JP2007275701A - Coating base material and method for manufacturing the same - Google Patents

Coating base material and method for manufacturing the same Download PDF

Info

Publication number
JP2007275701A
JP2007275701A JP2006101966A JP2006101966A JP2007275701A JP 2007275701 A JP2007275701 A JP 2007275701A JP 2006101966 A JP2006101966 A JP 2006101966A JP 2006101966 A JP2006101966 A JP 2006101966A JP 2007275701 A JP2007275701 A JP 2007275701A
Authority
JP
Japan
Prior art keywords
vol
titanium oxide
layer
coating
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006101966A
Other languages
Japanese (ja)
Other versions
JP4685685B2 (en
Inventor
Takehiro Takahashi
武寛 高橋
Atsushi Komuro
篤史 小室
Ikuya Inoue
郁也 井上
Kohei Ueda
浩平 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006101966A priority Critical patent/JP4685685B2/en
Publication of JP2007275701A publication Critical patent/JP2007275701A/en
Application granted granted Critical
Publication of JP4685685B2 publication Critical patent/JP4685685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating base material that is capable of performing molding processing on a base material and has a high reflectance by forming a coating layer exhibiting the high reflectance, and a method for manufacturing the same. <P>SOLUTION: The coating base material having the coating layer including at least a three-layered multilayered structure of a primer layer, an intermediate coat layer, and a top coat layer on at least a part of a surface of the base material, wherein the primer layer contains rutile-type titanium oxide of 20 to 35 vol.%, the intermediate coat layer contains rutile-type titanium oxide of more than 35 vol.% and less than 70 vol.%, and the top coat layer is formed of a coating material having the high reflectance that is the three-layered multilayered structure or more containing rutile-type titanium oxide of 0 to 35 vol.%, and the method for manufacturing the same. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,高い拡散反射率を有する被覆基材とその製造方法に関する。   The present invention relates to a coated substrate having a high diffuse reflectance and a method for producing the same.

照明器具,AV機器,電子機器,モバイル機器,液晶テレビ,プラズマディスプレイ等は,可視光線を発することで,周囲を明るくする,光信号を伝える,もしくは光画像を映し出す等の機能を有している。これらの機器では,反射板を設けて,この反射板に光を反射させることで,光の輝度を向上させる,光の方向を変える等を行っているものもある。そのため,反射板に光が反射したときに光量低下を避けるために,反射板表面には高い可視光線反射率が要求される。従来,反射板表面の反射率を高める手段として,金属を研磨して鏡面にする,反射率の高い白色系の塗料を塗装する等が行われていた。また,新日本製鐵(株)カタログ「ビューコート(登録商標)」には,予め白色塗料を塗布した照明器具反射板用プレコート鋼板等も公開されている。   Lighting equipment, AV equipment, electronic equipment, mobile equipment, liquid crystal televisions, plasma displays, etc. have functions such as brightening the surroundings, transmitting optical signals, or projecting optical images by emitting visible light. . Some of these devices are provided with a reflecting plate and reflect light to the reflecting plate to improve the luminance of light or change the direction of light. For this reason, in order to avoid a decrease in the amount of light when light is reflected on the reflecting plate, a high visible light reflectance is required on the reflecting plate surface. Conventionally, as means for increasing the reflectivity of the reflector surface, metal has been polished into a mirror surface, or a white paint with high reflectivity has been applied. In addition, in the catalog “View Coat (registered trademark)” of Nippon Steel Corp., a pre-coated steel plate for a reflector for a lighting fixture in which a white paint is applied in advance is also disclosed.

また,例えば,特許文献1には,基材フィルムの片表面に金属薄膜層,無機微粒子を含有する樹脂層を順次積層し,当該金属薄皮膜層がアルミニウムからなり,無機微粒子を含有する樹脂層を構成する無機微粒子の屈折率nfと同層を構成する樹脂の屈折率nbとをnf−nb≧0.4とすることで,液晶表示装置の反射板として優れた光反射フィルムの技術が開示されている。更に,例えば,特許文献2には,液晶ディスプレイのバックパネル用として,アルミニウム板上に樹脂100質量部に対してルチル型酸化チタン150〜300質量部を含有する膜厚50〜100μmの下塗り層と,該下塗り層状に,樹脂100質量部に対してルチル型酸化チタンを100〜250質量部含有し,光沢が15以下で,且つ膜厚10〜30μmの上塗り層を形成させた液晶ディスプレイのバックパネル用の高拡散反射塗装金属板の技術が開示されている。   Further, for example, in Patent Document 1, a metal thin film layer and a resin layer containing inorganic fine particles are sequentially laminated on one surface of a base film, and the metal thin film layer is made of aluminum, and a resin layer containing inorganic fine particles. The technology of an excellent light reflecting film as a reflector of a liquid crystal display device is disclosed by setting the refractive index nf of the inorganic fine particles constituting the refractive index and the refractive index nb of the resin constituting the same layer to nf−nb ≧ 0.4 Has been. Furthermore, for example, Patent Document 2 discloses an undercoat layer having a film thickness of 50 to 100 μm containing 150 to 300 parts by mass of rutile titanium oxide with respect to 100 parts by mass of resin on an aluminum plate for a back panel of a liquid crystal display. A back panel of a liquid crystal display in which 100 to 250 parts by mass of rutile-type titanium oxide is contained in the undercoat layer with respect to 100 parts by mass of the resin, and an overcoat layer having a gloss of 15 or less and a film thickness of 10 to 30 μm is formed. Techniques for highly diffuse reflective coated metal plates for use in the art are disclosed.

特開平10−730号公報JP-A-10-730 特開2002−172735号公報JP 2002-172735 A

ところで,近年では,照明器具反射板や液晶ディスプレイ等の電気製品に用いる反射板は,電気製品の構造やデザインが複雑化し,これに伴い,反射板も様々な形状に成形加工して使用するニーズが高まってきている。しかし,特許文献1に記載された技術のように,基材にフィルムを用いた場合は,予め金属薄皮膜層や無機微粒子を含有する樹脂層を積層させたフィルムを目的の形状に成形することは困難であり,予めフィルムを目的の形状に成形した後に金属薄皮膜層や無機微粒子を含有する樹脂層を積層させる必要がある。ところが,反射板の成形形状が複雑な場合,加工部分で被膜を均一膜厚で積層させることが困難である。一方,特許文献2に記載された技術では,下塗り層と上塗り層をアルミニウム板上に予め塗布させた後に成形加工することはできるが,一般的なプレコート塗装ラインでの塗装では,1回で当該膜厚の下塗り層(50〜100μm)を塗装することは非常に困難であり,2回以上の重ね塗りが必要となるため,生産性が低い等の欠点がある。   By the way, in recent years, reflectors used in electrical appliances such as reflectors for lighting fixtures and liquid crystal displays have a complicated structure and design of electrical appliances. Accordingly, there is a need for the reflectors to be molded and processed into various shapes. Is growing. However, when a film is used as the substrate as in the technique described in Patent Document 1, a film in which a thin metal film layer or a resin layer containing inorganic fine particles is previously laminated is formed into a desired shape. However, it is necessary to laminate a thin metal film layer or a resin layer containing inorganic fine particles after the film is formed into a desired shape in advance. However, when the shape of the reflecting plate is complicated, it is difficult to laminate the film with a uniform film thickness in the processed part. On the other hand, in the technique described in Patent Document 2, the undercoating layer and the overcoating layer can be preliminarily applied on the aluminum plate and then molded. However, in a general pre-coating line, the coating can be performed once. It is very difficult to coat the undercoat layer (50 to 100 μm) with a film thickness, and there are disadvantages such as low productivity because two or more overcoats are required.

したがって,電気製品の構造上やデザイン上の理由で,反射板を成形加工して使用しなければならないこと,反射板の生産性を考えると,特許文献1や特許文献2等に記載された反射板を使用することは困難であり,従来の予め白色塗料を塗布した照明器具反射板用プレコート鋼板等を使用しなければならなかった。   Therefore, in view of the structure and design of electrical products, the reflector must be molded and used, and considering the productivity of the reflector, the reflection described in Patent Document 1, Patent Document 2, etc. It is difficult to use a plate, and it has been necessary to use a conventional pre-coated steel plate for a reflector for a luminaire that has been previously coated with a white paint.

そこで,本発明は,上記現状に鑑み,基材上に成型加工が可能で且つ,高い拡散反射率を示す被覆層を形成することで,高い拡散反射率を有する被覆基材及びその製造方法を提供することを目的としている。   Therefore, in view of the above situation, the present invention provides a coated base material having a high diffuse reflectance and a method for producing the same by forming a coating layer that can be molded on the base material and exhibits a high diffuse reflectance. It is intended to provide.

本発明者らは,上記課題を解決するために,鋭意検討した結果,基材に3層以上の被覆層を形成し,それぞれの層で拡散反射率,成型加工性を補い合うことで,高い拡散反射率と成型加工性を両立できることを見出し,かかる知見を基に本発明を完成させた。すなわち,本発明がその要旨とするところは,以下のとおりである。
(1) 基材表面の少なくとも一部に,プライマー層,中塗り層,上塗り層の少なくとも3層の複層構造からなる被覆層を有する被覆基材であって,前記プライマー層は,ルチル型酸化チタンを20〜35vol%含有し,前記中塗り層は,ルチル型酸化チタンを35vol%超70vol%未満含有し,前記上塗り層は,ルチル型酸化チタンを0〜35vol%含有し,前記被覆層の中で,前記中塗り層の膜厚が最も厚いことを特徴とする,被覆基材。
(2) 前記プライマー層の主樹脂がフッ素樹脂であることを特徴とする,(1)記載の被覆基材。
(3) 前記上塗り層の主樹脂がフッ素樹脂であることを特徴とする,(1)記載の被覆基材。
(4) 前記被覆層全体の膜厚が100μm未満であることを特徴とする,(1)記載の被覆基材。
(5) 450nm〜750nmの波長領域における光の拡散反射率の最低値(拡散反射率の最低値および拡散反射率の定義および測定法記載されているか?)が92.5%以上で,且つ,555nmの波長の光の拡散反射率が95%以上であることを特徴とする,(1)記載の被覆基材。
(6) 前記基材が金属板であることを特徴とする,(1)記載の被覆基材。
(7) 基材表面の少なくとも一部に,前記基材側から順に,塗料固形分中にルチル型酸化チタンを20〜35vol%含有したプライマー層用塗料と,塗料固形分中にルチル型酸化チタンを35vol%超70vol%未満含有した中塗り層用塗料と,塗料固形分中にルチル型酸化チタンを0〜35vol%含有した上塗り層用塗料と,を塗布し,焼き付けることを特徴とする,被覆基材の製造方法。
(8) 前記上塗り層用塗料と前記中塗り層用塗料を同時に焼き付けることを特徴とする,(7)記載の被覆基材の製造方法。
(9) (1)〜(6)のいずれかに記載の被覆基材を使用した電子機器。
As a result of intensive studies to solve the above-mentioned problems, the present inventors formed three or more coating layers on the base material, and each layer compensated for diffuse reflectance and molding processability, thereby achieving high diffusion. The present inventors have found that both reflectance and moldability can be achieved, and have completed the present invention based on such knowledge. That is, the gist of the present invention is as follows.
(1) A coated substrate having a coating layer having a multilayer structure of at least three layers of a primer layer, an intermediate coating layer, and a top coating layer on at least a part of the substrate surface, wherein the primer layer is a rutile type oxidation 20 to 35 vol% of titanium, the intermediate coating layer contains rutile type titanium oxide more than 35 vol% and less than 70 vol%, and the overcoat layer contains 0 to 35 vol% rutile type titanium oxide, Among them, the coated base material characterized in that the thickness of the intermediate coating layer is the thickest.
(2) The coated base material according to (1), wherein a main resin of the primer layer is a fluororesin.
(3) The coated base material according to (1), wherein the main resin of the overcoat layer is a fluororesin.
(4) The coated substrate according to (1), wherein the entire coating layer has a thickness of less than 100 μm.
(5) The minimum value of diffuse reflectance of light in the wavelength region of 450 nm to 750 nm (is the minimum value of diffuse reflectance and the definition and measurement method of diffuse reflectance described) described above is 92.5% or more, and The coated substrate according to (1), wherein the diffuse reflectance of light having a wavelength of 555 nm is 95% or more.
(6) The coated substrate according to (1), wherein the substrate is a metal plate.
(7) A primer layer coating containing 20 to 35 vol% rutile titanium oxide in the coating solid content, in order from the substrate side, on at least a part of the substrate surface, and a rutile titanium oxide in the coating solid content. Coating, characterized in that a coating for an intermediate coating layer containing more than 35 vol% and less than 70 vol% and a coating for an upper coating layer containing 0 to 35 vol% rutile titanium oxide in the solid content of the coating is applied and baked. A method for producing a substrate.
(8) The method for producing a coated base material according to (7), wherein the top coating layer coating and the intermediate coating layer coating are simultaneously baked.
(9) An electronic device using the coated substrate according to any one of (1) to (6).

本発明によれば,これまで連続塗装ラインの塗装による製造では両立が難しかった,高い拡散反射率と加工性を確保できる材料を提供できるようになった。これにより,これまで高拡散反射率が求められるため,高拡散反射率の白色フィルム作成し,それを貼り付けると言った二つの工程により作製したものが主に用いられていた反射板を連続塗装ラインでの基材へ塗料を直接塗装すると言う一つの工程で製造できるようになり,工程の省略ができるようになった。したがって,本発明は極めて産業上の価値の高い発明であると言える。   According to the present invention, it has become possible to provide a material capable of ensuring high diffuse reflectance and workability, which has been difficult to achieve in the past by manufacturing by continuous coating line. As a result, high diffuse reflectance has been required so far, and a white film with high diffuse reflectance was created and the reflector, which was mainly used in the two steps of pasting it, was applied continuously. It is now possible to manufacture in a single process, where the paint is directly applied to the substrate in the line, and the process can be omitted. Therefore, it can be said that the present invention is an extremely industrial invention.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明では,基材に3層以上の被覆層を形成し,それぞれの層で拡散反射率,成型加工性を補い合うことで,高い拡散反射率と成型性を両立することに成功した。   In the present invention, three or more coating layers are formed on the base material, and each layer succeeds in achieving both high diffuse reflectance and moldability by supplementing the diffuse reflectance and molding processability.

本発明では,顔料としてルチル型酸化チタンを使用している。これは,ルチル型酸化チタンの屈折率が,他の顔料よりも高く,バインダーとして使用する樹脂との屈折率差を大きくできるため,顔料と樹脂の界面における反射率を高めることができるためである。   In the present invention, rutile type titanium oxide is used as a pigment. This is because the refractive index of rutile titanium oxide is higher than that of other pigments, and the difference in refractive index from the resin used as the binder can be increased, so that the reflectance at the interface between the pigment and the resin can be increased. .

ここでのプライマー層は,基材と最も近い側の層のことを示す。ただし,基材から最も近い側の層であっても,基材と塗膜との密着性向上や耐食性向上を目的とした1μm未満の膜厚の層については,プライマー層とは考えず,その上の層をプライマー層とする。   Here, the primer layer indicates a layer closest to the base material. However, even for the layer closest to the base material, the layer with a thickness of less than 1 μm for the purpose of improving the adhesion between the base material and the coating film and improving the corrosion resistance is not considered as a primer layer. The upper layer is a primer layer.

上塗り層は,基材から最も離れた表面に露出した層を示す。   The overcoat layer indicates a layer exposed on the surface farthest from the substrate.

中塗り層は,3層構造の場合,プライマー層と上塗り層とに接して挟まれた部分に相当するが,4層以上の複層構造を有する被覆層においては,上塗り層とプライマー層との間に配された,ルチル型酸化チタンの濃度が35vol%超70vol%未満の層を全て中塗り層と見做し,その厚みの合計が他の層の厚みより大きいと,高い拡散反射率を得易い。また,ルチル型酸化チタンの濃度が連続的に変化して,各層の境界が不明確は場合も,ルチル型酸化チタンの濃度が35vol%超70vol%未満の範囲を全て中塗り層とする。   In the case of a three-layer structure, the intermediate coating layer corresponds to a portion sandwiched between and in contact with the primer layer and the top coating layer. However, in a coating layer having a multilayer structure of four or more layers, the intermediate coating layer and the primer layer are separated from each other. All layers with a rutile-type titanium oxide concentration of more than 35 vol% and less than 70 vol% disposed between them are regarded as intermediate coating layers. If the total thickness is greater than the thickness of the other layers, a high diffuse reflectance is obtained. Easy to get. Further, even when the concentration of rutile type titanium oxide continuously changes and the boundary between the respective layers is unclear, the entire range where the concentration of rutile type titanium oxide is more than 35 vol% and less than 70 vol% is defined as an intermediate coating layer.

プライマー層中のルチル型酸化チタン濃度については,プライマー層には基材を隠蔽し高拡散反射率を示すことと同時に,被覆される基材と被覆層との密着性を確保するため,柔軟性が必要とされる。ルチル型酸化チタン濃度を高くし過ぎると塗膜が脆くなり,密着性の確保が難しくなるため,プライマー層については極端にルチル型酸化チタン濃度を高くしない方が良い。塗膜の隠蔽力は,ルチル型酸化チタン濃度を高くしていくと,ルチル型酸化チタンの濃度20vol%以上で良好な隠蔽性を示すが,35vol%超では加工性が低下するため,プライマー層のルチル型酸化チタン濃度は20〜35vol%にする必要があり,更に高いレベルの隠蔽力を求めるにはルチル型酸化チタン濃度を25vol%以上にすると良く,高い加工性を求める場合にはルチル型酸化チタン濃度を30vol%以下にすると良いため,更に高いレベルで加工性,密着性と隠蔽性を両立するには,ルチル型酸化チタン濃度を25〜30vol%にすることが好ましい。   Concerning the rutile titanium oxide concentration in the primer layer, the primer layer hides the base material and exhibits high diffuse reflectance, and at the same time, ensures the adhesion between the base material to be coated and the coating layer. Is needed. If the rutile-type titanium oxide concentration is too high, the coating film becomes brittle and it is difficult to ensure adhesion, so it is better not to raise the rutile-type titanium oxide concentration extremely for the primer layer. The hiding power of the coating film shows good hiding properties when the concentration of rutile titanium oxide is increased as the concentration of rutile type titanium oxide is increased. However, when the concentration exceeds 35 vol%, the workability decreases, so the primer layer The rutile type titanium oxide concentration needs to be 20 to 35 vol%. In order to obtain a higher level of hiding power, the rutile type titanium oxide concentration should be 25 vol% or more. Since it is preferable that the titanium oxide concentration be 30 vol% or less, it is preferable to set the rutile titanium oxide concentration to 25 to 30 vol% in order to achieve both workability, adhesion and concealability at a higher level.

中塗り層中のルチル型酸化チタン濃度については,中塗り層には隠蔽性,高拡散反射率が要求されるが,プライマー層ほどの柔軟性は必要とされない。したがって,ルチル型酸化チタン濃度をプライマー層よりも高くすることができるため,中塗り層中のルチル型酸化チタン濃度は35vol%超とし,より高い拡散反射率を求める場合は40vol%以上であると好ましい。しかし,ルチル型酸化チタンの体積濃度が70vol%以上になると中塗り層自体が脆くなるため,中塗り層のルチル型酸化チタン濃度は70vol%未満とする。また,特に加工性を必要とする被覆基材の場合は,ルチル型酸化チタンの濃度を60vol%未満にすると被覆層の柔軟性を確保できるため好ましく,特に厳しい加工を必要とする場合のルチル型酸化チタンの濃度は57vol%未満にすると,より高い加工性が確保できるため好ましい。   Regarding the concentration of rutile-type titanium oxide in the intermediate coating layer, the intermediate coating layer is required to have concealability and high diffuse reflectance, but not as flexible as the primer layer. Therefore, since the rutile type titanium oxide concentration can be made higher than that of the primer layer, the rutile type titanium oxide concentration in the intermediate coating layer is over 35 vol%, and when a higher diffuse reflectance is required, it is 40 vol% or more. preferable. However, when the volume concentration of rutile type titanium oxide is 70 vol% or more, the intermediate coating layer itself becomes brittle, so that the rutile type titanium oxide concentration of the intermediate coating layer is less than 70 vol%. In particular, in the case of a coated base material that requires processability, it is preferable that the concentration of the rutile type titanium oxide is less than 60 vol% because the flexibility of the coating layer can be ensured. When the concentration of titanium oxide is less than 57 vol%, it is preferable because higher workability can be secured.

上塗り層中のルチル型酸化チタン濃度について,上塗り層でも高拡散反射率化ができた方が良いが,上塗り層の最大の役割は,被覆層全体を保護することである。そのため,あまり脆い塗膜は好ましくない。また,ルチル型酸化チタン濃度が高くなると,塗膜表面に露出した状態のルチル型酸化チタンが増える。そのような塗膜に金属が触れると,ルチル型酸化チタンにより金属が摩耗し,塗膜表面に黒い痕がついてしまう。このような黒い痕は,高拡散反射率を発揮することを最大の目的にする本発明の被覆基材には好ましくない。そのため,上塗り層中のルチル型酸化チタン濃度の上限はプライマー層と同程度が好ましく,下限については限定するものではなく,ルチル型酸化チタンを全く含まない場合を含め,0〜35vol%とする。ただし,上塗り層にも被覆層全体の保護だけで無く高拡散反射率化も求め,両方を高次元で両立させたいのであれば,ルチル型酸化チタン濃度を20〜30vol%とするとさらに好ましい。   Regarding the rutile-type titanium oxide concentration in the topcoat layer, it is better that the topcoat layer has a high diffuse reflectance, but the most important role of the topcoat layer is to protect the entire coating layer. Therefore, a coating film that is too brittle is not preferable. In addition, when the concentration of rutile titanium oxide increases, the amount of rutile titanium oxide exposed on the coating film surface increases. When a metal touches such a coating, the metal is worn by rutile titanium oxide, and black marks are left on the coating surface. Such a black mark is not preferable for the coated base material of the present invention whose main purpose is to exhibit a high diffuse reflectance. Therefore, the upper limit of the rutile-type titanium oxide concentration in the overcoat layer is preferably the same as that of the primer layer, and the lower limit is not limited, and is 0 to 35 vol% including the case where no rutile-type titanium oxide is contained. However, it is more preferable that the rutile type titanium oxide concentration is 20 to 30 vol% if not only protection of the entire coating layer but also high diffuse reflectance is required for the overcoat layer and both are desired to be compatible at a high level.

ルチル型酸化チタンの体積濃度は,次のようにして測定することができる。一つは,まず,測定目的の層のみを削り取る。削り取った面積A1及び深さD1から,塗膜の体積V1をV1=A1×D1として求める。次に,削り取った塗膜を500℃で1時間加熱し,バインダー成分を分解させる。残った部分をルチル型酸化チタンと考えることができる。そのルチル型酸化チタンの体積Vt1を液体に浸漬する等の方法で測定しても良いが,その質量Mt1を測定し,一般的なルチル型酸化チタン顔料の密度は3800〜4200kg・m−3程度なので,ルチル型酸化チタン顔料の密度を4000 kg・m−3として,体積をVt1=Mt1÷4000kg・m−3として求めても良い。このように求めた塗膜の体積V1,ルチル型酸化チタンの体積Vt1からルチル型酸化チタンの体積濃度Ct1は,Ct1=Vt1÷V1×100(vol%)として求めることができる。   The volume concentration of rutile titanium oxide can be measured as follows. First, scrape only the layer for measurement. From the scraped area A1 and depth D1, the volume V1 of the coating film is obtained as V1 = A1 × D1. Next, the shaved coating is heated at 500 ° C. for 1 hour to decompose the binder component. The remaining part can be considered as rutile titanium oxide. The volume Vt1 of the rutile titanium oxide may be measured by a method such as immersion in a liquid, but the mass Mt1 is measured, and the density of a general rutile titanium oxide pigment is about 3800 to 4200 kg · m−3. Therefore, the density of the rutile type titanium oxide pigment may be determined as 4000 kg · m−3 and the volume as Vt1 = Mt1 ÷ 4000 kg · m−3. From the volume V1 of the coating film thus obtained and the volume Vt1 of the rutile type titanium oxide, the volume concentration Ct1 of the rutile type titanium oxide can be obtained as Ct1 = Vt1 ÷ V1 × 100 (vol%).

もう一つは,被覆面に対して垂直な面で被覆基材をカットし,その断面から被覆層の膜厚T2を光学顕微鏡または電子顕微鏡で確認するか,まず,被覆基材の厚さをマイクロメータで測定し,その後,被覆層を剥離して,再度,同じ場所の厚さをマイクロメータで測定し,その差から被覆層の膜厚T2を求める等の方法で確認する。次に,任意の面積A2だけ被覆層を剥離する。剥離した被覆層をるつぼで500℃,1時間加熱する。残った灰分に含まれる酸化チタンの質量Mt2を求める。ルチル型酸化チタン顔料の一般的な密度は4000kg・m−3程度なので,被覆層の体積V2はV2=A2×T2,その中のルチル型酸化チタンの体積Vt2はVt2=Mt2÷4000kg・m−3と計算することができる。このように求めた被覆層の体積,ルチル型酸化チタンの体積から,被覆層全体の平均ルチル型酸化チタンの体積濃度Ct2は,Ct2=V2÷V2×100(vol%)と求めることができる。次に,被覆層の膜厚方向の元素分布をGDS(グロー放電発光分光分析)や被覆層断面のEMPA(電子線マイクロアナライザ)等で確認する。その元素分布と先に求めた平均ルチル型酸化チタン体積濃度から,各深さ,各層におけるルチル型酸化チタン体積濃度を求めることができる。   The other is to cut the coated substrate at a plane perpendicular to the coated surface and check the thickness T2 of the coated layer from the cross section with an optical microscope or an electron microscope. After measuring with a micrometer, the coating layer is peeled off, and the thickness at the same place is measured again with a micrometer, and the thickness T2 of the coating layer is determined from the difference. Next, the coating layer is peeled by an arbitrary area A2. The peeled coating layer is heated in a crucible at 500 ° C. for 1 hour. The mass Mt2 of titanium oxide contained in the remaining ash is determined. Since the general density of rutile-type titanium oxide pigment is about 4000 kg · m−3, the volume V2 of the coating layer is V2 = A2 × T2, and the volume Vt2 of the rutile-type titanium oxide is Vt2 = Mt2 ÷ 4000 kg · m−. 3 can be calculated. From the volume of the coating layer thus obtained and the volume of the rutile type titanium oxide, the volume concentration Ct2 of the average rutile type titanium oxide in the whole coating layer can be obtained as Ct2 = V2 ÷ V2 × 100 (vol%). Next, the element distribution in the film thickness direction of the coating layer is confirmed by GDS (glow discharge emission spectroscopy), EMPA (electron beam microanalyzer) or the like of the coating layer cross section. From the element distribution and the average rutile-type titanium oxide volume concentration obtained in advance, the rutile-type titanium oxide volume concentration in each depth and each layer can be obtained.

また,有機分の加熱分解による有機分と無機分の質量比の確認は,TG(熱重量分析)によって行っても良い。   The mass ratio of the organic component and the inorganic component by thermal decomposition of the organic component may be confirmed by TG (thermogravimetric analysis).

本発明の高い拡散反射率を有する被覆基材は,主に可視光を反射することを目的としているため,人の目の感度が高いとされている波長域の拡散反射率が高いことが重要である。人の目は,個人差はあるものの,380〜780nmの波長の光を感受することができ,その感度のピークは555nm付近にある。そのため,555nmを中心とした波長の光を強く反射する必要がある。   Since the coated base material having a high diffuse reflectance of the present invention is mainly intended to reflect visible light, it is important that the diffuse reflectance in the wavelength region where the sensitivity of the human eye is high is high. It is. The human eye can sense light with a wavelength of 380 to 780 nm, although there are individual differences, and the peak of the sensitivity is in the vicinity of 555 nm. Therefore, it is necessary to strongly reflect light having a wavelength centered at 555 nm.

顔料として用いるルチル型酸化チタンの平均粒径は,同一体積では粒径が小さい方が表面積が広くなり,反射界面が広くなることになるため,拡散反射率も高くなるが,顔料の粒径が小さくなり過ぎると,長い波長の光を透過してしまう。そのため,なるべく反射界面を広くし,可視光を強く反射するには,ルチル型酸化チタンの平均粒径を200〜400nmとすることが好ましく,更に好ましくは250〜350nmのものが良い。ここでのルチル型酸化チタンの平均粒径は,確認したい部分を電子顕微鏡により10,000倍で観察し,視野中に映し出されるルチル型酸化チタンの内,数で粒径の小さい方から20%と大きい方から5%を除いた残りのルチル型酸化チタンの粒径の相加平均値である。また,ルチル型酸化チタンに,シリカ,アルミナ,ジルコニア,酸化亜鉛,酸化アンチモン,有機物(例えば,ペンタエリトリット・トリメチロールプロパンなどのポリオール系有機物,トリエタノールアミン・トリメチロールアミンの有機酸塩などのアルカノールアミン系有機物,シリコン樹脂・アルキルクロロシランなどのシリコン系有機物)等でコーティングを施したものを使用しても良い。具体的には石原産業社製「タイペーク(登録商標)」シリーズ,富士チタン社製「TATM」シリーズ,テイカ社製「TITANIX(登録商標)」シリーズ等を用いることができる。本発明におけるルチル型酸化チタンは,何れも同様ものを用いれば良い。   The average particle size of rutile-type titanium oxide used as a pigment is that the smaller the particle size in the same volume, the larger the surface area and the wider the reflective interface, so the diffuse reflectance becomes higher, but the particle size of the pigment is larger. If it becomes too small, light of a long wavelength is transmitted. Therefore, in order to make the reflection interface as wide as possible and reflect visible light strongly, the average particle size of rutile titanium oxide is preferably 200 to 400 nm, more preferably 250 to 350 nm. The average particle size of the rutile type titanium oxide here is 20% from the smallest particle size among the rutile type titanium oxides observed in the field of view by observing the part to be confirmed at 10,000 times with an electron microscope. And the arithmetic average value of the particle sizes of the remaining rutile titanium oxide excluding 5% from the larger one. In addition, rutile type titanium oxide, silica, alumina, zirconia, zinc oxide, antimony oxide, organic substances (eg, polyol organic substances such as pentaerythritol and trimethylolpropane, organic acid salts of triethanolamine and trimethylolamine, etc.) An alkanolamine-based organic material, a silicon-based organic material such as a silicon resin or alkylchlorosilane), or the like may be used. Specifically, the “Taipek (registered trademark)” series manufactured by Ishihara Sangyo Co., Ltd., the “TATM” series manufactured by Fuji Titanium, the “TITANIX (registered trademark)” series manufactured by Teika, and the like can be used. Any rutile type titanium oxide in the present invention may be used.

プライマー層には,基材の隠蔽と,被覆層の基材への密着性の確保と言う役割がある。ルチル型酸化チタン濃度を高くしていくと,密着性の確保が困難になっていくことから,密着性が確保できるルチル型酸化チタン濃度範囲で,より高い隠蔽性を発揮する必要があるため,バインダーの主樹脂にはルチル型酸化チタンとの組み合わせで,より高い拡散反射率を示すことができるものを選択した方が良い。顔料とバインダー樹脂の屈折率差が大きいと,顔料−バインダー樹脂界面での反射率が高くなり,高い拡散反射率が得られることが知られているが,フッ素樹脂は他の樹脂より屈折率が低いため,ルチル型酸化チタンのように屈折率高い顔料とフッ素樹脂と組み合わせると,顔料とバインダーの屈折率差が大きくなり,高い拡散反射率を得ることができる。そのため,プライマー層のバインダー樹脂としてはフッ素樹脂を選択するのが好ましい。また,基材と中塗り層との密着性を確保するため,エポキシ樹脂を含有していると更に好ましい。フッ素樹脂としては,何れも特に限定されるものではないが,ポリフルオロエチレン系のポリテトラフルオロエチレン,ポリトリフルオロエチレン,ポリジフルオロエチレンや,ポリヘキサフルオロプロピレン,ポリバーフロロアルキルビニルエーテル構造を分子鎖中に持つものであれば良く,これらの構造やビニルエーテル,ビニルエステル等との共重合体であったり,アクリル樹脂をブレンドしたものであっても良い。具体的には,旭硝子社製「ルミフロン(登録商標)」,日本ペイント社製「デュフロン(登録商標)」,3M社製「ダイオニンTM」,大日本インキ化学工業社製「フルオネート(登録商標)」,ダイキン社製「ゼッフル(登録商標)」,東亞合成社製「ザフロン(登録商標)」等を用いることができる。フッ化ビニリデン単独重合体の場合は,アクリル樹脂と混合して用いるのが一般的である。また,これらの樹脂は,必要に応じて一般に公知の架橋剤,例えば,イソシアネートやメラミン樹脂で架橋させても良い。イソシアネートも,一般に市販されているもの,例えば,住化バイエル社製「スミジュール(登録商標)」,「デスモジュール(登録商標)」シリーズ,三井武田ケミカル社製「タケネート(登録商標)」シリーズ等を使用することができる。メラミン樹脂も,一般に市販されているもの,例えば,三井サイテック社製「サイメル(登録商標)」,「マイコート(登録商標)」シリーズ,大日本インキ化学工業社製「ベッカミン(登録商標)」,「スーパーベッカミン(登録商標)」シリーズ等を使用することができる。また,本発明で主樹脂とは,被覆層のバインダーとなる成分の内,質量比で50%以上であるものを言う。これらの樹脂が主成分であるかどうかは,赤外分光,核磁気共鳴スペクトル,質量分析等を組み合わせることで確認することができる。   The primer layer has a role of concealing the base material and ensuring adhesion of the coating layer to the base material. Since increasing the rutile titanium oxide concentration makes it difficult to ensure adhesion, it is necessary to demonstrate higher concealment within the rutile titanium oxide concentration range where adhesion can be secured. For the binder main resin, it is better to select a binder that can show higher diffuse reflectance in combination with rutile titanium oxide. It is known that when the refractive index difference between the pigment and the binder resin is large, the reflectance at the pigment-binder resin interface becomes high, and a high diffuse reflectance can be obtained. Since it is low, when a pigment having a high refractive index such as rutile type titanium oxide and a fluororesin are combined, the refractive index difference between the pigment and the binder becomes large, and a high diffuse reflectance can be obtained. Therefore, it is preferable to select a fluororesin as the binder resin for the primer layer. Moreover, in order to ensure the adhesiveness of a base material and an intermediate coating layer, it is still more preferable to contain an epoxy resin. The fluororesins are not particularly limited, but polyfluoroethylene-based polytetrafluoroethylene, polytrifluoroethylene, polydifluoroethylene, polyhexafluoropropylene, and poly (fluoroalkyl) vinyl ether structures are molecular chains. Any material may be used as long as it is contained therein, and it may be a copolymer of these structures, vinyl ether, vinyl ester, or the like, or a blend of acrylic resin. Specifically, "Lumiflon (registered trademark)" manufactured by Asahi Glass Co., Ltd., "Duflon (registered trademark)" manufactured by Nippon Paint Co., Ltd., "Dionin TM" manufactured by 3M Company, "Fluonate (registered trademark)" manufactured by Dainippon Ink & Chemicals, Inc. , “Zeffle (registered trademark)” manufactured by Daikin Co., Ltd., “Zaflon (registered trademark)” manufactured by Toagosei Co., Ltd., and the like can be used. In the case of a vinylidene fluoride homopolymer, it is generally mixed with an acrylic resin. These resins may be crosslinked with a generally known crosslinking agent such as isocyanate or melamine resin as required. Isocyanates are also commercially available, such as “Sumijoule (registered trademark)”, “Desmodule (registered trademark)” series manufactured by Sumika Bayer, and “Takenate (registered trademark)” series manufactured by Mitsui Takeda Chemical Co., Ltd. Can be used. Melamine resins are also commercially available, for example, “Cymel (registered trademark)” manufactured by Mitsui Cytec, “My Coat (registered trademark)” series, “Beccamin (registered trademark)” manufactured by Dainippon Ink and Chemicals, The “Super Becamine (registered trademark)” series and the like can be used. In the present invention, the main resin refers to a component having a mass ratio of 50% or more among components serving as a binder of the coating layer. Whether these resins are the main component can be confirmed by combining infrared spectroscopy, nuclear magnetic resonance spectrum, mass spectrometry and the like.

中塗り層は,本発明の最大の目的である拡散反射率を稼ぐための層であるため,被覆層の中で最も厚く,ルチル型酸化チタンの濃度が高い。高拡散反射率を得るためにはプライマー層同様にフッ素樹脂を主樹脂としてもよいが,中塗り層は,上塗り層とプライマー層に挟まれ保護されているため,単層では脆くなってしまうようなルチル型酸化チタン濃度であっても良い。そのため,主樹脂が必ずしもフッ素樹脂で無くても,高拡散反射率化が可能である。また,ルチル型酸化チタンを高濃度化した場合の塗膜強度の確保を考えるのであれば,フッ素樹脂は化学的に安定であるがゆえに構造の変更が難しく,樹脂の物性を調整するのが簡単ではなく,コスト的にも他の樹脂より高くなることが多いため,樹脂の物性がフッ素樹脂よりも調整し易くコスト的にも有利なポリエステル樹脂又はアクリル樹脂又はこれらを混合したものを用いた方が良い。   Since the intermediate coating layer is a layer for obtaining the diffuse reflectance which is the greatest object of the present invention, it is the thickest of the coating layers and has a high concentration of rutile titanium oxide. In order to obtain a high diffuse reflectance, a fluororesin may be used as the main resin in the same manner as the primer layer. However, the intermediate coating layer is protected by being sandwiched between the top coating layer and the primer layer, so that the single layer may become brittle. A rutile type titanium oxide concentration may be used. Therefore, even if the main resin is not necessarily a fluororesin, a high diffuse reflectance can be achieved. Also, if you want to ensure the coating strength when the concentration of rutile titanium oxide is increased, it is difficult to change the structure because the fluororesin is chemically stable, and it is easy to adjust the physical properties of the resin. However, since the cost is often higher than other resins, polyester resin or acrylic resin, or a mixture of these, which is easier to adjust the physical properties of the resin than fluororesin, is advantageous in terms of cost. Is good.

上塗り層は,被覆層を保護することを目的とした層であり,拡散反射率については,プライマー層,中塗り層で確保した拡散反射率に悪影響を及ぼさないことが重要である。そのため,膜厚は,プライマー層,中塗り層より薄くて良く,ルチル型酸化チタン濃度についても,塗膜強度が得られることを前提に決める必要がある。主樹脂についても,必ずしも高拡散反射率が得られるフッ素樹脂を選択する必要はなく,塗膜強度の確保をし易い樹脂を選択しても良く,ポリエステル樹脂又はアクリル樹脂又はそれらを混合したものを選択すれば良い。ただし,高拡散反射率,長期安定性を要求する場合は,フッ素樹脂を主樹脂とするのが好ましい。本発明の被覆材料を反射板用途で長期に渡って連続的に使用する場合,光によって樹脂が劣化し,拡散反射率が低下する可能性が考えられるが,フッ素樹脂を上塗り層の主樹脂とした場合,フッ素樹脂は化学的に安定なため,光による劣化を抑制することができる。フッ素樹脂としては,プライマー層に用いたものと同様のものを用いることができる。   The topcoat layer is a layer intended to protect the coating layer, and it is important for the diffuse reflectance that the diffuse reflectance secured by the primer layer and the intermediate coat layer is not adversely affected. Therefore, the film thickness may be thinner than the primer layer and the intermediate coating layer, and the rutile type titanium oxide concentration needs to be determined on the assumption that the coating film strength can be obtained. As for the main resin, it is not always necessary to select a fluororesin that can provide a high diffuse reflectance, and a resin that can easily ensure the coating strength may be selected. A polyester resin, an acrylic resin, or a mixture thereof may be used. Just choose. However, when high diffuse reflectance and long-term stability are required, it is preferable to use fluororesin as the main resin. When the coating material of the present invention is used continuously for a long time in a reflector application, the resin may be deteriorated by light and the diffuse reflectance may be lowered. In this case, since the fluororesin is chemically stable, deterioration due to light can be suppressed. As a fluororesin, the thing similar to what was used for the primer layer can be used.

また,上塗り層には光の拡散性を高めるため,必要に応じてシリカ等の艶消し剤を加えても良い。   Further, a matting agent such as silica may be added to the topcoat layer as necessary in order to enhance the light diffusibility.

各層の膜厚は,中塗り層が最も厚いこと以外は,特に限定されるものではないが,高拡散反射率化には厚膜化が必要で,加工性や経済性からは薄膜化が必要であるため,そのバランスが取れるようにすれば良い。   The film thickness of each layer is not particularly limited except that the intermediate coating layer is the thickest, but it is necessary to increase the film thickness to achieve high diffuse reflectance, and it is necessary to reduce the film thickness in terms of workability and economy. Therefore, it is sufficient to make the balance.

プライマー層の膜厚は,薄過ぎると高い隠蔽性が得難く,加工した場合に中塗りにかかる応力を緩和し難いため,下限としては3μm程度で,可能であれば5μm以上あった方が好ましい。上限は,製造上問題にならない限り,特に定めなくても良いが,この上により厚い層が積層されるため,あまり厚くして隠蔽性を高くしても,最終製品ではその効果が薄らいでしまい,費用に見合った効果が得られない。そのため,上限は50μm以下で,通常は35μm程度までである。   If the primer layer is too thin, high concealability is difficult to obtain, and it is difficult to relieve the stress applied to the intermediate coating when processed. Therefore, the lower limit is about 3 μm, and if possible, it should be 5 μm or more. . The upper limit is not particularly limited as long as it does not cause a problem in manufacturing, but since a thicker layer is laminated on top of this, even if it is made too thick and the concealability is increased, the effect in the final product is diminished. 、 Effects that are worth the cost cannot be obtained. Therefore, the upper limit is 50 μm or less, and usually up to about 35 μm.

中塗り層の膜厚は,この層が本発明の最大の効果を示す層であるため,他の層よりも厚いことが好ましく,高拡散反射率を達成するには,15μmはあった方が良く,可能であれば,20μm以上あった方が良い。上限は,製造上問題にならない限り,特に定めなくても良いが,一定以上の膜厚になると,拡散反射率の上昇率が鈍化し,膜厚を上げるためにかかる費用に見合った効果が得られない。そのため,上限は80μm以下で,製造上の容易さからは,50μm程度までである。   The thickness of the intermediate coating layer is preferably thicker than the other layers because this layer exhibits the maximum effect of the present invention, and in order to achieve a high diffuse reflectance, the thickness should be 15 μm. If possible, it should be at least 20 μm. The upper limit is not particularly limited as long as it does not cause a problem in manufacturing, but if the film thickness exceeds a certain level, the rate of increase in diffuse reflectance slows down, and an effect commensurate with the cost of increasing the film thickness is obtained. I can't. Therefore, the upper limit is 80 μm or less, and it is about 50 μm for ease of manufacturing.

上塗り層の膜厚は,この層を形成する主目的が,本発明の主目的である高拡散反射率化ではなく,被覆層全体の保護であったり,光沢の低下であるため,あまり厚い必要は無い。保護と言う観点からは,均一に被覆できれば,0.1μm以上の膜厚であれば役割を果たせるが,安定した効果を発揮するには,1.0μm以上であると更に好ましい。上限については,上塗り層の拡散反射性が,他の層と変わらないレベルであれば,特に限定する必要は無いが,拡散反射性が他の層より劣っていても悪影響を及ぼし難い程度の膜厚すると良く,20μm以下であると好ましく,通常は10μm以下にすると良い。ただし,上塗り層が殆ど顔料を含まない層で,表面の保護と,低光沢化による光の拡散性向上に特に主目的をおいている場合は,5μm以下であった方が,拡散反射率に対する悪影響が少なくより好ましい。   The thickness of the overcoat layer must be too thick because the main purpose of forming this layer is not to increase the diffuse reflectance, which is the main purpose of the present invention, but to protect the entire coating layer and to reduce gloss. There is no. From the viewpoint of protection, if it can be uniformly coated, a film thickness of 0.1 μm or more can play a role, but in order to exhibit a stable effect, 1.0 μm or more is more preferable. The upper limit is not particularly limited as long as the diffuse reflectivity of the overcoat layer is the same level as the other layers, but it is a film that does not adversely affect even if the diffuse reflectivity is inferior to the other layers. The thickness is preferably 20 μm or less, and usually 10 μm or less. However, if the overcoat layer is a layer that contains almost no pigment and the main purpose is to protect the surface and improve the light diffusibility by reducing the gloss, the thickness of 5 μm or less is better for the diffuse reflectance. Less adverse effect and more preferable.

被覆層の全体厚さは,特に限定されるものではないが,厚過ぎると加工性が悪化する懸念があること,連続塗装焼き付けライン塗料を塗布,焼き付けることで被覆層を形成する場合,焼き付け時に沸きが発生し易くなるため,100μm未満の膜厚で高拡散反射率を達成できると好適である。また,あまり厚過ぎると経済的でないと言うこともあり,80μm未満の膜厚で高拡散反射率を達成できるとさらに好適である。   The total thickness of the coating layer is not particularly limited, but there is a concern that workability will deteriorate if it is too thick, and when the coating layer is formed by applying and baking a continuous coating baking line paint, Since boiling easily occurs, it is preferable that high diffuse reflectance can be achieved with a film thickness of less than 100 μm. Moreover, it may be said that it is not economical if it is too thick, and it is more preferable if a high diffuse reflectance can be achieved with a film thickness of less than 80 μm.

一方,450nm〜750nmの波長領域における光の拡散反射率の最低値が92.5%以上で,且つ555nmの波長の光の拡散反射率が95%以上である材料を照明器具の反射板として用いると,高い照度を得ることができる。特に,液晶ディスプレイの反射板として使用する場合は,555nmの拡散反射率だけが高いものでは,画面の輝度は得られるものの,彩度を出すのが難しくなる。そのため,このような膜厚で450nm〜750nmの波長領域における光の拡散反射率の最低値が92.5%以上,且つ555nmの波長の光の拡散反射率が95%以上にできれば,反射材料の生産性,経済性と,反射特性にも優れ好適である。   On the other hand, a material having a minimum value of diffuse reflectance of light in the wavelength region of 450 nm to 750 nm being 92.5% or more and a diffuse reflectance of light having a wavelength of 555 nm being 95% or more is used as a reflector of a lighting fixture. High illuminance can be obtained. In particular, when it is used as a reflector of a liquid crystal display, if only the diffuse reflectance of 555 nm is high, the brightness of the screen can be obtained, but it becomes difficult to produce saturation. Therefore, if the minimum value of the diffuse reflectance of light in the wavelength region of 450 nm to 750 nm with such a film thickness is 92.5% or more and the diffuse reflectance of light having a wavelength of 555 nm can be 95% or more, the reflection material It is also excellent in productivity, economy and reflection characteristics.

本発明の被覆基材の基材としては,いずれも特に限定されるものではないが,金属板を用いると,基材へ被覆層を形成した後に加工成型が容易であり,好適である。金属板としてもいずれも特に限定されるものではないが,鋼板,ステンレス板,アルミ板,亜鉛板,銅板,また,これらの合金板等が挙げられ,さらにこれらの金属板上にめっき処理した金属が挙げられる。この内,鋼板上にめっき処理した例として,溶融亜鉛めっき鋼板,電気亜鉛めっき鋼板,合金化溶融亜鉛めっき鋼板,アルミめっき鋼板,アルミ−亜鉛合金めっき鋼板,亜鉛−アルミ−マグネシウム合金めっき鋼板,亜鉛−アルミ−マグネシウム−シリコン合金めっき鋼板,亜鉛−マグネシウム合金めっき鋼板,錫めっき鋼板,鉛めっき鋼板,クロムめっき鋼板等の各種めっき鋼板等が挙げられる。また,これら金属板に,化成処理を施したものに処理を施すこともできる。化成処理には,一般に公知の化成処理,例えば,塗布クロメート処理,電解クロメート処理,りん酸亜鉛処理や近年開発されている6価クロムを含まないクロメートフリー処理等を使用することができる。   The base material of the coated base material of the present invention is not particularly limited, but a metal plate is suitable because it can be easily processed and formed after the coating layer is formed on the base material. Any of the metal plates is not particularly limited, and examples thereof include steel plates, stainless steel plates, aluminum plates, zinc plates, copper plates, and alloy plates thereof, and further, metal plated on these metal plates. Is mentioned. Among these, examples of plating treatment on steel sheets include hot dip galvanized steel sheets, electrogalvanized steel sheets, galvannealed steel sheets, aluminum plated steel sheets, aluminum-zinc alloy plated steel sheets, zinc-aluminum-magnesium alloy plated steel sheets, zinc -Various plated steel sheets such as aluminum-magnesium-silicon alloy-plated steel sheet, zinc-magnesium alloy-plated steel sheet, tin-plated steel sheet, lead-plated steel sheet, and chromium-plated steel sheet. In addition, these metal plates can be subjected to chemical conversion treatment. For the chemical conversion treatment, generally known chemical conversion treatments such as coating chromate treatment, electrolytic chromate treatment, zinc phosphate treatment, and a chromate-free treatment which does not contain hexavalent chromium which has been developed recently can be used.

本発明の高い拡散反射率を有する被覆基材の製造方法としては,特に限定されるものではないが,少なくとも基材表面の一部に,基材側から順に,組成物の固形分中にルチル型酸化チタンを20〜35vol%含有し,その他の固形分の内80質量%以上が樹脂成分であるものに必要に応じて有機溶剤を加えたプライマー層用塗料,組成物の固形分中にルチル型酸化チタンを35vol%超70vol%未満含有し,その他の固形分の内80質量%以上が樹脂成分であるものに必要に応じて有機溶剤を加えた中塗り層用塗料,組成物の固形分中にルチル型酸化チタンを0〜35vol%含有し,その他の固形分の内80質量%以上が樹脂成分であるものに必要に応じて有機溶剤を加えた上塗り層用塗料を塗装,焼き付けることによる方法が好ましい。このように被覆層を塗装により形成すれば,被覆層をフィルムとして別に作製した場合に,フィルム作成と基材への貼り付けと言った複数の工程が必要であるのに対し,基材上に直接被覆層を形成でき,工程を少なくすることができると言ったメリットがある。塗装方法は,特に限定されるものではなく,ロール塗工,ローラーカーテン塗工,カーテンフロー塗工,エアスプレー塗工,刷毛塗り塗工,ダイコーター塗工,浸漬塗工,インクジェット塗工等の通常の方法が挙げられる。   The method for producing a coated base material having a high diffuse reflectance according to the present invention is not particularly limited, but at least a part of the surface of the base material, in order from the base material side, in the solid content of the composition in the rutile. Type titanium oxide containing 20-35 vol%, other than 80% by mass of the solid content is a resin component, and an organic solvent is added to the primer layer as necessary, rutile in the solid content of the composition The solid content of the coating composition for the intermediate coating layer in which the organic solvent is added to the resin composition containing more than 35 vol% and less than 70 vol% of the type titanium oxide, and 80% by mass or more of the other solid content as a resin component. By applying and baking a paint for topcoat layer containing 0 to 35 vol% of rutile type titanium oxide in which 80% by mass or more of the other solids is a resin component and adding an organic solvent as required Preferred method Arbitrariness. If the coating layer is formed by painting in this way, when the coating layer is produced separately as a film, multiple steps such as film creation and application to the substrate are required, whereas the coating layer is formed on the substrate. There is an advantage that the coating layer can be formed directly and the number of processes can be reduced. The coating method is not particularly limited, and roll coating, roller curtain coating, curtain flow coating, air spray coating, brush coating coating, die coater coating, dip coating, ink jet coating, etc. The usual method is mentioned.

各層は,それぞれの塗料を各層毎に塗布し,焼き付け硬化させて,積層しても良いが,硬化前の状態で積層されたものを同時に焼き付けしても,両方の方法を組み合わせてもよい。例えば,中塗り層と上塗り層とを同時に焼き付けると,焼き付け工程がプライマー層の1回と中塗り層,上塗り層の1回の合計2回で良いため,プライマー層,中塗り層,上塗り層を別々に焼き付けるなら,連続塗装ラインで比較的ライン上の長いスペースを取る焼き付け工程の設備を3つ設置しなくてはならないか,2つしか焼き付け工程を持たないラインでは2回ラインを通さないといけないのに対して,同時に焼き付けをすると,焼き付け装置が2つ設置されていれば1回ラインを通すだけで良いため生産性を高めることができるため好ましい。未硬化の塗料状態で積層する方法は,特には限定されるものではないが,大きく二つある。一つは,各層を別々に塗布する方法で,一つは,複数の層を同時に塗布する方法である。各層を別々に塗布する場合,下層の塗装は,上述のような通常の塗装方法で構わないが,上層の塗装は,未硬化の下層に大きな衝撃を加えない方法で塗布することが好適である。下層に大きな衝撃を加えてしまう方法で塗装をすると,上層と下層が混ざってしまう。上層の塗装方法としては,下層を激しく乱さない方法であれば,特に限定されるものではないが,ローラーカーテン塗工,カーテンフロー塗工,エアスプレー塗工,ダイコーター塗工,浸漬塗工,インクジェット塗工等が挙げられる。複数の層を同時に塗布する場合,各層が塗布時に混ざらない必要がある。塗装方法としては,特に限定されるものではないが,多層スライドカーテン塗工等の方法が挙げられる。このような方法で形成した多層を同時に焼き付けると,同時に焼き付けた層間の密着性が高くなり好ましい。   Each layer may be laminated by applying the respective paints for each layer, baking and curing, and may be laminated at the same time before curing, or a combination of both methods. For example, if the intermediate coating layer and the top coating layer are baked at the same time, the baking process may be performed once for the primer layer and once for the intermediate coating layer and the top coating layer. If you want to bake separately, you have to install three equipment for the baking process that takes a relatively long space on the continuous coating line, or if you have only two baking processes you have to pass the line twice On the other hand, if baking is performed at the same time, if two baking apparatuses are installed, it is only necessary to pass through the line once, so that productivity can be improved. The method of laminating in the uncured paint state is not particularly limited, but there are two major methods. One is a method of applying each layer separately, and one is a method of applying a plurality of layers simultaneously. When each layer is applied separately, the lower layer may be coated by the normal method described above, but the upper layer is preferably coated by a method that does not apply a large impact to the uncured lower layer. . If you paint with a method that gives a big impact to the lower layer, the upper and lower layers will mix. The upper layer coating method is not particularly limited as long as it does not disturb the lower layer violently, but roller curtain coating, curtain flow coating, air spray coating, die coater coating, dip coating, Examples include inkjet coating. When multiple layers are applied simultaneously, each layer must not be mixed during application. Although it does not specifically limit as a coating method, Methods, such as multilayer slide curtain coating, are mentioned. It is preferable that the multilayers formed by such a method are baked at the same time because the adhesion between the layers baked at the same time becomes high.

本発明による被覆基材を使用した電気電子機器では,この被覆基材が可視光域で高い拡散反射率を持つため,同一光源の場合はこれまでよりも明るくなり,また,これまでより光源の数を少なくしたり,投入電力を少なくしたりしても,これまでと同等の明るさを確保することができる。このような特性を生かすことができる電気電子機器は,何れも特に限定されるものではなく,照明器具,電飾,AV機器,モバイル機器,各種ディスプレイ等が挙げられるが,液晶ディスプレイのバックライト反射板,照明反射板,内飾看板内の反射板等に用いると好ましい。   In the electrical and electronic equipment using the coated base material according to the present invention, the coated base material has a high diffuse reflectance in the visible light region. Therefore, the same light source is brighter than before, and the light source Even if the number is reduced or the input power is reduced, the same brightness as before can be secured. There are no particular limitations on the electrical and electronic equipment that can make use of these characteristics, and examples include lighting equipment, electrical decoration, AV equipment, mobile equipment, and various displays. It is preferably used for a plate, an illumination reflector, a reflector in an interior signboard, and the like.

実施例に基づき,本発明をさらに説明する。   The invention will be further described on the basis of examples.

まず,評価方法について説明する。
1) 拡散反射率測定
島津製作所社製の分光光度計「UV265」に,積分球反射付属装置を取り付けたものを用い,基準板としては硫酸バリウム粉末を押し固めたものを用いた。評価は,人の目の感度が最も高い波長である555nmにおける拡散反射率については,95%を基準とし,95%以上のものは達成,95%未満のものは未達とした。450nm〜750nmの拡散反射率については,92.5%を基準とし,その波長域での拡散反射率の最低値が92.5%以上のものは達成,92.5%未満のものは未達とした。
2) 照明器具の照度測定
図1に,実施例における照明器具の照度測定に使用した実験装置の概要を記載する。木製の箱(1)の中に,市販の蛍光灯照明器具(2)を取り付け,蛍光灯(3)から30cm離れた箇所に市販の照度計のセンサー(4)を設置し,照度を測定した。反射板(5)は,新日本製鐵(株)カタログ「ビューコート(登録商標)」に紹介されている白色塗料を塗布した照明器具反射板用プレコート鋼板で作成した反射板(以下,既存の反射板と称す)の照度を測定し,それに対して作製した被覆基材を用いて作製した反射板を取り付けたときの照度を測定した。そして,既存の反射板で測定した時の照度と作製した被覆基材の反射板で測定したときの照度から,照度変化率=([作製した被覆基材による反射板での照度]−[既存の反射板での照度])×100/[既存の反射板での照度]と定義し,照度変化率が15%以上の場合:○,照度変化率が5%以上15%未満の場合:△,照度変化率が5%未満の場合:×として評価した。なお,本実験では,16形ランプ出力16Wの蛍光灯を用いた。
3) 加工性
JIS K 5400に規格された塗膜の抵抗性に関する試験方法の一つである耐屈曲性の方法で試験した。心棒には直径3mmのものを用い,被覆層を外側(心棒と接しない側)に向けて折り曲げた。評価は,目視で亀裂の有無を確認した。
4) 耐金属汚染性
JIS K 5400に規格された塗膜の抵抗性に関する試験方法の一つである耐衝撃性の内,デュポン式の方法で試験した。おもりの落下高さは150mm,撃ち型と受け台の寸法は半径6.35mm,おもりの質量は500gとし,被覆層を撃ち型の方に向けておもりを落下させた。評価は,目視で衝撃部における変色の有無を確認した。
First, the evaluation method will be described.
1) Diffuse reflectance measurement A spectrophotometer “UV265” manufactured by Shimadzu Corporation was used with an integrating sphere reflection accessory attached, and a barium sulfate powder pressed and used as a reference plate. In the evaluation, with respect to the diffuse reflectance at 555 nm, which is the wavelength with the highest sensitivity of human eyes, 95% or more was achieved as a reference, 95% or more was achieved, and less than 95% was not achieved. For diffuse reflectance of 450 nm to 750 nm, 92.5% is the standard, and the minimum value of diffuse reflectance in that wavelength range is 92.5% or more, but less than 92.5% is not achieved It was.
2) Illuminance measurement of luminaires Fig. 1 shows an outline of an experimental apparatus used for illuminance measurement of luminaires in the examples. A commercially available fluorescent lamp luminaire (2) was mounted in a wooden box (1), and a commercially available illuminometer sensor (4) was installed 30 cm away from the fluorescent lamp (3) to measure the illuminance. . The reflector (5) is a reflector made of pre-coated steel plate for lighting fixture reflectors coated with white paint introduced in the catalog “View Coat (registered trademark)” of Nippon Steel Corporation The illuminance of the reflection plate was measured, and the illuminance when the reflection plate produced using the coated substrate produced was measured. And, from the illuminance when measured with the existing reflector and the illuminance when measured with the reflector of the produced coated substrate, the illuminance change rate = ([illuminance on the reflector with the produced coated substrate] − [existing Illuminance on the reflector of the light source)) × 100 / [illuminance on the existing reflector], when the illuminance change rate is 15% or more: ◯, when the illuminance change rate is 5% or more and less than 15%: Δ , When the illuminance change rate was less than 5%: evaluated as x. In this experiment, a fluorescent lamp with a 16-type lamp output of 16 W was used.
3) Workability It tested by the method of the bending resistance which is one of the testing methods regarding the resistance of the coating film standardized by JISK5400. A mandrel having a diameter of 3 mm was used, and the coating layer was bent outward (side not in contact with the mandrel). The evaluation was visually confirmed for cracks.
4) Metal contamination resistance Tested by a DuPont method of impact resistance, which is one of the test methods relating to the resistance of the coating film specified in JIS K 5400. The fall height of the weight was 150 mm, the size of the shooting mold and the cradle was a radius of 6.35 mm, the weight of the weight was 500 g, and the weight was dropped toward the shooting mold. In the evaluation, the presence or absence of discoloration in the impact part was confirmed visually.

次に,供試材について説明する。   Next, the test material will be explained.

被覆基材の基材には,電気亜鉛めっき鋼板にクロメート処理を施したものを用いた。被覆層は,各層を塗料化したものを塗布焼き付け硬化することで形成した。   As the base material of the coated base material, a galvanized steel sheet subjected to chromate treatment was used. The coating layer was formed by applying, baking, and curing a coating of each layer.

被覆層のバインダーには,フッ素樹脂,アクリル樹脂,ポリエステル樹脂を用いた。フッ素樹脂としては,市販の3フッ化エチレン系樹脂である旭硝子社製「ルミフロン(登録商標)LF552」を用いた。架橋剤には,市販のHDI(ヘキサメチレンジイソシアネート)をベースとしたブロック化イソシアネートである住化バイエルウレタン社製「スミジュール(登録商標)BL3175」をOH/NCO=1:1等量で混合し,更に,三井武田ケミカル社製反応触媒「TK−1」を樹脂固形質量分に対して0.05質量%添加することで,フッ素系クリア塗料を得た。アクリル樹脂としては,市販のアクリル樹脂である日本触媒化学工業社製「アロセット(登録商標)5535」を用いた。架橋剤には,市販のヘキサメチレンジイソシアネートのイソシアヌレート体のオキシムブロック体である住友バイエルウレタン社製「デスモジュール(登録商標)BL3175」をOH/NCO=1:1等量で混合し,硬化触媒としてジブチルチンジラウレートを樹脂固形質量分に対して0.025質量%添加することで,アクリル系クリア塗料を得た。ポリエステル樹脂としては,市販の有機溶剤可溶型/非晶性ポリエステル樹脂である東洋紡績社製「バイロン(登録商標)GK140」を有機溶剤(ソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したもの)に溶解したものを用いた。架橋剤には,市販のヘキサ−メトキシ−メチル化メラミンである三井サイテック社製の「サイメル(登録商標)303」をポリエステル樹脂の固形分100質量部に対して15質量部添加し,更に,市販の酸性触媒である三井サイテック社製の「キャタリスト(登録商標)6003B」を0.5質量部添加することで,ポリエステル系クリア塗料を得た。   Fluorine resin, acrylic resin, and polyester resin were used for the binder of the coating layer. As the fluororesin, “Lumiflon (registered trademark) LF552” manufactured by Asahi Glass Co., Ltd., which is a commercially available ethylene trifluoride resin, was used. For the crosslinking agent, “Sumidur (registered trademark) BL3175” manufactured by Sumika Bayer Urethane Co., Ltd., which is a blocked isocyanate based on commercially available HDI (hexamethylene diisocyanate), is mixed in an equivalent amount of OH / NCO = 1: 1. Furthermore, a fluorine-based clear paint was obtained by adding 0.05% by mass of the reaction catalyst “TK-1” manufactured by Mitsui Takeda Chemical Co. to the resin solid mass. As the acrylic resin, “Alloset (registered trademark) 5535” manufactured by Nippon Shokubai Chemical Industry Co., Ltd., which is a commercially available acrylic resin, was used. For the cross-linking agent, “Desmodur (registered trademark) BL3175” manufactured by Sumitomo Bayer Urethane Co., Ltd., which is an oxime block of an isocyanurate body of hexamethylene diisocyanate, is mixed in an equivalent amount of OH / NCO = 1: 1, and a curing catalyst. As a result, an acrylic clear paint was obtained by adding 0.025% by mass of dibutyltin dilaurate to the resin solid mass. As the polyester resin, “Byron (registered trademark) GK140” manufactured by Toyobo Co., Ltd., which is a commercially available organic solvent soluble type / amorphous polyester resin, is mixed with an organic solvent (Solvesso 150 and cyclohexanone in a mass ratio of 1: 1. Used) was used. As the cross-linking agent, 15 parts by mass of “Cymel (registered trademark) 303” manufactured by Mitsui Cytec Co., Ltd., which is a commercially available hexa-methoxy-methylated melamine, is added based on 100 parts by mass of the polyester resin solid content. A polyester-based clear paint was obtained by adding 0.5 parts by mass of “Catalyst (registered trademark) 6003B” manufactured by Mitsui Cytec Co., Ltd., which is an acidic catalyst.

ルチル型酸化チタンには,平均粒径0.28μm(280nm),密度4.0g・cm−3の石原産業社製「タイペーク(登録商標)CR−95」,平均粒径0.21μm(280nm),密度4.2g・cm−3の石原産業社製「タイペーク(登録商標)CR−63」,平均粒径0.30μm(300nm),密度4.1g・cm−3のテイカ社製「TITANIX(登録商標)JR−301を用いた。 The rutile type titanium oxide has an average particle size of 0.28 μm (280 nm) and a density of 4.0 g · cm −3 manufactured by Ishihara Sangyo Co., Ltd. “Taipec (registered trademark) CR-95”, average particle size of 0.21 μm (280 nm). manufactured by Ishihara Sangyo Kaisha, Ltd. of density 4.2 g · cm -3 "TIPAQUE (R) CR-63", average particle size 0.30 .mu.m (300 nm), manufactured by Tayca Corporation density 4.1 g · cm -3 'TITANIX ( (Registered trademark) JR-301 was used.

(実施例1)
実施例1では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
Example 1
In Example 1, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例2)
実施例2では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,アクリル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 2)
In Example 2, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the acrylic resin clear paint solid content, and the paint is prepared until the viscosity becomes a paintable viscosity. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例3)
実施例3では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,フッ素樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 3)
In Example 3, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide having an average particle size of 0.28 μm is mixed with 45 vol% of the fluororesin clear paint solid content, and the paint is prepared until the viscosity reaches a level at which it can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例4)
実施例4では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,アクリル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
Example 4
In Example 4, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a topcoat layer, a paint is prepared by mixing 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm with 70 vol% of the acrylic resin clear paint solid content until the viscosity becomes a paintable viscosity. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例5)
実施例5では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が3μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 5)
In Example 5, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. The base material was coated with a blade coater so that the film thickness after baking and curing would be 3 μm, with the addition of a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1. I baked it.

(実施例6)
実施例6では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,フッ素樹脂クリアを塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 6)
In Example 6, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, a paint obtained by adding a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 until a viscosity capable of coating the fluororesin clear is added, and the film thickness after baking and curing becomes 5 μm. In this way, the substrate was coated with a blade coater and baked at a maximum plate temperature of 230 ° C.

(実施例7)
実施例7では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにブレードコーターで基材に塗装し,硬化しないまま,更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で二層を同時に焼き付けた。
(Example 7)
In Example 7, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. A paint obtained by adding a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 is applied to the substrate with a blade coater so that the film thickness after baking and curing is 40 μm. In addition, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared. A paint containing a mixture of cyclohexanone and a mass ratio of 1: 1 is blended so that the film thickness after baking is 5 μm Painted substrate with coater and simultaneously baked two layers at peak metal temperature of 230 ° C..

(実施例8)
実施例8では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにブレードコーターで基材に塗装し,硬化しないまま,更にその上に,上塗り層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で二層を同時に焼き付けた。
(Example 8)
In Example 8, as a primer layer, 70 vol% of the fluororesin clear paint solid content was mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint was prepared until the viscosity became coatable. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. A paint obtained by adding a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 is applied to the substrate with a blade coater so that the film thickness after baking and curing is 40 μm. In addition, as a top coat layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and a paint is prepared. Blade coating is applied so that the film thickness after baking and curing is 5 μm after adding paint mixed with cyclohexanone at a mass ratio of 1: 1. Painted substrates in chromatography, were simultaneously baked two layers at peak metal temperature of 230 ° C..

(実施例9)
実施例9では,プライマー層として,フッ素樹脂クリア塗料固形分の80vol%に対して,平均粒径0.28μmのルチル型酸化チタンを20vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
Example 9
In Example 9, 20 vol% of rutile titanium oxide having an average particle diameter of 0.28 μm was mixed with 80 vol% of the solid content of the fluororesin clear paint as a primer layer, and the paint was prepared until the viscosity became paintable. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例10)
実施例10では,プライマー層として,フッ素樹脂クリア塗料固形分の65vol%に対して,平均粒径0.28μmのルチル型酸化チタンを35vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 10)
In Example 10, as a primer layer, 35 vol% of rutile-type titanium oxide having an average particle size of 0.28 μm is mixed with 65 vol% of the solid content of the fluororesin clear paint, and the paint is prepared. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例11)
実施例11では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の64vol%に対して,平均粒径0.28μmのルチル型酸化チタンを36vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 11)
In Example 11, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared until the viscosity becomes coatable. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, blending 36 vol% of rutile titanium oxide with an average particle size of 0.28 μm with 64 vol% of the polyester resin clear paint solid content, the paint is prepared, and until the viscosity can be applied Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例12)
実施例12では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の31vol%に対して,平均粒径0.28μmのルチル型酸化チタンを69vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 12)
In Example 12, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle diameter of 0.28 μm, and the paint is prepared until the viscosity becomes a paintable viscosity. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, blending 69 vol% of rutile titanium oxide with an average particle size of 0.28 μm to 31 vol% of the polyester resin clear paint solid content, until the viscosity becomes paintable Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例13)
実施例13では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の65vol%に対して,平均粒径0.28μmのルチル型酸化チタンを35vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 13)
In Example 13, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that the paint can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, a paint is prepared by mixing 35 vol% of rutile titanium oxide having an average particle size of 0.28 μm with 65 vol% of the solid content of the polyester resin clear paint, and until the viscosity becomes coatable. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例14)
実施例14では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.21μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 14)
In Example 14, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared until the viscosity becomes a paintable viscosity. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.21 μm is mixed with 45 vol% of the polyester resin clear paint solid content, and the paint is prepared until the viscosity reaches a level at which it can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(実施例15)
実施例15では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.30μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Example 15)
In Example 15, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.30 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity reaches a level at which it can be applied. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(比較例1)
比較例1では,プライマー層として,フッ素樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Comparative Example 1)
In Comparative Example 1, as a primer layer, 45 vol% of fluororesin clear paint solid content is mixed with 55 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared until the viscosity becomes coatable. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 55 vol% of rutile titanium oxide with an average particle size of 0.28 μm is mixed with 45 vol% of the solid content of the polyester resin clear paint, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(比較例2)
比較例2では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,中塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。更にその上に,上塗り層として,ポリエステル樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が5μmになるようにブレードコーターで基材に塗装し,最高到達板温230℃で焼き付けた。
(Comparative Example 2)
In Comparative Example 2, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle diameter of 0.28 μm, and the paint is prepared until the viscosity becomes coatable. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. On top of that, as an intermediate coating layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared until the viscosity becomes coatable. Paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 40 μm, and the maximum plate temperature reached 210 ° C. I baked it. Furthermore, as a top coat layer, 70 vol% of the polyester resin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm until the viscosity becomes such that it can be applied. A paint with a mixture of Solvesso 150 and cyclohexanone mixed at a mass ratio of 1: 1 was applied to the substrate with a blade coater so that the film thickness after baking and curing was 5 μm. I baked it.

(比較例3)
比較例3では,プライマー層として,フッ素樹脂クリア塗料固形分の70vol%に対して,平均粒径0.28μmのルチル型酸化チタンを30vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が25μmになるようにバーコートで基材に塗装し,最高到達板温210℃で焼き付けた。その上に,上塗り層(本発明の実施例における中塗り層に対応)として,ポリエステル樹脂クリア塗料固形分の45vol%に対して,平均粒径0.28μmのルチル型酸化チタンを55vol%混和して塗料を調合し,塗装できる粘度になるまでソルベッソ150とシクロヘキサノンとを質量比で1:1に混合したものを加えた塗料を,焼き付け硬化後の膜厚が40μmになるようにバーコートで基材に塗装し,最高到達板温230℃で焼き付けた。
(Comparative Example 3)
In Comparative Example 3, as a primer layer, 70 vol% of the fluororesin clear paint solid content is mixed with 30 vol% of rutile titanium oxide having an average particle size of 0.28 μm, and the paint is prepared until the viscosity becomes paintable. Paint with a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 was applied to the substrate with a bar coat so that the film thickness after baking and curing was 25 μm, and the maximum temperature reached 210 ° C. I baked it. In addition, 55 vol% of rutile titanium oxide having an average particle size of 0.28 μm is mixed with 45 vol% of the polyester resin clear paint solid content as an overcoat layer (corresponding to the intermediate coat layer in the examples of the present invention). Prepare a paint and add a mixture of Solvesso 150 and cyclohexanone in a mass ratio of 1: 1 until the viscosity can be applied, and use a bar coat so that the film thickness after baking is 40 μm. The material was painted and baked at a maximum plate temperature of 230 ° C.

各実施例及び比較例の拡散反射率と密着性及び耐金属汚染性を評価した結果を表1に示した。   Table 1 shows the results of evaluating the diffuse reflectance, adhesion, and metal contamination resistance of each Example and Comparative Example.

Figure 2007275701
Figure 2007275701

実施例1〜15は,拡散反射率,加工性,耐金属汚染性の何れの評価とも良好な結果であった。プライマー層のルチル型酸化チタンの含有量が本発明の範囲よりも過剰である比較例1は,拡散反射率,耐金属汚染性は良好であったものの,加工部に亀裂が生じた。中塗り層のルチル型酸化チタンの含有量が本発明の範囲よりも少ない比較例2は,加工性,耐金属汚染性は良好であったものの,高い拡散反射率が得られなかった。本発明に係る上塗り層を有しない比較例3は,拡散反射率は良好であったものの,金属汚染が認められた。   Examples 1 to 15 were good results in all evaluations of diffuse reflectance, workability, and metal contamination resistance. In Comparative Example 1 in which the content of the rutile titanium oxide in the primer layer was excessive from the range of the present invention, the diffuse reflectance and metal contamination resistance were good, but cracks occurred in the processed part. In Comparative Example 2 in which the content of rutile titanium oxide in the intermediate coating layer was less than the range of the present invention, the workability and the metal contamination resistance were good, but a high diffuse reflectance was not obtained. In Comparative Example 3 having no overcoat layer according to the present invention, although the diffuse reflectance was good, metal contamination was observed.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明の各実施例および比較例において使用した照度測定装置の模式図である。It is a schematic diagram of the illumination intensity measuring apparatus used in each Example and comparative example of this invention.

符号の説明Explanation of symbols

1 木製の箱
2 照明器具
3 蛍光灯
4 照度計
5 反射板
DESCRIPTION OF SYMBOLS 1 Wooden box 2 Lighting fixture 3 Fluorescent lamp 4 Illuminance meter 5 Reflector

Claims (9)

基材表面の少なくとも一部に,プライマー層,中塗り層,上塗り層の少なくとも3層の複層構造からなる被覆層を有する被覆基材であって,
前記プライマー層は,ルチル型酸化チタンを20〜35vol%含有し,前記中塗り層は,ルチル型酸化チタンを35vol%超70vol%未満含有し,前記上塗り層は,ルチル型酸化チタンを0〜35vol%含有し,前記被覆層の中で,前記中塗り層の膜厚が最も厚いことを特徴とする,被覆基材。
A coated substrate having a coating layer composed of a multilayer structure of at least three layers of a primer layer, an intermediate coating layer, and a top coating layer on at least a part of the substrate surface,
The primer layer contains rutile titanium oxide in an amount of 20 to 35 vol%, the intermediate coating layer contains rutile titanium oxide in an amount of more than 35 vol% and less than 70 vol%, and the overcoat layer contains rutile titanium oxide in an amount of 0 to 35 vol%. %, And the thickness of the intermediate coating layer is the thickest among the coating layers.
前記プライマー層の主樹脂がフッ素樹脂であることを特徴とする,請求項1記載の被覆基材。   The coated substrate according to claim 1, wherein the main resin of the primer layer is a fluororesin. 前記上塗り層の主樹脂がフッ素樹脂であることを特徴とする,請求項1記載の被覆基材。   2. The coated substrate according to claim 1, wherein the main resin of the overcoat layer is a fluororesin. 前記被覆層全体の膜厚が100μm未満であることを特徴とする,請求項1記載の被覆基材。   2. The coated substrate according to claim 1, wherein the entire coating layer has a thickness of less than 100 [mu] m. 450nm〜750nmの波長領域における光の拡散反射率の最低値が92.5%以上で,且つ,555nmの波長の光の拡散反射率が95%以上であることを特徴とする,請求項1記載の被覆基材。   The minimum value of diffuse reflectance of light in a wavelength region of 450 nm to 750 nm is 92.5% or more, and the diffuse reflectance of light having a wavelength of 555 nm is 95% or more. Coated substrate. 前記基材が金属板であることを特徴とする,請求項1記載の被覆基材。   The coated substrate according to claim 1, wherein the substrate is a metal plate. 基材表面の少なくとも一部に,前記基材側から順に,塗料固形分中にルチル型酸化チタンを20〜35vol%含有したプライマー層用塗料と,塗料固形分中にルチル型酸化チタンを35vol%超70vol%未満含有した中塗り層用塗料と,塗料固形分中にルチル型酸化チタンを0〜35vol%含有した上塗り層用塗料と,を塗布し,焼き付けることを特徴とする,被覆基材の製造方法。   A primer layer coating containing 20 to 35 vol% of rutile titanium oxide in the coating solid content and 35 vol% of rutile titanium oxide in the coating solid content in order from at least a part of the substrate surface. A coated base material characterized by coating and baking a coating for an intermediate coating layer containing less than 70 vol% and a coating for a top coating layer containing 0 to 35 vol% rutile-type titanium oxide in the solid content of the coating. Production method. 前記上塗り層用塗料と前記中塗り層用塗料を同時に焼き付けることを特徴とする,請求項7記載の被覆基材の製造方法。   The method for producing a coated base material according to claim 7, wherein the top coating layer coating and the intermediate coating layer coating are baked simultaneously. 請求項1〜6のいずれかに記載の被覆基材を使用した電子機器。

The electronic device using the coating base material in any one of Claims 1-6.

JP2006101966A 2006-04-03 2006-04-03 Coated substrate and method for producing the same Active JP4685685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101966A JP4685685B2 (en) 2006-04-03 2006-04-03 Coated substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101966A JP4685685B2 (en) 2006-04-03 2006-04-03 Coated substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007275701A true JP2007275701A (en) 2007-10-25
JP4685685B2 JP4685685B2 (en) 2011-05-18

Family

ID=38677770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101966A Active JP4685685B2 (en) 2006-04-03 2006-04-03 Coated substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4685685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143713A (en) * 2009-12-25 2011-07-28 Rohm & Haas Co Titanium dioxide-free multilayer coating system
US9933550B2 (en) 2008-12-03 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Coated metal material and method of production of same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476172A (en) * 1990-07-17 1992-03-10 Toyota Tsusho Kk Identification card control system
JP2002172735A (en) * 2000-12-06 2002-06-18 Kansai Paint Co Ltd Highly diffusing reflective coated metal panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476172A (en) * 1990-07-17 1992-03-10 Toyota Tsusho Kk Identification card control system
JP2002172735A (en) * 2000-12-06 2002-06-18 Kansai Paint Co Ltd Highly diffusing reflective coated metal panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933550B2 (en) 2008-12-03 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Coated metal material and method of production of same
JP2011143713A (en) * 2009-12-25 2011-07-28 Rohm & Haas Co Titanium dioxide-free multilayer coating system
US9636706B2 (en) 2009-12-25 2017-05-02 Rohm And Haas Company Titanium dioxide free multilayer coating system

Also Published As

Publication number Publication date
JP4685685B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
TWI438152B (en) Coated metal material and its manufacturing method
JP4616651B2 (en) Coating material having high diffuse reflectance and method for producing the same
TWI252162B (en) Precoated metal sheet for light reflectors
JP2008145942A (en) Light diffusing reflective material, method of manufacturing the same, and electronic component
KR101365279B1 (en) Coated metallic material and manufacturing method for same
JP4969893B2 (en) Coated substrate and method for producing the same
JP5384928B2 (en) Paint for coated metal plate, painted metal plate and method for producing painted metal plate
JP4685685B2 (en) Coated substrate and method for producing the same
JP4324096B2 (en) Painted metal plate with excellent reflectivity and formability and method for producing the same
JP4734163B2 (en) Coated substrate and method for producing the same
JP5906226B2 (en) Paint for coated metal plate, painted metal plate and method for producing painted metal plate
JP2005157296A (en) Reflection member of surface light source and manufacturing method and use thereof
JP2009151143A (en) Coating composition for light reflection plate, precoated metal plate for light reflection plate, and light reflection plate for liquid crystal display device
JP2014216492A (en) Solar cell module
JP2007290293A (en) Coated base material having high diffusion reflectivity and its manufacturing method
CN100528551C (en) Reflector-use precoat metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4685685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350