,
A semiconductor light-receiving element comprising a light-receiving layer having at least one selected from an AlGaInP-based semiconductor layer and a ZnSeTe-based semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007003729A JP2008172020A (en) | 2007-01-11 | 2007-01-11 | Semiconductor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007003729A JP2008172020A (en) | 2007-01-11 | 2007-01-11 | Semiconductor photodetector |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008172020A true JP2008172020A (en) | 2008-07-24 |
Family
ID=39699833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007003729A Pending JP2008172020A (en) | 2007-01-11 | 2007-01-11 | Semiconductor photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008172020A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005096394A1 (en) * | 2004-03-31 | 2005-10-13 | Osram Opto Semiconductors Gmbh | Radiation detector |
JP2006066456A (en) * | 2004-08-24 | 2006-03-09 | Fuji Photo Film Co Ltd | Solid state image sensor |
JP2006108675A (en) * | 2004-09-30 | 2006-04-20 | Osram Opto Semiconductors Gmbh | Beam detector |
JP2006245088A (en) * | 2005-03-01 | 2006-09-14 | Sony Corp | Physical information acquisition apparatus |
-
2007
- 2007-01-11 JP JP2007003729A patent/JP2008172020A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005096394A1 (en) * | 2004-03-31 | 2005-10-13 | Osram Opto Semiconductors Gmbh | Radiation detector |
JP2006066456A (en) * | 2004-08-24 | 2006-03-09 | Fuji Photo Film Co Ltd | Solid state image sensor |
JP2006108675A (en) * | 2004-09-30 | 2006-04-20 | Osram Opto Semiconductors Gmbh | Beam detector |
JP2006245088A (en) * | 2005-03-01 | 2006-09-14 | Sony Corp | Physical information acquisition apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10593838B2 (en) | Semiconductor device | |
EP2390930A2 (en) | Semiconductor dies, light-emitting devices, methods of manufacturing and methods of generating multi-wavelength light | |
US9603214B2 (en) | Light emitting device (LED) array unit and LED module comprising the same | |
JP7403797B2 (en) | Semiconductor devices and semiconductor device packages containing them | |
JP2018037660A (en) | Semiconductor device and semiconductor device package including the same | |
US11355674B2 (en) | Semiconductor device package | |
KR102404269B1 (en) | Semiconductor device | |
KR102070093B1 (en) | Lighting system for vehicle | |
KR102434368B1 (en) | Semiconductor device | |
CN102237458B (en) | Light emitting device, method of manufacturing same, light emitting device package and lighting system | |
JP2008172020A (en) | Semiconductor photodetector | |
CN106653896B (en) | It is a kind of for InGaN quantum dot light electric explorers of visible light communication and preparation method thereof | |
KR102477677B1 (en) | Semiconductor device | |
KR102608517B1 (en) | Semiconductor device | |
KR20180085222A (en) | Semiconductor device package | |
KR102510613B1 (en) | Semiconductor device | |
US11437555B2 (en) | Semiconductor device | |
KR20180082887A (en) | Semiconductor Device And Light Apparatus | |
KR102632201B1 (en) | Semiconductor device | |
KR102509089B1 (en) | Semiconductor device package | |
KR20180080854A (en) | Semiconductor device and semiconductor device package including the same | |
KR102531150B1 (en) | Optical lens and semiconductor device package | |
KR102413442B1 (en) | Semiconductor device package | |
KR102385938B1 (en) | Semiconductor device package | |
KR102619743B1 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120626 |