JP2008087044A - Flux-cored wire for titania gas-shielded arc welding - Google Patents

Flux-cored wire for titania gas-shielded arc welding Download PDF

Info

Publication number
JP2008087044A
JP2008087044A JP2006271316A JP2006271316A JP2008087044A JP 2008087044 A JP2008087044 A JP 2008087044A JP 2006271316 A JP2006271316 A JP 2006271316A JP 2006271316 A JP2006271316 A JP 2006271316A JP 2008087044 A JP2008087044 A JP 2008087044A
Authority
JP
Japan
Prior art keywords
mass
flux
slag
welding
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271316A
Other languages
Japanese (ja)
Other versions
JP4986562B2 (en
Inventor
Masayuki Nagami
正行 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006271316A priority Critical patent/JP4986562B2/en
Priority to CN2007101469825A priority patent/CN101157169B/en
Priority to KR1020070098723A priority patent/KR100920550B1/en
Publication of JP2008087044A publication Critical patent/JP2008087044A/en
Application granted granted Critical
Publication of JP4986562B2 publication Critical patent/JP4986562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored wire for gas-shielded arc welding which is free from any drop of molten metal even when a root gap is wide in the vertical upward welding, excellent in welding work efficiency, excellent in mechanical properties of a weld metal, and suitable for welding in all attitudes. <P>SOLUTION: The flux-cored wire contains, by mass, 6-12% TiO<SB>2</SB>, 0.4-0.8% Al<SB>2</SB>O<SB>3</SB>, 0.1-0.5% SiO<SB>2</SB>, 0.05-0.2% ZrO<SB>2</SB>, 1.0-3.0% Mn, 0.4-0.9% Si, 0.1-0.3% Al, 0.4-0.8% Mg based on the total mass of the wire, and further, as necessary, C, F, Cr, Cu, Ni, V, Nb, Ti and/or Zr, and the balance Fe with impurities, where (TiO<SB>2</SB>+Al<SB>2</SB>O<SB>3</SB>)/(SiO<SB>2</SB>+ZrO<SB>2</SB>): 10-20, Mg/(Si+Al): 0.4-0.7, Na+K: 0.05-0.12, and Na/K: ≥0.3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軟鋼、高張力鋼又は低合金鋼等の溶接に適用できるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤに関し、特に、立向上進溶接性能が優れており、更にスラグ剥離性及びスパッタ発生量等の溶接作業性及び溶接金属の機械的性能等が向上したチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for titania-based gas shielded arc welding that can be applied to welding mild steel, high-strength steel, low-alloy steel, and the like. The present invention relates to a flux-cored wire for titania-based gas shielded arc welding with improved welding workability such as quantity and mechanical performance of weld metal.

造船所においては、工程の約3割を占める溶接作業について、省人化及び高能率化を促進するために、溶接の自動化及び高能率化の開発が進められている。特に、下向突合せ溶接及び水平すみ肉溶接については、溶接ロボット及びラインウェルダー等が導入され、更に専用の溶接材料が数多く開発されていることから、高能率化が比較的進んでいる。一方、主に造船におけるブロック継ぎなどでの使用比率が高い立向上進溶接姿勢については、その適用溶接箇所が狭隘部であると共に、構造物の反転が不可能であるなどの理由で、自動化が進んでおらず、また、極めて高度な溶接技量が必要とされるために、高能率化及び脱技能化が極めて困難である。   In shipyards, the development of automated welding and high efficiency is being promoted in order to promote labor saving and high efficiency in welding work, which accounts for about 30% of the process. In particular, for downward butt welding and horizontal fillet welding, a welding robot, a line welder, and the like have been introduced, and a large number of dedicated welding materials have been developed. On the other hand, with regard to the vertical-advanced welding position, which is mainly used for block joints in shipbuilding, automation is not possible because the applicable welding location is narrow and the structure cannot be reversed. Since it is not advanced and a very high level of welding skill is required, it is very difficult to improve the efficiency and defeat.

これに対し、特許文献1には、Al、MgO、ZrOを必須成分として多量に含有させることにより、高電流による立向上進溶接が可能なフラックス入りワイヤが提案されている(従来技術1)。また、特許文献2には、全姿勢溶接における作業性及び溶接金属性能等を維持しつつ、立向上進性を更に向上させ、全姿勢溶接に適したチタニヤ系アーク溶接用フラックス入りワイヤが提案されている(従来技術2)。また、特許文献3には、同様に立向上進溶接性に優れ、且つ溶接金属の低温靭性が良好なフラックス入りワイヤが提案されている(従来技術3)。 On the other hand, Patent Document 1 proposes a flux-cored wire capable of standing-up advance welding with a high current by containing a large amount of Al 2 O 3 , MgO, and ZrO 2 as essential components (conventionally). Technology 1). Further, Patent Document 2 proposes a flux-cored wire for titania arc welding suitable for all-position welding by further improving the stand-up improvement while maintaining workability and weld metal performance in all-position welding. (Prior art 2). Further, Patent Document 3 proposes a flux-cored wire that is similarly excellent in stand-up advanceability and good in low-temperature toughness of the weld metal (Prior Art 3).

特開平8‐99192JP-A-8-99192 特開2004‐34078JP2004-34078 特開2005‐319508JP 2005-319508 A

しかし、上記従来技術では、立向上進すみ肉溶接においてルート間隔が広い場合には、スラグ及び溶融金属自体の粘性不足により、溶融金属の垂れ落ちが発生しやすく、ビード形状が不良となる。これは、実際の造船などにおける構造物の開先精度の悪さが考慮されておらず、適用条件範囲が極めて狭いものである。また、従来技術1においては、スラグ剥離性が良好でないなどの問題点があり、従来技術2においては、スパッタ発生量が依然多いなどの問題点がある。このように、従来のフラックス入りワイヤは、立向上進溶接性に問題があるため、全姿勢溶接に有効に使用できるものではなかった。   However, in the above-described prior art, when the root interval is wide in the case of rising fillet welding, due to insufficient viscosity of the slag and the molten metal itself, the molten metal tends to sag and the bead shape becomes poor. This does not take into account the poor groove accuracy of structures in actual shipbuilding and the like, and the applicable condition range is extremely narrow. Further, the conventional technique 1 has a problem that the slag peelability is not good, and the conventional technique 2 has a problem that the amount of spatter generated is still large. As described above, the conventional flux-cored wire has a problem in the vertical improvement weldability, and thus cannot be effectively used for all-position welding.

本発明はかかる問題点に鑑みてなされたものであって、立向上進溶接においてルートギャップが広いなどの厳しい溶接条件下においても溶融金属の垂れ落ちがなく、また、スラグ剥離性が良好でスパッタ発生量が少ない良好な溶接作業性を有し、更に溶接金属の機械的性質が優れた全姿勢溶接用に好適のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   The present invention has been made in view of such problems, and there is no dripping of molten metal even under severe welding conditions such as a wide root gap in vertical welding, and slag removability is good and sputtering is performed. An object of the present invention is to provide a flux-cored wire for titania-based gas shielded arc welding suitable for all-position welding, which has good welding workability with a small amount of generation and excellent mechanical properties of the weld metal.

本発明に係るチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤは、軟鋼又は合金鋼製外皮にフラックスを充填してなるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤにおいて、外皮及びフラックスの全体で、ワイヤ全質量あたり、
TiO:6乃至12質量%、
Al:0.4乃至0.8質量%、
SiO:0.1乃至0.5質量%、
ZrO:0.05乃至0.20質量%、
Mn:1.0乃至3.0質量%、
Si:0.4乃至0.9質量%、
Al:0.1乃至0.3質量%、
Mg:0.4乃至0.8質量%、
を含有し、
残部がFe及び不可避的不純物であり、
(TiO+Al)/(SiO+ZrO):10乃至20、
Mg/(Si+Al):0.4乃至0.7(Mg及びSi及びAlが合金の形態で存在する場合は、Mg及びSi及びAlに換算した含有量)、
Na+K:0.05乃至0.12質量%(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
Na/K:0.3以上(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
であることを特徴とする。
The flux-cored wire for titania-based gas shielded arc welding according to the present invention is a flux-cored wire for titania-based gas shielded arc welding formed by filling a soft steel or alloy steel sheath with a flux. Per mass,
TiO 2 : 6 to 12% by mass,
Al 2 O 3 : 0.4 to 0.8% by mass,
SiO 2 : 0.1 to 0.5% by mass,
ZrO 2 : 0.05 to 0.20 mass%,
Mn: 1.0 to 3.0% by mass,
Si: 0.4 to 0.9 mass%,
Al: 0.1 to 0.3% by mass,
Mg: 0.4 to 0.8% by mass,
Containing
The balance is Fe and inevitable impurities,
(TiO 2 + Al 2 O 3 ) / (SiO 2 + ZrO 2 ): 10 to 20,
Mg / (Si + Al): 0.4 to 0.7 (when Mg and Si and Al are present in the form of an alloy, the content in terms of Mg, Si and Al),
Na + K: 0.05 to 0.12% by mass (when Na and K are present in the form of a compound or alloy, the content converted to Na and K),
Na / K: 0.3 or more (when Na and K are present in the form of a compound or an alloy, the content converted to Na and K),
It is characterized by being.

本発明に係る他のチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤは、軟鋼又は合金鋼製外皮にフラックスを充填してなるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤにおいて、外皮及びフラックスの全体で、ワイヤ全質量あたり、
TiO:6乃至12質量%、
Al:0.4乃至0.8質量%、
SiO:0.1乃至0.5質量%、
ZrO:0.05乃至0.20質量%、
Mn:1.0乃至3.0質量%、
Si:0.4乃至0.9質量%、
Al:0.1乃至0.3質量%、
Mg:0.4乃至0.8質量%、
C:0.01乃至0.12質量%、
F:0.05乃至0.10質量%、
を含有し、
更に、Cr、Cu、Ni、V、Nb、Ti、及びZrからなる群から選択された少なくとも1種を夫々0.1質量%以下含有し、
残部がFe及び不可避的不純物であり、
(TiO+Al)/(SiO+ZrO):10乃至20、
Mg/(Si+Al):0.4乃至0.7(Mg及びSi及びAlが合金の形態で存在する場合は、Mg及びSi及びAlに換算した含有量)、
Na+K:0.05乃至0.12質量%(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
Na/K:0.3以上(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
であることを特徴とする。
The other flux-cored wire for titania-based gas shielded arc welding according to the present invention is a flux-cored wire for titania-based gas shielded arc welding formed by filling a flux in a soft steel or alloy steel sheath, Per total wire mass,
TiO 2 : 6 to 12% by mass,
Al 2 O 3 : 0.4 to 0.8% by mass,
SiO 2 : 0.1 to 0.5% by mass,
ZrO 2 : 0.05 to 0.20 mass%,
Mn: 1.0 to 3.0% by mass,
Si: 0.4 to 0.9 mass%,
Al: 0.1 to 0.3% by mass,
Mg: 0.4 to 0.8% by mass,
C: 0.01 to 0.12% by mass,
F: 0.05 to 0.10% by mass,
Containing
Further, each containing at least one selected from the group consisting of Cr, Cu, Ni, V, Nb, Ti, and Zr is 0.1% by mass or less,
The balance is Fe and inevitable impurities,
(TiO 2 + Al 2 O 3 ) / (SiO 2 + ZrO 2 ): 10 to 20,
Mg / (Si + Al): 0.4 to 0.7 (when Mg and Si and Al are present in the form of an alloy, the content in terms of Mg, Si and Al),
Na + K: 0.05 to 0.12% by mass (when Na and K are present in the form of a compound or alloy, the content converted to Na and K),
Na / K: 0.3 or more (when Na and K are present in the form of a compound or an alloy, the content converted to Na and K),
It is characterized by being.

本発明によれば、立向上進溶接において、ルートギャップが広い等の厳しい溶接条件下においても、溶融金属の垂れ落ちがなく、また、スラグ剥離性が良好で、スパッタ発生量が少なく、良好な溶接作業性が得られる。これにより、本発明によれば、全姿勢溶接に好適なガスシールドアーク溶接用フラックス入りワイヤが得られ、機械的性質が優れた溶接金属が得られる。   According to the present invention, in vertical welding, even under severe welding conditions such as a wide root gap, there is no dripping of molten metal, good slag removability, little spatter generation, and good Welding workability is obtained. As a result, according to the present invention, a flux-cored wire for gas shield arc welding suitable for all-position welding can be obtained, and a weld metal having excellent mechanical properties can be obtained.

以下、本発明のガスシールドアーク溶接用フラックス入りワイヤについて詳細に説明する。先ず、本願発明者等は、スラグの剥離性を向上させつつ、ビード形状不良の原因となる溶融金属の垂れ落ちを防止するために、一般的に行われるスラグの組成を変更し、スラグの凝固点を高める手段を検討した。   Hereinafter, the flux-cored wire for gas shielded arc welding of the present invention will be described in detail. First, the inventors of the present application changed the composition of slag generally performed in order to prevent dripping of the molten metal causing the bead shape failure while improving the slag peelability, and the freezing point of the slag. We examined the means to increase

高融点スラグとするためには、特許文献1に記載のとおり、Al・MgO・ZrOが有効であるが、Al・MgOはスラグの剥離性を劣化させる作用があり、また、ZrOはスパッタ発生量が増加する作用がある。よって、スラグの剥離性及びスパッタ発生量を劣化させることなく、ビード形状不良を防止するための手段として、(1)高融点スラグを生成し、且つスラグ剥離性を劣化させないTiOの添加量増量、(2)高融点スラグを生成するAlのスラグ剥離性が劣化しない範囲の添加、(3)アーク安定性を確保するが低融点スラグを生成するSiOの添加量抑制、(4)高融点スラグを生成するがスパッタ発生量が増大するという短所を併せ持つZrOの添加量抑制を図り、これらTiO、Al、SiO、ZrOのそれぞれの含有量を調整した結果、SiOとZrOの合計含有量に対するTiOとAlの合計含有量の比率を調整することがより効果的であることを見出した。 In order to obtain a high melting point slag, as described in Patent Document 1, Al 2 O 3 .MgO.ZrO 2 is effective, but Al 2 O 3 .MgO has an action of degrading the slag peelability. ZrO 2 has an effect of increasing the amount of spatter generated. Therefore, as a means for preventing bead shape defects without degrading the slag removability and spatter generation amount, (1) increasing the amount of TiO 2 added to produce high melting point slag and not degrade slag removability (2) Addition of Al 2 O 3 that generates high-melting-point slag within a range that does not deteriorate the slag removability, (3) Suppression of addition of SiO 2 that secures arc stability but generates low-melting-point slag, (4 ) Result of adjusting the content of each of TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 while suppressing the addition amount of ZrO 2 , which has the disadvantage of generating high melting point slag but increasing the amount of spatter generated It has been found that it is more effective to adjust the ratio of the total content of TiO 2 and Al 2 O 3 to the total content of SiO 2 and ZrO 2 .

更に、スラグの凝固を早めること以外に、溶融金属そのものの垂れ落ちが発生しにくい組成及び特性が必要であり、そのためには一般的に溶融金属中の酸素量を低下させ、溶融金属の高温での粘性を増加させることが効果的である。特許文献1には脱酸剤としてAl、Siが効果的であるとの記述があるが、Alは添加量によっては、Al生成によりスラグの剥離性を劣化させ、且つ溶接金属の靭性を劣化させる。また、Siは添加量によってはSiO生成によるスラグ凝固点の低下、溶接金属の強度の増加、靭性の劣化を招く。本発明においては、溶接金属の強度、靱性に悪影響を与えずに、溶融金属中の酸素量を低下させる強脱酸剤としてMgが効果的であり、AlとSiの合計含有量に対するMgの含有量の比率を調整することが効果的であることを見出した。 Furthermore, in addition to accelerating solidification of the slag, it is necessary to have a composition and characteristics that prevent the molten metal itself from dripping. For this purpose, the amount of oxygen in the molten metal is generally reduced, and the molten metal is heated at a high temperature. It is effective to increase the viscosity. Patent Document 1 describes that Al and Si are effective as deoxidizers. However, depending on the amount of Al added, Al deteriorates the slag removability due to the formation of Al 2 O 3 and the toughness of the weld metal. Deteriorate. In addition, depending on the amount of Si added, the slag solidification point is reduced due to the generation of SiO 2 , the strength of the weld metal is increased, and the toughness is deteriorated. In the present invention, Mg is effective as a strong deoxidizer for reducing the oxygen content in the molten metal without adversely affecting the strength and toughness of the weld metal, and the content of Mg relative to the total content of Al and Si It has been found that adjusting the ratio of the amounts is effective.

また、溶融金属の垂れ落ちを無くすためには、溶融プールの振動を抑制することも効果的であり、またスパッタ発生量を低減するという観点からも、アーク安定性を向上させるNa及びK(Na、Kが化合物又は合金で存在する場合は、夫々Na、Kに換算した含有量)のアルカリ金属の合計含有量及びK含有量に対するNa含有量の比率を調整することが効果的であることを見出した。   Further, in order to eliminate the dripping of the molten metal, it is also effective to suppress the vibration of the molten pool, and from the viewpoint of reducing the spatter generation amount, Na and K (Na When K is present in a compound or alloy, it is effective to adjust the ratio of Na content to the total content of alkali metals and the K content of Na and K, respectively. I found it.

次に、本発明のフラックス入りワイヤの組成について、その成分添加理由及び組成限定理由について説明する。但し、これらの各成分の含有量は、ワイヤ全質量あたりの含有量である。また、このフラックスワイヤの組成は、フラックス及び外皮を含む全構成物に含まれる成分の組成である。   Next, regarding the composition of the flux-cored wire of the present invention, the reason for adding the component and the reason for limiting the composition will be described. However, the content of each of these components is the content per total mass of the wire. Moreover, the composition of this flux wire is a composition of the components contained in all the components including the flux and the outer skin.

「TiO:6乃至12質量%」
TiOは、スラグ形成剤及びアーク安定剤として作用する。TiOが6質量%未満では、溶融金属を支えるだけのスラグ量を確保できず、溶融金属が垂れ落ちてしまう。また、TiOが12質量%を超えると、スラグ生成量が多くなりすぎ、スラグ巻き込みが発生しやすくなる。
“TiO 2 : 6 to 12% by mass”
TiO 2 acts as a slag former and arc stabilizer. If TiO 2 is less than 6% by mass, a slag amount sufficient to support the molten metal cannot be secured, and the molten metal will sag. In addition, when TiO 2 exceeds 12 wt%, too much slag formation amount, slag inclusion is likely to occur.

「Al:0.4乃至0.8質量%」
Alは、スラグ凝固点を上昇させる作用を有する。Alが0.4質量%未満ではその効果はなく、Alが0.8質量%を超えると、スラグの剥離性が劣化する。
“Al 2 O 3 : 0.4 to 0.8 mass%”
Al 2 O 3 has the effect of increasing the slag freezing point. If Al 2 O 3 is less than 0.4% by mass, the effect is not obtained. If Al 2 O 3 exceeds 0.8% by mass, the slag removability deteriorates.

「SiO0.1乃至0.5質量%」
SiOは、スラグ形成剤及びアーク安定剤としての作用がある。SiOが0.1質量%未満では、アークが不安定となって、スパッタの発生が増加し、SiOが0.5質量%を超えると、スラグの凝固点が低下し、溶融金属が垂れ落ちてしまう。
“SiO 2 0.1 to 0.5 mass%”
SiO 2 acts as a slag forming agent and an arc stabilizer. If SiO 2 is less than 0.1% by mass, the arc becomes unstable and the occurrence of spatter increases, and if SiO 2 exceeds 0.5% by mass, the freezing point of the slag decreases and the molten metal drips down. End up.

「ZrO:0.05乃至0.20質量%」
ZrOはスラグ凝固点を上昇させるとともに、スラグの剥離性を向上させる作用がある。ZrOが0.05質量%未満では、スラグの焼き付きによりスラグの剥離性が劣化し、ZrOが0.20質量%を超えると、スパッタの発生が増加する。
“ZrO 2 : 0.05 to 0.20 mass%”
ZrO 2 has the effect of increasing the slag freezing point and improving the slag peelability. When ZrO 2 is less than 0.05% by mass, slag seizure deteriorates due to seizure of slag, and when ZrO 2 exceeds 0.20% by mass, the occurrence of spatter increases.

「Mn:1.0乃至3.0質量%」
Mnは脱酸剤として作用するとともに、溶接金属における強度及び靭性を向上させる作用がある。Mnが1.5質量%未満では脱酸不足のため、粘性低下による溶融金属の垂れ落ち、ブローホール等の溶接欠陥が発生したり、強度及び靱性が劣化したりする。Mnが3質量%を超えると、溶接金属の強度が高くなりすぎる。より好ましくは、Mnは1.55乃至2.05質量%である。このMnは、金属Mn又は鉄合金等(Fe−Mn、Fe−Si−Mn等)で添加できる。
“Mn: 1.0 to 3.0% by mass”
Mn acts as a deoxidizer and has the effect of improving the strength and toughness of the weld metal. If Mn is less than 1.5% by mass, deoxidation is insufficient, so that molten metal droops due to a decrease in viscosity, welding defects such as blow holes occur, and strength and toughness deteriorate. If Mn exceeds 3% by mass, the strength of the weld metal becomes too high. More preferably, Mn is 1.55 to 2.05 mass%. This Mn can be added by metal Mn or an iron alloy (Fe-Mn, Fe-Si-Mn, etc.).

「Si:0.4乃至0.9質量%」
Siは脱酸剤として作用するとともに、溶接金属における強度及び靭性を向上させる作用がある。Siが0.4質量%未満では、脱酸不足のため、粘性低下による溶融金属の垂れ落ち、ブローホール等の溶接欠陥が発生したり、強度及び靱性が劣化したりする。Siが0.9質量%を超えると、溶接金属の強度が高くなり、且つ靱性が低下する。このSi量は、金属Si又は鉄合金等(Fe−Si、Fe−Si−Mn、Ca−Si等)に含まれるSiの換算値である。
“Si: 0.4 to 0.9 mass%”
Si acts as a deoxidizer and has the effect of improving the strength and toughness of the weld metal. When Si is less than 0.4% by mass, deoxidation is insufficient, so that molten metal droops due to a decrease in viscosity, welding defects such as blow holes occur, and strength and toughness deteriorate. When Si exceeds 0.9 mass%, the strength of the weld metal increases and the toughness decreases. This amount of Si is a converted value of Si contained in metal Si or iron alloy (Fe—Si, Fe—Si—Mn, Ca—Si, etc.).

「Al:0.1乃至0.3質量%」
Alは脱酸剤及びスラグ形成剤として作用する。Alが0.1質量%未満では、溶融金属の垂れ落ちが生じやすくなる。Alが0.3質量%を超えると、スラグの剥離性が劣化し、また溶接金属の靱性が低下する。より好ましくは、Alは0.2乃至0.3質量%である。このAl量は、金属Al又は鉄合金(Fe‐Al)に含まれるAlの換算値である。
“Al: 0.1 to 0.3 mass%”
Al acts as a deoxidizer and slag former. If Al is less than 0.1% by mass, dripping of the molten metal tends to occur. When Al exceeds 0.3 mass%, the slag peelability deteriorates and the toughness of the weld metal decreases. More preferably, Al is 0.2 to 0.3% by mass. This amount of Al is a conversion value of Al contained in metal Al or iron alloy (Fe-Al).

「Mg:0.4乃至0.8質量%」
Mgは強脱酸剤として作用する。Mgが0.4質量%未満では、脱酸不足による粘性低下による溶融金属の垂れ落ちが発生し、また溶接金属の靱性が劣化する。Mgが0.8質量%を超えると、脱酸生成物であるMgOが溶融スラグ中に過剰に増加し、溶融金属の垂れ落ち量及びスパッタの発生量も増加する。このMgは、金属Mg又は各種合金(Al−Mg、Ni−Mg等)に含まれるMgの換算値である。
“Mg: 0.4 to 0.8 mass%”
Mg acts as a strong deoxidizer. If Mg is less than 0.4% by mass, dripping of the molten metal due to a decrease in viscosity due to insufficient deoxidation occurs, and the toughness of the weld metal deteriorates. When Mg exceeds 0.8 mass%, MgO which is a deoxidation product will increase excessively in a molten slag, and the amount of dripping of a molten metal and the generation amount of spatter will also increase. This Mg is the conversion value of Mg contained in metal Mg or various alloys (Al-Mg, Ni-Mg, etc.).

「C:0.01乃至0.12質量%」
Cは溶接金属の強度及び靭性を向上させる作用を有するので、添加することができる。Cを添加する場合は、その含有量は0.01乃至0.12質量%、好ましくは、0.03乃至0.10質量%とする。Cを過剰に添加すると、溶接金属の強度が過剰に上昇して、耐割れ性が劣化する。
“C: 0.01 to 0.12 mass%”
C has the effect of improving the strength and toughness of the weld metal, so it can be added. When C is added, the content is 0.01 to 0.12% by mass, preferably 0.03 to 0.10% by mass. When C is added excessively, the strength of the weld metal is excessively increased and crack resistance is deteriorated.

「F:0.05乃至0.10質量%」
Fは溶融プールに侵入した水素ガスの放出を促進し、ピット及びガス溝の発生を防止するので、添加することができる。Fを添加する場合は、0.05乃至0.10質量%とする。Fを過剰に添加すると、スパッタの増加を招く。
“F: 0.05 to 0.10% by mass”
F promotes the release of hydrogen gas that has entered the molten pool and prevents the formation of pits and gas grooves, so it can be added. When F is added, the content is 0.05 to 0.10% by mass. When F is added excessively, spatter increases.

「Cr,Cu,Ni,V、Nb、Ti,及びZrからなる群から選択された少なくとも1種:夫々0.1質量%以下」
Cr,Cu,Ni,V、Nb、Ti,及びZrは、合金成分として、溶接金属の強度向上に寄与し、耐食性向上に寄与する。しかし、Cr,Cu,Ni,V、Nb、Ti,及びZrの過剰添加により、溶接金属の強度が過剰に上昇して、耐割れ性が劣化するので、これらの成分を含有する場合は、夫々0.1質量%以下にする。上述のC,Fを含めて、Cr,Cu,Ni,V、Nb、Ti,及びZrは、含有されていてもよいが、含有されていなくてもよい。
“At least one selected from the group consisting of Cr, Cu, Ni, V, Nb, Ti, and Zr: each 0.1% by mass or less”
Cr, Cu, Ni, V, Nb, Ti, and Zr, as alloy components, contribute to improving the strength of the weld metal and contribute to improving corrosion resistance. However, the excessive addition of Cr, Cu, Ni, V, Nb, Ti, and Zr increases the strength of the weld metal and deteriorates the crack resistance. When these components are contained, respectively. 0.1 mass% or less. Including C and F described above, Cr, Cu, Ni, V, Nb, Ti, and Zr may be contained, but may not be contained.

「x=(TiO+Al)/(SiO+ZrO):10乃至20」
TiO、Al、SiO、ZrOが夫々前述の範囲内にあっても、SiOとZrOの合計含有量に対するTiOとAlの合計含有量の比率xが10未満では、スラグの流動性が増し、溶融金属を支えることができない。一方、比率xが20を超えると、スラグの焼き付きが多くなり、スラグの剥離性が劣化する。つまり、低融点スラグを生成するSiO及びスパッタ発生量を増大させるZrOの合計含有量を分母とし、高融点スラグを生成するTiO及びAlの合計含有量を分子としたときのその比率xを、10乃至20という適正な範囲内に調整することにより、スラグ剥離性及びスパッタ発生量を劣化させることなく、立向上進性の向上を図ることができる。
“X = (TiO 2 + Al 2 O 3 ) / (SiO 2 + ZrO 2 ): 10 to 20”
Even if TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 are within the above-mentioned ranges, the ratio x of the total content of TiO 2 and Al 2 O 3 to the total content of SiO 2 and ZrO 2 is 10 If it is less than this, the fluidity of the slag is increased and the molten metal cannot be supported. On the other hand, when the ratio x exceeds 20, the slag is burned more and the slag peelability is deteriorated. That is, when the total content of SiO 2 that generates low melting point slag and ZrO 2 that increases the amount of spatter generated is the denominator, and the total content of TiO 2 and Al 2 O 3 that generates high melting point slag is the numerator. By adjusting the ratio x within an appropriate range of 10 to 20, it is possible to improve the stand-up advanceability without deteriorating the slag peelability and the amount of spatter generated.

「y=Mg/(Si+Al):0.4乃至0.7(Mg及びSi及びAlが合金の形態で存在する場合は、Mg及びSi及びAlに換算した含有量)」
Mg、Al、Siの含有量が夫々前述の範囲内であっても、SiとAlの合計含有量に対するMgの比率yが0.4未満では、溶接金属の強度が増加し、靭性が低下する。yが0.7を超えると、溶融金属が垂れ落ち、スパッタの発生が増加する。つまり、立向上進性に効果的であるが、溶接金属の機械的性質を劣化させうるSi及びAlの合計含有量を分母とし、溶融金属の粘性を向上させ、且つその強力な脱酸性能により溶接金属の特に靱性を向上させるMg含有量を分子としたときの比率yを、0.4乃至0.7という適正な範囲内に調整することにより、溶接金属の機械的性質を劣化させることなく立向上進性の向上を図ることができる。
“Y = Mg / (Si + Al): 0.4 to 0.7 (when Mg, Si, and Al are present in the form of an alloy, the content in terms of Mg, Si, and Al)”
Even if the contents of Mg, Al, and Si are within the above-described ranges, if the ratio y of Mg to the total content of Si and Al is less than 0.4, the strength of the weld metal increases and the toughness decreases. . When y exceeds 0.7, molten metal drips down and the occurrence of spatter increases. In other words, it is effective for the advancement, but the total content of Si and Al, which can degrade the mechanical properties of the weld metal, is used as the denominator to improve the viscosity of the molten metal and its strong deoxidation performance. Without reducing the mechanical properties of the weld metal by adjusting the ratio y when the Mg content, which improves the toughness of the weld metal, as a molecule, is adjusted to an appropriate range of 0.4 to 0.7. It is possible to improve the standing improvement.

「Na+K:0.05乃至0.12質量%、Na/K:0.3以上(Na、Kが化合物又は合金で存在する場合は夫々Na、Kに換算した含有量)」
Na及びKはアーク安定剤としての作用があり、溶融プールの振動を抑制することによる溶融金属の垂れ落ちを防止することができる。NaとKの合計含有量が0.05質量%未満では、前述の作用が得られず、NaとKの合計含有量が0.12質量%を超えると、低融点スラグの生成過多による溶融金属の垂れ落ちが生じやすくなる。また、K含有量に対するNa含有量の比率が0.3未満では、アーク安定性が劣化し、スパッタの発生量が増加し、また溶融金属の垂れ落ちが生じやすくなる。
“Na + K: 0.05 to 0.12% by mass, Na / K: 0.3 or more (when Na and K are present in a compound or alloy, contents converted to Na and K, respectively)”
Na and K have an action as an arc stabilizer, and can prevent the molten metal from dripping by suppressing vibration of the molten pool. When the total content of Na and K is less than 0.05% by mass, the above-described effects cannot be obtained. It is easy for dripping. On the other hand, if the ratio of Na content to K content is less than 0.3, the arc stability deteriorates, the amount of spatter generated increases, and the molten metal tends to sag.

なお、Si、Mn等の合金元素は外皮及び/又はフラックスから添加することができる。また、溶接部の耐食性、高強度及び耐高温腐食性等を向上させるために、上記以外の合金成分(Cr、Cu、Ni、V、Nb等)を添加することができる。その他、フッ化物等も添加できる。また、ワイヤ表面の状態及びワイヤ断面におけるフラックスの充填形状には制限はない。なお、上記以外の成分としては、外皮、Fe‐Mn、Fe‐Si等の鉄合金及び鉄粉等の構成成分であるFeがあり、残部は不可避不純物である。不可避的不純物としては、P,S,Sb,As,Pb等があり、これらの不可避的不純物は、総計で0.1質量%以下に規制する必要がある。   Note that alloy elements such as Si and Mn can be added from the outer skin and / or flux. Further, in order to improve the corrosion resistance, high strength, high temperature corrosion resistance, etc. of the welded portion, alloy components other than the above (Cr, Cu, Ni, V, Nb, etc.) can be added. In addition, fluorides can be added. Moreover, there is no restriction | limiting in the state of a wire surface, and the filling form of the flux in a wire cross section. In addition, as components other than the above, there are Fe, which is a constituent component of the outer shell, iron alloys such as Fe-Mn, Fe-Si, and iron powder, and the remainder is inevitable impurities. Inevitable impurities include P, S, Sb, As, Pb, and the like, and these inevitable impurities need to be regulated to 0.1% by mass or less in total.

次に、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。下記表1は、本発明で規定する各成分の原料の例示を示す。この表1に示す原料を適宜配合し、鋼製(JIS G 23 3141、SPCC)外皮中に充填し、ワイヤ全重量に対するフラックスの割合が15質量%となるようにして、ワイヤ径1.2mmのフラックス入りワイヤを作製した。表2及び表3に実施例及び比較例のフラックス入りワイヤの成分含有量の分析値を示す。表2及び表3中の成分以外の残部の主成分はFeであり、不可避不純物としてP、S、N及びCu等を含む。   Next, effects of the embodiment of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention. Table 1 below shows examples of raw materials for each component defined in the present invention. The raw materials shown in Table 1 are appropriately blended and filled in a steel (JIS G 23 3141, SPCC) outer shell, and the ratio of the flux to the total weight of the wire is 15% by mass. A flux-cored wire was produced. Tables 2 and 3 show analytical values of the component contents of the flux-cored wires of Examples and Comparative Examples. The remaining main component other than the components in Tables 2 and 3 is Fe, and includes P, S, N, Cu, and the like as inevitable impurities.

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

上記表2及び表3に示した比較例1乃至22及び実施例1乃至15のフラックス入りワイヤを使用し、被溶接材としてJIS G 3106、SM490A の鋼板を使用し、シールドガスとして100質量%COを流量25リットル/分で供給して、下記(1)乃至(3)の各溶接試験を実施し、その溶接性について評価した。 The flux-cored wires of Comparative Examples 1 to 22 and Examples 1 to 15 shown in Tables 2 and 3 above are used, steel plates of JIS G 3106 and SM490A are used as materials to be welded, and 100% by mass CO2 as shielding gas. 2 was supplied at a flow rate of 25 liters / minute, the following welding tests (1) to (3) were performed, and the weldability was evaluated.

(1)立向上進溶接性の評価
下記表4に示す方法で、立向上進溶接でのビード垂れ性試験を行い、立向上進溶接性を評価した。
(1) Evaluation of standing improvement progress weldability By the method shown in Table 4 below, a bead sag test was performed in standing improvement progress welding, and standing improvement progress weldability was evaluated.

Figure 2008087044
Figure 2008087044

(2)溶接作業性及びスラグ剥離性の評価
溶接作業性の評価を立向上進すみ肉溶接にて行い、スパッタ発生量の官能評価及びスラグ剥離性について評価した。評価基準は次のとおりである。
(2−1)溶接作業性の評価
スパッタ発生量が少ないもの(スパッタ発生量:1.5g/分未満):○
スパッタ発生量がやや多いもの(スパッタ発生量:1.5g/分以上):×
(2−2)スラグ剥離性の評価
スラグ剥離性が良好なもの(スラグ自然剥離率(=スラグ自然剥離長さ/溶接長):25%以上):○
スラグ剥離性が不良なもの(スラグ自然剥離率(=スラグ自然剥離長さ/溶接長):25%未満):×
(2) Evaluation of welding workability and slag peelability Welding workability was evaluated by fillet welding, and sensory evaluation of spatter generation and slag peelability were evaluated. The evaluation criteria are as follows.
(2-1) Evaluation of welding workability Small amount of spatter generation (spatter generation amount: less than 1.5 g / min): ○
Slightly large spatter generation amount (spatter generation amount: 1.5 g / min or more): ×
(2-2) Evaluation of slag peelability Good slag peelability (slag natural peel rate (= slag natural peel length / weld length): 25% or more): ○
Slag peelability is poor (slag natural peel rate (= slag natural peel length / weld length): less than 25%): ×

(3)JIS G 3106(SM490A)に該当する供試鋼板を使用し、JIS Z 3313に規定されている全溶着金属についての試験方法に準じ、下記表5に示す試験方法で溶接した。
評価基準は次のとおりである。
シャルピー衝撃試験による吸収エネルギーが60J以上90J未満のもの:○
シャルピー衝撃試験による吸収エネルギーが60J未満のもの:×
上述の各溶接試験の評価結果を下記表6及び表7に示す。
(3) A test steel plate corresponding to JIS G 3106 (SM490A) was used and welded by the test method shown in Table 5 below in accordance with the test method for all weld metals specified in JIS Z 3313.
The evaluation criteria are as follows.
Absorption energy by Charpy impact test of 60J or more and less than 90J: ○
Absorption energy by Charpy impact test is less than 60J: ×
Tables 6 and 7 below show the evaluation results of the welding tests described above.

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

Figure 2008087044
Figure 2008087044

この表6及び表7に示すように、比較例1は、TiOがその下限値を外れているため、立向上進性のみが劣り、比較例2は、TiOのみがその上限値を外れているため、スラグ形成剤量過多による溶融金属の垂れ、大粒スパッタの増加、及び脱酸不良による機械的性質の劣化が発生した。比較例3は、Alのみがその下限値を外れているため、スラグの粘性低下により立向上進性が劣り、比較例4は、Alのみがその上限値を外れているため、溶接金属へのスラグの焼き付きによるスラグ剥離性不良が生じている。比較例5は、SiOがその下限値を外れ、且つ(TiO+Al)/SiO+ZrO)比率xもその上限値を外れているため、凝固が早くなりすぎ、逆にスラグが邪魔をすることによる立向上進性の劣化が見られた。比較例6は、SiOのみがその上限値を外れるため、スラグの凝固が遅くなり、スラグが溶融金属を保持することができず、溶融金属の垂れが発生した。 As shown in Tables 6 and 7, in Comparative Example 1, since TiO 2 is out of its lower limit, only the stand-up improvement is inferior, and in Comparative Example 2, only TiO 2 is out of its upper limit. Therefore, dripping of the molten metal due to an excessive amount of the slag forming agent, an increase in large grain spatter, and deterioration of mechanical properties due to poor deoxidation occurred. In Comparative Example 3, since only Al 2 O 3 is out of the lower limit value, the improvement in standing up is inferior due to a decrease in the viscosity of the slag. In Comparative Example 4, only Al 2 O 3 is out of the upper limit value. For this reason, poor slag releasability due to seizure of slag onto the weld metal occurs. In Comparative Example 5, since SiO 2 is out of the lower limit value and the (TiO 2 + Al 2 O 3 ) / SiO 2 + ZrO 2 ) ratio x is out of the upper limit value, solidification becomes too fast, and conversely, slag Deterioration of the standing improvement due to obstruction was observed. In Comparative Example 6, since only SiO 2 deviated from the upper limit value, the solidification of the slag was slow, the slag could not hold the molten metal, and the dripping of the molten metal occurred.

比較例7は、ZrOのみがその下限値を外れているため、溶接金属へのスラグの焼き付きによるスラグ剥離性不良が生じている。比較例8は、ZrOのみがその上限値を外れているため、スラグの凝固が遅れ、溶融金属の垂れが発生した。比較例9は、TiO、Al、SiO、ZrOはその規定範囲内にあるが、(TiO+Al)/〔SiO+ZrO)比率xのみがその下限値を外れており、スラグの凝固が遅く、かつ粘性が低いために溶融金属の垂れが発生した。比較例10は、TiO、Al、SiO、ZrOはその規定範囲内にあるが、(TiO+Al)/〔SiO+ZrO)比率xのみがその上限値を外れており、スラグの凝固が早くなりすぎ、逆にスラグが邪魔をすることによる立向上進性の劣化が見られ、且つ溶接金属へのスラグの焼き付きによるスラグ剥離性不良が生じた。 In Comparative Example 7, since only ZrO 2 is out of the lower limit value, slag peelability failure due to slag sticking to the weld metal occurs. In Comparative Example 8, since only ZrO 2 was out of the upper limit, solidification of the slag was delayed and dripping of the molten metal occurred. In Comparative Example 9, TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 are within the specified range, but only the (TiO 2 + Al 2 O 3 ) / [SiO 2 + ZrO 2 ) ratio x has its lower limit. The slag solidified slowly and the viscosity was low, so that dripping of the molten metal occurred. In Comparative Example 10, TiO 2 , Al 2 O 3 , SiO 2 , and ZrO 2 are within the specified range, but only the (TiO 2 + Al 2 O 3 ) / [SiO 2 + ZrO 2 ) ratio x has its upper limit. As a result, the solidification of the slag became too fast, the deterioration of the standing improvement due to the slag interfering with the slag, and the poor slag peelability due to the slag sticking to the weld metal occurred.

比較例11は、Mnのみがその上限値を外れているため、溶接金属のMn量が過多となり、引張強度が低いものであった。また、比較例11は、スラグ中に低融点化合物であるMnOが過剰に生成することによる立向上進性の劣化が見られ、且つ大粒のスパッタも発生した。比較例12は、Mnのみがその下限値を外れているため、脱酸性能が劣り、溶接金属の衝撃性能が劣るとともに、脱酸不良による溶接欠陥が発生した。比較例13は、Siのみがその下限値を外れているため、脱酸性能が劣り、溶接金属の衝撃性能が劣っている。また、比較例13は、アークの集中性が強く、立向上進性が劣るものであった。比較例14は、Siのみがその上限値を外れているため、溶接金属のSi量が過多となり、引張強度が高くなり過ぎることによる衝撃性能の劣化が見られた。   In Comparative Example 11, since only Mn is out of the upper limit, the amount of Mn in the weld metal is excessive, and the tensile strength is low. Further, in Comparative Example 11, deterioration of the standing improvement due to excessive generation of MnO, which is a low melting point compound, was observed in the slag, and large spatter was also generated. In Comparative Example 12, since only Mn is out of the lower limit, the deoxidation performance is inferior, the impact performance of the weld metal is inferior, and a weld defect due to poor deoxidation occurs. In Comparative Example 13, only Si is outside the lower limit value, so the deoxidation performance is inferior and the impact performance of the weld metal is inferior. In Comparative Example 13, the concentration of the arc was strong and the stand-up improvement was inferior. In Comparative Example 14, since only Si deviated from the upper limit, the amount of Si in the weld metal was excessive, and the impact performance was deteriorated due to the excessively high tensile strength.

比較例15は、Alのみその下限値を外れているため、溶融金属の粘性低下による立向上進性の劣化が見られた。比較例16は、Alのみがその上限値を外れているため、溶接金属の衝撃性能が劣るとともに、スラグ中へのAlの過剰生成によるスラグ剥離性の劣化が見られた。比較例17は、Mgのみがその下限値を外れているため、脱酸性能が劣り、溶接金属の衝撃性能が劣るとともに、溶融金属の粘性低下による立向上進性の劣化が見られた。比較例18は、Mgのみがその上限値を外れているため、脱酸性能が過剰によるMn及びSiの溶接金属中の歩留りが高くなりすぎ、引張強度が高くなり過ぎることによる衝撃性能の劣化が見られた。また、大粒のスパッタが増加するとともに、スラグ中へのMgO過剰生成によるスラグ剥離性の劣化が見られた。 In Comparative Example 15, since only Al was out of the lower limit, deterioration of the standing improvement due to a decrease in the viscosity of the molten metal was observed. In Comparative Example 16, since only Al deviated from the upper limit value, the impact performance of the weld metal was inferior, and deterioration of slag peelability due to excessive generation of Al 2 O 3 in the slag was observed. In Comparative Example 17, only Mg was out of the lower limit value, so that the deoxidation performance was inferior, the impact performance of the weld metal was inferior, and deterioration of the standing improvement due to the decrease in the viscosity of the molten metal was observed. In Comparative Example 18, since only Mg is out of the upper limit, the yield in the weld metal of Mn and Si due to excessive deoxidation performance becomes too high, and the impact performance deteriorates due to the tensile strength becoming too high. It was seen. In addition, large spatter increased and deterioration of slag removability due to excessive MgO generation in the slag was observed.

比較例19は、Si、Al、Mgはその規定範囲にあるが、Mg/(Si+Al)比率yがその下限値を外れているため、溶接金属の引張強度が増加しすぎることによる衝撃性能の劣化が見られた。比較例20は、Si、Al、Mgはその規定範囲にあるが、Mg/(Si+Al)比率yがその上限値を外れているため、溶融金属の粘性不足による立向上進性の劣化が見られた。比較例21は、Na+Kがその下限値を外れているため、アーク集中性が強く、立向上進性が劣化するとともに大粒スパッタが発生した。比較例22は、Na+Kがその上限値を外れているため、低融点化合物であるNaO及びKOの過剰生成による立向上進性の劣化が見られた。比較例23は、Na+Kはその規定範囲にあるが、Na+Kがその下限値を外れているため、大粒のスパッタが増加した。 In Comparative Example 19, Si, Al, and Mg are in their specified ranges, but the Mg / (Si + Al) ratio y is out of the lower limit value, so that the impact performance is deteriorated due to excessive increase in the tensile strength of the weld metal. It was observed. In Comparative Example 20, Si, Al, and Mg are within the specified ranges, but the Mg / (Si + Al) ratio y is outside the upper limit value, so deterioration of the standing improvement due to insufficient viscosity of the molten metal is seen. It was. In Comparative Example 21, since Na + K was out of the lower limit value, the arc concentration was strong, the vertical improvement progress was deteriorated, and large spatter was generated. In Comparative Example 22, since Na + K was out of the upper limit, deterioration of the standing improvement due to excessive generation of Na 2 O and K 2 O, which are low melting point compounds, was observed. In Comparative Example 23, Na + K was within the specified range, but Na + K was out of the lower limit value, so large spatter increased.

これに対し、実施例1乃至15は、いずれも上記本発明の規定範囲を全て満たしているので、上記全ての溶接特性が良好であった。   On the other hand, since all of Examples 1 to 15 satisfied all the prescribed ranges of the present invention, all the above welding characteristics were good.

なお、下向及び水平すみ肉溶接の溶接作業性についても、同様の試験により確認したが、本発明の実施例は、いずれも良好であった。   In addition, although the welding workability | operativity of downward and horizontal fillet welding was confirmed by the same test, the Example of this invention was all favorable.

以上詳述したように、本発明によれば、スパッタ発生量及びスラグ剥離性といった溶接作業性、及び溶接金属の機械的性質が劣化することなく、立向上進溶接姿勢により、高溶接電流及び広ルート間隔といった過酷な溶接条件下であっても、溶融金属及びスラグの垂れ落ちを防止することができる。   As described above in detail, according to the present invention, the welding workability such as the spatter generation amount and the slag peelability, and the mechanical properties of the weld metal are not deteriorated, and the high welding current and the wide welding can be achieved by the vertical improvement welding posture. Even under severe welding conditions such as route spacing, dripping of molten metal and slag can be prevented.

Claims (2)

軟鋼又は合金鋼製外皮にフラックスを充填してなるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤにおいて、外皮及びフラックスの全体で、ワイヤ全質量あたり、
TiO:6乃至12質量%、
Al:0.4乃至0.8質量%、
SiO:0.1乃至0.5質量%、
ZrO:0.05乃至0.20質量%、
Mn:1.0乃至3.0質量%、
Si:0.4乃至0.9質量%、
Al:0.1乃至0.3質量%、
Mg:0.4乃至0.8質量%、
を含有し、
残部がFe及び不可避的不純物であり、
(TiO+Al)/(SiO+ZrO):10乃至20、
Mg/(Si+Al):0.4乃至0.7(Mg及びSi及びAlが合金の形態で存在する場合は、Mg及びSi及びAlに換算した含有量)、
Na+K:0.05乃至0.12質量%(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
Na/K:0.3以上(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
であることを特徴とするチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for titania-based gas shielded arc welding formed by filling the outer skin made of mild steel or alloy steel with flux, the entire outer skin and flux, per total mass of the wire,
TiO 2 : 6 to 12% by mass,
Al 2 O 3 : 0.4 to 0.8% by mass,
SiO 2 : 0.1 to 0.5% by mass,
ZrO 2 : 0.05 to 0.20 mass%,
Mn: 1.0 to 3.0% by mass,
Si: 0.4 to 0.9 mass%,
Al: 0.1 to 0.3% by mass,
Mg: 0.4 to 0.8% by mass,
Containing
The balance is Fe and inevitable impurities,
(TiO 2 + Al 2 O 3 ) / (SiO 2 + ZrO 2 ): 10 to 20,
Mg / (Si + Al): 0.4 to 0.7 (when Mg and Si and Al are present in the form of an alloy, the content in terms of Mg, Si and Al),
Na + K: 0.05 to 0.12% by mass (when Na and K are present in the form of a compound or alloy, the content converted to Na and K),
Na / K: 0.3 or more (when Na and K are present in the form of a compound or an alloy, the content converted to Na and K),
A flux-cored wire for titania-based gas shielded arc welding.
軟鋼又は合金鋼製外皮にフラックスを充填してなるチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤにおいて、外皮及びフラックスの全体で、ワイヤ全質量あたり、
TiO:6乃至12質量%、
Al:0.4乃至0.8質量%、
SiO:0.1乃至0.5質量%、
ZrO:0.05乃至0.20質量%、
Mn:1.0乃至3.0質量%、
Si:0.4乃至0.9質量%、
Al:0.1乃至0.3質量%、
Mg:0.4乃至0.8質量%、
C:0.01乃至0.12質量%、
F:0.05乃至0.10質量%、
を含有し、
更に、Cr、Cu、Ni、V、Nb、Ti、及びZrからなる群から選択された少なくとも1種を夫々0.1質量%以下含有し、
残部がFe及び不可避的不純物であり、
(TiO+Al)/(SiO+ZrO):10乃至20、
Mg/(Si+Al):0.4乃至0.7(Mg及びSi及びAlが合金の形態で存在する場合は、Mg及びSi及びAlに換算した含有量)、
Na+K:0.05乃至0.12質量%(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
Na/K:0.3以上(Na及びKは化合物又は合金の形態で存在する場合は、Na及びKに換算した含有量)、
であることを特徴とするチタニヤ系ガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for titania-based gas shielded arc welding formed by filling the outer skin made of mild steel or alloy steel with flux, the entire outer skin and flux, per total mass of the wire,
TiO 2 : 6 to 12% by mass,
Al 2 O 3 : 0.4 to 0.8% by mass,
SiO 2 : 0.1 to 0.5% by mass,
ZrO 2 : 0.05 to 0.20 mass%,
Mn: 1.0 to 3.0% by mass,
Si: 0.4 to 0.9 mass%,
Al: 0.1 to 0.3% by mass,
Mg: 0.4 to 0.8% by mass,
C: 0.01 to 0.12% by mass,
F: 0.05 to 0.10% by mass,
Containing
Further, each containing at least one selected from the group consisting of Cr, Cu, Ni, V, Nb, Ti, and Zr is 0.1% by mass or less,
The balance is Fe and inevitable impurities,
(TiO 2 + Al 2 O 3 ) / (SiO 2 + ZrO 2 ): 10 to 20,
Mg / (Si + Al): 0.4 to 0.7 (when Mg and Si and Al are present in the form of an alloy, the content in terms of Mg, Si and Al),
Na + K: 0.05 to 0.12% by mass (when Na and K are present in the form of a compound or alloy, the content converted to Na and K),
Na / K: 0.3 or more (when Na and K are present in the form of a compound or an alloy, the content converted to Na and K),
A flux-cored wire for titania-based gas shielded arc welding.
JP2006271316A 2006-10-02 2006-10-02 Flux-cored wire for titania-based gas shielded arc welding Active JP4986562B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006271316A JP4986562B2 (en) 2006-10-02 2006-10-02 Flux-cored wire for titania-based gas shielded arc welding
CN2007101469825A CN101157169B (en) 2006-10-02 2007-09-03 Filling soldering flux wire for titania gas coverage arc welding
KR1020070098723A KR100920550B1 (en) 2006-10-02 2007-10-01 Flux-cored wire for titania-based gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271316A JP4986562B2 (en) 2006-10-02 2006-10-02 Flux-cored wire for titania-based gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2008087044A true JP2008087044A (en) 2008-04-17
JP4986562B2 JP4986562B2 (en) 2012-07-25

Family

ID=39305469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271316A Active JP4986562B2 (en) 2006-10-02 2006-10-02 Flux-cored wire for titania-based gas shielded arc welding

Country Status (3)

Country Link
JP (1) JP4986562B2 (en)
KR (1) KR100920550B1 (en)
CN (1) CN101157169B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017733A (en) * 2008-07-09 2010-01-28 Kobe Steel Ltd Titania-based flux-cored wire for gas-shielded arc welding
JP2011025271A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Flux-cored wire
CN102179640A (en) * 2011-04-26 2011-09-14 武汉铁锚焊接材料股份有限公司 High-strength and high-toughness metal powder flux-cored wire
JP2011245519A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd Weld metal excellent in hot crack resistance
JP2012121051A (en) * 2010-12-08 2012-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
JP2012192422A (en) * 2011-03-15 2012-10-11 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shield arc welding
CN102873468A (en) * 2012-09-18 2013-01-16 武汉铁锚焊接材料股份有限公司 High-speed flat fillet weld flux-cored wire and preparation and application thereof
JP2013252551A (en) * 2012-06-08 2013-12-19 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
JP2014184481A (en) * 2013-03-25 2014-10-02 Kobe Steel Ltd Flux-cored wire for gas shield arc welding
JP2016055311A (en) * 2014-09-09 2016-04-21 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
CN106041360A (en) * 2016-07-27 2016-10-26 天津大桥金属焊丝有限公司 Vertical position fillet welding small fillet titanium type high-toughness flux-cored wire and manufacturing method thereof
CN106312370A (en) * 2016-10-28 2017-01-11 北京工业大学 308 (L) stainless steel flux cored wire for sheet welding
CN111886110A (en) * 2018-03-29 2020-11-03 株式会社神户制钢所 Flux-cored wire

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046136B1 (en) * 2008-12-24 2011-07-01 주식회사 포스코 Flux cored wire for gas shielded arc welding
JP5415998B2 (en) * 2010-03-11 2014-02-12 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP5669624B2 (en) * 2010-08-10 2015-02-12 株式会社神戸製鋼所 Titanium oxide raw material for welding material, welding material using the same, and method for producing titanium oxide raw material for welding material
JP5845168B2 (en) * 2012-12-28 2016-01-20 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding and gas shielded arc welding method
JP6040133B2 (en) * 2013-10-03 2016-12-07 株式会社神戸製鋼所 Gas shield arc welding method
CN104117789B (en) * 2014-08-06 2016-05-25 武汉铁锚焊接材料股份有限公司 A kind of low-temperature steel flux-cored wire
JP6509007B2 (en) * 2015-03-30 2019-05-08 株式会社神戸製鋼所 Method of manufacturing flux-cored wire for gas shielded arc welding
JP2016187828A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
CN105057916A (en) * 2015-07-30 2015-11-18 洛阳双瑞特种合金材料有限公司 Stainless steel flux-cored wire capable of receiving postweld heat treatment
CN105081609A (en) * 2015-09-22 2015-11-25 机械科学研究院哈尔滨焊接研究所 High-strength and high-toughness all-position-welding gas shield flux-cored wire for weather-resistant steel
JP6719217B2 (en) * 2016-01-25 2020-07-08 株式会社神戸製鋼所 Stainless steel flux cored wire
CN110315240A (en) * 2018-03-29 2019-10-11 株式会社神户制钢所 Flux-cored wire
CN113458649B (en) * 2021-07-09 2022-12-06 昆山京群焊材科技有限公司 Self-protection flux-cored wire containing titanium carbide particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213398A (en) * 1984-04-06 1985-10-25 Nippon Steel Corp Low-hydrogen type coated arc welding electrode
JPS61286089A (en) * 1985-06-11 1986-12-16 Daido Steel Co Ltd Gas shielded arc welding method
JPS6233094A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding
JPS6234697A (en) * 1985-08-09 1987-02-14 Daido Steel Co Ltd Flux cored wide for welding
JP2004058086A (en) * 2002-07-26 2004-02-26 Kobe Steel Ltd Flux-cored wire for gas shielded metal arc welding for low-alloy heat resisting steel
JP2004230456A (en) * 2003-01-31 2004-08-19 Kobe Steel Ltd Wire including flux for gas shielded arc welding for corrosion-resistant steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711077B2 (en) * 1994-09-29 1998-02-10 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP3730440B2 (en) 1999-04-23 2006-01-05 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
SE0001748D0 (en) * 2000-03-30 2000-05-12 Abb Ab Induction Winding
KR100355581B1 (en) 2000-09-23 2002-10-11 고려용접봉 주식회사 Flux cored wire for gas shield arc welding
KR100436489B1 (en) * 2001-05-28 2004-06-22 고려용접봉 주식회사 Flux cored wire for gas shielded arc welding of high tensile strength steel
JP3816070B2 (en) * 2003-09-16 2006-08-30 株式会社神戸製鋼所 Titanya flux cored wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213398A (en) * 1984-04-06 1985-10-25 Nippon Steel Corp Low-hydrogen type coated arc welding electrode
JPS61286089A (en) * 1985-06-11 1986-12-16 Daido Steel Co Ltd Gas shielded arc welding method
JPS6233094A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding
JPS6234697A (en) * 1985-08-09 1987-02-14 Daido Steel Co Ltd Flux cored wide for welding
JP2004058086A (en) * 2002-07-26 2004-02-26 Kobe Steel Ltd Flux-cored wire for gas shielded metal arc welding for low-alloy heat resisting steel
JP2004230456A (en) * 2003-01-31 2004-08-19 Kobe Steel Ltd Wire including flux for gas shielded arc welding for corrosion-resistant steel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017733A (en) * 2008-07-09 2010-01-28 Kobe Steel Ltd Titania-based flux-cored wire for gas-shielded arc welding
JP2011025271A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Flux-cored wire
JP2011245519A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd Weld metal excellent in hot crack resistance
JP2012121051A (en) * 2010-12-08 2012-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
JP2012192422A (en) * 2011-03-15 2012-10-11 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shield arc welding
CN102179640A (en) * 2011-04-26 2011-09-14 武汉铁锚焊接材料股份有限公司 High-strength and high-toughness metal powder flux-cored wire
JP2013252551A (en) * 2012-06-08 2013-12-19 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
CN102873468A (en) * 2012-09-18 2013-01-16 武汉铁锚焊接材料股份有限公司 High-speed flat fillet weld flux-cored wire and preparation and application thereof
JP2014184481A (en) * 2013-03-25 2014-10-02 Kobe Steel Ltd Flux-cored wire for gas shield arc welding
JP2016055311A (en) * 2014-09-09 2016-04-21 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
CN106041360A (en) * 2016-07-27 2016-10-26 天津大桥金属焊丝有限公司 Vertical position fillet welding small fillet titanium type high-toughness flux-cored wire and manufacturing method thereof
CN106312370A (en) * 2016-10-28 2017-01-11 北京工业大学 308 (L) stainless steel flux cored wire for sheet welding
CN111886110A (en) * 2018-03-29 2020-11-03 株式会社神户制钢所 Flux-cored wire

Also Published As

Publication number Publication date
CN101157169A (en) 2008-04-09
JP4986562B2 (en) 2012-07-25
KR100920550B1 (en) 2009-10-08
KR20080030935A (en) 2008-04-07
CN101157169B (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5968855B2 (en) Ni-based alloy flux cored wire
US10870178B2 (en) Flux-cored wire for arc welding of duplex stainless steel and weld metal
JP5283993B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP6250475B2 (en) Ni-based alloy flux cored wire
JP6953869B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP2013151001A (en) Flux-cored wire for gas-shielded arc welding for weather-resistant steel
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2011125904A (en) Flux cored wire for gas shielded arc welding for weather resistant steel
JP5236309B2 (en) Flux-cored wire for gas shielded arc welding
JP5410039B2 (en) Stainless steel flux cored wire for electrogas arc welding
JP2017042811A (en) Flux-cored wire for gas-shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
JP2009190042A (en) Two-electrode fillet gas-shielded metal arc welding method
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP4566899B2 (en) High strength stainless steel welding flux cored wire
JP6953870B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP2015112625A (en) Stainless steel flux-cored wire for self-shielded arc welding
JP7160734B2 (en) flux cored wire
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
CN113613829A (en) Ni-based alloy flux-cored wire
JPWO2020110856A1 (en) Flux-filled wire and welded joint manufacturing method
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
JP4372604B2 (en) Flux-cored wire for electrogas arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3