JP2007297501A - Conductive molded product and its manufacturing method - Google Patents

Conductive molded product and its manufacturing method Download PDF

Info

Publication number
JP2007297501A
JP2007297501A JP2006126044A JP2006126044A JP2007297501A JP 2007297501 A JP2007297501 A JP 2007297501A JP 2006126044 A JP2006126044 A JP 2006126044A JP 2006126044 A JP2006126044 A JP 2006126044A JP 2007297501 A JP2007297501 A JP 2007297501A
Authority
JP
Japan
Prior art keywords
molded body
conductive
melt
ultrafine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006126044A
Other languages
Japanese (ja)
Inventor
Hirobumi Takase
高瀬博文
Hidemi Ito
伊藤秀己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2006126044A priority Critical patent/JP2007297501A/en
Publication of JP2007297501A publication Critical patent/JP2007297501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7356Heating or cooling of the mould the temperature of the mould being near or higher than the melting temperature or glass transition temperature of the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive molded product having a satisfactory surface resistivity even if molding a thermoplastic resin composition containing very fine conductive fibers by usual molding method and molding conditions, and a method of manufacturing the same. <P>SOLUTION: A conductive layer 1 containing the very fine conductive fibers formed on the molded product is formed by heating the molded product to expose the very fine conductive fibers 2 to the surface, to project the fibers from the surface or to contain the fibers in the molded product in a depth less than 100 nm from the surface. This heating is implemented by making the temperature of the molded product raised from the glass transition temperature of the thermoplastic resin composition containing very fine conductive fibers to be in the temperature range 30°C higher than the melting temperature of the composition, or heating at a temperature within the range where the viscosity is 5.0×10<SP>3</SP>to lower than 1.0×10<SP>7</SP>Pa s. All of the molded products obtained by publicly known methods, such as injection molding, extrusion molding, press molding, transfer molding and laminate molding, can be used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、成形体にカーボンナノチューブなどの極細導電繊維を含有する導電層を形成した導電性成形体、及びその製造方法に関する。   The present invention relates to a conductive molded body in which a conductive layer containing ultrafine conductive fibers such as carbon nanotubes is formed on a molded body, and a method for manufacturing the same.

従来より、ICチップ、ハードディスクなどの電子部品やシリコンウェハや半導体などを搬送するトレー、ICソケット、コネクタ、ウェハピンセットなどは、静電気を帯びると電気破壊を起こすことが問題となっている。この静電気による電気破壊を防止するために、カーボンブラックやケッチェンブラックやアセチレンブラックなどを添加した樹脂組成物を用いた制電性成形体を用いている。
また、最近はカーボンナノチューブを用いて制電性ないし導電性を付与した成形体も開発されていて、カーボンナノチューブと熱可塑性樹脂との混合組成物を射出成形して101〜109Ω/□の表面抵抗値を有する導電性材料も知られている(特許文献1)。
特開2003−100147号公報
2. Description of the Related Art Conventionally, electronic components such as IC chips and hard disks, trays that transport silicon wafers and semiconductors, IC sockets, connectors, wafer tweezers, and the like have a problem of causing electrical breakdown when charged with static electricity. In order to prevent electric breakdown due to static electricity, an antistatic molded body using a resin composition to which carbon black, ketjen black, acetylene black or the like is added is used.
Recently, a molded product imparted with antistatic or conductive properties using carbon nanotubes has been developed. A mixture composition of carbon nanotubes and a thermoplastic resin is injection molded to produce 10 1 to 10 9 Ω / □. There is also known a conductive material having a surface resistance value (Patent Document 1).
JP 2003-100147 A

しかしながら、上記カーボンブラックなどを含有する成形体は、導電性を得るためにはカーボンブラックなどを多量に含有させる必要があるし、その分散性が悪くて均一な導電機能を発揮させることができなかった。また、カーボンブラックなどが脱落する恐れがあり、この脱落したカーボンブラックなどが付着して電子部品などが損傷するという問題もあった。
一方、上記特許文献1の導電性材料は、その成形前の混合組成物を通常の加熱温度よりも20〜100℃高く加熱して低速度で射出することで導電性を得ることは可能であるが、導電性を充分に発揮させることができず、また過熱により樹脂が劣化・分解するという問題があった。
However, the molded body containing carbon black or the like needs to contain a large amount of carbon black or the like in order to obtain conductivity, and its dispersibility is poor, so that a uniform conductive function cannot be exhibited. It was. In addition, there is a risk that carbon black or the like may drop off, and the dropped carbon black or the like adheres to damage electronic components.
On the other hand, the conductive material of Patent Document 1 can obtain conductivity by heating the mixed composition before molding at 20 to 100 ° C. higher than the normal heating temperature and injecting at a low speed. However, there is a problem that the conductivity cannot be sufficiently exhibited, and the resin is deteriorated and decomposed by overheating.

本発明は上記の問題に対処するためになされたもので、その目的とするところは、極細導電繊維を含有する熱可塑性樹脂組成物を用いて、充分導電性を発揮させた導電性成形体、及びその製造方法を提供することにある。   The present invention has been made in order to address the above-described problems, and the object of the present invention is to use a thermoplastic resin composition containing ultrafine conductive fibers, and to provide a conductive molded article that exhibits sufficient conductivity, And a manufacturing method thereof.

上記目的を達成するため、本発明に係る第1の導電性成形体は、成形体の表面に少なくとも極細導電繊維を含有する導電層が形成されてなる成形体であって、該導電層が、加熱されて該表面に極細導電繊維を露出させるか、又は該表面から突出させ、表面抵抗率を低下させて形成されたことを特徴とするものである。   In order to achieve the above object, a first conductive molded body according to the present invention is a molded body in which a conductive layer containing at least an ultrafine conductive fiber is formed on the surface of the molded body, and the conductive layer comprises: It is formed by heating to expose the ultrafine conductive fiber on the surface or projecting from the surface to reduce the surface resistivity.

本発明の第2の導電性成形体は、成形体の表面に少なくとも極細導電繊維を含有する導電層が形成されてなる成形体であって、該導電層が、加熱されて該表面から100nm未満の内部に極細導電繊維を含有させ、表面抵抗率を低下させて形成されたことを特徴とするものである。   The second conductive molded article of the present invention is a molded article in which a conductive layer containing at least ultrafine conductive fibers is formed on the surface of the molded article, and the conductive layer is heated to be less than 100 nm from the surface. It is characterized in that it is formed by containing ultrafine conductive fibers in the interior thereof and reducing the surface resistivity.

上記の各導電性成形体において、成形体が、極細導電繊維を含有しない基材層と、極細導電繊維を含有する導電層とからなることが好ましい。更に、導電層が、加熱前は1012Ω/□以上の表面抵抗率を有し、加熱後は1012Ω/□未満の表面抵抗率を有することが好ましい。また、極細導電繊維がカーボンナノチューブであって、該カーボンナノチューブが導電層に0.01〜12.0質量%含有され、成形体の表面抵抗率が101Ω/□以上1012Ω/□未満であることも好ましい。 In each of the above conductive molded bodies, it is preferable that the molded body is composed of a base material layer not containing ultrafine conductive fibers and a conductive layer containing ultrafine conductive fibers. Furthermore, the conductive layer preferably has a surface resistivity of 10 12 Ω / □ or more before heating, and has a surface resistivity of less than 10 12 Ω / □ after heating. Further, the ultrafine conductive fiber is a carbon nanotube, and the carbon nanotube is contained in the conductive layer in an amount of 0.01 to 12.0% by mass, and the surface resistivity of the molded body is 10 1 Ω / □ or more and less than 10 12 Ω / □. It is also preferable.

本発明に係る第1の導電性成形体の製造方法は、極細導電繊維を含有する熱可塑性樹脂組成物を溶融成形して溶融成形体を作製し、該溶融成形体の少なくとも表面を加熱し、極細導電繊維を溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   In the first method for producing a conductive molded body according to the present invention, a thermoplastic resin composition containing ultrafine conductive fibers is melt molded to produce a melt molded body, and at least the surface of the melt molded body is heated. The ultrafine conductive fiber is exposed on the surface of the melt-molded product, or protrudes from the surface, or is contained within less than 100 nm from the surface to form a conductive layer having a reduced surface resistivity. It is what.

本発明の第2の導電性成形体の製造方法は、極細導電繊維を含有する熱可塑性樹脂組成物を溶融成形して溶融成形体を作製し、該溶融成形体を切削などの二次加工を施して二次加工成形体となし、該二次加工成形体の少なくとも表面を加熱し、極細導電繊維を二次加工成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   In the second method for producing a conductive molded body of the present invention, a thermoplastic resin composition containing ultrafine conductive fibers is melt-molded to produce a melt-molded body, and the melt-molded body is subjected to secondary processing such as cutting. And forming a secondary processed molded body, heating at least the surface of the secondary processed molded body, and exposing or projecting the ultrafine conductive fibers on the surface of the secondary processed molded body, or the surface thereof. The conductive layer having a reduced surface resistivity is formed by being contained within a thickness of less than 100 nm.

これらの製造方法において、溶融成形が、押出成形、射出成形、プレス成形のいずれかにより行なわれることが好ましい。   In these production methods, the melt molding is preferably performed by any one of extrusion molding, injection molding, and press molding.

本発明の第3の導電性成形体の製造方法は、極細導電繊維を含有する熱可塑性樹脂組成物と熱可塑性樹脂とを共押出し成形して、熱可塑性樹脂よりなる基材層の片面又は両面又は全表面に極細導電繊維含有熱可塑性樹脂組成物よりなる表面層を積層した溶融成形体を作製し、その溶融成形体の少なくとも表面を加熱し、極細導電繊維を溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   In the third method for producing a conductive molded body of the present invention, a thermoplastic resin composition containing ultrafine conductive fibers and a thermoplastic resin are co-extruded to form one or both sides of a base material layer made of a thermoplastic resin. Alternatively, a melt-molded body in which a surface layer made of a thermoplastic resin composition containing ultrafine conductive fibers is laminated on the entire surface is prepared, and at least the surface of the melt-molded body is heated to expose the ultrafine conductive fibers on the surface of the melt-molded body. Alternatively, the conductive layer having a reduced surface resistivity is formed by projecting from the surface thereof, or by being contained in the interior of less than 100 nm from the surface.

本発明の第4の導電性成形体の製造方法は、極細導電繊維を含有する熱可塑性樹脂組成物を射出成形金型内に射出した後に、さらに合成樹脂を前記金型内に射出し、合成樹脂よりなる基材層の表面に極細導電繊維含有熱可塑性樹脂よりなる表面層を積層した溶融成形体又は前記基材層の周りを前記表面層で覆った溶融成形体を作製し、その溶融成形体の少なくとも表面を加熱し、極細導電繊維を溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   According to the fourth method for producing a conductive molded article of the present invention, after injecting a thermoplastic resin composition containing ultrafine conductive fibers into an injection mold, a synthetic resin is further injected into the mold to synthesize A melt-molded product in which a surface layer made of thermoplastic resin containing ultrafine conductive fibers is laminated on the surface of a base material layer made of resin or a melt-molded product in which the periphery of the base material layer is covered with the surface layer is produced, and the melt-molded product The surface resistivity was lowered by heating at least the surface of the body and exposing the ultrafine conductive fibers to the surface of the melt-molded body, or projecting from the surface, or containing the ultrafine conductive fiber in the interior of less than 100 nm from the surface. A conductive layer is formed.

本発明の第5の導電性成形体の製造方法は、極細導電繊維を含有する熱可塑性樹脂組成物よりなる表面シートを作製すると共に熱可塑性合成樹脂組成物よりなる基材シートを作製し、該基材シートの片面若しくは両面に表面シートを重ねた後に熱圧して、熱可塑性合成樹脂組成物よりなる基材層の表面に極細導電繊維含有熱可塑性樹脂組成物よりなる表面層を積層した溶融成形体を作製し、その溶融成形体の少なくとも表面を加熱し、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   A fifth method for producing a conductive molded article of the present invention is to produce a surface sheet made of a thermoplastic resin composition containing ultrafine conductive fibers and a base sheet made of a thermoplastic synthetic resin composition, Melt molding in which a surface layer made of a thermoplastic resin composition containing ultrafine conductive fibers is laminated on the surface of a base material layer made of a thermoplastic synthetic resin composition by hot pressing after the surface sheet is laminated on one or both sides of the base material sheet Body is heated, at least the surface of the melt-formed body is heated, and the ultrafine conductive fiber is exposed on the surface of the melt-formed body, or protrudes from the surface, or is contained within less than 100 nm from the surface. Thus, a conductive layer having a reduced surface resistivity is formed.

本発明の第6の導電性成形体の製造方法は、極細導電繊維を含有する表面層が形成された転写フィルムを予め作製し、当該転写フィルムを射出成形金型内に配置し、その金型内に合成樹脂を射出して、合成樹脂よりなる基材層の表面に極細導電繊維含有表面層を転写した溶融成形体を作製した後に、その溶融成形体の少なくとも表面を加熱して、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   According to the sixth method for producing a conductive molded body of the present invention, a transfer film on which a surface layer containing ultrafine conductive fibers is formed in advance, the transfer film is placed in an injection mold, and the mold After injecting the synthetic resin into the base material layer made of synthetic resin and producing the melt-molded body with the surface layer containing the ultra-fine conductive fibers transferred, at least the surface of the melt-molded body is heated to form the ultra-fine conductive material. The fiber is exposed on the surface of the melt-molded body, protrudes from the surface, or is contained within less than 100 nm from the surface to form a conductive layer having a reduced surface resistivity. To do.

本発明の第7の導電性成形体の製造方法は、極細導電繊維を含有するラミネート用フィルム又はフィルム基材に極細導電繊維を含有する表面層が形成されたラミネート用フィルムを予め作製し、当該ラミネート用フィルムを射出成形金型内に配置した後に、その金型内に合成樹脂を射出して、合成樹脂よりなる基材層の表面にラミネート用フィルムをラミネートした溶融成形体を作製した後に、その溶融成形体の少なくとも表面を加熱して、極細導電繊維を成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   According to the seventh method for producing a conductive molded body of the present invention, a film for laminating containing ultrafine conductive fibers or a film for laminating in which a surface layer containing ultrafine conductive fibers is formed on a film substrate is prepared in advance. After placing the laminating film in the injection mold, after injecting a synthetic resin into the mold to produce a melt molded body in which the laminating film is laminated on the surface of the base material layer made of synthetic resin, Heating at least the surface of the molten molded body to expose the ultrafine conductive fibers on the surface of the molded body, or to protrude from the surface, or to be contained within less than 100 nm from the surface, the surface resistivity is A reduced conductive layer is formed.

本発明の第8の導電性成形体の製造方法は、合成樹脂を溶融成形して得た成形体の表面に極細導電繊維を含有する熱可塑性樹脂塗液を塗布・固化して、成形体の表面に極細導電繊維含有樹脂塗膜を有する溶融成形体を作製した後に、その溶融成形体の少なくとも表面を加熱して、極細導電繊維を溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   The eighth method for producing an electroconductive molded body of the present invention is to apply and solidify a thermoplastic resin coating solution containing ultrafine conductive fibers on the surface of a molded body obtained by melt molding a synthetic resin, After producing a melt-molded body having a resin coating film containing ultrafine conductive fibers on the surface, at least the surface of the melt-molded body is heated to expose the ultrafine conductive fibers on the surface of the melt-molded body or project from the surface. Or a conductive layer having a reduced surface resistivity is formed by incorporating the composition into the interior less than 100 nm from the surface thereof.

上記の各製造方法において、溶融成形体の加熱が、極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲で行なわれることが好ましい。また、溶融成形体の加熱が、極細導電繊維含有熱可塑性樹脂組成物の粘度が5.0×103Pa・s以上1.0×107Pa・s未満の範囲で行われることも好ましい。また、溶融成形体の加熱が、極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲に加熱された加熱室にて行われることも好ましい。更に、溶融成形体の加熱が、熱風、炎、加熱ニクロム線、熱媒体、熱プレス、赤外線のいずれかの熱源、又はマイクロ波を用いて行なわれることも好ましい。 In each of the above production methods, it is preferable that the molten molded body is heated in a temperature range from the glass transition temperature of the ultrafine conductive fiber-containing thermoplastic resin composition to a temperature 30 ° C. higher than the melting point temperature. Moreover, it is also preferable that heating of the melt-molded body is performed in a range where the viscosity of the ultrafine conductive fiber-containing thermoplastic resin composition is 5.0 × 10 3 Pa · s or more and less than 1.0 × 10 7 Pa · s. Moreover, it is also preferable that heating of the melt-molded body is performed in a heating chamber heated to a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers. Furthermore, it is also preferable that the molten molded body is heated using a hot air, a flame, a heated nichrome wire, a heat medium, a heat press, an infrared heat source, or a microwave.

本発明において、「表面抵抗率を低下させた導電層」又は「表面抵抗率が低下した導電層」とは、溶融成形体の表面抵抗率が1012Ω/□以上であれば、これを1012Ω/□未満の表面抵抗率に低下させることを意味し、溶融成形体の表面抵抗率が1012Ω/□未満であれば、これをさらに低下させた表面抵抗率となすことを意味する。
また、極細導電繊維は、溶融成形体の表面全体に露出した状態、又は表面から突出した状態、又は表面から100nm未満の内部に含有されている状態になっている場合の他に、溶融成形体の表面の部位により上記の状態が異なり上記2つ又は3つの状態が混在した状態になっている場合も含まれる。
さらに、加熱により、極細導電繊維含有熱可塑性樹脂組成物が上記ガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲になされると、その粘度は上記範囲内になる場合が多く該場合は両範囲が一部で一致するが、異なる場合はいずれの範囲となるように加熱すればよい。
In the present invention, the term “conductive layer with reduced surface resistivity” or “conductive layer with reduced surface resistivity” means that if the surface resistivity of the melt-formed product is 10 12 Ω / □ or more, 10 This means that the surface resistivity is reduced to less than 12 Ω / □, and if the surface resistivity of the melt-formed product is less than 10 12 Ω / □, this means that the surface resistivity is further reduced. .
In addition to the case where the ultrafine conductive fiber is exposed on the entire surface of the melt-molded body, protruded from the surface, or contained in the interior of less than 100 nm from the surface, the melt-molded body The case where the above-mentioned state differs depending on the surface portion of the surface and the two or three states are mixed is also included.
Furthermore, when the thermoplastic resin composition containing ultrafine conductive fibers is heated to a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature, the viscosity often falls within the above range. In some cases, both ranges coincide with each other, but if different, heating may be performed so that either range is obtained.

なお、上記極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度と融点は、該組成物の示差走査熱量を測定することにより求めることができ、ガラス転移温度は、転移前の基線の直線部分と転移領域の変曲点の接線を外挿して得られる交点の温度を示し、融点は、融解ピークの両側の最大傾斜の点で引いた接線の交点の温度を示す。
また、上記粘度は、動的粘弾性測定装置にて剪断速度1sec-1の剪断速度で得られた粘度を示す。
上記の融点は、極細導電繊維含有熱可塑性樹脂組成物に使用される樹脂が結晶性であれば上記示差走査熱量を測定することで求めることができるが、非晶性であれば示差走査熱量で測定することができないので、上記粘度となるように加熱すればよい。
The glass transition temperature and melting point of the above-mentioned thermoplastic resin composition containing ultrafine conductive fibers can be determined by measuring the differential scanning calorific value of the composition, and the glass transition temperature is calculated from the linear portion of the base line before the transition. The temperature of the intersection obtained by extrapolating the tangent of the inflection point of the transition region is shown, and the melting point shows the temperature of the intersection of the tangent drawn at the maximum slope points on both sides of the melting peak.
Moreover, the said viscosity shows the viscosity obtained with the shear rate of 1 sec < -1 > shear rate with the dynamic-viscoelasticity measuring apparatus.
The melting point can be determined by measuring the differential scanning calorific value if the resin used for the ultrafine conductive fiber-containing thermoplastic resin composition is crystalline, but if the resin is amorphous, the differential scanning calorific value is used. Since it cannot measure, what is necessary is just to heat so that it may become the said viscosity.

本発明の第1の導電性成形体は、導電層の表面に露出又は表面から突出する極細導電繊維により導電路が良好に形成されて表面抵抗率が低下させられていて、制電ないし導電機能を発揮させることができる。この極細導電繊維が、加熱により表面に露出又は表面から突出する理由は、現時点では定かではないが、極細導電繊維を含む溶融成形体の表面を加熱することで、該成形体を形成する組成物の少なくとも表面が軟化して粘度が低下し、表面近傍に含有され且つ歪を有していた極細導電繊維が歪をなくすために軟化樹脂組成物に抗してランダムな三次元方向に動いて無配向状態となり、近接して含有されていた極細導電繊維同士がお互いに接触する機会が増加すると共に、特に動きを抑制する軟化樹脂組成物が少ない表面側に動いて露出又は突出するものと思われる。
また、特開2004−339484などにも知られるように極細導電繊維は、非晶性樹脂の結晶促進剤ともなり得る。これらの結晶は、極細導電繊維の近傍から発生することが知られており、この微結晶成長に伴い、極細導電繊維が動き導電性を向上させるとも思われる。
In the first conductive molded body of the present invention, the conductive path is satisfactorily formed by the ultrafine conductive fibers exposed on the surface of the conductive layer or protruding from the surface, and the surface resistivity is reduced, and the antistatic or conductive function Can be demonstrated. The reason why this ultrafine conductive fiber is exposed on the surface or protrudes from the surface by heating is not clear at this time, but is a composition that forms the molded body by heating the surface of the molten molded body containing the ultrafine conductive fiber. At least the surface is softened and the viscosity is reduced, and the ultrafine conductive fibers contained in the vicinity of the surface and having strain do not move in a random three-dimensional direction against the softened resin composition in order to eliminate the strain. It seems that the fine conductive fibers contained in close proximity are in an oriented state and the opportunity to contact each other increases, and the softening resin composition that suppresses movement in particular moves to the surface side where it appears to be exposed or protruding. .
Further, as is known in Japanese Patent Application Laid-Open No. 2004-339484, etc., the ultrafine conductive fiber can also be a crystal accelerator for an amorphous resin. These crystals are known to be generated from the vicinity of the ultrafine conductive fiber, and it is considered that the ultrafine conductive fiber moves and improves conductivity with the growth of the microcrystal.

このようにして、極細導電繊維が露出又は突出されることにより表面抵抗率を低下させた導電層が形成され、また該極細導電繊維が導電層内部に存在する極細導電繊維とも接触して、導電路を良好に形成できる。そのため、例え加熱前は1012Ω/□以上の表面抵抗率を示していても、加熱することにより1012Ω/□未満の表面抵抗率に低下した導電層が形成された導電性成形体とすることができる。また、加熱前に1012Ω/□未満の表面抵抗率を示すものは、加熱することにより、これより更に表面抵抗率を低下させた導電層が形成された導電性成形体とすることができる。このような表面抵抗率の低下は、加熱前の表面抵抗率により異なるが、該表面抵抗率が1桁乃至12桁の範囲で低下する。そして、極細導電繊維であるカーボンナノチューブが導電層内に0.01〜12.0質量%含有されていれば、該カーボンナノチューブが長くて細いので、加熱による動きも良好に行なわれてお互いの接触が容易に行なわれ、その表面抵抗率を101Ω/□以上1012Ω/□未満にすることができる。 In this way, a conductive layer having a reduced surface resistivity is formed by exposing or projecting the ultrafine conductive fiber, and the ultrafine conductive fiber is also in contact with the ultrafine conductive fiber existing inside the conductive layer to conduct the conductive property. The road can be formed well. Therefore, even if the surface resistivity is 10 12 Ω / □ or more before heating, a conductive molded body in which a conductive layer having a surface resistivity reduced to less than 10 12 Ω / □ is formed by heating. can do. Moreover, what shows the surface resistivity of less than 10 < 12 > ohm / square before a heating can be made into the electroconductive molded object in which the conductive layer which further reduced the surface resistivity was formed by heating. . Such a decrease in surface resistivity varies depending on the surface resistivity before heating, but the surface resistivity decreases in the range of 1 to 12 digits. If carbon nanotubes, which are ultrafine conductive fibers, are contained in the conductive layer in an amount of 0.01 to 12.0% by mass, the carbon nanotubes are long and thin. The surface resistivity can be made 10 1 Ω / □ or more and less than 10 12 Ω / □.

本発明の第2の導電性成形体は、該成形体表面に静電気が発生したり、通電により印加されると、トンネル効果によりその表面から100nm未満の内部に含有されている極細導電繊維にまで静電気や印加電荷が達して、極細導電繊維が露出又は突出する場合と同様な作用をなし、前記の導電層と同様に表面抵抗率を低下させる効果が発揮される。しかし、極細導電繊維がその表面から100nm未満の内部に含有されていないと、トンネル効果が良好に発揮できずに、制電ないし導電機能を有さなくなる。極細導電繊維を含む成形体の表面が加熱されることで、極細導電繊維を表面から100nm未満の内部に含有させて表面抵抗率を低下させた導電層を形成できる理由は、前記の通り、軟化した組成物内を極細導電繊維がランダムに動くが、歪が小さくて表面に露出又は表面から突出するまでは動かず、歪がなくなった場所に留まって、表面から100nm未満の内部にまで動いて固定されて形成されるものと思われる。   When static electricity is generated on the surface of the molded body or when it is applied by energization, the second conductive molded body of the present invention can reach the ultrafine conductive fibers contained within 100 nm from the surface by the tunnel effect. The same effect as when the ultrafine conductive fibers are exposed or protruded due to the arrival of static electricity or an applied charge, and the effect of reducing the surface resistivity as in the case of the conductive layer is exhibited. However, if the ultrafine conductive fiber is not contained in the interior of less than 100 nm from the surface, the tunnel effect cannot be exhibited satisfactorily, and no antistatic or conductive function is provided. The reason why the surface of the molded body containing the ultrafine conductive fiber is heated to form a conductive layer having a surface resistivity reduced by containing the ultrafine conductive fiber in the interior of less than 100 nm from the surface is as described above. The fine conductive fibers move randomly in the composition, but do not move until the strain is small and exposed to the surface or protrudes from the surface, stays where the strain disappears, and moves from the surface to the inside of less than 100 nm. It seems to be fixed and formed.

導電性成形体全体が極細導電繊維含有熱可塑性樹脂組成物で形成されていると、加熱により、表面は勿論のこと、成形体内部の極細導電繊維もランダムに三次元方向に動いてお互いが接触するようになり、表面抵抗率と共に体積抵抗率も向上させることができる。
また、該導電性成形体に切削などを施し表面部分を除去しても、該切削面に極細導電繊維が露出又は突出するので、表面抵抗率を101Ω/□以上1012Ω/□未満とすることができる。
When the entire conductive molded body is made of a thermoplastic resin composition containing ultrafine conductive fibers, the ultrafine conductive fibers inside the molded body randomly move in the three-dimensional direction due to heating, as well as the surface. Thus, the volume resistivity can be improved together with the surface resistivity.
Even if the conductive molded body is subjected to cutting or the like to remove the surface portion, the ultrafine conductive fibers are exposed or protruded on the cutting surface, so that the surface resistivity is 10 1 Ω / □ or more and less than 10 12 Ω / □. It can be.

また、導電性成形体が極細導電繊維を含有しない基材層と極細導電繊維を含有する表面抵抗率を低下させた導電層とからなると、該成形体の内部まで加熱する必要がなくて、少なくとも表面部分を加熱するだけで、前記の如くして表面抵抗率を低下させた導電層が形成され、制電乃至導電機能を発揮させることができる。そして、基材層に成形体に必要な機械的強度などの諸機能を付与できるし、極細導電繊維の含有量を少なくできるので安価な導電性成形体を提供することもできる。   Further, when the conductive molded body is composed of a base material layer not containing ultrafine conductive fibers and a conductive layer containing ultrafine conductive fibers and having a reduced surface resistivity, it is not necessary to heat up to the inside of the molded body, at least By simply heating the surface portion, a conductive layer having a reduced surface resistivity is formed as described above, and an antistatic or conductive function can be exhibited. And various functions, such as mechanical strength required for a molded object, can be provided to a base material layer, and since content of an ultrafine conductive fiber can be decreased, an inexpensive electroconductive molded object can also be provided.

本発明の第1の導電性成形体の製造方法は、極細導電繊維を含有する溶融成形体の少なくとも表面を加熱することで、極細導電繊維を表面に露出させたり、表面から突出させたり、表面から100nm未満の内部に含有させたりすることができるので、該表面部分に表面抵抗率を低下させた導電層を形成することができる。このように、表面を加熱することで、極細導電繊維を上記状態になさしめる理由は、現時点では定かではないが、出願人はつぎのように推測している。   In the first method for producing a conductive molded body according to the present invention, at least the surface of a melt-molded body containing ultrafine conductive fibers is heated to expose the ultrafine conductive fibers on the surface, protrude from the surface, Therefore, a conductive layer with a reduced surface resistivity can be formed on the surface portion. As described above, the reason why the ultrafine conductive fiber is brought into the above-described state by heating the surface is not clear at present, but the applicant presumes as follows.

溶融成形体の少なくとも表面近傍に含まれている極細導電繊維は、溶融成形時に金型などからの剪断力を受けて成形流れに沿って強制的に配向させられて歪を有した状態で含有されている。そのため、極細導電繊維の含有量が少ないか又は/及び分散が悪いと、該繊維同士の接触が余り得られず1012Ω/□以上の表面抵抗率を示す。しかし、極細導電繊維の含有量が多いか又は/及び分散が良好であると、歪を有した状態で配列・配向しても該繊維同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示す。そして、この極細導電繊維が、表面が加熱されることにより軟化して粘度が低下した組成物の内部でランダムに3次元方向に動いて無配向状態となり、近接して含有されていた極細導電繊維同士がお互いに接触する機会が著しく増加すると共に、軟化樹脂組成物量が少なくて動きを抑制することが少ない表面方向に動いて、表面に露出するか、更に動いて表面から突出するか、又は露出乃至突出するまでの歪がなくて表面から100nm未満の内部にまで動いて固定された状態となって、表面抵抗率を低下させた導電層が形成される、と推測している。 The ultrafine conductive fibers contained at least near the surface of the melt-formed product are contained in a state in which they are subjected to shearing force from a mold or the like at the time of melt-molding and are forcedly oriented along the molding flow to have a strain. ing. For this reason, if the content of the ultrafine conductive fiber is small or / and the dispersion is poor, contact between the fibers is not obtained so much and a surface resistivity of 10 12 Ω / □ or more is exhibited. However, if the content of the ultrafine conductive fiber is large or / and the dispersion is good, contact between the fibers can be obtained to some extent even if the fibers are arranged and oriented in a strained state, and less than 10 12 Ω / □ The surface resistivity is shown. And this ultra fine conductive fiber was moved in a three-dimensional direction at random inside the composition softened by the surface being heated and lowered in viscosity to become a non-oriented state and contained in close proximity. Opportunities for mutual contact with each other are significantly increased, and the amount of the softening resin composition is small and the movement is hardly suppressed, so that it moves to the surface direction and is exposed to the surface, further moved to protrude from the surface, or exposed. It is presumed that a conductive layer having a reduced surface resistivity is formed with no distortion until protruding to a state where it moves from the surface to below 100 nm and is fixed.

このようにして、該表面及び/又は表面部分に、溶融成形体が加熱前は1012Ω/□以上の表面抵抗率であれば1012Ω/□未満の表面抵抗率の、加熱前に1012Ω/□未満の表面抵抗率であれば更に低下した表面抵抗率の導電層が形成されて、制電乃至導電機能を発揮する導電性成形体を得ることができる。 In this way, if the molten molded body has a surface resistivity of 10 12 Ω / □ or more before heating on the surface and / or surface portion, the surface resistivity of less than 10 12 Ω / □ is 10 before heating. If the surface resistivity is less than 12 Ω / □, a conductive layer having a further reduced surface resistivity is formed, and a conductive molded body exhibiting antistatic or conductive functions can be obtained.

本発明の第2の導電性成形体の製造方法は、極細導電繊維含有熱可塑性樹脂組成物を溶融成形した溶融成形体を切削などして得た二次加工成形体の少なくとも表面を加熱することで、前記と同様にして、極細導電繊維を切削表面に露出又は切削表面から突出させたり、切削表面から100nm未満の内部に含有させることで、該部分に表面抵抗率を低下させた導電層を形成することができる。
溶融成形体は、その内部においても成形時の成形流れ方向に配向して歪を有していて、切削して得た二次加工成形体の表面の極細導電繊維も配向しているので、切削された表面を加熱することにより、上記と同様の理由で、該表面及び/又は表面部分に表面抵抗率を低下させた導電層が形成されて、制電乃至導電機能を発揮する導電性成形体を得ることができる。
The second method for producing a conductive molded body of the present invention comprises heating at least the surface of a secondary processed molded body obtained by cutting a molten molded body obtained by melt molding an ultrafine conductive fiber-containing thermoplastic resin composition. In the same manner as described above, the conductive layer having a reduced surface resistivity is formed on the portion by exposing the ultrafine conductive fiber to the cutting surface or projecting from the cutting surface or by incorporating the fine conductive fiber into the inside of the cutting surface less than 100 nm. Can be formed.
The melt-formed body also has distortion in the molding flow direction at the time of molding inside, and the ultrafine conductive fibers on the surface of the secondary processed molded body obtained by cutting are also oriented. By heating the formed surface, a conductive layer having a reduced surface resistivity is formed on the surface and / or the surface portion for the same reason as described above, and a conductive molded body that exhibits antistatic or conductive functions. Can be obtained.

上記製造方法において、溶融成形が射出成形で行なわれると、射出成形装置の狭いノズルやスプルー流路やランナーやゲートなどを高速で通過し、さらに射出成形金型内の比較的狭い成形通路を比較的高速で流動して充填されるので、極細導電繊維含有熱可塑性樹脂組成物に含まれる極細導電繊維はノズル面やスプルー流路面やランナー面やゲート面や成形通路面からの強い剪断力を受けて成形流れ方向に強制的に配列・配向する。
そのため、上記のように、極細導電繊維の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、極細導電繊維の含有量が多いか又は/及び分散が良好であると1012Ω/□未満の表面抵抗率を示す溶融成形体となる。そして、この溶融成形体を加熱することで、少なくとも表面近傍に存在していた極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して、上記のように表面抵抗率が低下した導電層が形成され、制電乃至導電機能を発揮するようになる。また、内部まで加熱されると、内部の極細導電繊維も同様に動いてお互いが接触するので、体積抵抗率も向上させることができる。
In the above manufacturing method, when melt molding is performed by injection molding, it passes through a narrow nozzle, sprue channel, runner, gate, etc. of the injection molding device at high speed, and also compares a relatively narrow molding passage in the injection mold. Therefore, the ultrafine conductive fibers contained in the thermoplastic resin composition containing ultrafine conductive fibers are subjected to a strong shearing force from the nozzle surface, sprue flow path surface, runner surface, gate surface and molding passage surface. Forcibly align and align in the molding flow direction.
Therefore, as described above, when the content of the ultrafine conductive fiber is small or / and the dispersion is poor, the surface resistivity is 10 12 Ω / □ or more, and the content of the ultrafine conductive fiber is large or / and the dispersion is low. When it is good, it becomes a melt-molded product showing a surface resistivity of less than 10 12 Ω / □. Then, by heating this melt-molded body, at least the ultrafine conductive fibers that existed in the vicinity of the surface randomly move in the three-dimensional direction to become non-oriented and contact each other, as described above. A conductive layer having a reduced rate is formed and exhibits antistatic or conductive functions. Further, when heated to the inside, the ultrafine conductive fibers inside move in the same manner and come into contact with each other, so that the volume resistivity can be improved.

また、溶融成形が押出成形で行なわれると、射出成形よりも低速ではあるが押出成形金型内を早く流動するので、極細導電繊維が押出成形金型面からの剪断力を受けて成形流れ方向に強制的に配列・配向し、上記のような表面抵抗率を示す溶融成形体となる。そして、この溶融成形体を加熱することで、上記に記載したように、極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して、上記のように表面抵抗率が低下した導電層が形成され、制電乃至導電機能を発揮するようになる。また内部まで加熱されると体積抵抗率も向上させることもできる。   In addition, when melt molding is performed by extrusion molding, it flows faster in the extrusion mold, although at a slower speed than injection molding, so that the ultrafine conductive fibers receive shearing force from the surface of the extrusion mold and flow in the molding flow direction. Thus, a molten molded body that is forcibly arranged and oriented and exhibits the above-described surface resistivity is obtained. Then, by heating this melt-molded body, as described above, the ultrafine conductive fibers randomly move in the three-dimensional direction to become non-oriented and contact each other, and the surface resistivity as described above. As a result, a conductive layer with reduced resistance is formed, and an antistatic or conductive function is exhibited. Further, when the inside is heated, the volume resistivity can also be improved.

また、溶融成形がプレス成形で行なわれると、プレス成形時に上下から軟化したシートに圧力が加えられるので、シートが四周に動いて延展し、極細導電繊維も四周方向に強制的に配列・配向させられ、上記のような表面抵抗率を示す歪を有した溶融成形体が得られる。そこで、この溶融成形体を加熱することで、上記に記載したように、極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して、上記のように表面抵抗率が低下した導電層が形成することができるし、また内部まで加熱されると体積抵抗率も向上させることもできる。   In addition, when melt molding is performed by press molding, pressure is applied to the sheet softened from the top and bottom during press molding, so that the sheet moves around and extends, and the fine conductive fibers are forcibly arranged and oriented in the four-circumference direction. As a result, a melt-formed product having a strain exhibiting the above surface resistivity is obtained. Therefore, by heating this melt-molded body, as described above, the ultrafine conductive fibers randomly move in the three-dimensional direction to be in a non-oriented state and contact each other, and as described above, the surface resistivity A conductive layer having a reduced resistance can be formed, and when heated to the inside, the volume resistivity can be improved.

本発明の第3の導電性成形体の製造方法であると、熱可塑性樹脂よりなる基材層の片面又は両面又は全表面に極細導電繊維含有熱可塑性樹脂よりなる表面層を積層した溶融成形体を共押出成形で容易に作製できる。そして、この溶融成形体は、表面層を形成する極細導電繊維含有熱可塑性樹脂組成物は共押出金型からの剪断力を受けて押出し方向に配列・配向し、極細導電繊維の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、極細導電繊維の含有量が多いか又は/及び分散が良好であると1012Ω/□未満の表面抵抗率を示す溶融成形体となる。そして、この溶融成形体を加熱することで、上記に記載したように、表面層に含有される極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して、表面抵抗率を低下させた導電層が形成され、制電ないし導電機能を発揮する導電性成形体を得ることができる。 According to the third method for producing a conductive molded article of the present invention, a melt molded article in which a surface layer made of a thermoplastic resin containing ultrafine conductive fibers is laminated on one surface, both surfaces, or the entire surface of a base material layer made of a thermoplastic resin. Can be easily produced by coextrusion molding. In this melt-molded body, the ultrafine conductive fiber-containing thermoplastic resin composition forming the surface layer is subjected to shearing force from the coextrusion mold and aligned and oriented in the extrusion direction, and the content of ultrafine conductive fibers is small. When the dispersion is poor, the surface resistivity is 10 12 Ω / □ or more, and when the content of the ultrafine conductive fiber is large or / and the dispersion is good, the surface resistivity is less than 10 12 Ω / □. It becomes the melt-molded body shown. And by heating this melt-molded body, as described above, the ultrafine conductive fibers contained in the surface layer randomly move in the three-dimensional direction to become non-oriented and contact each other, A conductive layer having a reduced resistivity is formed, and a conductive molded body that exhibits antistatic or conductive functions can be obtained.

また、本発明の第4の導電性成形体の製造方法であると、合成樹脂よりなる基材層の表面に極細導電繊維含有熱可塑性樹脂の表面層を積層した溶融成形体を射出成形で作製できるし、また基材層の周りを前記表面層で覆った溶融成形体も射出成形で作製できる。そして、これらの溶融成形体は、表面層を形成する極細導電繊維含有熱可塑性樹脂組成物は高速で射出・充填されるので、前記と同様な強い剪断力を受けて成形流れ方向に強制的に配列・配向し、極細導電繊維の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、極細導電繊維の含有量が多いか又は/及び分散が良好であると1012Ω/□未満の表面抵抗率を示す溶融成形体となる。そして、この溶融成形体を加熱することで、上記に記載したように、表面層に含有される極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して、表面抵抗率を低下させた導電層が形成され、制電ないし導電機能を発揮する導電性成形体を得ることができる。 Further, according to the fourth method for producing a conductive molded body of the present invention, a melt molded body in which a surface layer of a thermoplastic resin containing ultrafine conductive fibers is laminated on the surface of a base material layer made of a synthetic resin is produced by injection molding. In addition, a melt-molded product in which the periphery of the base material layer is covered with the surface layer can be produced by injection molding. In these melt-molded bodies, the thermoplastic resin composition containing ultrafine conductive fibers forming the surface layer is injected and filled at a high speed, so that it is forced in the direction of molding flow by receiving the same strong shearing force as described above. When the content of the fine conductive fibers is small or / and the dispersion is poor, the surface resistivity is 10 12 Ω / □ or more, and the content of the fine conductive fibers is large or / and the dispersion is good. If it exists, it will become a melt-formed body which shows a surface resistivity of less than 10 12 Ω / □. And by heating this melt-molded body, as described above, the ultrafine conductive fibers contained in the surface layer randomly move in the three-dimensional direction to become non-oriented and contact each other, A conductive layer having a reduced resistivity is formed, and a conductive molded body that exhibits antistatic or conductive functions can be obtained.

本発明の第5の導電性成形体の製造方法であると、熱可塑性合成樹脂組成物よりなる基材層の表面に極細導電繊維含有熱可塑性樹脂組成物の表面層を積層した溶融成形体をプレス成形で容易に作製できる。そして、この溶融成形体の表面層を形成する表面シートは、プレス成形時に軟化し且つ上下から圧力が加えられるので、表面シートが四周に動いて延展し、極細導電繊維も四周方向に強制的に配列・配向させられ、上記のような表面抵抗率を示す歪を有した溶融成形体が得られる。そこで、この溶融成形体の表面層を加熱することで、上記に記載したように、極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して、上記のように表面抵抗率が低下した導電層が形成され、制電ないし導電機能を発揮する導電性成形体を得ることができる。   According to the fifth method for producing a conductive molded article of the present invention, a melt molded article in which a surface layer of a thermoplastic resin composition containing ultrafine conductive fibers is laminated on the surface of a base material layer made of a thermoplastic synthetic resin composition. It can be easily produced by press molding. The surface sheet forming the surface layer of the melt-molded body is softened during press molding and pressure is applied from above and below, so that the surface sheet moves and extends around the four sides, and the ultrafine conductive fibers are also forced in the four directions. A melt-molded body that is aligned and oriented and has a strain exhibiting the above surface resistivity is obtained. Therefore, by heating the surface layer of the melt-molded body, as described above, the ultrafine conductive fibers randomly move in the three-dimensional direction to become non-oriented and contact each other, as described above. A conductive layer having a reduced surface resistivity is formed, and a conductive molded body that exhibits antistatic or conductive functions can be obtained.

本発明の第6の導電性成形体の製造方法であると、射出成形された射出成形体からなる基材層の表面に極細導電繊維含有表面層が転写された溶融成形体を射出成形で作製することができ、1つの転写フィルムを作製しておくだけで種々の射出成形体に容易に対応することができる。そして、この転写フィルムの表面層の極細導電繊維は、塗布する際に塗布方向に力を受けて、その方向に配列・配向して歪を有した状態で含有されており、極細導電繊維の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、極細導電繊維の含有量が多いか又は/及び分散が良好であると1012Ω/□未満の表面抵抗率を示す溶融成形体となる。そして、この溶融成形体を加熱することで、上記に記載したように、表面層に含有される極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して表面抵抗率を低下させた導電層が形成されて、制電ないし導電機能を発揮する導電性成形体を得ることができる。 According to the sixth method for producing a conductive molded article of the present invention, a melt molded article in which a surface layer containing ultrafine conductive fibers is transferred to the surface of a base material layer made of an injection molded article is produced by injection molding. It is possible to cope with various injection-molded bodies simply by preparing one transfer film. And, the ultrafine conductive fibers on the surface layer of this transfer film are contained in a state of being strained by receiving a force in the coating direction when being applied and arranged and oriented in that direction. When the amount is small or / and the dispersion is poor, the surface resistivity is 10 12 Ω / □ or more, and when the content of the ultrafine conductive fiber is large or / and the dispersion is good, the surface is less than 10 12 Ω / □. It becomes a melt-molded product showing resistivity. Then, by heating this melt-molded body, as described above, the ultrafine conductive fibers contained in the surface layer randomly move in the three-dimensional direction to be in a non-oriented state, and contact each other, resulting in surface resistance. A conductive layer having a reduced rate is formed, and a conductive molded body that exhibits antistatic or conductive functions can be obtained.

本発明の第7の導電性成形体の製造方法であると、射出成形された射出成形体からなる基材層の表面に極細導電繊維含有表面層を有するラミネート用フィルム又は極細導電繊維含有ラミネート用フィルムがラミネートされた溶融成形体を射出成形で作製することができ、1つのラミネート用フィルムを作製しておくだけで種々の射出成形体に容易に対応することができる。そして、このラミネート用フィルムの表面層の極細導電繊維は転写フィルムと同様に塗布する際に塗布方向に力を受けて該方向に配列・配向して歪を有した状態で含有されているし、ラミネート用フィルムに含有される極細導電繊維は押出成形やブロー成形などの作製時に押出方向などに力を受けて配列・配向して歪を有した状態で含有されて、押出成形体や転写フィルムと同様の表面抵抗率を有するラミネート用フィルムとなる。そして、この溶融成形体を加熱することで、上記に記載したように、表面層に含有される極細導電繊維がランダムに3次元方向に動いて無配向状態となってお互いが接触して表面抵抗率を低下させた導電層が形成されて、制電ないし導電機能を発揮する導電性成形体を得ることができる。   In the seventh method for producing a conductive molded article of the present invention, a laminate film having a surface layer containing ultrafine conductive fibers or a laminate containing ultrafine conductive fibers is provided on the surface of a base material layer made of an injection molded article. A melt-molded product with a film laminated thereon can be produced by injection molding, and it is possible to easily cope with various injection-molded products by producing only one laminating film. And, the superfine conductive fibers of the surface layer of this laminating film are contained in a state of being strained by receiving a force in the application direction when applied in the same manner as the transfer film and arranging and orienting in the direction. The ultrafine conductive fibers contained in the laminating film are contained in a state of being strained by being aligned and oriented by receiving a force in the extrusion direction during production such as extrusion molding and blow molding. A laminating film having the same surface resistivity is obtained. Then, by heating this melt-molded body, as described above, the ultrafine conductive fibers contained in the surface layer randomly move in the three-dimensional direction to be in a non-oriented state, and contact each other, resulting in surface resistance. A conductive layer having a reduced rate is formed, and a conductive molded body that exhibits antistatic or conductive functions can be obtained.

本発明の第8の導電性成形体の製造方法であると、射出成形された成形体の表面に極細導電繊維含有樹脂塗膜を塗布形成するだけで塗膜付きの溶融成形体を作製することができ、塗液の塗布という簡単な方法で得ることができるし、複雑な形状の射出成形体にも対応できるし、さらに多品種少量であっても対応することができる。そして、該溶融成形体の塗膜は、塗布する際に塗布方向又は塗液噴射圧などの力を受けて、その方向に配列・配向して歪を有した状態で含有され、極細導電繊維の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、極細導電繊維の含有量が多いか又は/及び分散が良好であると1012Ω/□未満の表面抵抗率を示す溶融成形体となる。そして、この溶融成形体を加熱することで、上記に記載したように、塗膜に含有されている極細導電繊維がランダムに3次元方に向動いて無配向状態となってお互いが接触して、表面抵抗率を低下させた導電層が形成されて、制電ないし導電機能を発揮する導電性成形体を得ることができる。 According to the eighth method for producing a conductive molded article of the present invention, a melt-molded article with a coating film is produced simply by coating and forming an ultrafine conductive fiber-containing resin coating film on the surface of an injection-molded molded article. It can be obtained by a simple method of applying a coating liquid, can be applied to an injection-molded body having a complicated shape, and can be applied to even a small amount of various products. Then, the coating film of the melt-formed body is subjected to a force such as an application direction or a coating liquid injection pressure when applied, and is contained in a state of being aligned and oriented in the direction and having a strain, When the content is low or / and the dispersion is poor, a surface resistivity of 10 12 Ω / □ or more is exhibited, and when the content of the ultrafine conductive fiber is high or / and the dispersion is good, the surface resistivity is less than 10 12 Ω / □. It becomes a melt-molded product showing surface resistivity. And by heating this melt-molded body, as described above, the ultrafine conductive fibers contained in the coating film randomly move in the three-dimensional direction to become non-oriented and contact each other. A conductive layer having a reduced surface resistivity is formed, and a conductive molded body that exhibits antistatic or conductive functions can be obtained.

上記の各製造方法において、各溶融成形体の加熱が極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲で行なわれると、溶融成形体の少なくとも表面を軟化させる温度まで加熱することができて、樹脂組成物を充分軟化させて極細導電繊維の動きを可能ならしめることができる。また、上記加熱を、極細導電繊維含有熱可塑性樹脂組成物の粘度が5.0×103Pa・s以上1.0×107Pa・s未満の範囲となる温度範囲で行っても、極細導電繊維が該低粘度の組成物中を動くことができるようになる。特に、融点より30℃低い温度から融点温度より30℃高い温度の温度範囲、又は前記組成物の粘度が1.0×104Pa・s以上5.0×106Pa・s未満の範囲となる温度範囲で行うと、極細導電繊維の動きを更に良好に行なわせることができるので、該極細導電繊維が表面に露出、又は表面から突出、又は表面から100nm未満の内部に含有され易くなって表面抵抗率を低下させた導電層を形成できて、確実に表面抵抗率を低下させて、制電機能や導電機能を発揮する導電性成形体とすることができる。 In each of the above production methods, when heating of each melt-molded body is performed in a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers, It can be heated to at least a temperature that softens the surface, and the resin composition can be sufficiently softened to enable movement of the fine conductive fibers. Even if the heating is performed in a temperature range in which the viscosity of the thermoplastic resin composition containing ultrafine conductive fibers is in the range of 5.0 × 10 3 Pa · s or more and less than 1.0 × 10 7 Pa · s, Conductive fibers can move through the low viscosity composition. In particular, a temperature range from a temperature 30 ° C. lower than the melting point to a temperature 30 ° C. higher than the melting point temperature, or a range where the viscosity of the composition is 1.0 × 10 4 Pa · s or more and less than 5.0 × 10 6 Pa · s. When the temperature is within the range, the fine conductive fibers can be moved more satisfactorily, so that the fine conductive fibers are exposed on the surface, protrude from the surface, or are easily contained in the interior of less than 100 nm from the surface. A conductive layer having a reduced surface resistivity can be formed, and the surface resistivity can be reliably reduced to provide a conductive molded body that exhibits an antistatic function or a conductive function.

また、各溶融成形体の加熱が、極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲に加熱された加熱室にて行なわれると、各溶融成形体を均一に加熱できて、溶融成形体の表面を加熱することもできるし、溶融成形体全体を加熱することもできる。また、連続的に加熱することができるので、生産効率を高めることもできる。   Further, when each molten molded body is heated in a heating chamber heated to a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers, The molten molded body can be heated uniformly, the surface of the molten molded body can be heated, or the entire molten molded body can be heated. Moreover, since it can heat continuously, production efficiency can also be improved.

さらに、各溶融成形体の加熱が、熱風、炎、加熱ニクロム線、熱媒体、熱プレス、赤外線のいずれかの熱源でなされると、1つ1つの溶融成形体毎に加熱条件などを変えて加熱を行なうことができて、品質の安定した制電性ないし導電性を付与できる。さらに、表面を急激に加熱することができるので、内部がガラス転移温度以上の温度まで上昇するのを抑えることができて、各溶融成形体の変形を防止できる。
また、マイクロ波を用いてなされると、マイクロ波により極細導電繊維が加熱され、これが周囲の組成物にまで及んで加熱・軟化するので、極細導電繊維の動きが充分に可能な状態を作ることができる。
Furthermore, when heating of each melt-formed product is performed by any one of hot air, flame, heated nichrome wire, heat medium, heat press, and infrared heat source, the heating conditions are changed for each melt-formed product. Heating can be performed, and antistatic or conductive properties with stable quality can be imparted. Furthermore, since the surface can be heated rapidly, it is possible to suppress the inside from rising to a temperature equal to or higher than the glass transition temperature, and deformation of each melt-molded product can be prevented.
In addition, when microwaves are used, the ultra-fine conductive fibers are heated by the microwaves, and even the surrounding composition is heated and softened, so that the state of the fine conductive fibers can be sufficiently moved. Can do.

以下、図面を参照して本発明の具体的な実施形態を詳述する。しかし、本発明はこれらに限定されるものではない。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these.

図1は本発明の導電性成形体の一実施形態を示す断面図、図2はその拡大断面図である。   FIG. 1 is a cross-sectional view showing an embodiment of the conductive molded body of the present invention, and FIG. 2 is an enlarged cross-sectional view thereof.

図1に示す導電性成形体Aは、溶融成形法により成形された電子部品などを搬送する導電性トレーであって、該導電性成形体Aは極細導電繊維を含有する樹脂組成物の単一層からなり、略矩形形状をなして、その中央部を凹ませて電子部品などを収容する収納部A1となすと共に、周囲を鍔A2となしたものである。この導電性トレー成形体Aの肉厚は0.3〜3.0mmで、大きさは500×500mmとなされる。   A conductive molded body A shown in FIG. 1 is a conductive tray that conveys electronic components and the like molded by a melt molding method, and the conductive molded body A is a single layer of a resin composition containing ultrafine conductive fibers. It has a substantially rectangular shape, and its central portion is recessed to form a storage portion A1 for storing electronic components and the like, and its periphery is a bag A2. The thickness of the conductive tray molded body A is 0.3 to 3.0 mm, and the size is 500 × 500 mm.

なお、A3は樹脂フィルムからなる蓋体であるが、この蓋体A3も本発明の導電性成形体で作製することもできる。
また、導電性成形体Aの形状や厚みは限定されないことは言うまでもないが、厚みは通常は0.1〜30.0mm程度になされて使用される。
In addition, although A3 is a cover body which consists of a resin film, this cover body A3 can also be produced with the electroconductive molded object of this invention.
Moreover, it cannot be overemphasized that the shape and thickness of the electroconductive molded object A are not limited, However, Thickness is normally made into about 0.1-30.0 mm and used.

この導電性成形体Aは、熱可塑性合成樹脂に、溶融成形に必要な公知の添加剤を加えると共に極細導電繊維2を添加した極細導電繊維含有熱可塑性樹脂組成物を用いて、射出成形や押出成形やプレス成形などの溶融成形法にて成形された導電層1からなるものである。   This conductive molded body A is obtained by injection molding or extrusion using a thermoplastic resin composition containing ultrafine conductive fibers in which a known additive necessary for melt molding is added to a thermoplastic synthetic resin and ultrafine conductive fibers 2 are added. The conductive layer 1 is formed by a melt molding method such as molding or press molding.

上記熱可塑性合成樹脂としては、例えばポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリビニルアセテート、ポリスチレン等のビニル系樹脂、ポリカーボネート、結晶性/非晶質ポリエチレンテレフタレート、ポリアリレート、ポリブチレンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、ポリエーテルエーテルケトン、ポリエーテルサルホン、ポリイミド、ポリアセタール、ポリエーテルイミド、ポリアミドイミド、ボリスチレン、ポリアミド、液晶ポリマー、トリアセチルセルロース、これらの樹脂の共重合体樹脂などの熱可塑性樹脂、これらの樹脂が混合された混合樹脂などが用いられる。また、これらの樹脂に加えられる添加剤としては、抗酸化剤、ブロッキング防止剤、紫外線吸収剤、安定剤、抗菌剤、難燃剤、顔料 、染料などの各樹脂に一般に使用されるものが使用される。   Examples of the thermoplastic synthetic resin include olefin resins such as polyethylene and polypropylene, vinyl resins such as polyvinyl chloride, polymethyl methacrylate, polyvinyl acetate, and polystyrene, polycarbonate, crystalline / amorphous polyethylene terephthalate, polyarylate, Ester resins such as polybutylene terephthalate and aromatic polyester, ABS resin, polyether ether ketone, polyether sulfone, polyimide, polyacetal, polyether imide, polyamide imide, polystyrene, polyamide, liquid crystal polymer, triacetyl cellulose, these A thermoplastic resin such as a resin copolymer resin, a mixed resin in which these resins are mixed, or the like is used. Additives added to these resins include those generally used for resins such as antioxidants, anti-blocking agents, UV absorbers, stabilizers, antibacterial agents, flame retardants, pigments, and dyes. The

上記極細導電繊維2としては、カーボンナノチューブ、カーボンナノホーン、カーボンナノワイヤー、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、金属ナノワイヤーなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、金属酸化物ナノワイヤーなどの金属酸化物などの極細長金属酸化物繊維などの、直径が0.3〜100nmで、長さが0.1〜20μm、好ましくは長さが0.1〜10μmの各繊維が用いられる。これらの極細導電繊維は均一に凝集することなく分散されて、お互いに接触して導電層1のなかに含まれていることが好ましい。   Examples of the ultrafine conductive fiber 2 include ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils, metal nanotubes such as platinum, gold, silver, nickel, and silicon, and metal nanowires. Extra-long metal fibers, ultra-long metal oxide fibers such as metal oxide nanotubes such as zinc oxide, metal oxides such as metal oxide nanowires, etc., have a diameter of 0.3 to 100 nm and a length of 0.1 Each fiber having a length of ˜20 μm, preferably 0.1 to 10 μm is used. These ultrafine conductive fibers are preferably dispersed without uniformly agglomerating and are contained in the conductive layer 1 in contact with each other.

これらの極細導電繊維2のなかで、極細長炭素繊維が好ましく、特にカーボンナノチューブが最も好ましく用いられる。該カーボンナノチューブは繊維直径が0.3〜80nmと細いので、凝集することなく分散して互いに接触させることができるので望ましいのである。このカーボンナノチューブには、中心軸線の周りに直径が異なり円筒状に閉じた複数のカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単層の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがあり、いずれのカーボンナノチューブも好ましく用いられる。そして、多層カーボンナノチューブは1本ずつ分散させることができるが、単層カーボンナノチューブは複数本が集まって束になったものを1束ずつ分散させることができ、このように分散させることが最も好ましい。なお、単層カーボンナノチューブが1本ずつ分離して分散したものを除外するものではない。   Among these ultrafine conductive fibers 2, ultrafine carbon fibers are preferable, and carbon nanotubes are most preferably used. The carbon nanotubes are desirable because they have a thin fiber diameter of 0.3 to 80 nm and can be dispersed and brought into contact with each other without agglomeration. These carbon nanotubes include multi-walled carbon nanotubes concentrically provided with a plurality of closed carbon walls with different diameters around the central axis, and single-walled cylindrical carbon walls around the central axis. There is a single-walled carbon nanotube provided, and any carbon nanotube is preferably used. Multi-walled carbon nanotubes can be dispersed one by one, but single-walled carbon nanotubes can be dispersed as a bundle of a plurality of bundles, and it is most preferable to disperse in this way. . It is not excluded that single-walled carbon nanotubes are separated and dispersed one by one.

これらの極細導電繊維2は、導電層1の中に0.01〜20質量%、好ましくは0.01〜12.0質量%、更に好ましくは0.1〜5.0質量%含有されて、均一に分散されている。極細導電繊維2の含有量が多くなると、成形性や機械的強度が悪くなり、またコストも高くなる。そのため、出来るだけ分散を良くして、少ない含有量で表面抵抗率を良好にすることが好ましく、極細導電繊維2がカーボンナノチューブであれば0.01〜12.0質量%含有させることが望ましい。特に、上記単層カーボンナノチューブであれば0.01〜8.0質量%、多層カーボンナノチューブであれば0.01〜12.0質量%含有させることが望ましい。   These ultrafine conductive fibers 2 are contained in the conductive layer 1 in an amount of 0.01 to 20% by mass, preferably 0.01 to 12.0% by mass, more preferably 0.1 to 5.0% by mass, Evenly distributed. When the content of the ultrafine conductive fiber 2 is increased, the moldability and mechanical strength are deteriorated, and the cost is increased. Therefore, it is preferable to improve the dispersion as much as possible to improve the surface resistivity with a small content. If the ultrafine conductive fiber 2 is a carbon nanotube, it is desirable to contain 0.01 to 12.0% by mass. In particular, it is desirable to contain 0.01 to 8.0% by mass for the single-walled carbon nanotube and 0.01 to 12.0% by mass for the multi-walled carbon nanotube.

この極細導電繊維2の1つの分散状態は、図2(1)(2)(3)の拡大断面図で示すように、導電層1の内部ではランダムに均一に分散してお互いが3次元的方向に向いて接触して表面抵抗率を低下させていると共に、導電層1の表面近傍では、図2(1)に示すように、導電層1の表面にランダムに露出し且つ内部の極細導電繊維2と接触しているか、図2(2)に示すように導電層1の表面からランダムに突出し且つ内部の極細導電繊維2と接触しているか、図2(3)に示すように、導電層1の表面に露出も突出もしていないが表面から100nm未満の内部に含有され、換言すれば表面から100nm未満の深さtには極細導電繊維2が含有されずに樹脂層となって且つ内部の極細導電繊維2と接触しているかの、何れかの状態で分散して表面抵抗率を低下させた導電層1が全厚さ方向に形成されている。即ち、極細導電繊維2の端部又は中間部が配列・配向することなくランダムに湾曲して、それらの一部分が表面に露出又は表面から突出又は表面から100nm未満の内部に含有され、他の部分が導電層1の内部に埋没して固定されていると共に、内部の極細導電繊維2と接触している。この分散状態であると、表面抵抗率を低下させた導電層1が全厚さに形成される。   As shown in the enlarged cross-sectional views of FIGS. 2 (1), (2), and (3), one dispersion state of the ultrafine conductive fibers 2 is randomly and uniformly dispersed inside the conductive layer 1, and each other is three-dimensional. In the vicinity of the surface of the conductive layer 1, as shown in FIG. 2 (1), it is randomly exposed on the surface of the conductive layer 1 and has an ultrafine conductivity inside. It is in contact with the fibers 2, is randomly projected from the surface of the conductive layer 1 as shown in FIG. 2 (2), and is in contact with the ultrafine conductive fibers 2 in the interior, as shown in FIG. 2 (3). Although it is not exposed or protruded on the surface of the layer 1, it is contained in the interior of less than 100 nm from the surface, in other words, at a depth t of less than 100 nm from the surface, the ultrafine conductive fiber 2 is not contained and becomes a resin layer and Whether it is in contact with the ultrafine conductive fiber 2 inside A conductive layer 1 having a reduced surface resistivity is formed in the entire thickness direction. That is, the end portion or the middle portion of the ultrafine conductive fiber 2 is randomly curved without being arranged or oriented, and a part thereof is exposed on the surface, protrudes from the surface, or is contained within less than 100 nm from the surface, and other portions Are buried and fixed inside the conductive layer 1 and are in contact with the ultrafine conductive fibers 2 inside. In this dispersed state, the conductive layer 1 having a reduced surface resistivity is formed to the full thickness.

また、極細導電繊維2の他の分散状態は、図2(4)(5)(6)の拡大断面図で示すように、導電層1の内部では配列・配向して接触が少なく、1012Ω/□以上の表面抵抗率しか有していないが、導電層1の表面近傍では、図2(4)に示すように導電層1の表面にランダムに露出し且つお互いに接触しているか、図2(5)に示すように導電層1の表面からランダムに突出し且つ且つお互いに接触しているか、図2(6)に示すように導電層1の表面に露出も突出もしていないが表面から100nm未満の内部に含有され且つお互いに接触しているかの、何れかの状態で分散している。この分散状態であると、表面抵抗率を低下させた導電層1が表面若しくは表面近傍に形成される。 Another dispersion state of the ultra fine conductive fibers 2, FIG. 2 (4) (5) As shown in the enlarged cross sectional view of (6), less contact arranged and oriented in the interior of the conductive layer 1, 10 12 Although it has only a surface resistivity of Ω / □ or more, in the vicinity of the surface of the conductive layer 1, as shown in FIG. 2 (4), are randomly exposed on the surface of the conductive layer 1 and are in contact with each other, As shown in FIG. 2 (5), the surface protrudes randomly from the surface of the conductive layer 1 and is in contact with each other, or the surface of the conductive layer 1 is not exposed or protruded as shown in FIG. 2 (6). To less than 100 nm and are dispersed in any state of being in contact with each other. In this dispersed state, the conductive layer 1 having a reduced surface resistivity is formed on or near the surface.

さらに、極細導電繊維2のさらに他の分散状態は、図2(7)(8)(9)の拡大断面図で示すように、導電層1の内部では配列・配向していても或る程度接触が得られて1012Ω/□未満の表面抵抗率を有しているが、導電層1の表面近傍では、図2(7)に示すように導電層1の表面にランダムに露出し且つお互いに接触しているか、図2(8)に示すように導電層1の表面からランダムに突出し且つ且つお互いに接触しているか、図2(9)に示すように導電層1の表面に露出も突出もしていないが表面から100nm未満の内部に含有され且つお互いに接触しているかの、何れかの状態で分散して、内部よりも表面抵抗率の低下した導電層1が形成されている。この分散状態であると、表面は表面抵抗率の低下した導電層1が形成され、内部は溶融成形体の抵抗率を有したものとなる。 Furthermore, as shown in the enlarged cross-sectional views of FIGS. 2 (7), (8), and (9), still another dispersed state of the ultrafine conductive fibers 2 is to some extent even if they are arranged and oriented inside the conductive layer 1. The contact is obtained and has a surface resistivity of less than 10 12 Ω / □, but in the vicinity of the surface of the conductive layer 1, it is randomly exposed on the surface of the conductive layer 1 as shown in FIG. 2 are in contact with each other, are randomly projected from the surface of the conductive layer 1 as shown in FIG. 2 (8) and are in contact with each other, or are exposed on the surface of the conductive layer 1 as shown in FIG. 2 (9). Although not protruding, the conductive layer 1 having a surface resistivity lower than that of the inside is formed by being dispersed in any state of being contained within 100 nm from the surface and in contact with each other. . In this dispersed state, the conductive layer 1 having a reduced surface resistivity is formed on the surface, and the inside has the resistivity of the melt-formed product.

そして、このように極細導電繊維2を分散させて良好な導電路を形成させるためには、その分散度を高め、接触頻度を高めることが好ましい。そのために、各極細導電繊維2が絡み合うことなく1本ずつ分離した状態で、又は、複数本集まって束になったものが1束ずつ分離した状態で導電層1に分散させることが望ましく、このように分散させると、少ない含有量であっても、広い範囲に極細導電繊維2が分散して存在し、お互いが接触し易くなる。そのために、極細導電繊維2の含有量を0.01〜20.0質量%、好ましくは0.1〜12.0質量%とすることで、お互いが接触して充分な導電路が形成された導電層1を形成できる。   And in order to disperse | distribute the ultrafine conductive fiber 2 in this way and to form a favorable conductive path, it is preferable to raise the dispersion degree and to raise a contact frequency. Therefore, it is desirable to disperse in the conductive layer 1 in a state where each ultrafine conductive fiber 2 is separated one by one without being entangled, or a bundle of a plurality of bundles is separated one by one. When dispersed in such a manner, even if the content is small, the fine conductive fibers 2 are dispersed and present in a wide range, and are easily brought into contact with each other. Therefore, by setting the content of the ultrafine conductive fiber 2 to 0.01 to 20.0% by mass, preferably 0.1 to 12.0% by mass, a sufficient conductive path is formed in contact with each other. The conductive layer 1 can be formed.

この導電性成形体Aのように、極細導電繊維2が導電層1の表面にランダムな状態で露出したり、又はランダムな状態で突出したり、又は表面から100nm未満の内部にランダムな状態で含有されていると、その表面抵抗率を低下させて101Ω/□以上1012Ω/□未満とした導電層1を形成することができる。表面抵抗率が105Ω/□以上1012Ω/□未満であると制電機能を発揮し、表面に帯電した静電気は露出又は突出している極細導電繊維2に接触し、表面及び内部の極細導電繊維同士が接触して形成された導電路を流れて導電層1の端部にまで達し、該端部で放電して除電することができる。また、表面抵抗率が101Ω/□以上105Ω/□未満であると導電体としての作用をなし、導電機能を発揮し電気を流すことができるようになる。一方、極細導電繊維2が表面から100nm未満の内部に含有されていると、トンネル効果により表面に帯電した静電気が表面内部の該極細導電繊維2にまで達して制電機能を発揮するし、電気が通電されるとトンネル効果で同様に内部の該極細導電繊維2にまで通電して導電層1を流れて、導電体として作用して導電機能を発揮する。 Like this electroconductive molded object A, the ultrafine conductive fiber 2 is exposed in a random state on the surface of the conductive layer 1, or protrudes in a random state, or is contained in a random state inside the surface less than 100 nm. If so, the conductive layer 1 having a surface resistivity reduced to 10 1 Ω / □ or more and less than 10 12 Ω / □ can be formed. When the surface resistivity is 10 5 Ω / □ or more and less than 10 12 Ω / □, the antistatic function is exerted, and static electricity charged on the surface comes into contact with the exposed or protruding ultra-fine conductive fibers 2 and the surface and the inside are extremely fine. It can flow through the conductive path formed by contact between the conductive fibers and reach the end of the conductive layer 1, and can be discharged by discharging at the end. Further, when the surface resistivity is 10 1 Ω / □ or more and less than 10 5 Ω / □, it acts as a conductor, exhibits a conductive function, and allows electricity to flow. On the other hand, if the ultrafine conductive fiber 2 is contained within 100 nm from the surface, static electricity charged on the surface due to the tunnel effect reaches the ultrafine conductive fiber 2 inside the surface and exhibits an antistatic function. Is energized to the inside of the ultrafine conductive fiber 2 by the tunnel effect and flows through the conductive layer 1 to act as a conductor and exert a conductive function.

このような導電性成形体Aは、例えば、図3の製造方法の説明図で示す方法により製造することができる。
まず、予め、上記の熱可塑性樹脂と極細導電繊維2と、必要なら溶融成形加工に必要な上記添加剤とを、均一に混合して極細導電繊維含有熱可塑性樹脂組成物を作製する。
Such an electroconductive molded object A can be manufactured by the method shown with explanatory drawing of the manufacturing method of FIG. 3, for example.
First, the above-mentioned thermoplastic resin, the ultrafine conductive fiber 2 and, if necessary, the above-mentioned additive necessary for melt molding are uniformly mixed to prepare a thermoplastic resin composition containing the ultrafine conductive fiber.

そして、図3に示すように、該極細導電繊維含有熱可塑性樹脂組成物を公知の射出成形法により射出して溶融成形体4を作製する。即ち、図3(1)に示すように、射出成形機41に該極細導電繊維含有熱可塑性樹脂組成物を供し、スクリュー42で可塑化・溶融し、ノズル431、スプルー流路432、ゲート433を通して射出成形金型44の成形空間45に射出して該空間45に充填させた後、冷却し、成形金型44から取り出すことで、図3(2)に示す射出溶融成形体4を作製する。   Then, as shown in FIG. 3, the thermoplastic resin composition containing ultrafine conductive fibers is injected by a known injection molding method to produce a melt molded body 4. That is, as shown in FIG. 3A, the injection molding machine 41 is supplied with the thermoplastic resin composition containing ultrafine conductive fibers, plasticized and melted with a screw 42, and passed through a nozzle 431, a sprue channel 432, and a gate 433. After injection into the molding space 45 of the injection mold 44 and filling the space 45, the mold is cooled and taken out from the mold 44 to produce the injection melt molded body 4 shown in FIG.

このように、溶融成形体4が射出成形で作製されると、上記極細導電繊維含有熱可塑性樹脂組成物が射出成形機41の狭いノズル431、射出成形金型44の狭いスプルー流路432、ゲート433を高速で通過するし、射出成形金型44の比較的狭い成形空間45を流れて充填されるので、ノズル面、スプルー流路面、ゲート面、成形空間面から強い剪断力を受けて成形流れ方向に力を受け、極細導電繊維2も成形流れ方向に強制的に配列・配向し、大きな歪を有することとなる。そのため、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図3(2)に拡大して示すように、極細導電繊維2同士の接触が得られず、極細導電繊維2を含有していても表面抵抗率は1012Ω/□以上の高い値を示す。しかし、極細導電繊維2の含有量が多いか又は/及び分散がよいと、極細導電繊維2が例え成形流れ方向に強制的に配列・配向させられても、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示すこととなる(図2(7)の内部の繊維状態を参照)。 As described above, when the melt-molded body 4 is produced by injection molding, the thermoplastic resin composition containing the ultrafine conductive fibers is converted into the narrow nozzle 431 of the injection molding machine 41, the narrow sprue channel 432 of the injection mold 44, the gate. Since it passes through 433 at a high speed and flows through a relatively narrow molding space 45 of the injection mold 44, the molding flow receives a strong shearing force from the nozzle surface, sprue channel surface, gate surface and molding space surface. Due to the force in the direction, the fine conductive fibers 2 are also forcedly arranged and oriented in the molding flow direction and have a large strain. Therefore, if the content of the ultrafine conductive fiber 2 is small or / and the dispersion is poor, as shown in an enlarged view in FIG. 3 (2), contact between the ultrafine conductive fibers 2 cannot be obtained, and the ultrafine conductive fiber 2 is Even if contained, the surface resistivity shows a high value of 10 12 Ω / □ or more. However, if the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good, even if the ultrafine conductive fiber 2 is forcibly arranged and oriented in the molding flow direction, contact between the fibers 2 is obtained to some extent. Thus, the surface resistivity is less than 10 12 Ω / □ (refer to the internal fiber state in FIG. 2 (7)).

続いて、この射出溶融成形体4を、図3(3)に示すように、加熱室46に搬送する。この加熱室46は、極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲に加熱・保温されるか、又は前記組成物の粘度が5.0×103Pa・s以上1.0×107Pa・s未満の範囲となされるような温度範囲に加熱・保温されている。そのため、該加熱室46に搬入され、ベルトコンベア47で搬送されている間に、射出溶融成形体4の少なくとも表面が加熱されて、上記のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲に、又は/及び組成物が上記粘度範囲となり、極細導電繊維2が上記に記載した理由により、表面に露出したり、図2(4)で示すように表面から突出したり、表面から100nm未満の内部に含有されるようになる。
また、48はニクロム線やランプなどの熱源である。
Subsequently, the injection melt molded body 4 is conveyed to the heating chamber 46 as shown in FIG. This heating chamber 46 is heated and kept in a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers, or the viscosity of the composition is 5. It is heated and kept in a temperature range such that it is in the range of 0 × 10 3 Pa · s or more and less than 1.0 × 10 7 Pa · s. Therefore, while being carried into the heating chamber 46 and being conveyed by the belt conveyor 47, at least the surface of the injection melt molded body 4 is heated, and the temperature is 30 ° C. higher than the melting point temperature from the glass transition temperature. Or / and the composition is in the above viscosity range, and the ultrafine conductive fiber 2 is exposed on the surface for the reasons described above, or protrudes from the surface as shown in FIG. It comes to be contained in the inside of less than 100 nm.
Reference numeral 48 denotes a heat source such as a nichrome wire or a lamp.

極細導電繊維2が、このような状態になると、極細導電繊維2同士がお互いに接触するので、導通路が形成されて表面抵抗率が低下した導電層1が形成される。そのため、加熱前に1012Ω/□以上の表面抵抗率を示した射出溶融成形体4は、加熱により1012Ω/□未満の表面抵抗率とすることができるし、一方、加熱前に1012Ω/□未満の表面抵抗率を示した射出溶融成形体4は、加熱により、これより表面抵抗率を低下させることが可能となる。この加熱による表面抵抗率の低下は、加熱前の表面抵抗率より1桁乃至12桁低下した表面抵抗率とすることができる。具体的には、例えば、表面抵抗率が加熱前に1013Ω/□であるとすれば、加熱後には1012Ω/□乃至101Ω/□の範囲となるように低下する。 When the ultrafine conductive fibers 2 are in such a state, the ultrafine conductive fibers 2 come into contact with each other, so that a conductive path 1 is formed and a conductive layer 1 having a reduced surface resistivity is formed. Therefore, the injection-melt molded article 4 showing a surface resistivity of 10 12 Ω / □ or more before heating can be made to have a surface resistivity of less than 10 12 Ω / □ by heating. The injection melt molded body 4 showing a surface resistivity of less than 12 Ω / □ can be reduced in surface resistivity by heating. This reduction in surface resistivity due to heating can be a surface resistivity that is one to twelve orders of magnitude lower than the surface resistivity before heating. Specifically, for example, if the surface resistivity is 10 13 Ω / □ before heating, it decreases to be in the range of 10 12 Ω / □ to 10 1 Ω / □ after heating.

このように、射出溶融成形体4の表面を、極細導電繊維2が可能な限り抵抗なく動くことができるようにするために、前記加熱を前記組成物の融点温度より30℃低い温度から融点温度より30℃高い温度の温度範囲になるように加熱するか、又は/及び、前記組成物の粘度が1.0×104Pa・s以上5.0×106Pa・s未満の範囲となるような温度に加熱することが好ましい。 In this way, the heating is performed from a temperature 30 ° C. lower than the melting point temperature of the composition in order to allow the ultrafine conductive fibers 2 to move as much as possible without causing resistance on the surface of the injection melt molded body 4. Heat to a temperature range of 30 ° C. or higher and / or the composition has a viscosity of 1.0 × 10 4 Pa · s or more and less than 5.0 × 10 6 Pa · s. It is preferable to heat to such a temperature.

続いて、加熱室46から搬出された射出溶融成形体4を冷却して、極細導電繊維2を上記状態で固定すると、表面抵抗率が101Ω/□以上1012Ω/□未満の範囲となされた導電層1が形成され、本発明の極細導電繊維を含有する導電性成形体Aを得ることができる。 Subsequently, when the injection melt molded body 4 carried out from the heating chamber 46 is cooled and the ultrafine conductive fiber 2 is fixed in the above state, the surface resistivity is in the range of 10 1 Ω / □ or more and less than 10 12 Ω / □. The formed conductive layer 1 is formed, and a conductive molded body A containing the ultrafine conductive fiber of the present invention can be obtained.

上記の加熱は、射出溶融成形体4の大きさ、形状、樹脂の種類、搬送速度、加熱温度などにより異なるが、概ね1〜20分間上記温度範囲又は上記粘度範囲に曝していることが好ましい。例えば該射出溶融成形体4の厚さが約5mmで、加熱温度が融点温度より30℃低い温度から融点温度より30℃高い温度の温度範囲であると、該温度範囲で1〜20分間、好ましくは5〜20分間、加熱室46にて加熱することが好ましい。なお、上記加熱時間は、射出溶融成形体4の表面温度が上記温度範囲に又は/及び上記粘度範囲になってからの時間であることが好ましい。   Although said heating changes with the magnitude | sizes, shapes, type of resin, conveyance speed, heating temperature, etc. of the injection-melt molded object 4, it is preferable to expose to the said temperature range or the said viscosity range for about 1 to 20 minutes. For example, when the thickness of the injection melt molded body 4 is about 5 mm and the heating temperature is in the temperature range from 30 ° C. lower than the melting point temperature to 30 ° C. higher than the melting point temperature, preferably 1 to 20 minutes in the temperature range. Is preferably heated in the heating chamber 46 for 5 to 20 minutes. In addition, it is preferable that the said heating time is the time after the surface temperature of the injection-melt molded object 4 became in the said temperature range or / and the said viscosity range.

また、上記の加熱は、射出溶融成形体4の表面部分のみが上記温度範囲になされることが好ましく、射出溶融成形体4の内部まで加熱されると該溶融成形体4の形状が保たれない恐れがあるからである。この場合の極細導電繊維2の分散状態は図2(4)(5)(6)(7)(8)(9)に示す状態となり、表面にのみ表面抵抗率が低下した導電層1が形成でされる。しかし、射出溶融成形体4の内部まで加熱されると、上記のように、内部の極細導電繊維2も同様にランダムに三次元方向に動いてお互いに接触するので、表面も内部も表面抵抗率が低下した導電層1が形成されて、体積抵抗率も向上させることができる。この場合の極細導電繊維2の分散状態は図2(1)(2)(3)に示す状態となる。   In addition, it is preferable that only the surface portion of the injection melt molded body 4 is in the above temperature range, and the shape of the melt molded body 4 is not maintained when the injection melt molded body 4 is heated. Because there is a fear. 2 (4) (5) (6) (7) (8) (9) is the dispersion state of the ultrafine conductive fibers 2 in this case, and the conductive layer 1 having a reduced surface resistivity is formed only on the surface. It is done. However, when heated to the inside of the injection melt molded body 4, as described above, the inner ultrafine conductive fibers 2 similarly move in random three-dimensional directions and come into contact with each other. As a result, the conductive layer 1 having a reduced resistance is formed, and the volume resistivity can be improved. In this case, the dispersion state of the ultrafine conductive fibers 2 is as shown in FIGS. 2 (1), (2), and (3).

また、上記の加熱は、上記加熱室46による加熱に限定されるものではなく、公知のいかなる方法を用いても良い。例えば、熱風、炎、加熱ニクロム線、赤外線、シリコンオイルなどの熱媒体、熱プレスなどの熱源を使用し、その表面を急速に加熱することも好ましく使用される。さらに、マイクロ波を用いて加熱することもでき、マイクロ波が極細導電繊維2に作用して加熱され、これが周囲の樹脂に及んで加熱する方法も使用できる。   Further, the heating is not limited to heating by the heating chamber 46, and any known method may be used. For example, it is also preferable to use a heat source such as hot air, flame, heated nichrome wire, infrared ray, silicon oil, or a heat source, and heat the surface rapidly. Furthermore, it can also heat using a microwave, The method in which a microwave acts on the ultrafine conductive fiber 2 and is heated, and this extends to surrounding resin can also be used.

図4は本発明の導電性成形体Aの他の製造方法を示す説明図である。
該製造方法は、前記極細導電繊維含有熱可塑性樹脂組成物を公知の押出成形法により押出成形して溶融成形体5を作製する。即ち、極細導電繊維含有熱可塑性樹脂組成物を、図4(1)に示すように、公知の押出機51に供してスクリュー52で可塑化・溶融し、押出成形金型53により一定厚みを有する板状体に押出成形し、ポリシングロール54、54にて厚みが微調整され、引き続き、搬送ロール55上を引き取られつつ冷却され、一定長さに切断されて、図4(2)に示す押出溶融成形体5を作製する。
FIG. 4 is an explanatory view showing another method for producing the conductive molded body A of the present invention.
In this production method, the melt-molded product 5 is produced by extruding the thermoplastic resin composition containing ultrafine conductive fibers by a known extrusion molding method. That is, as shown in FIG. 4 (1), the ultrafine conductive fiber-containing thermoplastic resin composition is subjected to a known extruder 51, plasticized and melted by a screw 52, and has a certain thickness by an extrusion mold 53. Extruded into a plate-like body, the thickness is finely adjusted by polishing rolls 54, 54, and then cooled while being drawn on the conveying roll 55, cut to a certain length, and extruded as shown in FIG. A melt-formed body 5 is produced.

このように押出成形されると、押出速度が射出成形より遅くても、押出成形金型53の成形流路内面からの剪断力を受けて、極細導電繊維2も押出し方向に配列・配向する。そのため、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図4(2)に拡大して示すように、極細導電繊維2同士の接触が得られず、極細導電繊維2を含有していても表面抵抗率は1012Ω/□以上の高い値を示す。しかし、極細導電繊維2の含有量が多いか又は/及び分散がよいと、極細導電繊維2が例え成形流れ方向に強制的に配列・配向させられても、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示すこととなる。また、極細導電繊維2は押出成形時に押出方向に強制的に配列・配向させられるが、この傾向は押出成形金型53の成形流路内面に近い押出溶融成形体5の表面ほど大きく配向させられて、大きな歪を有している。 When extrusion molding is performed in this manner, even if the extrusion speed is slower than that of injection molding, the micro conductive fibers 2 are also arranged and oriented in the extrusion direction under the shearing force from the inner surface of the molding flow path of the extrusion mold 53. Therefore, when the content of the ultrafine conductive fiber 2 is small or / and the dispersion is poor, as shown in an enlarged view in FIG. 4 (2), contact between the ultrafine conductive fibers 2 cannot be obtained, and the ultrafine conductive fiber 2 is Even if contained, the surface resistivity shows a high value of 10 12 Ω / □ or more. However, if the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good, even if the ultrafine conductive fiber 2 is forcibly arranged and oriented in the molding flow direction, contact between the fibers 2 is obtained to some extent. Thus, the surface resistivity is less than 10 12 Ω / □. Further, the ultrafine conductive fibers 2 are forcibly arranged and oriented in the extrusion direction at the time of extrusion molding, and this tendency is greatly oriented toward the surface of the extrusion melt molded body 5 that is closer to the inner surface of the molding flow path of the extrusion mold 53. And has a large distortion.

続いて、この押出溶融成形体5を、前述の図3(3)に示す加熱室46に搬入し、同様に加熱すると、極細導電繊維2が表面に露出したり、図4(3)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面抵抗率が低下した導電層1を形成する。続いて、加熱室46から搬出された押出溶融成形体5を冷却して極細導電繊維2を上記状態で固定した導電層1にすると、表面抵抗率が101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Aを得ることができる。 Subsequently, when this extruded melt-formed body 5 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 are exposed on the surface, or shown in FIG. 4 (3). Thus, the conductive layer 1 that protrudes from the surface or is contained in the interior of less than 100 nm from the surface is formed. Subsequently, when the extruded melt molded body 5 carried out from the heating chamber 46 is cooled to form the conductive layer 1 in which the ultrafine conductive fibers 2 are fixed in the above state, the surface resistivity is 10 1 Ω / □ or more and 10 12 Ω / □. The electroconductive molded object A of this invention made into the range of less than can be obtained.

図5は本発明の導電性成形体Aのさらに他の製造方法を示す説明図である。
該製造方法は、まず、前記極細導電繊維含有熱可塑性樹脂組成物を公知のカレンダープレス成形法によりプレス溶融成形体6を作製する。即ち、該極細導電繊維含有熱可塑性樹脂組成物を用いて、カレンダーロールにより薄いカレンダーシート61を作製し、続いて、図5(1)に示すように、該シート61を複数枚重ねて、上下の加熱されたプレス艶板62、62にて加熱、加圧して、図5(2)に示す一定厚みを有するプレス溶融成形体6を作製する。
FIG. 5 is an explanatory view showing still another manufacturing method of the conductive molded body A of the present invention.
In the production method, first, a press-melt molded body 6 of the thermoplastic resin composition containing ultrafine conductive fibers is produced by a known calender press molding method. That is, using the thermoplastic resin composition containing ultrafine conductive fibers, a thin calender sheet 61 is produced by a calender roll. Subsequently, as shown in FIG. The heated press gloss plates 62 and 62 are heated and pressed to produce a press melt molded body 6 having a constant thickness shown in FIG.

このようにカレンダーシート61が加熱、加圧されると、カレンダーシート61が溶融して積層一体化する際に、四周に流れて延展し、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図5(2)の拡大図に示すように、極細導電繊維2も四周方向に強制的に配列・配向させられて1012Ω/□以上の表面抵抗率を示す歪を有したプレス溶融成形体6となる。また、極細導電繊維2の含有量が多いか又は/及び分散がよいと、この延展はそれ程の距離で行なわれないので大きな剪断力を受けることはないことと相まって、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示すものとなる。 When the calender sheet 61 is heated and pressurized in this way, when the calender sheet 61 is melted and laminated and integrated, the calender sheet 61 flows and extends around the circumference, and the content of the ultrafine conductive fiber 2 is small or / and dispersed. If the condition is poor, as shown in the enlarged view of FIG. 5 (2), the ultrafine conductive fibers 2 are also forced to be arranged and oriented in the four-circumferential direction and have a strain showing a surface resistivity of 10 12 Ω / □ or more. It becomes a press-melt molded body 6. In addition, if the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good, this extension is not performed at such a distance, so that it does not receive a large shearing force, and the contact between the fibers 2 is not achieved. It is obtained to some extent and exhibits a surface resistivity of less than 10 12 Ω / □.

続いて、このプレス溶融成形体6を、前述の図3(3)に示す加熱室46に搬入し、同様に加熱すると、極細導電繊維2が表面に露出したり、図4(3)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面抵抗率が低下した導電層1を形成する。続いて、加熱室46から搬出されたプレス溶融成形体6を冷却して極細導電繊維2を上記状態で固定した導電層1にすると、表面抵抗率が101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Aを得ることができる。 Subsequently, when this press-melt molded body 6 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 are exposed on the surface or shown in FIG. 4 (3). Thus, the conductive layer 1 that protrudes from the surface or is contained in the interior of less than 100 nm from the surface is formed. Subsequently, when the press melt molded body 6 carried out from the heating chamber 46 is cooled to form the conductive layer 1 in which the ultrafine conductive fibers 2 are fixed in the above state, the surface resistivity is 10 1 Ω / □ or more and 10 12 Ω / □. The electroconductive molded object A of this invention made into the range of less than can be obtained.

図6は切削された極細導電繊維成形体Aの製造方法を示す説明図である。
該製造方法は、前記極細導電繊維含有熱可塑性樹脂組成物を、図3の射出成形法、又は図4の押出し成形法、又は図5のプレス成形法、その他の公知の溶融成形法に供することにより、図6(1)に示す、切削可能な一定厚さを有する溶融成形体71を作製する。この溶融成形体71に含有されている極細導電繊維2は、上記のように、射出成形金型や押出成形金型やプレス艶板などから剪断力を受けて、射出成形方向や押出成形方向や加圧方向に配列・配向し、歪を有している。
FIG. 6 is an explanatory view showing a method for producing the cut ultrafine conductive fiber molded body A. FIG.
In the production method, the thermoplastic resin composition containing ultrafine conductive fibers is subjected to the injection molding method of FIG. 3, the extrusion molding method of FIG. 4, the press molding method of FIG. 5, or other known melt molding methods. Thus, a melt-formed body 71 having a constant thickness that can be cut as shown in FIG. As described above, the ultrafine conductive fiber 2 contained in the melt-formed body 71 is subjected to shearing force from an injection mold, an extrusion mold, a press gloss plate, or the like, and the injection molding direction, the extrusion molding direction, Arranged and oriented in the pressing direction, and has strain.

該一定厚さを有する溶融成形体71は、切削、研磨などの公知の方法を用いて二次加工を施して表面部分を除去した二次加工成形体7となされる。図6においては、薄い円盤状に切削し、さらに中心を穿孔して、ワッシャー7(二次加工成形体7)を作製している。このワッシャー7においても、図6(2)の拡大図に示すように、極細導電繊維2は歪を有して配列・配向して、該繊維の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、繊維2の含有量が多いか又は/及び分散が良いと1012Ω/□未満の表面抵抗率を示す。 The melt-molded body 71 having a certain thickness is made into a secondary-processed molded body 7 that has been subjected to secondary processing using a known method such as cutting and polishing to remove the surface portion. In FIG. 6, the washer 7 (secondary processed molded body 7) is manufactured by cutting into a thin disk shape and further drilling the center. Also in this washer 7, as shown in the enlarged view of FIG. 6 (2), if the ultrafine conductive fibers 2 are arranged and oriented with distortion, the fiber content is low or / and the dispersion is poor A surface resistivity of 10 12 Ω / □ or more is exhibited, and when the content of the fiber 2 is large or / and the dispersion is good, a surface resistivity of less than 10 12 Ω / □ is exhibited.

続いて、該ワッシャー7を、前述の図3(3)に示す加熱室46に搬入し、同様に加熱すると、極細導電繊維2が表面に露出したり、図6(3)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面抵抗率が低下した導電層1を形成する。続いて、加熱室46から搬出されたワッシャー7(二次加工成形体7)を冷却して極細導電繊維2を上記状態で固定した導電層1にすると、表面抵抗率を101Ω/□以上1012Ω/□未満の範囲となされた、本発明の切削された導電性成形体A(ワッシャー)を得ることができる。 Subsequently, when the washer 7 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fiber 2 is exposed on the surface, or the surface as shown in FIG. 6 (3). The conductive layer 1 is formed in such a manner that it protrudes from the surface or is contained in the interior of less than 100 nm from the surface, and the surface resistivity is lowered. Subsequently, when the washer 7 (secondary processed molded body 7) carried out of the heating chamber 46 is cooled to form the conductive layer 1 in which the ultrafine conductive fibers 2 are fixed in the above state, the surface resistivity is 10 1 Ω / □ or more. It is possible to obtain a cut conductive molded body A (washer) according to the present invention having a range of less than 10 12 Ω / □.

図6においては、円盤状ワッシャー7に切削加工したが、ねじ切り加工などの他の公知の二次加工を施して必要とする形状、例えばネジ、ナット、ポルト、ギアなどの形状に加工した二次加工成形体であっても、1012Ω/□以上又は1012Ω/□未満の表面抵抗率を示すが、これを同様に加熱して表面抵抗率を低下させることにより、表面抵抗率を101Ω/□以上1012Ω/□未満の範囲になした導電性成形体Aを得ることができる。
なお、切削加工は、溶融成形体4を加熱して導電層1を形成した導電性成形体となした後に行うこともでき、この場合は極細導電繊維2が表面に露出した状態で固定された導電層1が形成される。
In FIG. 6, the disk-shaped washer 7 is cut, but other known secondary processes such as threading are performed to obtain a required shape, such as a screw, nut, port, gear, or the like. even processed compact, show 10 12 Omega / □ or more, or 10 12 Omega / □ under the surface resistivity of, by lowering the surface resistivity was similarly heated so, the surface resistivity of 10 A conductive molded body A having a range of 1 Ω / □ or more and less than 10 12 Ω / □ can be obtained.
The cutting process can also be performed after heating the melt molded body 4 to form a conductive molded body in which the conductive layer 1 is formed. In this case, the ultrafine conductive fibers 2 are fixed in a state of being exposed on the surface. Conductive layer 1 is formed.

図7は本発明の他の導電性成形体の一実施形態を示す拡大断面図である。   FIG. 7 is an enlarged cross-sectional view showing an embodiment of another conductive molded body of the present invention.

図7に示す導電性成形体Bは、熱可塑性合成樹脂又は熱や紫外線や電子線などで硬化する硬化性合成樹脂からなり且つ極細導電繊維を含有しない基材層3と、その両面に積層された極細導電繊維2を含有する熱可塑性樹脂からなる表面抵抗率を低下させた導電層1、1とからなる3層構造の導電性成形体である。なお、導電層1は基材層3の片面のみに形成されてもよい。また、導電層1は基材層3の周りの全表面に形成されていてもよい。   A conductive molded body B shown in FIG. 7 is made of a thermoplastic synthetic resin or a curable synthetic resin that is cured by heat, ultraviolet rays, electron beams, or the like, and is laminated on both surfaces thereof and does not contain ultrafine conductive fibers. In addition, the conductive molded body has a three-layer structure including conductive layers 1 and 1 having a reduced surface resistivity, which is made of a thermoplastic resin containing ultrafine conductive fibers 2. The conductive layer 1 may be formed only on one side of the base material layer 3. The conductive layer 1 may be formed on the entire surface around the base material layer 3.

上記基材層3は、熱可塑性合成樹脂又は硬化性合成樹脂を、必要なら該合成樹脂の成形に必要な添加剤が添加された組成物を成形して得られた層であり、極細導電繊維は含有されていない。
該基材層3に用いられる熱可塑性樹脂としては、前記導電性成形体Aに使用された樹脂が用いられる。また、硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、硬化性アクリル樹脂、フェノール樹脂、メラミン樹脂などが使用され、射出成形、圧縮成形、注型成形、トランスファー成形などの公知成形法にて成形される。しかし、導電層1と積層一体化させる必要があるので、導電層1に使用される熱可塑性樹脂と同一系、又は相溶性のある熱可塑性樹脂が相互の密着接合性を高めるうえで好ましい。これらの樹脂には、抗酸化剤、ブロッキング防止剤、紫外線吸収剤、安定剤、抗菌剤、難燃剤、顔料、染料などの、各樹脂に一般に使用される添加剤が適宜添加されて成形されている。この基材層3の厚さは0.1〜30.0mm程度にされることが好ましい。
The base material layer 3 is a layer obtained by molding a thermoplastic synthetic resin or a curable synthetic resin, and if necessary, a composition to which an additive necessary for molding the synthetic resin is added. Is not contained.
As the thermoplastic resin used for the base material layer 3, the resin used for the conductive molded body A is used. In addition, as the curable resin, epoxy resin, unsaturated polyester resin, curable acrylic resin, phenol resin, melamine resin, etc. are used, and by a known molding method such as injection molding, compression molding, casting molding, transfer molding, etc. Molded. However, since it is necessary to laminate and integrate with the conductive layer 1, a thermoplastic resin that is the same as or compatible with the thermoplastic resin used for the conductive layer 1 is preferable in terms of enhancing mutual adhesive bonding. These resins are molded by appropriately adding additives generally used for each resin, such as antioxidants, anti-blocking agents, ultraviolet absorbers, stabilizers, antibacterial agents, flame retardants, pigments, and dyes. Yes. The thickness of the base material layer 3 is preferably about 0.1 to 30.0 mm.

また、上記導電層1、1は、前記導電性成形体Aの導電層1と同じであり、これに含有されている極細導電繊維2、その分散状態、表面への露出、表面からの突出、表面から100nm未満の内部に含有されて表面抵抗率を低下させたことも同じであるので、同一符号を付して詳細な説明は省略する。しかし、導電層1の厚さは、表面に積層され制電ないし導電機能を発揮させるためのものであるので、0.01〜5.0mm程度になされるのが好ましい。   The conductive layers 1 and 1 are the same as the conductive layer 1 of the conductive molded body A, and the ultrafine conductive fibers 2 contained therein, their dispersed state, exposure to the surface, protrusion from the surface, Since it is the same that it contained in the inside less than 100 nm from the surface and reduced the surface resistivity, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. However, the thickness of the conductive layer 1 is preferably about 0.01 to 5.0 mm because it is laminated on the surface to exhibit an antistatic or conductive function.

そして、導電層1は、前記導電性成形体Aと同様に、射出成形や押出し成形やプレス成形などの公知の製法により得られた3層構造の溶融成形体の少なくとも表面の表面層や塗膜などを加熱して、極細導電繊維2を表面層などの表面に露出させたり、表面から突出させたり、表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層1を形成したものであり、制電ないし導電機能を発揮させることができる。そのため、導電層1は表面層や塗膜などの全厚さが極細導電繊維の分散状態が変化して形成されたものである。しかし、表面層や塗膜などの表面部分のみで導電層1を形成することを除外するものではない。
極細導電繊維2が、加熱により上記状態になる詳細な理由は、前記前記導電性成形体Aの導電層1と同様であるので説明を省略する。
The conductive layer 1, like the conductive molded body A, is a surface layer or coating film on at least the surface of a melt-formed body having a three-layer structure obtained by a known production method such as injection molding, extrusion molding or press molding. Etc. are heated to expose the ultrafine conductive fiber 2 on the surface such as the surface layer, to protrude from the surface, or to be contained within less than 100 nm from the surface to form the conductive layer 1 with reduced surface resistivity. Therefore, it can exhibit antistatic or conductive functions. Therefore, the conductive layer 1 is formed by changing the dispersion state of the ultrafine conductive fibers with the total thickness of the surface layer, the coating film, and the like. However, it does not exclude that the conductive layer 1 is formed only by a surface portion such as a surface layer or a coating film.
The detailed reason why the ultrafine conductive fiber 2 is brought into the above-described state by heating is the same as that of the conductive layer 1 of the conductive molded body A, and the description thereof is omitted.

このような導電性成形体Bは、基材層3が熱可塑性樹脂でも硬化性樹脂で形成されていてもよいし、絶縁性を有しても導電性を有してもよいし、また、機械的強度を高めた組成物で形成されてもよいし、樹脂再生品を使用して形成されてもよいし、更にはガラス補強材を添加した組成物で形成されてもよいし、基材層を多層にしてもよいし、その他の如何なる構成にしてもよいので、該基材層3により導電性成形体Bに必要な導電性以外の性能を付与することができる。また、導電層1は導電性成形体Bに制電ないし導電機能を付与するためであるので、必要以上に厚くする必要はなく、薄くなった分、極細導電繊維2の含有量を少なくでき、安価な導電性成形体Bにすることができる。   In such a conductive molded body B, the base material layer 3 may be formed of a thermoplastic resin or a curable resin, may have insulating properties or may have conductivity, It may be formed of a composition having increased mechanical strength, may be formed using a resin recycled product, or may be formed of a composition to which a glass reinforcing material is added, or a substrate. Since the layer may be multi-layered or any other configuration, the base material layer 3 can impart performance other than the conductivity necessary for the conductive molded body B. In addition, since the conductive layer 1 is for imparting antistatic or conductive function to the conductive molded body B, it is not necessary to make it thicker than necessary, and the amount of the ultrafine conductive fiber 2 can be reduced by the thinning, An inexpensive conductive molded body B can be obtained.

この導電性成形体Bは、例えば、図8の製造方法の説明図に示す方法により製造される。
まず予め、熱可塑性樹脂と極細導電繊維2と、必要なら樹脂の溶融成形加工に必要な上記添加剤とを、均一に混合して極細導電繊維含有熱可塑性合成樹脂組成物を作製する。一方、熱可塑性樹脂に、必要なら上記添加剤を均一に混合した熱可塑性樹脂組成物を作製する。
This electroconductive molded object B is manufactured by the method shown in explanatory drawing of the manufacturing method of FIG. 8, for example.
First, a thermoplastic resin, ultrafine conductive fibers 2 and, if necessary, the above-described additives necessary for melt molding of the resin are uniformly mixed to prepare a thermoplastic synthetic resin composition containing ultrafine conductive fibers. On the other hand, a thermoplastic resin composition is prepared by uniformly mixing the above additives with the thermoplastic resin if necessary.

そして、図8(1)に示すように、一方の押出機82に熱可塑性樹脂組成物を供すると共に他方の押出機83に極細導電繊維含有熱可塑性樹脂組成物を供し、これを三層共押出金型84から共押出成形して、図8(2)に示す、熱可塑性樹脂からなる基材層3の上下両面に極細導電繊維含有樹脂組成物からなる表面層81,81が積層された、3層構造の共押出溶融成形体8を作製する。なお、85はポリシングロールを、86は搬送ロールを示す。   Then, as shown in FIG. 8 (1), the thermoplastic resin composition is supplied to one extruder 82 and the thermoplastic resin composition containing ultrafine conductive fibers is supplied to the other extruder 83, and this is subjected to three-layer coextrusion. Co-extrusion molding from the mold 84, surface layers 81, 81 made of ultrafine conductive fiber-containing resin composition were laminated on the upper and lower surfaces of the base material layer 3 made of thermoplastic resin as shown in FIG. A three-layered coextrusion melt-formed product 8 is produced. Reference numeral 85 denotes a polishing roll, and 86 denotes a transport roll.

このように共押出成形されると、共押出金型84の成形流路内面からの剪断力を受け、表面層81,81に含有されている極細導電繊維2も押出し方向に力を受けて、押出し方向に配列・配向し、特に、表面に近い表面層81,81は共押出金型84の成形流路に接しながら共押出されるので、極細導電繊維2の配列・配向はより強制的になされていて大きな歪を有している。そのため、表面層81に含有された極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図8(2)に拡大して示すように、極細導電繊維2同士の接触が得られず、極細導電繊維2を含有していても表面抵抗率は1012Ω/□以上の高い値を示す。しかし、極細導電繊維2の含有量が多いか又は/及び分散がよいと、極細導電繊維2が例え成形流れ方向に強制的に配列・配向させられても、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示すこととなる。 When co-extrusion molding is performed in this manner, shear force from the inner surface of the molding flow path of the co-extrusion die 84 is received, and the ultrafine conductive fibers 2 contained in the surface layers 81 and 81 are also subjected to force in the extrusion direction, Since the surface layers 81 and 81 that are close to the surface are coextruded while being in contact with the molding flow path of the coextrusion die 84, the arrangement and orientation of the ultrafine conductive fibers 2 are more forced. It is made and has a large distortion. Therefore, when the content of the ultrafine conductive fiber 2 contained in the surface layer 81 is small or / and the dispersion is poor, contact between the ultrafine conductive fibers 2 is obtained as shown in an enlarged view in FIG. Furthermore, even if the ultrafine conductive fiber 2 is contained, the surface resistivity shows a high value of 10 12 Ω / □ or more. However, if the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good, even if the ultrafine conductive fiber 2 is forcibly arranged and oriented in the molding flow direction, contact between the fibers 2 is obtained to some extent. Thus, the surface resistivity is less than 10 12 Ω / □.

続いて、この共押出溶融成形体8を、前述の図3(3)に示す加熱室46に搬入して、同様に加熱すると、極細導電繊維2が表面層81の表面に露出したり、図8(3)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面抵抗率を低下させた導電層1,1が形成される。そのため、加熱前に1012Ω/□以上の表面抵抗率を示した共押出溶融成形体8は、加熱により1012Ω/□未満の表面抵抗率とすることができるし、一方、加熱前に1012Ω/□未満の表面抵抗率を示した共押出溶融成形体8は、加熱により、これより表面抵抗率を低下させることが可能となる。この加熱による表面抵抗率の低下は、加熱前の表面抵抗率より1桁乃至12桁低下した表面抵抗率とすることができる。具体的には、例えば、表面抵抗率が加熱前に1013Ω/□であるとすれば、加熱後には1012Ω/□乃至101Ω/□の範囲となるように低下する。 Subsequently, when the coextrusion melt-molded body 8 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 are exposed on the surface of the surface layer 81, and FIG. As shown in FIG. 8 (3), the conductive layers 1 and 1 having a reduced surface resistivity are formed by projecting from the surface or being contained within less than 100 nm from the surface. Therefore, the co-extrusion melt-formed product 8 that exhibited a surface resistivity of 10 12 Ω / □ or more before heating can be made to have a surface resistivity of less than 10 12 Ω / □ by heating. The coextruded melt-molded product 8 having a surface resistivity of less than 10 12 Ω / □ can be reduced in surface resistivity by heating. This reduction in surface resistivity due to heating can be a surface resistivity that is one to twelve orders of magnitude lower than the surface resistivity before heating. Specifically, for example, if the surface resistivity is 10 13 Ω / □ before heating, it decreases to be in the range of 10 12 Ω / □ to 10 1 Ω / □ after heating.

続いて、共押出溶融成形体8を加熱室46から搬出し、冷却して極細導電繊維2の上記状態を固定した導電層1を形成すると、表面抵抗率が101Ω/□以上1012Ω/□未満の範囲となされた、本発明の3層構造の導電性成形体Bを製造することができる。
なお、共押出溶融成形体8が基材層3の片面に表面層81が形成されていたり、又は基材層3の全表面に表面層81が形成されていていてもよく、この場合は、片面のみに又は全表面が導電層1となされた本発明の導電性成形体Bとなる。
Subsequently, when the coextruded melt-formed body 8 is carried out of the heating chamber 46 and cooled to form the conductive layer 1 in which the above-described state of the ultrafine conductive fiber 2 is fixed, the surface resistivity is 10 1 Ω / □ or more and 10 12 Ω. A conductive molded body B having a three-layer structure according to the present invention that is less than / □ can be produced.
The coextruded melt-formed body 8 may have the surface layer 81 formed on one surface of the base material layer 3 or the surface layer 81 may be formed on the entire surface of the base material layer 3, in this case, It becomes the electroconductive molded object B of this invention by which only one side or the whole surface was made into the conductive layer 1. FIG.

図9は本発明の導電性成形体Bの他の製造方法を示す説明図である。
まず予め、前記記載の極細導電繊維含有熱可塑性合成樹脂組成物を作製すると共に、熱可塑性若しくは硬化性樹脂に、必要なら上記添加剤を均一に混合した合成樹脂組成物を作製する。
FIG. 9 is an explanatory view showing another manufacturing method of the conductive molded body B of the present invention.
First, the above-described ultrafine conductive fiber-containing thermoplastic synthetic resin composition is prepared in advance, and a synthetic resin composition in which the above additives are uniformly mixed with a thermoplastic or curable resin, if necessary, is prepared.

次に、図9(1)に示すように、射出成形金型92内に、まず、上記極細導電繊維含有樹脂組成物を一方の射出成形機94から射出し、続いて、該極細導電繊維含有樹脂組成物が溶融状態の時に上記合成樹脂組成物を他の射出成形機93から射出することにより、極細導電繊維含有樹脂組成物の中心に合成樹脂組成物を充填して、図9(2)に示すように、合成樹脂組成物からなる基材層3の周りの全表面に極細導電繊維含有樹脂組成物からなる表面層91が被覆された溶融成形体9を作製する。   Next, as shown in FIG. 9 (1), the resin composition containing the ultrafine conductive fibers is first injected from one injection molding machine 94 into the injection mold 92, and then the ultrafine conductive fibers are contained. By injecting the synthetic resin composition from another injection molding machine 93 when the resin composition is in a molten state, the center of the ultrafine conductive fiber-containing resin composition is filled with the synthetic resin composition, and FIG. As shown in FIG. 2, a melt-molded body 9 is produced in which the entire surface around the base material layer 3 made of the synthetic resin composition is coated with the surface layer 91 made of the ultrafine conductive fiber-containing resin composition.

このように射出成形された被覆溶融成形体9の表面層91に含有されている極細導電繊維2は、成形方向に配列・配向し、特に、表面に近い表面層91は射出成形金型92に接しながら成形されるので、極細導電繊維2の配列・配向はより強制的になされていて大きな歪を有している。そのため、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、極細導電繊維2の含有量が多いか又は/及び分散が良好であると1012Ω/□未満の表面抵抗率を示す被覆溶融成形体9となる。 The ultrafine conductive fibers 2 contained in the surface layer 91 of the coated melt-molded body 9 thus injection-molded are arranged and oriented in the molding direction. In particular, the surface layer 91 close to the surface is formed on the injection mold 92. Since they are molded while being in contact with each other, the arrangement and orientation of the ultrafine conductive fibers 2 are made more compulsory and have a large strain. Therefore, if the content of the ultrafine conductive fiber 2 is small or / and the dispersion is poor, the surface resistivity is 10 12 Ω / □ or more, and the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good. And a coated melt-molded product 9 having a surface resistivity of less than 10 12 Ω / □.

続いて、該被覆溶融成形体9を、前述の図3(3)に示す加熱室46に搬入して、同様に加熱すると、表面層91の極細導電繊維2が表面に露出したり、図9(3)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面抵抗率が低下した導電層1が形成される。続いて、被覆溶融成形体9を加熱室46から搬出し、冷却して極細導電繊維2の上記状態を固定した導電層1を形成すると、全表面の表面抵抗率を101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Bを製造することができる。 Subsequently, when the coated molten molded body 9 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 of the surface layer 91 are exposed on the surface, or FIG. As shown in (3), the conductive layer 1 protrudes from the surface or is contained in the interior of less than 100 nm from the surface, and the conductive layer 1 having a reduced surface resistivity is formed. Subsequently, when the coated melt-molded body 9 is taken out of the heating chamber 46 and cooled to form the conductive layer 1 in which the above-described state of the ultrafine conductive fiber 2 is fixed, the surface resistivity of the entire surface is 10 1 Ω / □ or more 10 The electroconductive molded object B of this invention made into the range below 12 ohm / square can be manufactured.

図10は本発明の導電性成形体Bの他の製造方法を示す説明図である。この製造方法は、成形体の片面にのみ導電層1が積層された2層構造の導電性成形体Bの方法である。
この製造方法に用いる射出成形金型102は、図10(1)に示すように、固定金型103と可動金型104に、一次側金型105と二次側金型106とが固定されている。
FIG. 10 is an explanatory view showing another manufacturing method of the conductive molded body B of the present invention. This manufacturing method is a method of the conductive molded body B having a two-layer structure in which the conductive layer 1 is laminated only on one side of the molded body.
As shown in FIG. 10 (1), an injection mold 102 used in this manufacturing method has a primary mold 105 and a secondary mold 106 fixed to a fixed mold 103 and a movable mold 104. Yes.

このような射出成形金型102を用いて射出成形するには、まず、一次側金型105に上記極細導電繊維含有熱可塑性樹脂組成物を射出成形する。続いて、可動金型104を移動させて型開きするが成形品を取出さずに保持したまま、可動金型104を回転させて二次側金型106側に移動させ、その後、型締めして成形品と二次側金型106の雌型との間に成形空間を形成して、該成形空間に、上記合成樹脂組成物を射出成形することにより、図10(2)に示すように、合成樹脂組成物よりなる基材層3の内面に極細導電繊維含有熱可塑性合成組成物よりなる表面層101が積層された二層射出溶融成形体10を作製する。   In order to perform injection molding using such an injection mold 102, first, the thermoplastic resin composition containing ultrafine conductive fibers is injection molded into the primary mold 105. Subsequently, the movable mold 104 is moved to open the mold, but the movable mold 104 is rotated and moved to the secondary mold 106 side while holding the molded product without taking out the molded product, and then the mold is clamped. As shown in FIG. 10 (2), a molding space is formed between the molded product and the female die of the secondary side mold 106, and the synthetic resin composition is injection-molded in the molding space. Then, a two-layer injection melt molded body 10 is produced in which the surface layer 101 made of the thermoplastic synthetic composition containing ultrafine conductive fibers is laminated on the inner surface of the base material layer 3 made of the synthetic resin composition.

このように射出成形された二層射出溶融成形体10の表面層101に含有されている極細導電繊維2は、一次側金型105に射出する際に成形方向に剪断力を受けて、強制的に配列・配向し大きな歪を有している。そのため、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の表面抵抗率を示し、極細導電繊維2の含有量が多いか又は/及び分散が良好であると1012Ω/□未満の表面抵抗率を示す二層射出溶融成形体10となる。 The ultrafine conductive fiber 2 contained in the surface layer 101 of the two-layer injection melt molded body 10 thus injection-molded is subjected to a shearing force in the molding direction when being injected into the primary side mold 105, and is forced Have a large strain. Therefore, if the content of the ultrafine conductive fiber 2 is small or / and the dispersion is poor, the surface resistivity is 10 12 Ω / □ or more, and the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good. And a two-layer injection melt molded product 10 having a surface resistivity of less than 10 12 Ω / □.

続いて、二層射出溶融成形体10を、前述の図3(3)に示す加熱室46に搬入して、同様に加熱すると、表面層101の極細導電繊維2が表面に露出したり、図10(3)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面抵抗率が低下した導電層1が形成される。続いて、二層射出溶融成形体10を加熱室46から搬出し、冷却して極細導電繊維2の上記状態を固定した導電層1を形成すると、表面抵抗率を101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Bを製造することができる。
なお、導電性成形体Bの内外いずれの側を導電層1とするかは、必要とされる用塗により異なり、基材層3の外面に導電層1を形成するには、先に合成樹脂組成物を射出成形した後で極細導電繊維含有熱可塑性樹脂組成物を射出成形すればよい。
Subsequently, when the two-layer injection melt-molded body 10 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 of the surface layer 101 are exposed on the surface. As shown in 10 (3), the conductive layer 1 is formed so as to protrude from the surface or to be contained in the interior of less than 100 nm from the surface, and the surface resistivity is lowered. Subsequently, when the two-layer injection melt-molded body 10 is taken out of the heating chamber 46 and cooled to form the conductive layer 1 in which the above-described state of the ultrafine conductive fiber 2 is fixed, the surface resistivity is 10 1 Ω / □ or more and 10 12. The electroconductive molded object B of this invention made into the range below (omega | ohm) / square can be manufactured.
It should be noted that which side of the conductive molded body B is used as the conductive layer 1 depends on the required application, and in order to form the conductive layer 1 on the outer surface of the base material layer 3, a synthetic resin is first used. What is necessary is just to injection-mold the thermoplastic resin composition containing ultrafine conductive fibers after injection-molding the composition.

図11は本発明の導電性成形体Bのさらに他の製造方法を示す説明図である。
該製造方法は、まず、前記極細導電繊維含有熱可塑性樹脂組成物を公知のカレンダーロールにより薄いカレンダーシートとなして表面シート111を作製する。一方、熱可塑性合成樹脂組成物も同様にして薄いカレンダーシートとなして基材シート112を作製する。続いて、図11(1)に示すように、重ねられた複数の基材シート112の上下面に表面シート111、111を重ね、加熱されたプレス艶板113、113にて加熱、加圧して、図11(2)に示すように、熱可塑性合成樹脂組成物よりなる基材層3の上下両面に極細導電繊維含有熱可塑性樹脂組成物よりなる表面層114を積層した多層プレス溶融成形体11を作製する。
FIG. 11 is an explanatory view showing still another manufacturing method of the conductive molded body B of the present invention.
In the production method, first, the surface sheet 111 is produced by converting the ultrafine conductive fiber-containing thermoplastic resin composition into a thin calender sheet using a known calender roll. On the other hand, the thermoplastic synthetic resin composition is similarly made into a thin calendar sheet to produce the base sheet 112. Subsequently, as shown in FIG. 11 (1), the surface sheets 111 and 111 are stacked on the upper and lower surfaces of the plurality of stacked base material sheets 112, and heated and pressed by heated press gloss plates 113 and 113, respectively. 11 (2), a multilayer press melt molded article 11 in which a surface layer 114 made of a thermoplastic resin composition containing ultrafine conductive fibers is laminated on both upper and lower surfaces of a base material layer 3 made of a thermoplastic synthetic resin composition. Is made.

このように表面シート111が基材シート112と共に加熱、加圧されると、表面シート111が溶融して積層する際に、四周に流れて延展し、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図11(2)の拡大図に示すように、極細導電繊維2も四周方向に強制的に配列・配向させられて1012Ω/□以上の表面抵抗率を示す歪を有した多層プレス溶融成形体11となる。また、極細導電繊維2の含有量が多いか又は/及び分散がよいと、この延展はそれ程の距離で行なわれないので大きな剪断力を受けることはないことと相まって、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示すこととなる。 When the topsheet 111 is heated and pressed together with the base sheet 112 in this way, when the topsheet 111 is melted and laminated, the topsheet 111 flows and spreads around the circumference, and the content of the ultrafine conductive fiber 2 is small or / And if the dispersion is poor, as shown in the enlarged view of FIG. 11 (2), the ultrafine conductive fibers 2 are also forcibly arranged and oriented in the four-circumferential direction, and the strain exhibits a surface resistivity of 10 12 Ω / □ or more. The multilayer press melt-formed body 11 having In addition, if the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good, this extension is not performed at such a distance, so that it does not receive a large shearing force, and the contact between the fibers 2 is not achieved. Obtained to some extent, it will exhibit a surface resistivity of less than 10 12 Ω / □.

続いて、この多層プレス溶融成形体11を、前述の図3(3)に示す加熱室46に搬入し、同様に加熱すると、極細導電繊維2が表面に露出したり、図11(3)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面抵抗率が低下した導電層1を形成する。続いて、加熱室46から搬出された多層プレス溶融成形体11を冷却して極細導電繊維2を上記状態で固定した導電層1にすると、表面抵抗率が101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Bを得ることができる。 Subsequently, when the multilayer press melt-formed body 11 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 are exposed on the surface, or FIG. 11 (3). As shown, the conductive layer 1 protrudes from the surface or is contained in the interior of less than 100 nm from the surface to form the conductive layer 1 having a reduced surface resistivity. Subsequently, when the multilayer press melt molded body 11 carried out from the heating chamber 46 is cooled to form the conductive layer 1 in which the ultrafine conductive fibers 2 are fixed in the above state, the surface resistivity is 10 1 Ω / □ or more and 10 12 Ω / The electroconductive molded object B of this invention made into the range below (square) can be obtained.

図12は本発明の二層構造の導電性成形体Bの他の製造方法を示す説明図である。
まず、ポリエチレンテレフタレートなどの剥離フィルム122に、上記極細導電繊維含有熱可塑性樹脂組成物を溶剤に溶解して得た塗液を塗布固化して極細導電繊維2を含有する表面層121を形成することにより、図12(1)に拡大して示すように、転写フィルム123を作製する。必要なら、接着性樹脂を溶剤に溶解して得た接着塗液を作製し、上記表面層の表面に塗布固化して接着層が形成された転写フィルムを作製する。
FIG. 12 is an explanatory view showing another method for producing a conductive molded body B having a two-layer structure according to the present invention.
First, the surface layer 121 containing the ultrafine conductive fibers 2 is formed on a release film 122 such as polyethylene terephthalate by applying and solidifying a coating liquid obtained by dissolving the thermoplastic resin composition containing the ultrafine conductive fibers in a solvent. Thus, a transfer film 123 is prepared as shown in FIG. If necessary, an adhesive coating liquid obtained by dissolving an adhesive resin in a solvent is prepared, and a transfer film having an adhesive layer formed by applying and solidifying the surface of the surface layer is prepared.

この転写フィルム123の表面層121に含有されている極細導電繊維2は、塗布する際に、ロールコーター、グラビアロールなどにおいては塗布方向の、スプレーなどにおいては塗布圧の圧力方向の力を受けて、その方向に配列・配向して歪を有した状態で含有されている。そのために、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図12(2)に拡大して示すように、極細導電繊維2も塗布・圧力方向に配列・配向させられて1012Ω/□以上となり、極細導電繊維2の含有量が多いか又は/及び分散がよいと、塗布・圧力方向への剪断力が小さいことと相まって、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示すこととなる。 When the ultrafine conductive fiber 2 contained in the surface layer 121 of the transfer film 123 is applied, it receives a force in the application direction in a roll coater, a gravure roll, etc., and in the pressure direction of the application pressure in a spray or the like. , And contained in a state of being distorted by alignment and orientation in the direction. Therefore, if the content of the ultrafine conductive fiber 2 is small or / and the dispersion is poor, as shown in an enlarged view in FIG. 12 (2), the ultrafine conductive fiber 2 is also arranged and oriented in the coating / pressure direction. 10 12 Ω / □ or more, and if the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good, the contact between the fibers 2 is obtained to some extent, coupled with the small shearing force in the coating / pressure direction. Thus, the surface resistivity is less than 10 12 Ω / □.

そして、当該転写フィルム123を、図12(1)に示すように、剥離フィルム122が雄金型側となるように射出成形金型124の内部に配置する。続いて、図12(2)に示すように、該金型124に上記合成樹脂組成物を射出することにより、表面に転写フィルム123が一体化した成形体を得た後、剥離フィルム122を剥離することにより、図12(3)に示す合成樹脂組成物からなる基材層3の表面に極細導電繊維含有樹脂組成物からなる表面層121が転写された転写溶融成形体12を作製する。この転写溶融成形体12に転写された表面層121も、極細導電繊維2が転写フィルム123の時と同じ状態で分散し同様の表面抵抗率を有している。   Then, as shown in FIG. 12 (1), the transfer film 123 is arranged inside the injection mold 124 so that the release film 122 is on the male mold side. Subsequently, as shown in FIG. 12 (2), the synthetic resin composition is injected into the mold 124 to obtain a molded body in which the transfer film 123 is integrated on the surface, and then the release film 122 is peeled off. By doing so, the transfer melt molded body 12 is produced in which the surface layer 121 made of the ultrafine conductive fiber-containing resin composition is transferred to the surface of the base material layer 3 made of the synthetic resin composition shown in FIG. The surface layer 121 transferred to the transfer melt molded body 12 is also dispersed in the same state as that of the transfer film 123 when the ultrafine conductive fiber 2 is dispersed, and has the same surface resistivity.

続いて、上記転写溶融成形体12を、前述した図3(3)に示す加熱室46に搬入して、同様に加熱すると、表面層121に含有されている極細導電繊維2が表面に露出したり、図12(4)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面層121の表面抵抗率が低下した導電層1が形成される。続いて、転写溶融成形体12を加熱室46から搬出し冷却して極細導電繊維2の上記状態を固定した導電層1を形成すると、表面抵抗率を101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Bを製造することができる。 Subsequently, when the transfer melt molded body 12 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 contained in the surface layer 121 are exposed on the surface. As shown in FIG. 12 (4), the conductive layer 1 is formed such that it protrudes from the surface or is contained within less than 100 nm from the surface, and the surface resistivity of the surface layer 121 is reduced. Subsequently, when the transfer melt molded body 12 is carried out of the heating chamber 46 and cooled to form the conductive layer 1 in which the above-described state of the ultrafine conductive fiber 2 is fixed, the surface resistivity is 10 1 Ω / □ or more and 10 12 Ω / □. The electroconductive molded object B of this invention made into the range of less than can be manufactured.

図13は本発明の二層構造の導電性成形体Bの他の製造方法を示す説明図である。
まず、アクリルフィルムなどよりなる接着性フィルム基材132に、上記極細導電繊維含有熱可塑性樹脂組成物を溶剤に溶解して得た塗液を塗布固化して極細導電繊維2を含有する表面層131を形成することにより、図13(1)に拡大して示すように、ラミネート用フィルム133を作製する。
FIG. 13 is an explanatory view showing another method for producing a conductive molded body B having a two-layer structure according to the present invention.
First, the surface layer 131 containing the ultrafine conductive fiber 2 by applying and solidifying a coating liquid obtained by dissolving the above-mentioned ultrafine conductive fiber-containing thermoplastic resin composition in a solvent to the adhesive film substrate 132 made of an acrylic film or the like. As shown in FIG. 13 (1) in an enlarged manner, a laminating film 133 is produced.

このラミネート用フィルム133の表面層131に含有されている極細導電繊維2は、前記転写フィルム123と同様に、塗液を塗布する際に塗布方向などの力を受けて、その方向に配列・配向して歪を有した状態で含有されている。このラミネート用フィルム133も、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の、極細導電繊維2の含有量が多いか又は/及び分散がよいと1012Ω/□未満の表面抵抗率を示す。 Like the transfer film 123, the ultrafine conductive fibers 2 contained in the surface layer 131 of the laminating film 133 receive a force in the direction of application when applying the coating liquid, and are aligned and oriented in that direction. Thus, it is contained in a strained state. The laminating film 133 is also 10 12 Ω / □ or more when the content of the ultrafine conductive fiber 2 is small or / and poorly dispersed, and 10 when the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good. The surface resistivity is less than 12 Ω / □.

そして、図13(1)に示すように、当該ラミネート用フィルム133を表面層131が雄金型側となるように射出成形金型134の内部に配置した後に、図13(2)に示すように該金型134に上記合成樹脂組成物を射出することにより、図13(3)に示すように、合成樹脂組成物からなる基材層3の表面にラミネート用フィルム133がラミネート一体化した溶融成形体13を作製する。   Then, as shown in FIG. 13 (1), after the laminating film 133 is arranged inside the injection mold 134 so that the surface layer 131 is on the male mold side, as shown in FIG. Then, by injecting the synthetic resin composition into the mold 134, as shown in FIG. 13 (3), the laminating film 133 is laminated and integrated on the surface of the base material layer 3 made of the synthetic resin composition. The molded body 13 is produced.

続いて、上記ラミネート溶融成形体13を、前述の図3(3)に示す加熱室46に搬入して、同様に加熱すると、表面層131に含有されている極細導電繊維2が表面に露出したり、図13(4)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となり、表面層131の表面抵抗率が低下して導電層1が形成される。続いて、ラミネート溶融成形体13を加熱室46から搬出し冷却して極細導電繊維2の上記状態を固定した導電層1を形成すると、表面抵抗率を101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Bを製造することができる。 Subsequently, when the laminate melt-formed body 13 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 contained in the surface layer 131 are exposed on the surface. As shown in FIG. 13 (4), it protrudes from the surface or is contained within less than 100 nm from the surface, so that the surface resistivity of the surface layer 131 is lowered and the conductive layer 1 is formed. Subsequently, when the laminate melt molded body 13 is carried out of the heating chamber 46 and cooled to form the conductive layer 1 in which the above-described state of the ultrafine conductive fiber 2 is fixed, the surface resistivity is 10 1 Ω / □ or more and 10 12 Ω / □. The electroconductive molded object B of this invention made into the range of less than can be manufactured.

上記のラミネート用フィルム133は、接着性フィルム基材132に極細導電繊維を含有する表面層131を形成させてなるものであるが、これに代えて、上記極細導電繊維含有熱可塑性樹脂組成物からなるラミネート用フィルムを押出成形やブロー成形などの溶融成形法にて予め作製し、これを同様に用いてラミネートしても、加熱することにより極細導電繊維が動いて表面抵抗率が低下した導電層1を有する導電性成形体Bを製造することができる。この場合、極細導電繊維含有熱可塑性樹脂組成物の樹脂と基材層との樹脂とは同一化相溶性のある樹脂を選択することが好ましい。   The laminating film 133 is formed by forming the surface layer 131 containing ultrafine conductive fibers on the adhesive film substrate 132, but instead of the ultrafine conductive fiber-containing thermoplastic resin composition. A conductive layer in which the surface resistivity is lowered by heating even when the film for laminating is prepared in advance by a melt molding method such as extrusion molding or blow molding, and laminating using this film in the same manner. 1 can be produced. In this case, it is preferable to select a resin having the same compatibility as the resin of the ultrafine conductive fiber-containing thermoplastic resin composition and the resin of the base material layer.

図14に、本発明の二層構造の導電性成形体Bの他の製造方法を示す。
まず、図14(1)に示すように、公知の方法を用いて、上記合成樹脂組成物を射出成形金型142に射出成形して成形体143(基材層3)を作製する。そして、図14(2)に示すように、該成形体143の片面に、上記極細導電繊維含有熱可塑性樹脂組成物を溶剤に溶解して得た塗液を刷毛やスプレーなどにより塗布、固化して、図14(3)に示すように、成形体143からなる基材層3の表面に極細導電繊維含有熱可塑性樹脂塗膜141を形成した溶融成形体14を作製する。
In FIG. 14, the other manufacturing method of the electroconductive molded object B of the two-layer structure of this invention is shown.
First, as shown in FIG. 14 (1), the synthetic resin composition is injection-molded into an injection mold 142 using a known method to produce a molded body 143 (base material layer 3). Then, as shown in FIG. 14 (2), a coating liquid obtained by dissolving the thermoplastic resin composition containing ultrafine conductive fibers in a solvent is applied to one side of the molded body 143 by a brush or spray, and solidified. Then, as shown in FIG. 14 (3), a melt-molded body 14 is produced in which an ultrafine conductive fiber-containing thermoplastic resin coating 141 is formed on the surface of the base material layer 3 composed of the molded body 143.

この塗膜溶融成形体14の塗膜141に含有されている極細導電繊維2は、前記転写フィルム123と同様に、塗液を塗布する際に塗布方向などの力を受けて、その方向に配列・配向して歪を有した状態で含有されている。この塗膜141は、前述の転写フィルム又はラミネートフィルムと同様に塗布されて形成されるので、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと1012Ω/□以上の、極細導電繊維2の含有量が多いか又は/及び分散がよいと1012Ω/□未満の表面抵抗率を示す。 Like the transfer film 123, the ultrafine conductive fibers 2 contained in the coating film 141 of the coating film melt-formed body 14 are subjected to a force such as an application direction when applying the coating liquid, and are arranged in that direction. -It is contained in a state of being oriented and distorted. Since this coating film 141 is formed by being applied in the same manner as the transfer film or the laminate film described above, if the content of the ultrafine conductive fiber 2 is small or / and the dispersion is poor, it is 10 12 Ω / □ or more. When the content of the conductive fiber 2 is large or / and the dispersion is good, the surface resistivity is less than 10 12 Ω / □.

続いて、塗膜溶融成形体14を、前述の図3(3)に示す加熱室46に搬入して、同様に加熱すると、塗膜141に含有されていた極細導電繊維2が表面に露出したり、図14(4)に示すように表面から突出したり、表面から100nm未満の内部に含有されるような状態となされ、塗膜141の表面抵抗率が低下した導電層1が形成される。続いて、塗膜溶融成形体14を加熱室46から搬出し冷却して極細導電繊維2の上記状態を固定した導電層1を形成すると、表面抵抗率を101Ω/□以上1012Ω/□未満の範囲となされた本発明の導電性成形体Bを製造することができる。
なお、塗液を成形体143の両面又は全表面に塗布すれば、これを加熱することで両面又は全表面に導電層1を形成した導電性成形体Bを製造することができる。
Subsequently, when the coating film melt-formed body 14 is carried into the heating chamber 46 shown in FIG. 3 (3) and heated in the same manner, the ultrafine conductive fibers 2 contained in the coating film 141 are exposed on the surface. As shown in FIG. 14 (4), the conductive layer 1 is formed such that it protrudes from the surface or is contained within 100 nm from the surface to reduce the surface resistivity of the coating film 141. Subsequently, when the coating layer melt-formed body 14 is carried out of the heating chamber 46 and cooled to form the conductive layer 1 in which the above-described state of the ultrafine conductive fiber 2 is fixed, the surface resistivity is 10 1 Ω / □ or more and 10 12 Ω / The electroconductive molded object B of this invention made into the range less than (square) can be manufactured.
In addition, if a coating liquid is apply | coated to both surfaces or the whole surface of the molded object 143, the electroconductive molded object B which formed the conductive layer 1 on both surfaces or the whole surface by heating this can be manufactured.

その他、本発明を逸脱しない範囲で種々の導電性成形体の製造方法が採用され得る。
例えば、上記各製造方法において、極細導電繊維含有熱可塑性樹脂組成物を射出成形金型内に射出成形した後に、溶融成形品を取出さないで金型を成形機から外し、続いて、該成形品保持金型を上記と同様に加熱すると、溶融成形体の少なくとも表面の極細導電繊維が上記と同様の理由で動き、極細導電繊維が表面に露出したり、表面から100nm未満の内部に存在するようになり、表面抵抗率が低下した導電層を形成する。しかる後に、該成形体を射出成形金型から取り外すことにより、表面抵抗率が101Ω/□以上1012Ω/□未満である導電性成形体を製造することができる。
In addition, various methods for producing a conductive molded body can be employed without departing from the present invention.
For example, in each of the above production methods, after injection molding the thermoplastic resin composition containing ultrafine conductive fibers into an injection mold, the mold is removed from the molding machine without taking out the melt-molded product, and then the molding is performed. When the product holding mold is heated in the same manner as described above, the ultrafine conductive fibers on at least the surface of the melt-molded product move for the same reason as described above, and the ultrafine conductive fibers are exposed on the surface or exist within less than 100 nm from the surface. Thus, a conductive layer having a reduced surface resistivity is formed. Thereafter, by removing the molded body from the injection mold, a conductive molded body having a surface resistivity of 10 1 Ω / □ or more and less than 10 12 Ω / □ can be produced.

さらに、上記の導電性成形体Bに使用した極細導電繊維を含有する表面層が形成された転写フィルム又は極細導電繊維を含有するラミネート用フィルム又は接着性フィルム基材に極細導電繊維を含有する表面層が形成されたラミネート用フィルムを、押出成形中の成形体に公知の転写技術やラミネート技術を用いて、転写又はラミネートして積層溶融成形体を成形し、続いて、該積層溶融成形体を上記と同様に加熱すると、積層溶融成形体の少なくとも表面の極細導電繊維が上記と同様の理由で動き、極細導電繊維が表面に露出したり、表面から突出したり、表面から100nm未満の内部に存在するようになり、表面抵抗率が低下した導電層を形成して、表面抵抗率が101Ω/□以上1012Ω/□未満である導電性成形体Bを製造することができる。 Furthermore, the transfer film on which the surface layer containing the ultrafine conductive fiber used for the conductive molding B is formed, the laminating film containing the ultrafine conductive fiber, or the surface containing the ultrafine conductive fiber in the adhesive film substrate The laminated film having the layer formed thereon is transferred or laminated to a molded body during extrusion molding using a known transfer technique or laminating technique to form a laminated molten molded body, and then the laminated molten molded body is When heated in the same manner as above, the ultrafine conductive fibers on at least the surface of the laminated melt-molded body move for the same reason as described above, and the ultrafine conductive fibers are exposed on the surface, protrude from the surface, or exist within less than 100 nm from the surface to as becomes, by forming a conductive layer surface resistivity is decreased, producing a conductive molded article B surface resistivity is 10 1 Ω / □ or more 10 12 Ω / □ under child Can.

次に、本発明の更に具体的な実施例を説明する。   Next, more specific examples of the present invention will be described.

[実施例1]
市販のポリカーボネート樹脂と、直径が10〜20nmである多層カーボンナノチューブ(シンセンナノテクポート社製)とを均一に混合して、多層カーボンナノチューブが2.5質量%含有された多層カーボンナノチューブ含有ポリカーボネート樹脂組成物を作製した。このポリカーボネート樹脂は非晶質で融点を有さないが、5.0×104Pa・sの粘度を示す樹脂温度は220℃であった。
この組成物を、射出成形機にて、大きさが30×500mm、厚さが2mmの板状の射出溶融成形体を得た。
続いて、該射出溶融成形体を、230℃に加熱されたギヤオーブン中に15分間放置して加熱し、その後、取出して冷却し、実施例1の導電性成形体を得た。
[Example 1]
Multi-walled carbon nanotube-containing polycarbonate resin composition containing 2.5% by mass of multi-walled carbon nanotubes by mixing commercially available polycarbonate resin and multi-walled carbon nanotubes having a diameter of 10 to 20 nm (manufactured by Shenzhen Nanotechport Co., Ltd.) A product was made. This polycarbonate resin was amorphous and had no melting point, but the resin temperature showing a viscosity of 5.0 × 10 4 Pa · s was 220 ° C.
A plate-like injection melt molded product having a size of 30 × 500 mm and a thickness of 2 mm was obtained from this composition using an injection molding machine.
Subsequently, the injection melt molded body was left to heat in a gear oven heated to 230 ° C. for 15 minutes, and then taken out and cooled to obtain a conductive molded body of Example 1.

加熱前後の射出溶融成形体と導電性成形体とについて、表面抵抗率を測定した。その結果、射出溶融成形体は9.5×1013Ω/□の表面抵抗率しか示さずに制電機能も導電機能も示さなかったが、導電性成形体は4.5×103Ω/□の表面抵抗率を示して導電機能を発揮した。この結果より、導電性を有さないポリカーボネート樹脂射出溶融成形体を加熱するだけで表面抵抗率が低下することがわかった。 The surface resistivity was measured for the injection melt molded product and the conductive molded product before and after heating. As a result, the injection-melt molded product showed only a surface resistivity of 9.5 × 10 13 Ω / □ and neither an antistatic function nor a conductive function, but the conductive molded product was 4.5 × 10 3 Ω / □. The surface resistivity of □ was shown and the conductive function was demonstrated. From this result, it was found that the surface resistivity was lowered only by heating the polycarbonate resin injection melt-molded body having no electrical conductivity.

尚、表面抵抗率は三菱化学(株)製の低抵抗測定器とロレスタGPと高抵抗測定器ハイレスタUPで測定した値である。ロレスタGPは10-2〜107Ω/□の、ハイレスタUPは106〜1014の範囲の表面抵抗率の測定に用いる測定器であり、それぞれの表面抵抗率に応じて使い分けた。
また、多層カーボンナノチューブ含有ポリカーボネート樹脂組成物の230℃における粘度を、動的粘弾性測定装置(Pear社製Modular Compact Rheameter MCR300)にて測定したところ、剪断速度1sec-1のときの粘度は3.0×104Pa・sであった。
The surface resistivity is a value measured with a low resistance measuring instrument, Loresta GP, and a high resistance measuring instrument Hiresta UP manufactured by Mitsubishi Chemical Corporation. The Loresta GP is a measuring instrument used for measuring the surface resistivity in the range of 10 −2 to 10 7 Ω / □, and the Hiresta UP is in the range of 10 6 to 10 14 , and was used properly according to each surface resistivity.
The viscosity at 230 ° C. of the polycarbonate resin composition containing multi-walled carbon nanotubes was measured with a dynamic viscoelasticity measuring device (Modal Compact Rheometer MCR300 manufactured by Pear). The viscosity at a shear rate of 1 sec −1 was 3. It was 0 × 10 4 Pa · s.

[実施例2]
市販の非晶性ポリエチレンテレフタレート樹脂と、実施例1で使用した多層カーボンナノチューブを4質量%添加し均一に混合した多層カーボンナノチューブ含有ポリエチレンテレフタレート樹脂組成物を作製した。この非晶質ポリエチレンテレフタレート樹脂は融点を有さないが、1.0×104Pa・sの粘度を示す樹脂温度は190℃であった。
この組成物を、実施例1と同様に射出成形し、同じ形状の射出溶融成形体を得た。続いて、該射出溶融成形体を、200℃に加熱されたギヤオーブン中に、15分間放置して加熱し、その後、取出して冷却して、実施例2の導電性成形体を得た。
[Example 2]
A commercially available amorphous polyethylene terephthalate resin and a multilayer carbon nanotube-containing polyethylene terephthalate resin composition in which 4% by mass of the multilayer carbon nanotubes used in Example 1 were added and mixed uniformly were prepared. Although this amorphous polyethylene terephthalate resin has no melting point, the resin temperature showing a viscosity of 1.0 × 10 4 Pa · s was 190 ° C.
This composition was injection molded in the same manner as in Example 1 to obtain an injection melt molded body having the same shape. Subsequently, the injection-melt molded article was heated by being left in a gear oven heated to 200 ° C. for 15 minutes, and then taken out and cooled to obtain a conductive molded article of Example 2.

この加熱前後の射出溶融成形体と導電性成形体とについて、実施例1と同様にして表面抵抗率を測定した。その結果、射出溶融成形体は9.0×1013Ω/□の表面抵抗率しか示さなかったが、導電性成形体は8.5×102Ω/□の表面抵抗率を示して導電機能を示した。この結果より、導電性を有さないポリエチレンテレフタレート樹脂射出溶融成形体を加熱するだけで表面抵抗率が低下することがわかった。
また、多層カーボンナノチューブ含有ポリエチレンテレフタレート樹脂組成物の200℃における粘度を、実施例1と同様に測定したところ、9.7×103Pa・sであった。
The surface resistivity was measured in the same manner as in Example 1 for the injection melt molded product and the conductive molded product before and after heating. As a result, the injection-melt molded product showed only a surface resistivity of 9.0 × 10 13 Ω / □, while the conductive molded product showed a surface resistivity of 8.5 × 10 2 Ω / □ and showed a conductive function. showed that. From this result, it was found that the surface resistivity is lowered only by heating the polyethylene terephthalate resin injection-melt molded body having no electrical conductivity.
The viscosity of the multi-walled carbon nanotube-containing polyethylene terephthalate resin composition at 200 ° C. was measured in the same manner as in Example 1. As a result, it was 9.7 × 10 3 Pa · s.

[実施例3]
市販のポリプロピレン樹脂と、直径が10〜20nmである多層カーボンナノチューブ(CNT社製)とを均一に混合して、多層カーボンナノチューブが3.5質量%含有された多層カーボンナノチューブ含有ポリプロピレン樹脂組成物を作製した。このポリプロピレン樹脂の融点温度は172℃であった。
この組成物を、実施例1と同様に射出成形し、同じ形状の射出溶融成形体を得た。続いて、該射出溶融成形体を、融点温度より28℃高い200℃に加熱されたギヤオーブン中に、15分間放置して加熱し、その後、取出して冷却して、実施例3の導電性成形体を得た。
この多層カーボンナノチューブ含有ポリプロピレン樹脂組成物の200℃における粘度を、実施例1と同様に測定したところ、5.5×103Pa・sであった。
[Example 3]
A commercially available polypropylene resin and a multi-walled carbon nanotube having a diameter of 10 to 20 nm (manufactured by CNT) are uniformly mixed to obtain a multi-walled carbon nanotube-containing polypropylene resin composition containing 3.5% by mass of the multi-walled carbon nanotube. Produced. The melting point temperature of this polypropylene resin was 172 ° C.
This composition was injection molded in the same manner as in Example 1 to obtain an injection melt molded body having the same shape. Subsequently, the injection melt molded article was heated in a gear oven heated to 200 ° C., which was 28 ° C. higher than the melting point temperature, for 15 minutes, and then taken out and cooled to obtain the conductive molding of Example 3. Got the body.
When the viscosity at 200 ° C. of this multi-walled carbon nanotube-containing polypropylene resin composition was measured in the same manner as in Example 1, it was 5.5 × 10 3 Pa · s.

この加熱前後の射出溶融成形体と導電性成形体とについて、実施例1と同様にして表面抵抗率を測定した。その結果、射出溶融成形体は1.1×1012Ω/□の表面抵抗率しか示さなかったが、導電性成形体は7.8×102Ω/□の表面抵抗率を示して導電機能を示した。この結果より、導電性を有さないポリフロピレン樹脂射出溶融成形体を加熱するだけで表面抵抗率が低下することがわかった。 The surface resistivity was measured in the same manner as in Example 1 for the injection melt molded product and the conductive molded product before and after heating. As a result, the injection-melt molded product showed only a surface resistivity of 1.1 × 10 12 Ω / □, while the conductive molded product showed a surface resistivity of 7.8 × 10 2 Ω / □, indicating a conductive function. showed that. From this result, it was found that the surface resistivity was lowered only by heating the polyfluoropyrene resin injection-melt molded article having no electrical conductivity.

[実施例4]
実施例1で使用したポリカーボネート樹脂と、単層カーボンナノチューブ[文献Chemical Physics Letters,323(2000),P580−585に基づいて合成したもの、直径1.3〜1.8nm]とを均一に混合して、単層カーボンナノチューブが1質量%含有された単層カーボンナノチューブ含有ポリカーボネート樹脂組成物を作製した。
この組成物を、実施例1と同様に射出成形して、同じ形状の射出溶融成形体を得た。続いて、該射出溶融成形体を、230℃に加熱されたギヤオーブン中に15分間放置して加熱し、その後、取出して冷却して実施例4の導電性成形体を得た。この単層カーボンナノチューブ含有ポリカーボネート樹脂組成物の230℃における粘度を、実施例1と同様に測定したところ、3.5×104Pa・sであった。
[Example 4]
The polycarbonate resin used in Example 1 and a single-walled carbon nanotube [synthesized based on the literature Chemical Physics Letters, 323 (2000), P580-585, diameter 1.3 to 1.8 nm] were uniformly mixed. Thus, a single-walled carbon nanotube-containing polycarbonate resin composition containing 1% by mass of single-walled carbon nanotubes was prepared.
This composition was injection molded in the same manner as in Example 1 to obtain an injection melt molded body having the same shape. Subsequently, the injection melt molded body was left to heat in a gear oven heated to 230 ° C. for 15 minutes, and then taken out and cooled to obtain a conductive molded body of Example 4. When the viscosity at 230 ° C. of this single-walled carbon nanotube-containing polycarbonate resin composition was measured in the same manner as in Example 1, it was 3.5 × 10 4 Pa · s.

加熱前後の射出溶融成形体と導電性成形体とについて、表面抵抗率を測定した。その結果、射出溶融成形体は1.0×109Ω/□の表面抵抗率を示したが、導電性成形体は6.5×104Ω/□の表面抵抗率を示した。この結果より、カーボンナノチューブが多層であろうと単層であろうと、ポリカーボネート樹脂射出溶融成形体を加熱するだけで表面抵抗率が低下することがわかった。 The surface resistivity was measured for the injection melt molded product and the conductive molded product before and after heating. As a result, the injection melt molded product showed a surface resistivity of 1.0 × 10 9 Ω / □, while the conductive molded product showed a surface resistivity of 6.5 × 10 4 Ω / □. From this result, it was found that whether the carbon nanotubes are multi-layered or single-walled, the surface resistivity is lowered simply by heating the polycarbonate resin injection melt-molded body.

本発明に係る導電性成形体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electroconductive molded object which concerns on this invention. 導電性成形体の拡大断面図である。It is an expanded sectional view of a conductive fabrication object. 本発明に係る導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the electroconductive molded object which concerns on this invention. 本発明に係る他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the other electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の実施形態を示す拡大断面図である。It is an expanded sectional view showing an embodiment of other electroconductive fabrication objects concerning the present invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention. 本発明に係るさらに他の導電性成形体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the further another electroconductive molded object which concerns on this invention.

符号の説明Explanation of symbols

1 導電層
2 極細導電繊維
3 基材層
4 射出溶融成形体
46 加熱室
5 押出溶融成形体
6 プレス溶融成形体
7 切削用成形体
8 共押出溶融成形体
9 被覆溶融成形体
10 二層射出溶融成形体
11 多層プレス溶融成形体
12 転写溶融成形体
13 ラミネート溶融成形体
14 塗膜溶融成形体
DESCRIPTION OF SYMBOLS 1 Conductive layer 2 Extra fine conductive fiber 3 Base material layer 4 Injection melt molded body 46 Heating chamber 5 Extrusion melt molded body 6 Press melt molded body 7 Cutting molded body 8 Coextrusion melt molded body 9 Coated melt molded body 10 Two-layer injection melt Molded body 11 Multi-layer press melt molded body 12 Transfer melt molded body 13 Laminated melt molded body 14 Coating film melt molded body

Claims (18)

成形体の表面に少なくとも極細導電繊維を含有する導電層が形成されてなる成形体であって、該導電層が、加熱されて該表面に極細導電繊維を露出させるか、又は該表面から突出させ、表面抵抗率を低下させて形成されたことを特徴とする導電性成形体。   A molded body in which a conductive layer containing at least ultrafine conductive fibers is formed on the surface of the molded body, and the conductive layer is heated to expose the ultrafine conductive fibers on the surface or to protrude from the surface. A conductive molded body formed by reducing the surface resistivity. 成形体の表面に少なくとも極細導電繊維を含有する導電層が形成されてなる成形体であって、該導電層が、加熱されて該表面から100nm未満の内部に極細導電繊維を含有させ、表面抵抗率を低下させて形成されたことを特徴とする導電性成形体。   A molded body in which a conductive layer containing at least ultrafine conductive fibers is formed on the surface of the molded body, and the conductive layer is heated to contain ultrafine conductive fibers in the interior of less than 100 nm from the surface, and the surface resistance A conductive molded body formed by reducing the rate. 成形体が、極細導電繊維を含有しない基材層と、極細導電繊維を含有する導電層とからなることを特徴とする請求項1又は請求項2に記載の導電性成形体。   The conductive molded body according to claim 1 or 2, wherein the molded body is composed of a base material layer not containing ultrafine conductive fibers and a conductive layer containing ultrafine conductive fibers. 導電層が、加熱前は1012Ω/□以上の表面抵抗率を有し、加熱後は1012Ω/□未満の表面抵抗率を有することを特徴とする請求項1ないし請求項3のいずれかに記載の導電性成形体。 The conductive layer has a surface resistivity of 10 12 Ω / □ or more before heating and a surface resistivity of less than 10 12 Ω / □ after heating. A conductive molded article according to any one of the above. 極細導電繊維がカーボンナノチューブであって、該カーボンナノチューブが導電層に0.01〜12.0質量%含有され、成形体の表面抵抗率が101Ω/□以上1012Ω/□未満であることを特徴とする請求項1ないし請求項4のいずれかに記載の導電性成形体。 The ultrafine conductive fiber is a carbon nanotube, the carbon nanotube is contained in the conductive layer in an amount of 0.01 to 12.0% by mass, and the surface resistivity of the molded body is 10 1 Ω / □ or more and less than 10 12 Ω / □. The electroconductive molded object in any one of Claim 1 thru | or 4 characterized by the above-mentioned. 極細導電繊維を含有する熱可塑性樹脂組成物を溶融成形して溶融成形体を作製し、該溶融成形体の少なくとも表面を加熱し、極細導電繊維を溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   A thermoplastic resin composition containing ultrafine conductive fibers is melt-molded to produce a melt-molded body, and at least the surface of the melt-molded body is heated to expose the ultrafine conductive fibers on the surface of the melt-molded body, or A method for producing a conductive molded article, characterized by forming a conductive layer having a reduced surface resistivity by projecting from the surface or being contained within less than 100 nm from the surface. 極細導電繊維を含有する熱可塑性樹脂組成物を溶融成形して溶融成形体を作製し、該溶融成形体を切削などの二次加工を施して二次加工成形体となし、該二次加工成形体の少なくとも表面を加熱し、極細導電繊維を二次加工成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   A thermoplastic resin composition containing ultrafine conductive fibers is melt-molded to produce a melt-molded body, and the melt-molded body is subjected to secondary processing such as cutting to form a secondary-processed molded body. At least the surface of the body is heated to expose the ultrafine conductive fibers to the surface of the secondary processed molded body, or to protrude from the surface, or to be contained within less than 100 nm from the surface to reduce the surface resistivity. A method for producing a conductive molded body, comprising forming a conductive layer. 溶融成形が、押出成形、射出成形、プレス成形のいずれかにより行なわれることを特徴とする請求項6又は請求項7に記載の導電性成形体の製造方法。   The method for producing a conductive molded article according to claim 6 or 7, wherein the melt molding is performed by any one of extrusion molding, injection molding, and press molding. 極細導電繊維を含有する熱可塑性樹脂組成物と熱可塑性樹脂とを共押出成形して、熱可塑性樹脂よりなる基材層の片面、又は両面、又は全表面に極細導電繊維含有熱可塑性樹脂組成物よりなる表面層を積層した溶融成形体を作製し、その溶融成形体の少なくとも表面を加熱し、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   Thermoplastic resin composition containing ultrafine conductive fibers on one side, both sides, or the entire surface of a base material layer made of a thermoplastic resin by coextrusion molding a thermoplastic resin composition containing ultrafine conductive fibers and a thermoplastic resin A melt-molded body in which a surface layer is laminated, and at least the surface of the melt-molded body is heated to expose the ultrafine conductive fiber on the surface of the melt-molded body, or to protrude from the surface, or A method for producing a conductive molded body comprising forming a conductive layer having a reduced surface resistivity by being contained within 100 nm from the surface. 極細導電繊維を含有する熱可塑性樹脂組成物を射出成形金型内に射出した後に、さらに合成樹脂を前記金型内に射出し、合成樹脂よりなる基材層の表面に極細導電繊維含有熱可塑性樹脂よりなる表面層を積層した溶融成形体又は前記基材層の周りを前記表面層で覆った溶融成形体を作製し、その溶融成形体の少なくとも表面を加熱し、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   After injecting a thermoplastic resin composition containing ultrafine conductive fibers into an injection mold, a synthetic resin is further injected into the mold, and a thermoplastic resin containing ultrafine conductive fibers is formed on the surface of the base material layer made of synthetic resin. A melt-molded body in which a surface layer made of resin is laminated or a melt-molded body in which the periphery of the base material layer is covered with the surface layer is manufactured, and at least the surface of the melt-molded body is heated to form the ultrafine conductive fiber into the melt A conductive molded body characterized in that a conductive layer having a reduced surface resistivity is formed by being exposed on the surface of the body, protruding from the surface, or contained in the interior of less than 100 nm from the surface. Manufacturing method. 極細導電繊維を含有する熱可塑性樹脂組成物よりなる表面シートを作製すると共に熱可塑性合成樹脂組成物よりなる基材シートを作製し、該基材シートの片面又は両面に表面シートを重ねた後に熱圧して、熱可塑性合成樹脂組成物よりなる基材層の表面に極細導電繊維含有熱可塑性樹脂組成物よりなる表面層を積層した溶融成形体を作製し、その溶融成形体の少なくとも表面を加熱し、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   A surface sheet made of a thermoplastic resin composition containing ultrafine conductive fibers and a base sheet made of a thermoplastic synthetic resin composition were prepared, and heat was applied after the surface sheet was stacked on one or both sides of the base sheet. To produce a melt-molded product in which a surface layer made of a thermoplastic resin composition containing ultrafine conductive fibers is laminated on the surface of a base material layer made of a thermoplastic synthetic resin composition, and at least the surface of the melt-formed product is heated. , Exposing the ultrafine conductive fiber to the surface of the melt-molded product, or projecting it from the surface, or containing the ultrafine conductive fiber in the interior of less than 100 nm from the surface to form a conductive layer with reduced surface resistivity. The manufacturing method of the electroconductive molded object characterized by these. 極細導電繊維を含有する表面層が形成された転写フィルムを予め作製し、該転写フィルムを射出成形金型内に配置し、その金型内に合成樹脂を射出して、合成樹脂よりなる基材層の表面に極細導電繊維含有表面層を転写した溶融成形体を作製した後に、その溶融成形体の少なくとも表面を加熱して、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   A transfer film on which a surface layer containing ultrafine conductive fibers is formed in advance, the transfer film is placed in an injection mold, a synthetic resin is injected into the mold, and a substrate made of synthetic resin After producing a melt-molded body in which the surface layer containing the ultrafine conductive fiber is transferred to the surface of the layer, at least the surface of the melt-molded body is heated to expose the ultrafine conductive fiber on the surface of the melt-molded body, or A method for producing a conductive molded article, characterized by forming a conductive layer having a reduced surface resistivity by projecting from the surface or being contained within less than 100 nm from the surface. 極細導電繊維を含有するラミネート用フィルム又はフィルム基材に極細導電繊維を含有する表面層が形成されたラミネート用フィルムを予め作製し、該ラミネート用フィルムを射出成形金型内に配置した後に、その金型内に合成樹脂を射出して、合成樹脂よりなる基材層の表面にラミネート用フィルムをラミネートした溶融成形体を作製した後に、その溶融成形体の少なくとも表面を加熱して、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   A laminate film containing ultrafine conductive fibers or a laminate film in which a surface layer containing ultrafine conductive fibers is formed on a film substrate is prepared in advance, and the laminate film is placed in an injection mold. After a synthetic resin is injected into the mold and a melt-molded body is produced by laminating a laminate film on the surface of a base layer made of synthetic resin, at least the surface of the melt-molded body is heated to produce ultrafine conductive fibers. Is exposed to the surface of the melt-molded body, protrudes from the surface, or is contained in the interior of less than 100 nm from the surface to form a conductive layer having a reduced surface resistivity. A method for producing a conductive molded body. 合成樹脂を溶融成形して得た成形体の表面に極細導電繊維を含有する熱可塑性樹脂塗液を塗布・固化して、成形体の表面に極細導電繊維含有樹脂塗膜を有する溶融成形体を作製した後に、その溶融成形体の少なくとも表面を加熱して、極細導電繊維を該溶融成形体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性成形体の製造方法。   Applying and solidifying a thermoplastic resin coating liquid containing ultrafine conductive fibers on the surface of a molded body obtained by melt molding a synthetic resin, and forming a molten molded body having a resin coating film containing ultrafine conductive fibers on the surface of the molded body After the production, at least the surface of the melt-formed product is heated to expose the ultrafine conductive fibers on the surface of the melt-formed product, or to protrude from the surface, or to be contained within less than 100 nm from the surface. And forming a conductive layer with a reduced surface resistivity. 前記溶融成形体の加熱が、極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲で行なわれることを特徴とする請求項6ないし請求項14のいずれかに記載の導電性成形体の製造方法。   The molten molded body is heated in a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers. The manufacturing method of the electroconductive molded object in any one of. 前記溶融成形体の加熱が、極細導電繊維含有熱可塑性樹脂組成物の粘度が5.0×103Pa・s以上1.0×107Pa・s未満の範囲で行われることを特徴とする請求項6ないし請求項14のいずれかに記載の導電性成形体の製造方法。 The melt-molded body is heated in a range where the viscosity of the ultrafine conductive fiber-containing thermoplastic resin composition is 5.0 × 10 3 Pa · s or more and less than 1.0 × 10 7 Pa · s. The manufacturing method of the electroconductive molded object in any one of Claim 6 thru | or 14. 前記溶融成形体の加熱が、極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲に加熱された加熱室にて行なわれることを特徴とする請求項6ないし請求項16のいずれかに記載の導電性成形体の製造方法。   The molten molded body is heated in a heating chamber heated to a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers. The manufacturing method of the electroconductive molded object in any one of Claim 6 thru | or 16. 前記溶融成形体の加熱が、熱風、炎、加熱ニクロム線、熱媒体、熱プレス、赤外線のいずれかの熱源、又はマイクロ波を用いて行なわれることを特徴とする請求項6ないし請求項17のいずれかに記載の導電性成形体の製造方法。
The heating of the molten molded body is performed using hot air, a flame, a heated nichrome wire, a heat medium, a heat press, a heat source of infrared rays, or a microwave. The manufacturing method of the electroconductive molded object in any one.
JP2006126044A 2006-04-28 2006-04-28 Conductive molded product and its manufacturing method Pending JP2007297501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126044A JP2007297501A (en) 2006-04-28 2006-04-28 Conductive molded product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126044A JP2007297501A (en) 2006-04-28 2006-04-28 Conductive molded product and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007297501A true JP2007297501A (en) 2007-11-15

Family

ID=38767270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126044A Pending JP2007297501A (en) 2006-04-28 2006-04-28 Conductive molded product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007297501A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292894A (en) * 2008-06-03 2009-12-17 Nok Kluber Kk Aqueous coating agent
JP2009292556A (en) * 2008-06-03 2009-12-17 Unimatec Co Ltd Substrate conveying belt
JP2010506989A (en) * 2006-10-19 2010-03-04 アルケマ フランス Conductive composites based on thermoplastic polymers and carbon nanotubes
JP2010258112A (en) * 2009-04-22 2010-11-11 Nissha Printing Co Ltd Conductive molding and method for manufacturing the same
WO2011157528A1 (en) * 2010-06-14 2011-12-22 Nv Bekaert Sa Use of a foaming agent to improve emi shielding
JP2017001301A (en) * 2015-06-11 2017-01-05 株式会社クラレ Method for manufacturing molded product of fiber base material and method for manufacturing decorative molded product
JP2017052280A (en) * 2010-10-06 2017-03-16 インテバ・プロダクツ・エルエルシー Method and apparatus for providing reinforced composite materials with emi shielding
JP2018069693A (en) * 2016-11-04 2018-05-10 公立大学法人秋田県立大学 Method for producing conductive polymer composite material by rolling process and method for molding the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374465A (en) * 1989-08-14 1991-03-29 Japan Synthetic Rubber Co Ltd Resin compostion
JPH09111135A (en) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp Conductive polymer composition
JP2001062952A (en) * 1999-08-31 2001-03-13 Takiron Co Ltd Electric control transparent resin plate
JP2002129023A (en) * 2000-10-23 2002-05-09 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition and molded product thereof
WO2002065567A1 (en) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
JP2003100147A (en) * 2001-09-25 2003-04-04 Nagase & Co Ltd Conductive material containing carbon nanotube and its manufacturing method
JP2005085554A (en) * 2003-09-05 2005-03-31 Polyplastics Co Conductive resin molding and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374465A (en) * 1989-08-14 1991-03-29 Japan Synthetic Rubber Co Ltd Resin compostion
JPH09111135A (en) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp Conductive polymer composition
JP2001062952A (en) * 1999-08-31 2001-03-13 Takiron Co Ltd Electric control transparent resin plate
JP2002129023A (en) * 2000-10-23 2002-05-09 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition and molded product thereof
WO2002065567A1 (en) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
JP2003100147A (en) * 2001-09-25 2003-04-04 Nagase & Co Ltd Conductive material containing carbon nanotube and its manufacturing method
JP2005085554A (en) * 2003-09-05 2005-03-31 Polyplastics Co Conductive resin molding and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506989A (en) * 2006-10-19 2010-03-04 アルケマ フランス Conductive composites based on thermoplastic polymers and carbon nanotubes
JP2009292894A (en) * 2008-06-03 2009-12-17 Nok Kluber Kk Aqueous coating agent
JP2009292556A (en) * 2008-06-03 2009-12-17 Unimatec Co Ltd Substrate conveying belt
JP2010258112A (en) * 2009-04-22 2010-11-11 Nissha Printing Co Ltd Conductive molding and method for manufacturing the same
WO2011157528A1 (en) * 2010-06-14 2011-12-22 Nv Bekaert Sa Use of a foaming agent to improve emi shielding
BE1020350A3 (en) * 2010-06-14 2013-08-06 Bekaert Sa Nv USE OF A FOAM TO IMPROVE ELECTROMAGNETIC PROTECTION
US8858848B2 (en) 2010-06-14 2014-10-14 Nv Bekaert Sa Foaming agent to improve EMI shielding
JP2017052280A (en) * 2010-10-06 2017-03-16 インテバ・プロダクツ・エルエルシー Method and apparatus for providing reinforced composite materials with emi shielding
JP2017001301A (en) * 2015-06-11 2017-01-05 株式会社クラレ Method for manufacturing molded product of fiber base material and method for manufacturing decorative molded product
JP2018069693A (en) * 2016-11-04 2018-05-10 公立大学法人秋田県立大学 Method for producing conductive polymer composite material by rolling process and method for molding the same

Similar Documents

Publication Publication Date Title
JP2007297501A (en) Conductive molded product and its manufacturing method
CN103842422B (en) The compositions of the carbon fiber polymer composites of nanotube and fine grinding and manufacture method thereof
Nan et al. Physical properties of composites near percolation
JP6021946B2 (en) Carbon nanomaterial pellet manufacturing method
US20100084616A1 (en) Conducting composite material containing a thermoplastic polymer and carbon nanotubes
JP2007229989A (en) Conductive molded body and its manufacturing method
JP2008126469A (en) Conductive resin molding and its manufacturing method
Cholleti et al. ABS nano composite materials in additive manufacturing
TW200844154A (en) Semiconductive resin composition
Lei et al. Novel electrically conductive composite filaments based on Ag/saturated polyester/polyvinyl butyral for 3D-printing circuits
JP2007332271A (en) Polymeric molded product
JP4958146B2 (en) Conductive synthetic resin rod and method for producing the same
Deng et al. Recent progress on the confinement, assembly, and relaxation of inorganic functional fillers in polymer matrix during processing
KR101790707B1 (en) Conductive master batch and method for manufacturing thereof and method for manufacturing conductive film using the same
Joshi et al. Polymer-based conductive composites for 3D and 4D printing of electrical circuits
KR20190058198A (en) Electrically conductive resin composition and method of preparing the same
JP4454426B2 (en) Conductive film for in-mold molding
JP2007296725A (en) Method for producing conductive injection-molded article
RU2765289C2 (en) Polymers reinforced with carbon nanotubes and their production methods
KR20140125033A (en) Metal composite material comprising carbon coated nano metal particles and method thereof
Podsiadły et al. Conductive ABS/Ni composite filaments for fused deposition modeling of structural electronics
JP2007296724A (en) Method for producing conductive extruded article
JP2020011776A (en) Carrier tape, cover tape and antistatic bag with carbon nanotubes
CA2871029A1 (en) Improving properties of printed conductive tracks
CN110001165B (en) Transfer membrane and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120718