JP2008054424A - Power-receiving device, power-transmitting device and vehicle - Google Patents

Power-receiving device, power-transmitting device and vehicle Download PDF

Info

Publication number
JP2008054424A
JP2008054424A JP2006228093A JP2006228093A JP2008054424A JP 2008054424 A JP2008054424 A JP 2008054424A JP 2006228093 A JP2006228093 A JP 2006228093A JP 2006228093 A JP2006228093 A JP 2006228093A JP 2008054424 A JP2008054424 A JP 2008054424A
Authority
JP
Japan
Prior art keywords
power
wave shielding
radio wave
antenna
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006228093A
Other languages
Japanese (ja)
Other versions
JP4865451B2 (en
Inventor
Tomohisa Kimura
友久 木村
Kenichi Yasuma
健一 安間
Yoshiharu Fuse
嘉春 布施
Hiroaki Yoshida
裕明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2006228093A priority Critical patent/JP4865451B2/en
Publication of JP2008054424A publication Critical patent/JP2008054424A/en
Application granted granted Critical
Publication of JP4865451B2 publication Critical patent/JP4865451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Details Of Aerials (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the power reception efficiency of microwaves, and to reduce the impact of microwaves on the circumference. <P>SOLUTION: The power-receiving device 4 comprises a power-receiving antenna 12 fixed to the chassis 30 of a vehicle and arranged opposite to a transmitting antenna 7 which sends out microwaves during the operation period for receiving the microwaves, and a radiowave shielding member 20 fixed to the chassis 30 where the radiowave shielding member 20 is brought into a state surrounding the space 50 in between the transmitting antenna 7 and the power-receiving antenna 12 during the operation period, and is housed on the chassis 30 side during the non-operation period. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ波を用いて車両のバッテリを充電する技術に関するものである。   The present invention relates to a technique for charging a vehicle battery using a microwave.

従来、電気自動車等の移動体の停車中に、マイクロ波を車両に向けて送出し、このマイクロ波をエネルギーに変換することにより車両のバッテリを充電する技術が知られている(非特許文献1参照。)。
上記非特許文献1には、駐車場やエネルギーステーション等に設けられたエネルギー供給設備から送信されたマイクロ波を車両に搭載されたレクテナにて受信し、このマイクロ波を電気エネルギーに変換して車載のバッテリを充電する技術が開示されている。
篠原 真毅、外1名、「マイクロ波を用いた電気自動車無線充電に関する研究」、電子情報通信学会論文誌 C Vol.J87−C No.5 p.433−443、2004年5月
2. Description of the Related Art Conventionally, a technique for charging a vehicle battery by sending a microwave toward a vehicle and converting the microwave into energy while a moving body such as an electric vehicle is stopped is known (Non-Patent Document 1). reference.).
In Non-Patent Document 1, a microwave transmitted from an energy supply facility provided in a parking lot, an energy station, or the like is received by a rectenna mounted on a vehicle, and the microwave is converted into electric energy to be mounted on a vehicle. A technique for charging a battery is disclosed.
Shingo Shinohara, 1 other, “Research on Wireless Charging of Electric Vehicles Using Microwaves”, IEICE Transactions C Vol. J87-C No. 5 p. 433-443, May 2004

しかしながら、上述したような従来のエネルギー供給技術では、送電側から受電側へ送られるマイクロ波が周囲へ漏れてしまうことから、マイクロ波の受電効率が低下するとともに、周囲に存在する人や機器等に影響が及ぶという問題があった。   However, in the conventional energy supply technology as described above, microwaves that are transmitted from the power transmission side to the power reception side leak to the surroundings, so that the power reception efficiency of the microwaves is reduced, and people and devices that exist in the surroundings There was a problem that affected.

本発明は、上記問題を解決するためになされたもので、マイクロ波の受電効率を高めるとともに、周囲に対するマイクロ波の影響を低減することのできる受電装置及び送電装置並びに車両を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a power receiving device, a power transmitting device, and a vehicle that can improve the power receiving efficiency of the microwave and reduce the influence of the microwave on the surroundings. And

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、本体と、前記本体に取り付けられるとともに、マイクロ波を受信する作動期間において、該マイクロ波を送出する送電アンテナに対向して配置される受電アンテナと、前記本体に取り付けられた電波遮蔽手段とを備え、前記電波遮蔽手段は、前記作動期間において、前記送電アンテナと前記受電アンテナとの間の空間を取り囲む状態とされ、非作動期間において、前記本体側に収納される受電装置を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention includes a main body, a power receiving antenna that is attached to the main body and that is disposed to face the power transmitting antenna that transmits the microwave during an operation period of receiving the microwave, and a radio wave shield that is attached to the main body. And the radio wave shielding means is in a state of surrounding a space between the power transmission antenna and the power receiving antenna during the operation period, and is provided in the main body side during the non-operation period. To do.

このような構成によれば、マイクロ波の受信が行われる作動期間において、送電アンテナと受電アンテナとの間の空間を取り囲むように電波遮蔽手段が配置されるので、周囲へ漏れ出すマイクロ波を低減させることができる。これにより、受電アンテナにおける受電効率を高めることができる。
また、マイクロ波の受信が行われない非作動期間においては、電波遮蔽手段が本体に収納されるので、例えば、当該装置を車両等に搭載された際には、電波遮蔽手段による走行を妨げることもない。
上記電波遮蔽手段としては、周囲へのマイクロ波の漏れを低減させることができるものであればよく、例えば、導体または吸収材等が一例として挙げられる。
According to such a configuration, since the radio wave shielding means is arranged so as to surround the space between the power transmission antenna and the power reception antenna during the operation period in which microwave reception is performed, the microwave leaking to the surroundings is reduced. Can be made. Thereby, the power receiving efficiency in a power receiving antenna can be improved.
In addition, during a non-operation period when microwave reception is not performed, the radio wave shielding means is housed in the main body. For example, when the device is mounted on a vehicle or the like, traveling by the radio wave shielding means is hindered. Nor.
The radio wave shielding means may be any means as long as it can reduce leakage of microwaves to the surroundings, and examples thereof include a conductor or an absorbent material.

上記受電装置において、前記電波遮蔽手段が多数本の線状または棒状の導電体を束ねてなるブラシ状の導電部材とされてもよい。   In the above power receiving apparatus, the radio wave shielding means may be a brush-like conductive member formed by bundling a large number of linear or rod-like conductors.

電波遮蔽手段を多数本の線状または棒状の導電体を束ねてなるブラシ状の導電部材としたので、電波遮蔽効果に加えて、導電部材の先端部分に柔軟性を持たせることが可能となる。これにより、送電アンテナと受電アンテナとの間の距離が変動する場合でも、長めに形成された導電部材を送電アンテナ側へ押し付ける等することにより、送電アンテナと受電アンテナとの間の空間を確実に取り囲むことができる。この結果、常に、一定の電波遮蔽効果を確保することができる。また、電波遮蔽手段として板状の導電体を採用する場合に比べて、軽量化を図ることができる。   Since the radio wave shielding means is a brush-like conductive member formed by bundling a large number of linear or rod-like conductors, in addition to the radio wave shielding effect, it is possible to give flexibility to the tip portion of the conductive member. . As a result, even when the distance between the power transmitting antenna and the power receiving antenna fluctuates, the space between the power transmitting antenna and the power receiving antenna can be reliably ensured by pressing a long conductive member against the power transmitting antenna. Can be surrounded. As a result, it is possible to always ensure a certain radio wave shielding effect. Further, the weight can be reduced as compared with the case where a plate-like conductor is employed as the radio wave shielding means.

上記受電装置において、前記電波遮蔽手段が、線状または棒状の導電体を格子状に配列してなる導電部材とされてもよい。   In the above power receiving apparatus, the radio wave shielding means may be a conductive member formed by arranging linear or rod-shaped conductors in a grid pattern.

電波遮蔽手段を線状または棒状の導電体を格子状に配置してなる導電部材としたので、マイクロ波を効果的に遮断することが可能となる。また、電波遮蔽手段として板状の導電体を採用する場合に比べて、軽量化を図ることができる。   Since the radio wave shielding means is a conductive member in which linear or rod-like conductors are arranged in a lattice shape, it is possible to effectively block microwaves. Further, the weight can be reduced as compared with the case where a plate-like conductor is employed as the radio wave shielding means.

上記受電装置において、前記電波遮蔽手段が板状の導電体とされてもよい。   In the above power receiving device, the radio wave shielding means may be a plate-like conductor.

電波遮蔽手段を板状の導電体としたので、マイクロ波の漏洩を効果的に防止することができる。   Since the radio wave shielding means is a plate-like conductor, microwave leakage can be effectively prevented.

本発明は、対向して配置される受電アンテナに対してマイクロ波を送信する送電アンテナと、前記マイクロ波を送信する作動期間において、前記送電アンテナと前記受電アンテナとの間の空間を取り囲むように配置される電波遮蔽手段とを備え、前記電波遮蔽手段が、非作動期間において収納されている送電装置を提供する。   The present invention surrounds a space between the power transmission antenna and the power reception antenna in a power transmission antenna that transmits a microwave to a power reception antenna disposed opposite to the power transmission antenna and in an operation period in which the microwave is transmitted. There is provided a power transmission device including a radio wave shielding means arranged, wherein the radio wave shielding means is accommodated during a non-operation period.

このような構成によれば、マイクロ波の受信が行われる作動期間において、送電アンテナと受電アンテナとの間の空間を取り囲むように電波遮蔽手段が配置されるので、周囲へ漏れ出すマイクロ波を低減させることができる。これにより、受電アンテナにおける受電効率を高めることができる。
また、マイクロ波の送信が行われない非作動期間においては、電波遮蔽手段が収納されるので、例えば、送電装置が地面に配置された場合には、この近傍を通過する人や車両等の走行を妨げることもない。
According to such a configuration, since the radio wave shielding means is arranged so as to surround the space between the power transmission antenna and the power reception antenna during the operation period in which microwave reception is performed, the microwave leaking to the surroundings is reduced. Can be made. Thereby, the power receiving efficiency in a power receiving antenna can be improved.
Further, since the radio wave shielding means is accommodated during the non-operation period in which the transmission of microwaves is not performed, for example, when the power transmission device is disposed on the ground, the traveling of a person or a vehicle passing through this vicinity There is no hindrance.

上述した受電装置は、例えば、車両に搭載されることが好ましい。これにより、受電装置において受電されたマイクロ波を電力に変換し、車両に搭載されているバッテリ等を充電することが可能となる。この場合において、上記受電装置によれば、送電アンテナと受電アンテナとの間の空間を取り囲む電波遮蔽手段を備えているので、受電効率を高めることができる。これにより、効率よくバッテリを充電することができる。   The power receiving device described above is preferably mounted on a vehicle, for example. As a result, the microwave received by the power receiving apparatus can be converted into electric power, and a battery or the like mounted on the vehicle can be charged. In this case, according to the power receiving device, the power receiving efficiency can be increased because the radio wave shielding means surrounding the space between the power transmitting antenna and the power receiving antenna is provided. Thereby, a battery can be charged efficiently.

本発明によれば、マイクロ波の受電効率を高めるとともに、周囲に対するマイクロ波の影響を低減することができるという効果を奏する。   According to the present invention, it is possible to increase the power receiving efficiency of the microwave and reduce the influence of the microwave on the surroundings.

以下に、本発明の受電装置及び送電装置を適用したエネルギー供給システムの一実施形態について、図面を参照して説明する。
図1は、本発明の一実施形態に係るエネルギー供給システムの概略構成を示したブロック図である。図1に示すように、エネルギー供給システム1は、外部に対してマイクロ波を送出する送電装置2と、車両3に搭載され、送電装置2からのマイクロ波を受信して電力に変換する受電装置4とを備えている。
Hereinafter, an embodiment of an energy supply system to which a power reception device and a power transmission device of the present invention are applied will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an energy supply system according to an embodiment of the present invention. As shown in FIG. 1, an energy supply system 1 includes a power transmission device 2 that transmits a microwave to the outside, and a power reception device that is mounted on a vehicle 3 and that receives the microwave from the power transmission device 2 and converts it into electric power. 4 is provided.

送電装置2は、車両3が停車または駐車される空間に取り付けられている。本実施形態において、送電装置2は、車両3が駐車される駐車スペースの地面に埋設されている。送電装置2は、複数のマグネトロン6と、各マグネトロン6に対応して設けられた電源16と、電源16とマグネトロン6との電気的接続をオン/オフするスイッチ15と、各マグネトロン6に対応して設けられ、該マグネトロン6から発せられたマイクロ波を外部に対して送信する複数の送電アンテナ7とを備えている。更に、送電装置2は、車両に搭載された車両側通信装置18と相互間通信を可能とする供給側通信装置19および送電装置2の各部を制御する制御装置10を備えている。   The power transmission device 2 is attached to a space where the vehicle 3 is stopped or parked. In the present embodiment, the power transmission device 2 is embedded in the ground of a parking space where the vehicle 3 is parked. The power transmission device 2 corresponds to each magnetron 6, a plurality of magnetrons 6, a power source 16 provided corresponding to each magnetron 6, a switch 15 that turns on / off the electrical connection between the power source 16 and the magnetron 6, and each magnetron 6. And a plurality of power transmission antennas 7 for transmitting microwaves emitted from the magnetron 6 to the outside. Furthermore, the power transmission device 2 includes a supply-side communication device 19 that enables mutual communication with the vehicle-side communication device 18 mounted on the vehicle, and a control device 10 that controls each part of the power transmission device 2.

上記構成において、送電アンテナ7には、例えば、スロットアンテナ、導波管スロットアンテナ等を採用することができる。供給側通信装置19には、無線により双方向の情報伝達を可能とする公知の通信装置を採用することができる。制御装置10は、例えば、電子制御ユニット等により構成されている。また、スイッチ15は、通常状態において、オフ状態とされている。   In the above configuration, for example, a slot antenna, a waveguide slot antenna, or the like can be adopted as the power transmission antenna 7. As the supply-side communication device 19, a known communication device that enables two-way information transmission wirelessly can be employed. The control device 10 is constituted by, for example, an electronic control unit. Further, the switch 15 is turned off in the normal state.

車両3に搭載された受電装置4は、レクテナ11を備えている。レクテナ11は、送電装置2から受信したマイクロ波を電気エネルギーに変換し、車載のバッテリ14に供給する機能を備えるものであり、例えば、送電装置2から送信されたマイクロ波を受信する複数の受電アンテナ12と、受電アンテナ12からの電力を整流してバッテリ14へ供給する整流回路13とを備えている。   The power receiving device 4 mounted on the vehicle 3 includes a rectenna 11. The rectenna 11 has a function of converting the microwave received from the power transmission device 2 into electric energy and supplying the electric energy to the vehicle-mounted battery 14. For example, the rectenna 11 receives a plurality of power receptions that receive the microwaves transmitted from the power transmission device 2. The antenna 12 includes a rectifier circuit 13 that rectifies power from the power receiving antenna 12 and supplies the rectified power to the battery 14.

受電アンテナ12には、例えば、円形パッチアンテナなどを採用することができる。受電アンテナ12は、例えば、車両3の底面、具体的には、図2に示すように、シャーシ(本体)に取り付けられている。また、上述したように、車両3には、送電装置2が備える供給側通信装置19との双方向通信を可能とする車両側通信装置18が備えられている。   For example, a circular patch antenna can be adopted as the power receiving antenna 12. The power receiving antenna 12 is attached to the chassis (main body), for example, as shown in FIG. Further, as described above, the vehicle 3 includes the vehicle-side communication device 18 that enables bidirectional communication with the supply-side communication device 19 included in the power transmission device 2.

図2に示すように、車両3のシャーシ30には、上述したように、受電アンテナ12が配置されているとともに、この受電アンテナ12が取り付けられている領域31の外周を取り囲むように電波遮蔽部材(電波遮蔽手段)20が取り付けられている。この電波遮蔽部材20は、シャーシ30に対して起伏可能に取り付けられており、図3に示すように、送電装置2からマイクロ波を受電する作動期間においては、受電アンテナ12のアンテナ面に略直交するような状態とされることにより、送電アンテナ7と受電アンテナ12との間の空間を取り囲み(例えば、図3のAの状態)、非作動期間においては、受電アンテナ12のアンテナ面に略平行な状態とされることにより、シャーシ30側に収納されるようになっている(例えば、図3のBの状態)。   As shown in FIG. 2, the power receiving antenna 12 is disposed in the chassis 30 of the vehicle 3 as described above, and the radio wave shielding member surrounds the outer periphery of the region 31 to which the power receiving antenna 12 is attached. (Radio wave shielding means) 20 is attached. The radio wave shielding member 20 is attached to the chassis 30 so that it can be raised and lowered. As shown in FIG. 3, the radio wave shielding member 20 is substantially orthogonal to the antenna surface of the power receiving antenna 12 during an operation period in which microwaves are received from the power transmitting device 2. In such a state, the space between the power transmitting antenna 7 and the power receiving antenna 12 is surrounded (for example, the state of A in FIG. 3), and is substantially parallel to the antenna surface of the power receiving antenna 12 during the non-operation period. In this state, it is housed on the chassis 30 side (for example, the state shown in FIG. 3B).

上記電波遮蔽部材20は、周囲へのマイクロ波の漏れを低減させることができる材質で構成されている。例えば、金属(鉄、アルミ等)、カーボン等の導電体、または、吸収材等を採用することが可能である。本実施形態においては、図4に示すように、電波遮蔽部材20を、多数本の線状または棒状の導電体を束ねてなるブラシ状の導電部材としている。このように、電波遮蔽部材20をブラシ状の導電部材とすることにより、電波遮蔽効果に加えて、導電部材の先端部分に柔軟性を持たせることが可能となる。
従って、例えば、送電アンテナ7と受電アンテナ12との間の距離が場所に応じて変動する場合でも、導電部材を長めに形成しておくことで、導電部材の先端部を送電アンテナ7側へ押し付けることにより、送電アンテナ7と受電アンテナ12との間の空間50を確実に取り囲むことができる。
The radio wave shielding member 20 is made of a material that can reduce leakage of microwaves to the surroundings. For example, a conductor such as metal (iron, aluminum, etc.), carbon, or an absorbent material can be employed. In the present embodiment, as shown in FIG. 4, the radio wave shielding member 20 is a brush-like conductive member formed by bundling a large number of linear or rod-like conductors. Thus, by using the radio wave shielding member 20 as a brush-like conductive member, in addition to the radio wave shielding effect, it is possible to give flexibility to the tip portion of the conductive member.
Therefore, for example, even when the distance between the power transmitting antenna 7 and the power receiving antenna 12 varies depending on the location, the conductive member is formed long so that the tip of the conductive member is pressed against the power transmitting antenna 7 side. Thus, the space 50 between the power transmitting antenna 7 and the power receiving antenna 12 can be reliably surrounded.

ここで、線状または棒状の導電体は、例えば、約40dB以上の遮蔽効果が得られるような間隔で束ねられていることが好ましい。例えば、金網の遮蔽効果は、以下に示す(1)式にて表される。   Here, it is preferable that the linear or rod-like conductors are bundled at intervals such that a shielding effect of, for example, about 40 dB or more is obtained. For example, the shielding effect of the wire mesh is expressed by the following equation (1).

Figure 2008054424
Figure 2008054424

上記(1)式において、aは導体の線間隔(m)、λは使用波長(m)、dは導体の直径である。このように、導体の線間隔が小さく、周波数が低いほど、また、導体が太いほど、遮蔽効果が高いことがわかる。そして、上記(1)を用いて、所望の遮蔽効果が得られるように、電波遮蔽部材20を構成する導体の直径や、線間隔aを決定すればよい。
例えば、2.45GHzのマイクロ波とした場合、線状または棒状の導電体の間隔は、約1.2mmとすることが好ましい。
本実施形態において、電波遮蔽部材20は、モータ等の駆動装置によって、その配置状態が遷移されるようになっている。駆動装置は、例えば、車両3の制御装置等により制御されるようになっている。
In the above equation (1), a is the line spacing (m) of the conductor, λ is the wavelength used (m), and d is the diameter of the conductor. Thus, it can be seen that the smaller the line spacing of the conductors, the lower the frequency, and the thicker the conductor, the higher the shielding effect. And the diameter of the conductor which comprises the electromagnetic wave shielding member 20, and the line space | interval a should just be determined using said (1) so that a desired shielding effect may be acquired.
For example, when a microwave of 2.45 GHz is used, the interval between the linear or rod-shaped conductors is preferably about 1.2 mm.
In the present embodiment, the arrangement state of the radio wave shielding member 20 is changed by a driving device such as a motor. The drive device is controlled by, for example, a control device of the vehicle 3 or the like.

次に、上述した本実施形態に係るエネルギー供給システム1の作用について説明する。
まず、車両3が駐車スペースに駐車され、ユーザ(例えば、運転手)によりキーが抜かれると、車両3の制御装置は、電波遮蔽部材20の駆動装置を作動させることにより、電波遮蔽部材20を受電アンテナ12のアンテナ面と平行な状態から垂直な状態へと遷移させる。これにより、送電アンテナ7と受電アンテナ12との間の空間50は電波遮蔽部材20によって取り囲まれることとなる。このようにして、電波遮蔽部材20の配置が完了すると、車両3の制御装置は車両側通信装置18に対してエネルギー供給の準備が整った旨を通知する起動信号を送信する。
Next, the effect | action of the energy supply system 1 which concerns on this embodiment mentioned above is demonstrated.
First, when the vehicle 3 is parked in the parking space and the key is removed by the user (for example, a driver), the control device of the vehicle 3 operates the driving device of the radio wave shielding member 20 to activate the radio wave shielding member 20. A transition is made from a state parallel to the antenna surface of the power receiving antenna 12 to a state perpendicular thereto. Thereby, the space 50 between the power transmission antenna 7 and the power reception antenna 12 is surrounded by the radio wave shielding member 20. In this way, when the arrangement of the radio wave shielding member 20 is completed, the control device of the vehicle 3 transmits an activation signal notifying the vehicle side communication device 18 that preparation for energy supply is complete.

車両側通信装置18は、この起動信号を受け付けると送電開始信号を供給側通信装置19へ送信する。これにより、この送電開始信号は、供給側通信装置19を介して制御装置10へ入力される。制御装置10は、この送電開始信号を受け付けると、各スイッチ15をオン状態とする。これにより、マイクロ波電源16から電力がマグネトロン6に供給され、マグネトロン6によりマイクロ波が生成される。各マグネトロン6から発生したマイクロ波は、各送電アンテナ7を介して車両3の底面に配置されている受電アンテナ12へ送られる。   When receiving the activation signal, the vehicle-side communication device 18 transmits a power transmission start signal to the supply-side communication device 19. Thereby, the power transmission start signal is input to the control device 10 via the supply side communication device 19. When receiving the power transmission start signal, the control device 10 turns each switch 15 on. Thereby, electric power is supplied from the microwave power source 16 to the magnetron 6, and the magnetron 6 generates a microwave. Microwaves generated from the magnetrons 6 are sent to the power receiving antennas 12 disposed on the bottom surface of the vehicle 3 via the power transmitting antennas 7.

この場合において、送電アンテナ7と受電アンテナ12との間の空間50は、電波遮蔽部材20によって取り囲まれているので、マイクロ波は外部へ漏れることなく、受電アンテナ12へと送られ、受電されることとなる。受電アンテナ12にて受信されたマイクロ波は、電力に変換されて整流回路13に出力され、整流回路13にて整流されて直流電力に変換された後に、バッテリ14へ供給される。   In this case, since the space 50 between the power transmitting antenna 7 and the power receiving antenna 12 is surrounded by the radio wave shielding member 20, the microwave is transmitted to the power receiving antenna 12 and received by the power without leaking outside. It will be. Microwaves received by the power receiving antenna 12 are converted into electric power and output to the rectifier circuit 13, rectified by the rectifier circuit 13 and converted into DC power, and then supplied to the battery 14.

このようにしてバッテリ14への充電が開始され、これによりバッテリ14が満充電の状態になると、この旨が検知され、車両側通信装置18から供給側通信装置19へ送電終了信号が送信される。この送電終了信号は、供給側通信装置19を介して制御装置10に送られる。制御装置10は、この送電終了信号を受け付けると、各スイッチ15をオフ状態とする。これにより、電源16からマグネトロン6への電力供給が遮断され、送電装置2からのエネルギー供給が終了する。このようにして、マイクロ波の送信が停止されると、供給側通信装置19から車両側通信装置18に対して終了信号が送信される。   In this way, charging of the battery 14 is started, and when the battery 14 is fully charged, this is detected and a power transmission end signal is transmitted from the vehicle side communication device 18 to the supply side communication device 19. . This power transmission end signal is sent to the control device 10 via the supply side communication device 19. Upon receiving this power transmission end signal, control device 10 turns off each switch 15. Thereby, the power supply from the power supply 16 to the magnetron 6 is interrupted, and the energy supply from the power transmission device 2 ends. Thus, when the transmission of the microwave is stopped, an end signal is transmitted from the supply side communication device 19 to the vehicle side communication device 18.

この終了信号は、車両側通信装置18を介して車両3の制御装置に出力される。車両3の制御装置は、この終了信号を受け付けると、駆動装置を作動させることにより、電波遮蔽部材20の配置状態を受電アンテナ12のアンテナ面と平行な状態とする。これにより、電波遮蔽部材20は、図3のAの状態からBの状態へと遷移し、シャーシ側30に収納されることとなる。   This end signal is output to the control device of the vehicle 3 via the vehicle side communication device 18. When the control device of the vehicle 3 accepts the end signal, it activates the driving device so that the radio wave shielding member 20 is placed parallel to the antenna surface of the power receiving antenna 12. As a result, the radio wave shielding member 20 transitions from the state A in FIG. 3 to the state B and is housed in the chassis side 30.

以上、説明したように、本実施形態に係る受電装置4によれば、マイクロ波の受信が行われる作動期間において、送電アンテナ7と受電アンテナ12との間の空間50を取り囲むように電波遮蔽部材20が配置されるので、周囲へ漏れ出すマイクロ波を低減させることができる。これにより、受電アンテナ12における受電効率を高めることができる。また、マイクロ波の受信が行われない非作動期間においては、電波遮蔽部材20がシャーシ30側に収納されるので、車両3の走行を妨げることもない。   As described above, according to the power receiving device 4 according to the present embodiment, the radio wave shielding member surrounds the space 50 between the power transmitting antenna 7 and the power receiving antenna 12 during an operation period in which microwave reception is performed. Since 20 is arranged, the microwave leaking out to the surroundings can be reduced. Thereby, the power receiving efficiency in the power receiving antenna 12 can be improved. Further, during the non-operation period in which microwave reception is not performed, the radio wave shielding member 20 is housed on the chassis 30 side, so that traveling of the vehicle 3 is not hindered.

更に、電波遮蔽部材20を多数本の線状または棒状の導電体を束ねてなるブラシ状の導電部材としたので、電波遮蔽効果に加えて、導電部材の先端部分に柔軟性を持たせることが可能となる。これにより、例えば、異なる場所で受電を行うときのように、送電アンテナ7と受電アンテナ12との間の距離が変動する場合でも、長めに形成された導電部材を地面側へ押し付ける等することにより、送電アンテナ7と受電アンテナ12との間の空間50を確実に取り囲むことができる。この結果、一定の電波遮蔽効果を確保することができる。   Further, since the radio wave shielding member 20 is a brush-like conductive member formed by bundling a large number of linear or rod-like conductors, in addition to the radio wave shielding effect, the tip portion of the conductive member can be made flexible. It becomes possible. Thereby, for example, even when the distance between the power transmission antenna 7 and the power reception antenna 12 fluctuates, such as when receiving power in different places, by pressing a long conductive member to the ground side, etc. The space 50 between the power transmitting antenna 7 and the power receiving antenna 12 can be reliably surrounded. As a result, a certain radio wave shielding effect can be ensured.

なお、上記電波遮蔽部材20は、図5に示すように、2重に設けられていてもよい。このように、空間50を2重の電波遮蔽部材20で囲うことにより、電波の遮蔽効率を更に高めることができる。また、電波遮蔽部材20は、3重以上に設けられていてもよい。
また、上述した実施形態においては、電波遮蔽部材20をブラシ状の導電部材としたが、これに代えて、図6に示すように、棒状または線状の導電体を格子状に配列することとしてもよい。この場合においても、上記(1)式に基づいて、所望の遮蔽効果が得られるように、導電体の直径、線間隔a等を決定すればよい。
The radio wave shielding member 20 may be provided in a double manner as shown in FIG. Thus, by shielding the space 50 with the double radio wave shielding member 20, the radio wave shielding efficiency can be further increased. The radio wave shielding member 20 may be provided in three or more layers.
In the above-described embodiment, the radio wave shielding member 20 is a brush-like conductive member. Instead, as shown in FIG. 6, rod-like or linear conductors are arranged in a grid pattern. Also good. Even in this case, the diameter of the conductor, the line interval a, and the like may be determined so as to obtain a desired shielding effect based on the above formula (1).

また、図7に示すように、電波遮蔽部材20を板状の導電体としてもよい。このように、電波遮蔽部材20を板状の導電体とすることで、マイクロ波を更に効果的に遮断することができる。   Further, as shown in FIG. 7, the radio wave shielding member 20 may be a plate-like conductor. Thus, the microwave can be more effectively blocked by using the radio wave shielding member 20 as a plate-like conductor.

また、本実施形態においては、電波遮蔽部材20を起伏可能に取り付けることとしたが、収納の態様は、これに限定されない。例えば、やわらかい素材の導電体または電波吸収材を電波遮蔽部材20として採用する場合には、このような電波遮蔽部材20を巻き取り/巻き出し可能にシャーシ30に取り付けることとしてもよい。
また、シャーシ30に、車両内部に電波遮蔽部材20を取り込むための取込口を設け、この取込口から電波遮蔽部材20を車両内部に収納する構成としてもよい。
Further, in the present embodiment, the radio wave shielding member 20 is attached so as to be undulated, but the storage mode is not limited to this. For example, when a conductive material or a radio wave absorber made of a soft material is adopted as the radio wave shielding member 20, the radio wave shielding member 20 may be attached to the chassis 30 so as to be rewound / unwound.
Further, the chassis 30 may be provided with an intake port for taking in the radio wave shielding member 20 inside the vehicle, and the radio wave shielding member 20 may be housed inside the vehicle through this intake port.

また、上記実施形態においては、電波遮蔽部材20が受電装置4に設けられていたが、これに代えて、電波遮蔽部材20を送電装置2に設けることとしてもよい。この場合においても、電波遮蔽部材20は、上記作動期間において、送電アンテナ7と受電アンテナ12との間の空間50を取り囲むように配置され、非作動期間において地面側に収納される。このように、送電装置2に電波遮蔽部材20を設けることによっても、上述した実施形態と同様の効果を奏することができる。   Moreover, in the said embodiment, although the electromagnetic wave shielding member 20 was provided in the power receiving apparatus 4, it may replace with this and the electromagnetic wave shielding member 20 may be provided in the power transmission apparatus 2. Also in this case, the radio wave shielding member 20 is disposed so as to surround the space 50 between the power transmitting antenna 7 and the power receiving antenna 12 during the operation period, and is stored on the ground side during the non-operation period. As described above, by providing the power transmission device 2 with the radio wave shielding member 20, the same effects as those of the above-described embodiment can be obtained.

なお、送電装置2側に電波遮蔽部材20を設けることとした場合、送電装置2は、様々な車種の車両に対して送電を行うことから、送電アンテナ7と受電アンテナ12との間の距離が一様ではないこととなる。従って、様々な車種の車両にも対応可能とするために、送電装置2を以下のような構成としてもよい。   When the radio wave shielding member 20 is provided on the power transmission device 2 side, the power transmission device 2 transmits power to vehicles of various types of vehicles, and therefore the distance between the power transmission antenna 7 and the power reception antenna 12 is small. It will not be uniform. Therefore, the power transmission device 2 may have the following configuration in order to be able to support various types of vehicles.

例えば、電波遮蔽部材20を路面に対して上下(鉛直方向)にスライド可能に設けるとともに、路面から露出される電波遮蔽部材20の高さを調節可能とする。そして、電波遮蔽部材20の近傍には、送電アンテナ7と受電アンテナ12との間の距離を測定する距離センサを設置する。これにより、例えば、送電アンテナ7に対向する位置に受電アンテナ12が配置された場合には、まず、距離センサによって送電アンテナ7と受電アンテナ12との間の距離を測定し、この測定結果に応じた適切な高さまで、電波遮蔽部材20を上方にスライドさせる。これにより、車種等にかかわらずに、送電アンテナ7と受電アンテナ12との間の空間50を電波遮蔽部材20によって確実に取り囲うことが可能となる。そして、この状態において、マイクロ波の送電が行われ、バッテリの充電が終了すると、電波遮蔽部材20は、路面に対して下方にスライドされて、車両3の走行の邪魔にならないように路面側に収納される。   For example, the radio wave shielding member 20 is provided so as to be slidable up and down (vertical direction) with respect to the road surface, and the height of the radio wave shielding member 20 exposed from the road surface can be adjusted. A distance sensor that measures the distance between the power transmitting antenna 7 and the power receiving antenna 12 is installed in the vicinity of the radio wave shielding member 20. Thereby, for example, when the power receiving antenna 12 is arranged at a position facing the power transmitting antenna 7, first, the distance between the power transmitting antenna 7 and the power receiving antenna 12 is measured by the distance sensor, and the measurement result is determined. The radio wave shielding member 20 is slid upward to an appropriate height. Thereby, the space 50 between the power transmitting antenna 7 and the power receiving antenna 12 can be surely surrounded by the radio wave shielding member 20 regardless of the vehicle type or the like. In this state, when microwave transmission is performed and charging of the battery is completed, the radio wave shielding member 20 is slid downward with respect to the road surface so that it does not interfere with the traveling of the vehicle 3. Stored.

以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、上記実施形態においては、受信装置を自動車に適用する場合について説明したが、本発明の受信装置は、例えば、電車等に適用することも可能である。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the specific structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
For example, in the above-described embodiment, the case where the receiving device is applied to an automobile has been described. However, the receiving device of the present invention can also be applied to, for example, a train.

本発明の一実施形態に係るエネルギー供給システムの概略構成を示した図である。It is the figure which showed schematic structure of the energy supply system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る受電装置を地面側から見たときの平面図である。It is a top view when the power receiving apparatus which concerns on one Embodiment of this invention is seen from the ground side. 車両の後方からみたときの送電アンテナ、受電アンテナ、及び電波遮蔽部材の配置を示した図である。It is the figure which showed arrangement | positioning of the power transmission antenna, power receiving antenna, and electromagnetic wave shielding member when it sees from the back of a vehicle. 本発明の一実施形態に係る電波遮蔽部材について説明するための図である。It is a figure for demonstrating the electromagnetic wave shielding member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る受電装置の変形例を示した図である。It is the figure which showed the modification of the power receiving apparatus which concerns on one Embodiment of this invention. 電波遮蔽部材の他の例を示した図である。It is the figure which showed the other example of the electromagnetic wave shielding member. 電波遮蔽部材の他の例を示した図である。It is the figure which showed the other example of the electromagnetic wave shielding member.

符号の説明Explanation of symbols

1 エネルギー供給システム
2 送電装置
3 車両
4 受電装置
6 マグネトロン
7 送電アンテナ
10 制御装置
11 レクテナ
12 受電アンテナ
13 整流回路
14 バッテリ
20 電波遮蔽部材
30 シャーシ
50 送電アンテナと受電アンテナとの間の空間
DESCRIPTION OF SYMBOLS 1 Energy supply system 2 Power transmission apparatus 3 Vehicle 4 Power reception apparatus 6 Magnetron 7 Power transmission antenna 10 Control apparatus 11 Rectenna 12 Power reception antenna 13 Rectifier circuit 14 Battery 20 Radio wave shielding member 30 Chassis 50 Space between the power transmission antenna and the power reception antenna

Claims (6)

本体と、
前記本体に取り付けられるとともに、マイクロ波を受信する作動期間において、該マイクロ波を送出する送電アンテナに対向して配置される受電アンテナと、
前記本体に取り付けられた電波遮蔽手段と
を備え、
前記電波遮蔽手段は、前記作動期間において、前記送電アンテナと前記受電アンテナとの間の空間を取り囲む状態とされ、非作動期間において、前記本体側に収納される受電装置。
The body,
A power receiving antenna that is attached to the main body and disposed opposite to a power transmitting antenna that transmits the microwave during an operation period of receiving the microwave;
A radio wave shielding means attached to the main body,
The radio wave shielding means is a power receiving device that is in a state of surrounding a space between the power transmission antenna and the power receiving antenna during the operation period and is housed on the main body side during the non-operation period.
前記電波遮蔽手段が多数本の線状または棒状の導電体を束ねてなるブラシ状の導電部材である請求項1に記載の受電装置。   The power receiving device according to claim 1, wherein the radio wave shielding means is a brush-like conductive member formed by bundling a large number of linear or rod-like conductors. 前記電波遮蔽手段が線状または棒状の導電体を格子状に配列してなる導電部材である請求項1に記載の受電装置。   The power receiving device according to claim 1, wherein the radio wave shielding means is a conductive member in which linear or rod-shaped conductors are arranged in a grid pattern. 前記電波遮蔽手段が板状の導電体である請求項1に記載の受電装置。   The power receiving device according to claim 1, wherein the radio wave shielding means is a plate-like conductor. 対向して配置される受電アンテナに対してマイクロ波を送信する送電アンテナと、
前記マイクロ波を送信する作動期間において、前記送電アンテナと前記受電アンテナとの間の空間を取り囲むように配置される電波遮蔽手段と
を備え、
前記電波遮蔽手段は、非作動期間において収納されている送電装置。
A power transmission antenna that transmits microwaves to a power receiving antenna disposed oppositely; and
A radio wave shielding means disposed so as to surround a space between the power transmission antenna and the power reception antenna in an operation period in which the microwave is transmitted;
The radio wave shielding means is a power transmission device accommodated during a non-operation period.
請求項1から請求項4の何れかに記載の受電装置を備える車両。   A vehicle comprising the power receiving device according to any one of claims 1 to 4.
JP2006228093A 2006-08-24 2006-08-24 Power receiving device, power transmitting device, and vehicle Active JP4865451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228093A JP4865451B2 (en) 2006-08-24 2006-08-24 Power receiving device, power transmitting device, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228093A JP4865451B2 (en) 2006-08-24 2006-08-24 Power receiving device, power transmitting device, and vehicle

Publications (2)

Publication Number Publication Date
JP2008054424A true JP2008054424A (en) 2008-03-06
JP4865451B2 JP4865451B2 (en) 2012-02-01

Family

ID=39237937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228093A Active JP4865451B2 (en) 2006-08-24 2006-08-24 Power receiving device, power transmitting device, and vehicle

Country Status (1)

Country Link
JP (1) JP4865451B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054422A (en) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd Power supply device and power supply system
JP2009303316A (en) * 2008-06-11 2009-12-24 Mitsubishi Heavy Ind Ltd Electric power receiver for vehicles
JP2010070048A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Non-contact power receiving apparatus, non-contact power transmission apparatus, non-contact power supply system, and electric vehicle
JP2010167898A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Hybrid vehicle
WO2010103639A1 (en) * 2009-03-12 2010-09-16 トヨタ自動車株式会社 Electric vehicle
WO2010150872A1 (en) * 2009-06-26 2010-12-29 三菱重工業株式会社 Wireless power transmission system
WO2011046223A1 (en) 2009-10-14 2011-04-21 Udトラックス株式会社 Electric storage device
WO2011078616A2 (en) * 2009-12-24 2011-06-30 한국과학기술원 Apparatus and method for shielding an electromagnetic field of a dual rail power supply system for an on-line electric vehicle
WO2011081461A2 (en) * 2009-12-29 2011-07-07 한국과학기술원 Magnetic field shielding device of on-line electric vehicle
KR101048863B1 (en) * 2009-12-22 2011-07-13 한국과학기술원 Non-contact magnetic induction charging system mounting structure for electric vehicle
EP2345552A1 (en) * 2008-10-09 2011-07-20 Toyota Jidosha Kabushiki Kaisha Electric vehicle
KR101060519B1 (en) * 2009-10-15 2011-08-30 한국과학기술원 Shielding system for selectively canceling electromagnetic waves generated from on-line electric vehicle and electromagnetic wave offset method of on-line electric vehicle
WO2011149263A2 (en) * 2010-05-26 2011-12-01 한국과학기술원 Electromagnetic shielding device of power supply and power collector for transmission of magnetic induction power
KR101091989B1 (en) 2009-12-30 2011-12-09 한국과학기술원 segment block including structure for magnetic field shielding for OLEV
KR101125749B1 (en) * 2009-12-22 2012-03-27 한국과학기술원 magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same
KR101160544B1 (en) 2010-07-07 2012-07-02 한국과학기술원 Emf cancellation device in collector device for electric vehicle
US8264197B2 (en) 2009-12-03 2012-09-11 Hyundai Motor Japan R&D Center, Inc. Primary coil raising type non-contact charging system with elevating-type primary coil
WO2012141342A1 (en) * 2011-04-11 2012-10-18 한국과학기술원 Magnetic field screening device
CN102791513A (en) * 2010-03-04 2012-11-21 本田技研工业株式会社 Electric vehicle
KR101206048B1 (en) 2010-08-25 2012-11-28 한국과학기술원 Electromagnetic generator and Construction Method thereof
CN102820714A (en) * 2012-09-03 2012-12-12 重庆市电力公司电力科学研究院 Wireless charging device
CN102897040A (en) * 2009-03-12 2013-01-30 丰田自动车株式会社 Electric vehicle
JP2013023077A (en) * 2011-07-21 2013-02-04 Koito Mfg Co Ltd Power supply device for vehicle lamp
JP2013132134A (en) * 2011-12-21 2013-07-04 Nichicon Corp Wireless power supply apparatus and wireless power supply system
WO2013128600A1 (en) * 2012-02-29 2013-09-06 パイオニア株式会社 Power transmission device
WO2013132616A1 (en) * 2012-03-07 2013-09-12 パイオニア株式会社 Power transmitting apparatus
KR101307807B1 (en) 2011-09-28 2013-09-12 한국과학기술원 Magnetic Inductive Power Collecting Apparatus, and Power Transfer Apparatus Using the Same
EP2717428A1 (en) * 2011-05-27 2014-04-09 Nissan Motor Co., Ltd Non-contact power supply device, vehicle, and non-contact power supply system
JP2014075975A (en) * 2009-12-17 2014-04-24 Toyota Motor Corp Shield and vehicle equipped with the same
CN103944229A (en) * 2014-04-24 2014-07-23 陈业军 Wireless charging device, system and method
CN103956780A (en) * 2014-05-13 2014-07-30 陈业军 Launching device, network structure, system and method for wireless charging
EP2782108A1 (en) * 2011-11-18 2014-09-24 Toyota Jidosha Kabushiki Kaisha Power transmitting apparatus, power receiving apparatus, and power transmitting system
JP2015033264A (en) * 2013-08-05 2015-02-16 株式会社Ihi Non-contact power supply system
FR3010253A1 (en) * 2013-09-04 2015-03-06 Schneider Electric Ind Sas INDUCTION CHARGING DEVICE BY INDUCTION OF A BATTERY OF AN ELECTRIC VEHICLE, AND INDUCTION RECHARGING SYSTEM COMPRISING SUCH A DEVICE
JPWO2013118745A1 (en) * 2012-02-06 2015-05-11 株式会社Ihi Contactless power supply system
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9566870B2 (en) 2011-01-14 2017-02-14 Mitsubishi Heavy Industries, Ltd. Charging apparatus for electric vehicle
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
EP3032700A4 (en) * 2013-08-05 2017-04-12 IHI Corporation Shield device and contactless power supply system
CN109228903A (en) * 2018-10-17 2019-01-18 无锡鸿源汽车配件厂 Electric car wireless charging transmitter Telescopic safe protective fence
JP2020102936A (en) * 2018-12-21 2020-07-02 株式会社Subaru Electric vehicle
JPWO2020217662A1 (en) * 2019-04-26 2020-10-29
DE102010020125B4 (en) 2010-05-10 2021-07-15 Sew-Eurodrive Gmbh & Co Kg Arrangement for contactless energy transfer
DE102010020122B4 (en) 2010-05-10 2021-07-15 Sew-Eurodrive Gmbh & Co Kg Arrangement for contactless energy transfer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165997A (en) 2013-02-22 2014-09-08 Toshiba Corp Electromagnetic leakage prevention device and radio power transmission system
DE102019004294A1 (en) 2019-06-17 2020-01-02 Daimler Ag Shielding device for a charging system, as well as charging system and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075535A (en) * 1996-05-27 1998-03-17 Sanyo Electric Co Ltd Charging system and charging device for motor-driven vehicle
JP2000139030A (en) * 1998-11-02 2000-05-16 Yasumasa Akazawa Charging system for vehicle
JP2001217645A (en) * 2000-02-04 2001-08-10 Tdk Corp Radio wave absorption panel for automatic toll collection system and suppressing method against unwanted radio waves
JP2002118389A (en) * 2000-10-11 2002-04-19 Hajime Murazaki Conductive brush
JP2004229425A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Charging apparatus for vehicle, vehicle bumper, and vehicle parking system
JP2004259910A (en) * 2003-02-26 2004-09-16 Tdk Corp Unwanted radio wave suppressing structure
JP2004313582A (en) * 2003-04-18 2004-11-11 Minato Ikagaku Kk Irradiation device for microwave therapeutic apparatus
JP2004328808A (en) * 2003-04-21 2004-11-18 Toyota Motor Corp Radio wave receiving system
JP2005255144A (en) * 2004-02-14 2005-09-22 Kazumichi Fujioka Ground power feeding device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075535A (en) * 1996-05-27 1998-03-17 Sanyo Electric Co Ltd Charging system and charging device for motor-driven vehicle
JP2000139030A (en) * 1998-11-02 2000-05-16 Yasumasa Akazawa Charging system for vehicle
JP2001217645A (en) * 2000-02-04 2001-08-10 Tdk Corp Radio wave absorption panel for automatic toll collection system and suppressing method against unwanted radio waves
JP2002118389A (en) * 2000-10-11 2002-04-19 Hajime Murazaki Conductive brush
JP2004229425A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Charging apparatus for vehicle, vehicle bumper, and vehicle parking system
JP2004259910A (en) * 2003-02-26 2004-09-16 Tdk Corp Unwanted radio wave suppressing structure
JP2004313582A (en) * 2003-04-18 2004-11-11 Minato Ikagaku Kk Irradiation device for microwave therapeutic apparatus
JP2004328808A (en) * 2003-04-21 2004-11-18 Toyota Motor Corp Radio wave receiving system
JP2005255144A (en) * 2004-02-14 2005-09-22 Kazumichi Fujioka Ground power feeding device

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142818A (en) * 2006-08-24 2011-07-21 Mitsubishi Heavy Ind Ltd Power supply device and power supply system
JP2008054422A (en) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd Power supply device and power supply system
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
JP2009303316A (en) * 2008-06-11 2009-12-24 Mitsubishi Heavy Ind Ltd Electric power receiver for vehicles
JP2010070048A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Non-contact power receiving apparatus, non-contact power transmission apparatus, non-contact power supply system, and electric vehicle
JP2011072188A (en) * 2008-09-18 2011-04-07 Toyota Motor Corp Noncontact power transmitter
US8651208B2 (en) 2008-10-09 2014-02-18 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle
EP2345552A1 (en) * 2008-10-09 2011-07-20 Toyota Jidosha Kabushiki Kaisha Electric vehicle
EP2345552A4 (en) * 2008-10-09 2014-05-07 Toyota Motor Co Ltd Electric vehicle
JP4962620B2 (en) * 2008-10-09 2012-06-27 トヨタ自動車株式会社 Electric vehicle
JP2010167898A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Hybrid vehicle
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP4911262B2 (en) * 2009-03-12 2012-04-04 トヨタ自動車株式会社 Electric vehicle
WO2010103639A1 (en) * 2009-03-12 2010-09-16 トヨタ自動車株式会社 Electric vehicle
US8418823B2 (en) 2009-03-12 2013-04-16 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle
CN102897040A (en) * 2009-03-12 2013-01-30 丰田自动车株式会社 Electric vehicle
CN102348574B (en) * 2009-03-12 2012-12-26 丰田自动车株式会社 Electric vehicle
WO2010150872A1 (en) * 2009-06-26 2010-12-29 三菱重工業株式会社 Wireless power transmission system
US9124141B2 (en) 2009-06-26 2015-09-01 Mitsubishi Heavy Industries, Ltd. Wireless power transmission system
CN102460902A (en) * 2009-06-26 2012-05-16 三菱重工业株式会社 Wireless power transmission system
JP2011010472A (en) * 2009-06-26 2011-01-13 Mitsubishi Heavy Ind Ltd Wireless power transmission system
US9496721B2 (en) 2009-10-14 2016-11-15 Ud Trucks Corporation Power storage apparatus
WO2011046223A1 (en) 2009-10-14 2011-04-21 Udトラックス株式会社 Electric storage device
US10128694B2 (en) 2009-10-14 2018-11-13 Volvo Truck Corporation Power storage apparatus
KR101060519B1 (en) * 2009-10-15 2011-08-30 한국과학기술원 Shielding system for selectively canceling electromagnetic waves generated from on-line electric vehicle and electromagnetic wave offset method of on-line electric vehicle
US8264197B2 (en) 2009-12-03 2012-09-11 Hyundai Motor Japan R&D Center, Inc. Primary coil raising type non-contact charging system with elevating-type primary coil
JP2014075975A (en) * 2009-12-17 2014-04-24 Toyota Motor Corp Shield and vehicle equipped with the same
KR101125749B1 (en) * 2009-12-22 2012-03-27 한국과학기술원 magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same
KR101048863B1 (en) * 2009-12-22 2011-07-13 한국과학기술원 Non-contact magnetic induction charging system mounting structure for electric vehicle
WO2011078616A3 (en) * 2009-12-24 2011-10-27 한국과학기술원 Apparatus and method for shielding an electromagnetic field of a dual rail power supply system for an on-line electric vehicle
WO2011078616A2 (en) * 2009-12-24 2011-06-30 한국과학기술원 Apparatus and method for shielding an electromagnetic field of a dual rail power supply system for an on-line electric vehicle
KR101124575B1 (en) * 2009-12-29 2012-03-16 한국과학기술원 Magenetic Field Cancellation apparatus for OLEV
WO2011081461A2 (en) * 2009-12-29 2011-07-07 한국과학기술원 Magnetic field shielding device of on-line electric vehicle
WO2011081461A3 (en) * 2009-12-29 2011-11-03 한국과학기술원 Magnetic field shielding device of on-line electric vehicle
KR101091989B1 (en) 2009-12-30 2011-12-09 한국과학기술원 segment block including structure for magnetic field shielding for OLEV
CN102791513A (en) * 2010-03-04 2012-11-21 本田技研工业株式会社 Electric vehicle
DE102010020125B4 (en) 2010-05-10 2021-07-15 Sew-Eurodrive Gmbh & Co Kg Arrangement for contactless energy transfer
DE102010020122B4 (en) 2010-05-10 2021-07-15 Sew-Eurodrive Gmbh & Co Kg Arrangement for contactless energy transfer
WO2011149263A3 (en) * 2010-05-26 2012-02-16 한국과학기술원 Electromagnetic shielding device of power supply and power collector for transmission of magnetic induction power
WO2011149263A2 (en) * 2010-05-26 2011-12-01 한국과학기술원 Electromagnetic shielding device of power supply and power collector for transmission of magnetic induction power
KR101160544B1 (en) 2010-07-07 2012-07-02 한국과학기술원 Emf cancellation device in collector device for electric vehicle
KR101206048B1 (en) 2010-08-25 2012-11-28 한국과학기술원 Electromagnetic generator and Construction Method thereof
US9566870B2 (en) 2011-01-14 2017-02-14 Mitsubishi Heavy Industries, Ltd. Charging apparatus for electric vehicle
WO2012141342A1 (en) * 2011-04-11 2012-10-18 한국과학기술원 Magnetic field screening device
EP2717428A1 (en) * 2011-05-27 2014-04-09 Nissan Motor Co., Ltd Non-contact power supply device, vehicle, and non-contact power supply system
EP2717428B1 (en) * 2011-05-27 2018-06-20 Nissan Motor Co., Ltd Non-contact power supply device, vehicle, and non-contact power supply system
JP2013023077A (en) * 2011-07-21 2013-02-04 Koito Mfg Co Ltd Power supply device for vehicle lamp
KR101307807B1 (en) 2011-09-28 2013-09-12 한국과학기술원 Magnetic Inductive Power Collecting Apparatus, and Power Transfer Apparatus Using the Same
EP2782108A4 (en) * 2011-11-18 2015-01-14 Toyota Motor Co Ltd Power transmitting apparatus, power receiving apparatus, and power transmitting system
EP2782108A1 (en) * 2011-11-18 2014-09-24 Toyota Jidosha Kabushiki Kaisha Power transmitting apparatus, power receiving apparatus, and power transmitting system
JP2013132134A (en) * 2011-12-21 2013-07-04 Nichicon Corp Wireless power supply apparatus and wireless power supply system
JPWO2013118745A1 (en) * 2012-02-06 2015-05-11 株式会社Ihi Contactless power supply system
US9345177B2 (en) 2012-02-06 2016-05-17 Ihi Corporation Wireless power supply system
WO2013128600A1 (en) * 2012-02-29 2013-09-06 パイオニア株式会社 Power transmission device
JP2016042593A (en) * 2012-03-07 2016-03-31 パイオニア株式会社 Power transmission device
WO2013132616A1 (en) * 2012-03-07 2013-09-12 パイオニア株式会社 Power transmitting apparatus
JPWO2013132616A1 (en) * 2012-03-07 2015-07-30 パイオニア株式会社 Power transmission equipment
CN102820714A (en) * 2012-09-03 2012-12-12 重庆市电力公司电力科学研究院 Wireless charging device
EP3032700A4 (en) * 2013-08-05 2017-04-12 IHI Corporation Shield device and contactless power supply system
US9994112B2 (en) 2013-08-05 2018-06-12 Ihi Corporation Shield apparatus and wireless power supply system
JP2015033264A (en) * 2013-08-05 2015-02-16 株式会社Ihi Non-contact power supply system
FR3010253A1 (en) * 2013-09-04 2015-03-06 Schneider Electric Ind Sas INDUCTION CHARGING DEVICE BY INDUCTION OF A BATTERY OF AN ELECTRIC VEHICLE, AND INDUCTION RECHARGING SYSTEM COMPRISING SUCH A DEVICE
CN103944229A (en) * 2014-04-24 2014-07-23 陈业军 Wireless charging device, system and method
CN103956780A (en) * 2014-05-13 2014-07-30 陈业军 Launching device, network structure, system and method for wireless charging
CN109228903A (en) * 2018-10-17 2019-01-18 无锡鸿源汽车配件厂 Electric car wireless charging transmitter Telescopic safe protective fence
CN109228903B (en) * 2018-10-17 2023-09-29 合芯磁导科技(无锡)有限公司 Telescopic safety guard rail for wireless charging transmitter of electric automobile
JP2020102936A (en) * 2018-12-21 2020-07-02 株式会社Subaru Electric vehicle
JP7165047B2 (en) 2018-12-21 2022-11-02 株式会社Subaru electric vehicle
JPWO2020217662A1 (en) * 2019-04-26 2020-10-29
WO2020217662A1 (en) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 Home delivery box, home delivery system, flying body, and home delivery method
JP7325024B2 (en) 2019-04-26 2023-08-14 パナソニックIpマネジメント株式会社 Delivery Box, Delivery System, and Delivery Method

Also Published As

Publication number Publication date
JP4865451B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4865451B2 (en) Power receiving device, power transmitting device, and vehicle
US10391871B2 (en) Controlling current flow path in wireless electric vehicle charging systems for mitigating RF radiated emissions
CN105163976B (en) System and method for detecting the presence of under-vehicle mobile object
JP5021948B2 (en) Obstacle detection device, energy supply device, and energy supply system
US9653206B2 (en) Wireless power charging pad and method of construction
JP5739011B2 (en) Coexistence of wireless energy transfer and continuous radio station signal
US10003217B2 (en) System and method for reducing emissions for polarized coil systems for wireless inductive power transfer
US9994112B2 (en) Shield apparatus and wireless power supply system
JP4865450B2 (en) Power receiving device, energy supply system, and vehicle
US20130249303A1 (en) Magnetically permeable structures
US20140327391A1 (en) Vehicle charging pad having reduced thickness
US10110067B2 (en) Power transmission system
US20200157761A1 (en) Manhole cover and manhole management system using the same
CA2963153A1 (en) Systems, methods, and apparatus for integrated tuning capacitors in charging coil structure
KR20180060508A (en) Coil structure for inductive and resonant wireless charging transmitter and integral control method for the same
JP2009303316A (en) Electric power receiver for vehicles
WO2012132242A1 (en) Contactless power-reception device
WO2014156014A1 (en) Contactless charging device
JP2020502959A (en) In-vehicle communication device and method
KR20110068621A (en) Device for recharging batteries on electric vehicle or hybrid vehicle wirelessly by means of electromagnetic coupled resonance and method thereof
US10224762B2 (en) Living-object protection system antenna structure
CN112534679B (en) Apparatus for high frequency near field communication and inductively recharging portable electronic devices
JP4801480B2 (en) Energy supply device and energy supply system
EP3577669A1 (en) Electric vehicle charging via rf loops to avoid need for precise alignment with wireless charging equipment
JP5930182B2 (en) antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350