JP2007263142A - 油圧制御装置 - Google Patents

油圧制御装置 Download PDF

Info

Publication number
JP2007263142A
JP2007263142A JP2006085209A JP2006085209A JP2007263142A JP 2007263142 A JP2007263142 A JP 2007263142A JP 2006085209 A JP2006085209 A JP 2006085209A JP 2006085209 A JP2006085209 A JP 2006085209A JP 2007263142 A JP2007263142 A JP 2007263142A
Authority
JP
Japan
Prior art keywords
valve
flow path
chamber
switching valve
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006085209A
Other languages
English (en)
Inventor
Joji Matsuzaki
丈治 松崎
Shigeto Nakajima
滋人 中島
Takeshi Kobayashi
威士 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Nishina Industrial Co Ltd
Original Assignee
Toyota Industries Corp
Nishina Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Nishina Industrial Co Ltd filed Critical Toyota Industries Corp
Priority to JP2006085209A priority Critical patent/JP2007263142A/ja
Priority to EP20070740755 priority patent/EP1999385B1/en
Priority to US12/086,042 priority patent/US8109198B2/en
Priority to CA2624265A priority patent/CA2624265C/en
Priority to AU2007236781A priority patent/AU2007236781B2/en
Priority to PCT/JP2007/057319 priority patent/WO2007116846A1/en
Priority to CN2007800010711A priority patent/CN101351650B/zh
Priority to KR1020087007847A priority patent/KR100976358B1/ko
Priority to TW96110436A priority patent/TWI319794B/zh
Publication of JP2007263142A publication Critical patent/JP2007263142A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/0413Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed in one direction only, with no control in the reverse direction, e.g. check valve in parallel with a throttle valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30545In combination with a pressure compensating valve the pressure compensating valve is arranged between output member and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40553Flow control characterised by the type of flow control means or valve with pressure compensating valves
    • F15B2211/40561Flow control characterised by the type of flow control means or valve with pressure compensating valves the pressure compensating valve arranged upstream of the flow control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • F15B2211/473Flow control in one direction only without restriction in the reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7052Single-acting output members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87169Supply and exhaust

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Transportation (AREA)
  • Mining & Mineral Resources (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

【課題】オペレートチェック弁の機能と排出流量を調整するフローレギュレータの機能とを実現するとともに、構造が複雑になってしまうことを抑制してコンパクトな構造の油圧制御装置を提供する。
【解決手段】弁支持室35内に配置された流量制御弁12は変位量に応じて、シリンダ側流路32と連通流路室12aとの間の連通開度を変更する絞りを形成する。開閉弁13は、流量制御弁12内に配置され、当該連通流路の開閉を行う。弁制御手段14は、方向切換弁11が中立位置及び供給位置のときは前記連通流路を遮断することとなる方向に向かって開閉弁13を付勢するようシリンダ側流路32の流体圧力を開閉弁13の背圧室12dに作用させ、方向切換弁11が排出位置のときはシリンダ側流路32の流体圧力よりも低いパイロット圧力を背圧室12dに作用させる。
【選択図】図1

Description

本発明は、シリンダへの流体の給排を制御するための方向切換弁を有し、この方向切換弁が、ポンプからの流体をシリンダに供給する供給位置とシリンダからタンクに流体を排出する排出位置とシリンダに対して流体を給排しない中立位置とに切り換えられる油圧制御装置に関する。
従来、シリンダへの流体の給排を制御するための方向切換弁を有しこの方向切換弁が供給位置と排出位置と中立位置とに切り換えられる油圧制御装置として、例えばフォークリフトにおいてフォーク昇降動作用のリフトシリンダを作動させるための油圧制御装置が知られている。
特許文献1に記載の油圧制御装置は、昇降レバーによって操作されるリフトコントロールバルブとリフトシリンダとを連通する主流路上にオペレートチェック弁とフローレギュレータとを設け、また、リフトコントロールバルブのスプールに可変絞りを設けたものである。そして、この油圧制御装置では、スプールが中立ポジション又は上昇ポジションに配置されているときには、リフトコントロールバルブによって背圧室を封止されたオペレートチェック弁が主流路を遮断する向きに付勢される。また、フローレギュレータの第2圧力室にポンプの油圧が導入され、その弁体が全開位置に保持される。一方、スプールが下降ポジションに配置されているときには、背圧室にタンクの油圧が導入されたオペレートチェック弁が、リフトシリンダの油圧によって主流路を開通させる。また、フローレギュレータの第2圧力室にタンク圧が導入され、可変絞りの前後差圧が一定値以下となるように弁体が変位してリフトシリンダから流出する作動油の流量を調整するようになっている。
また、特許文献2に記載の油圧制御装置は、例えばフォークリフトにおいて昇降レバーを中立位置から下降位置に切り換えたときに、フォークが急降下し難いようにするため、方向切換弁が中立位置とのきには、開閉弁がシリンダ側油路と弁側油路との連通を遮断する閉位置に保持され、中立位置から排出位置に切り換えられたときに閉位置から開き側に変位するようにしたものであり、スプール内部にフローレギュレータとしての役割を有するパイロットプランジャを収容した構造である。このパイロットプランジャは、方向切換弁側油路における油圧変動に対応して変位することで、開閉弁が変位し、リフトシリンダから流出する作動油の流量を調整するようになっている。
特開2002−327706号公報 特開2005−145670号公報
しかしながら、特許文献1、特許文献2に記載されている油圧制御装置は、オペレートチェック弁とフローレギュレータとがそれぞれ独立した要素として別体に形成されており、また、構成部品も多く複雑な構造になっている。そして、オペレートチェック弁とフローレギュレータとをそれぞれ配設するスペースが必要となるので、油圧制御装置としての寸法が大きくなってしまうという問題もある。
このような問題を解決するため、本願発明者のうちの一部の発明者によって特願2004−323231号に記載の油圧制御装置の発明がなされている。尚、本願出願時において、当該出願は未公開であるとともに、当該出願の明細書に記載されている油圧制御装置は公知でなく、また、実施もされていない。当該油圧制御装置は、弁体と当該弁体が変位可能な領域であって当該弁体の変位量に応じて当該弁体との間で主流路の連通開度を変更する絞りを形成する流体室とを有する開閉調整弁を備えている。当該開閉調整弁はパイロット圧を作用させることにより主流路を遮断することができるオペレートチェック弁としての機能を有する部分と、主流路を開通した状態においては絞りの作用により流量制御可能なフローレギュレータとしての機能を有する部分とが一体に形成されたものである。このような一体型の開閉調整弁を用いることにより、より簡易な構造でオペレートチェック弁の機能とフローレギュレータの機能とを実現することを可能としている。
しかしながら、当該油圧制御装置においては、当該開閉調整弁の絞りにより流量調整を行いながら排出動作を行った後、開閉調整弁を強制的に遮断位置に戻す際に、排出流量が絞られた状態から一旦排出流量が最大となる状態を経由して遮断状態に移行する。そのため、シリンダの動きが瞬間的に不安定になる虞がある。
本発明は、上記実情に鑑みることにより、オペレートチェック弁の機能と排出流量を調整するフローレギュレータの機能とを実現するとともに、構造が複雑になってしまうことを抑制してコンパクトな構造であるとともに、安定した遮断動作を行うことが可能な油圧制御装置を提供することを目的とする。
課題を解決するための手段及び効果
本発明は、シリンダへの流体の給排を制御するための方向切換弁を有し、当該方向切換弁が、ポンプからの流体を前記シリンダに供給する供給位置と前記シリンダからタンクに流体を排出する排出位置と前記シリンダに対して流体を給排しない中立位置とに切り換えられる油圧制御装置に関する。
そして、本発明による油圧制御装置は、上記目的を達成するために以下のようないくつかの特徴を有しており、以下の特徴を単独で、若しくは、適宜組み合わせて備えている。
上記目的を達成するための本発明の油圧制御装置における第1の特徴は、シリンダへの流体の給排を制御するための方向切換弁を有し、当該方向切換弁が、ポンプからの流体を前記シリンダのボトム室に供給する供給位置と前記シリンダのボトム室からタンクに流体を排出する排出位置と前記シリンダに対して流体を給排しない中立位置とに切り換えられる油圧制御装置であって、前記シリンダに連通するシリンダ側流路と前記方向切換弁に連通する切換弁側流路との間に形成され、前記シリンダ側流路に連続するシリンダ側開口部と前記切換弁側流路に連続する切換弁側開口部とを有する弁支持室と、前記弁支持室内に変位可能に配置され、内部に形成された連通流路室を有するとともに、当該連通流路室内から前記シリンダ側開口部に連通可能に形成されたシリンダ側貫通孔と当該連通流路室内から前記切換弁側開口部に連通可能に形成された切換弁側貫通孔とを有する流量制御弁と、前記連通流路室内に変位可能に配置され、当該連通流路室を区画して背圧室を形成するとともに、前記シリンダ側貫通孔と前記切換弁側貫通孔との間の連通流路を遮断可能な開閉弁と、前記流量制御弁と前記開閉弁の作動を制御する弁制御手段と、を備え、前記流量制御弁と前記弁支持室とは、当該流量制御弁の変位量に応じて、前記シリンダ側開口部と前記シリンダ側貫通孔との間で、前記シリンダ側流路と前記連通流路室との間の連通開度を変更する絞りを形成し、前記弁制御手段は、前記方向切換弁が前記中立位置及び前記供給位置のときは前記連通流路を遮断することとなる方向に向かって前記開閉弁を付勢するよう前記シリンダ側流路の流体圧力を前記背圧室に作用させ、前記方向切換弁が前記排出位置のときは前記連通流路を開通することとなる方向に向かって前記開閉弁を変位させるよう前記シリンダ側流路の流体圧力よりも低いパイロット圧力を前記背圧室に作用させることである。
この構成によると、方向切換弁が中立位置のときには、シリンダ側貫通孔と切換弁側貫通孔との間の連通流路を遮断することとなる方向に向かって開閉弁を付勢するようシリンダ側流路の流体圧力が開閉弁の背圧室に作用する。このため、方向切換弁が中立位置のときは、シリンダ側流路と切換弁側流路との間を遮断する閉弁状態に開閉弁を保持することができ、シリンダからの流体の排出を規制してシリンダの没入動作(自然降下動作)を規制することができるオペレートチェック弁の機能が果たされることになる。
また、方向切換弁が中立位置から排出位置に切り換えられると、シリンダ側流路の流体圧力よりも低いパイロット圧力が開閉弁の背圧室に作用する。このため、背圧室からの付勢力を弱めて開閉弁の状態を閉弁状態から開弁状態へと(シリンダ側貫通孔と切換弁側貫通孔との間の連通流路を連通させる状態へと)移行させることができる。このとき、シリンダ側流路と切換弁側流路とを連通させることが可能な状態となり、シリンダからタンクに流体を排出することができる。そして、方向切換弁が排出位置のときには、切換弁側流路の流体圧力の変動に伴って流量制御弁が弁支持室内で変位することにより、その流量制御弁の変位量に応じて弁支持室のシリンダ側開口部と流量制御弁のシリンダ側貫通孔とでシリンダ側流路と連通流路室との間の連通開度を変更する絞りが形成されることになる。このため、シリンダからの排出流量を調整するフローレギュレータの機能も果たされることになる。
また、フローレギュレータの機能を有する流量制御弁にオペレートチェック弁としての機能を有する開閉弁が内蔵された構成とすることで、流量制御弁と開閉弁とを離隔して配置する場合に比べ流路構造を単純化することができるとともに、流量制御弁及び開閉弁の配設スペースの効率化を図ることもできる。従って、オペレートチェック弁の機能とフローレギュレータの機能とを実現するとともに、構造が複雑になってしまうことを抑制してコンパクトな油圧制御装置を得ることができる。
また、流量制御弁と開閉弁とは別要素として構成されているため、連通流路の開通時に流量制御弁によってシリンダ側流路と連通流路室との間の連通開度が絞られている場合においても、開閉弁の作動により連通流路を遮断することができる。そのため、遮断時に流量制御弁が変位して連通開度の絞りが開放されることで連通流路を通過する流量が増加することを抑制し、安定した遮断動作を行うことが可能である。これより、連通流路の遮断時におけるシリンダの動きを安定させることができる。
本発明の油圧制御装置における第2の特徴は、前記流量制御弁は、前記切換弁側流路の流体圧力が高くなると、当該切換弁側流路の流体圧力に応じて変位することで前記連通開度が小さくなることである。
この構成によると、方向切換弁が排出位置に切り換えられて流体の排出が行われているときに、切換弁側流路の流体圧力が高くなると、流量制御弁のシリンダ側貫通孔はシリンダ側開口部が形成される内壁に沿って当該シリンダ側開口部から離れる方向に変位する。これにより、シリンダ側流路から連通流路室への流入量が絞られ、その流体圧力が低減されることになる。このため、シリンダから排出する流量を所定の範囲に調整することができる。また、この油圧制御装置をフォークリフトにおけるフォーク昇降動作用のリフトシリンダを作動させるために適用した場合は、フォークの下降速度を調整できる下降圧力補償機能を実現することができる。
本発明の油圧制御装置における第3の特徴は、前記背圧室には、前記連通流路を遮断することとなる方向に向かって前記開閉弁を付勢する付勢手段が配設されていることである。
この構成によると、方向切換弁が中立位置のときにシリンダ流路と切換弁側流路との間をより確実に遮断することができる構造を容易に構成することができる。
本発明の油圧制御装置における第4の特徴は、前記背圧室には、前記連通開度が大きくなる方向に向かって前記流量制御弁を付勢する付勢手段が配設されていることである。
この構成によると、方向切換弁が中立位置のときにシリンダ側開口部に対するシリンダ側貫通孔の位置を一定に固定することが容易に可能である。
本発明の油圧制御装置における第5の特徴は、前記連通流路室は、前記開閉弁が当接して着座することで前記連通流路を遮断することとなる弁座を形成していることである。
この構成によると、開閉弁が着座する弁座を連通流路室に一体的に形成することで、開閉弁により連通流路を遮断するための構造をより簡素化することができる。
本発明の油圧制御装置における第6の特徴は、前記開閉弁には、当該開閉弁内部に形成されて、前記シリンダ側流路と前記背圧室とを連通する導圧路が形成されていることである。
この構成によると、方向切換弁が中立位置及び供給位置のときにシリンダ側流路の流体圧力を開閉弁の背圧室に作用させることを簡素な構成で実現することができる。
本発明の油圧制御装置における第7の特徴は、前記弁制御手段は、前記シリンダ側流路の流体圧力よりも低い前記パイロット圧力を生成するパイロット圧生成手段と、前記方向切換弁が前記中立位置及び前記供給位置のときは前記シリンダ側流路の流体圧力を前記背圧室に作用させ、前記方向切換弁が前記排出位置のときは前記パイロット圧力を前記背圧室に作用させるよう切り換える切換手段と、を備えていることである。
この構成によると、それぞれ独立して構成されるパイロット圧生成手段と切換手段とが協働して作動することで弁制御手段が実現されることになる。そして、パイロット圧生成手段によってパイロット圧力が生成している状態で切換手段を切り換えることで、切換手段による切り換えタイミングで速やかにパイロット圧力を開閉弁の背圧室に作用させることができる。このため、開閉弁による連通流路の遮断動作の応答特性を高めることができる。
本発明の油圧制御装置における第8の特徴は、前記パイロット圧生成手段は、前記切換手段の切り換えに伴って前記背圧室とタンクとを連通可能なパイロット流路であることである。
この構成によると、背圧室とタンクとを連通可能なパイロット流路を設けるという簡素な構成で、シリンダ側流路の流体圧力よりも低いパイロット圧力を生成するパイロット圧生成手段を容易に実現することができる。そして、方向切換弁通過前の切換弁側流路の流体圧力と方向切換弁通過後のタンクの流体圧力との圧力差を所定の範囲に保つように流量制御弁を作動させることができる。このため、この油圧制御装置をフォークリフトのリフトシリンダを作動させるために適用した場合は、負荷圧力の大きさによらず、方向切換弁の操作量に応じてフォークの下降速度を調整できる下降圧力補償機能を実現することができる。
本発明の油圧制御装置における第9の特徴は、前記方向切換弁は、スプールの変位に伴って切り換えられるスプール弁であって、前記パイロット流路は、前記スプールが変位可能に配置されるスプール孔に開口するとともに、前記方向切換弁が前記排出位置へと切り換えられる際の前記スプールの変位に伴って前記背圧室とタンクとを連通することである。
この構成によると、方向切換弁が排出位置へと切り換えられる際におけるスプール孔内でのスプールの変位に伴ってスプール孔への開口部分を介して背圧室とタンクとの連通状態を徐々に変更する構成を実現することができる。これにより、方向切換弁を排出位置に切り換え始めた初期段階において、開閉弁による連通流路の遮断を徐々に解除していく状態になるように作動させる構成を実現でき、微操作性を向上させることができる。また、この油圧制御装置をフォークリフトのリフトシリンダを作動させるために適用した場合は、フォーク下降時の微操作性を向上させることができることになる。
本発明の油圧制御装置における第10の特徴は、前記パイロット流路における前記スプール孔への開口は、前記スプールに形成されたランド部を介して、前記スプールの変位とともに開口面積を変更可能であることである。
この構成によると、ランド部が形成されたスプールの変位とともにパイロット流路のスプール孔への開口面積が変更されるため、方向切換弁を排出位置に切り換え始めた初期段階における微操作性を向上させることを簡素な構成で実現することができる。
本発明の油圧制御装置における第11の特徴は、前記切換手段は、前記背圧室と前記パイロット流路との間を連通及び遮断するよう切り換え可能な電磁切換弁であることである。
この構成によると、背圧室とパイロット流路との間にリーク量の少ない電磁切換弁を配設することで切換手段が構成されているため、タンクへの流体の漏れを抑制することができる。また、この油圧制御装置をフォークリフトのリフトシリンダを作動させるために適用した場合は、方向切換弁が中立位置のときにおけるフォークの没入動作量(自然降下動作量)を小さくすることができる。
本発明の油圧制御装置における第12の特徴は、前記弁支持室の内壁と前記流量制御弁の外周面との間に形成され、前記シリンダ側流路から前記切換弁側流路に連通可能な補助連通流路を更に備え、前記補助連通流路は、当該内壁の一部と当該外周面の一部とが接触して遮断された状態において、前記流量制御弁が前記連通開度を小さくするように変位したときに、開通した状態に移行することである。
この構成によると、流量制御弁の変位により、シリンダ側開口部から連通流路室への連通開度が小さくなった場合においても、補助連通流路を介してシリンダ側流路から切換弁側流路へ排出する一定流量を確保することが可能である。したがって、下降動作中にシリンダ側流路から切換弁側流路への排出が一時的に停止することがなくなり、下降動作を滑らかに行うことが可能である。
本発明の油圧制御装置における第13の特徴は、前記流量制御弁は、当該流量制御弁の外周面に段状に形成されて当該流量制御弁とともに前記補助連通流路内を変位可能な補助弁部を有し、前記弁支持室は、前記補助連通流路内において、前記補助弁部が当接して着座することで当該補助連通流路を遮断することとなる補助弁座を形成しており、前記補助連通流路は、遮断された状態において、前記流量制御弁が前記連通開度を小さくするように変位したときに、前記補助弁部が当該補助弁座から離座して開通した状態に移行することである。
この構成によると、流量制御弁の補助弁部が着座する補助弁座を弁支持室に一体的に形成することで、補助弁部により補助連通流路を遮断するための構造をより簡素化でき、容易に作製可能である。
本発明の油圧制御装置における第14の特徴は、前記シリンダ側流路と前記切換弁側流路との間は、前記連通流路又は前記補助連通流路を経由する経路のいずれとも異なる経路として形成された他の流路を介しても接続され、前記方向切換弁が前記供給位置に切り換えられたときにポンプからの流体が前記他の流路を介して前記シリンダ側流路へと供給されることである。
この構成によると、方向切換弁が供給位置に切り換えられたときは、他の流路を通過して流体がシリンダ側流路へと供給される。このため、他の流路を単純な流路構成にすることで、シリンダに流体を供給する際の圧力損失を低減することができる。
本発明の油圧制御装置における第15の特徴は、前記流量制御弁は、当該流量制御弁における前記背圧室側端部と逆側に位置する端部に配置され前記弁支持室を区画して油室を形成するダンパを備え、前記ダンパは、前記油室内部と当該油室外部とを連通する流路を有しており、前記油室に流体が流入する際の流路抵抗に比べ、前記油室から流体が排出される際の流路抵抗が大きいことである。
この構成によると、油室に流体が流入する際の流路抵抗に比べ、油室から流体が排出される際の流路抵抗が大きいため、油室の容積を大きくする方向に向かって流量制御弁が変位する場合に比べ、油室の容積を小さくする方向に向かって流量制御弁が変位する際の変位速度を小さくすることができる。これより、流量制御弁の変位により発生しやすい油圧脈動を減衰させることができる。
本発明の油圧制御装置における第16の特徴は、前記油室内部と当該油室外部とを連通する流路は、当該油室と前記連通流路室とを連通する第1流路と、当該油室と前記切換弁側流路とを連通する第2流路とからなり、前記第1流路は、前記連通流路室から前記油室に向かってのみ流通可能とする逆止弁を備えた流路であり、前記第2流路は、前記油室から前記切換弁側流路に連通するように形成されたオリフィスであることである。
この構成によると、逆止弁を備える流路とオリフィスとにより、油室に流体が流入する際の流路抵抗に比べ、油室から流体が排出される際の流路抵抗を大きくするための構造を簡素化でき、容易に形成することができる。
本発明の油圧制御装置における第17の特徴は、前記開閉弁は、前記連通流路の遮断時において前記シリンダ側貫通孔と連通するように形成された溝部を有し、当該溝部は、前記連通流路を遮断する方向に当該開閉弁を付勢するための力が作用する遮断圧作用壁面と、前記連通流路を開通する方向に当該開閉弁を付勢するための力が作用する開通圧作用壁面とを有し、前記遮断圧作用壁面は、当該開閉弁の変位方向を法線方向とする平面への投影面積が、前記開通圧作用壁面の当該投影面積より小さいことである。
この構成によると、溝部内においては、開閉弁の変位方向への受圧面積差によって連通流路を開通させる向きにより大きな付勢力が働くことになり、開閉弁が連通流路を遮断する方向に変位する際においては、当該付勢力が変位抵抗として作用する。また、当該面積差によって、開通方向へ変位する場合に比べ、遮断方向に変位する場合は、より大きな流体抵抗を溝部の内壁面に受けることになる。したがって、遮断の際における開閉弁の変位を比較的低速度で行うようにすることができ、連通流路遮断時の衝撃を小さくすることが可能となる。
以下、本発明を実施するための最良の形態について図面を参照しながら説明する。本発明の実施形態に係る油圧制御装置は、単動シリンダへの流体の給排を制御するための方向切換弁を有しこの方向切換弁がポンプからの流体を単動シリンダに供給する供給位置と単動シリンダからタンクに流体を排出する排出位置と単動シリンダに対して流体を給排しない中立位置とに切り換えられる油圧制御装置として広く適用することができるものである。なお、本実施形態の説明においては、フォークリフトにおけるフォーク昇降動作用リフトシリンダを作動させるために適用される油圧制御装置の場合を例にとって説明する。
(第1実施形態)
図1は、本実施形態に係る油圧制御装置を例示した断面図である。図1に示す油圧制御装置1は、フォークリフトにおけるフォーク昇降用のリフトシリンダ(図示せず)を含む油圧回路であるリフトシリンダ制御回路において、その制御回路の一部を構成する油圧制御装置として適用されるものである。なお、リフトシリンダ制御回路が搭載されるフォークリフトには、油圧ポンプ(図示せず)とともに、例えば、ティルトシリンダ制御回路、パワーステアリング系油圧回路等の他の油圧回路(図示せず)も搭載されている。そして、油圧ポンプから供給される圧油(流体)が、リフトシリンダ制御回路等の各回路に供給されるようになっている。また、それらの各回路に供給された圧油は、フォークリフトに搭載されているタンク(図示せず)に回収されて再び油圧ポンプにより昇圧されて各回路に供給される。
図1に示すように、油圧制御装置1は、バルブハウジング10、方向切換弁11、流量制御弁12、開閉弁13、弁制御手段14などを備えて構成されている。バルブハウジング10には、種々のポートや流路などが形成されるとともに、上記の方向切換弁11、流量制御弁12、開閉弁13、弁制御手段14等が組み込まれている。
バルブハウジング10に形成されているシリンダポート31は、単動シリンダである前述のリフトシリンダ(図示せず)に対して接続され、リフトシリンダへの圧油の給排口を構成している。そして、バルブハウジング10には、油圧ポンプに連通して圧油が供給される供給流路36や、タンクにそれぞれ連通する第1タンク流路37及び第2タンク流路38が設けられている。また、バルブハウジング10には、シリンダ側流路32、切換弁側流路33、流路34などの種々の流路が形成されている。シリンダ側流路32は、リフトシリンダに連通するようにシリンダポート31と連続的に形成されている。また、切換弁側流路33は、方向切換弁11に連通するように形成されている。
流量制御弁12は、シリンダ側流路32と切換弁側流路33との間に形成される弁支持室35内の内壁に沿って、変位可能に配置されており、内部に開閉弁13を収容する円筒状空間である連通流路室12aが形成されている。また、シリンダ側流路32の弁支持室35への開口であるシリンダ側開口部35aに対して連通流路室12a内から連通可能なシリンダ側貫通孔12bと、切換弁側流路33の弁支持室35への開口である切換弁側開口部35bに対して連通流路室12a内から連通可能な切換弁側貫通孔12cとが形成されている。これより、シリンダ側流路32は切換弁側流路33に対して流量制御弁12内の連通流路室12aを介して連通可能となっている。
このように、流量制御弁12と弁支持室35とは、流量制御弁12の変位量に応じて、シリンダ側開口部35aとシリンダ側貫通孔12bとの間で、シリンダ側流路32と連通流路室12aとの間の連通開度を変更する絞りを形成している。
そして、流量制御弁12は、長手方向の端部においてバネ17(付勢手段)とバネ支持部18とを備えており、バネ17によりバネ支持部18を介して、連通開度が大きくなる方向(図中右方向)に向かって付勢されている。
開閉弁13は、連通流路室12aの内周に沿って変位することができるように円柱状に形成されており、内部にバネ16を保持する空間を有している。また、外周の摺動面を介して連通流路室12aを、切換弁側貫通孔12cが存在する領域である切換弁側流体室12hと、背圧室12dとに区画するとともに、シリンダ側貫通孔12bと切換弁側貫通孔12cとの間の連通流路X(図1中の矢印Xで示す経路の流路)を遮断可能に配置されている。
背圧室12dは、連通流路室12aを区画して形成される領域と弁支持室35とによって形成される空間であり、開閉弁13の背圧室であるとともに、流量制御弁12の背圧室としての役割を担うものである。また、背圧室12dとシリンダ側貫通孔12b及びシリンダ側流路32とは開閉弁13に形成された貫通孔である導圧路13bにより連通可能となっており、シリンダ側流路32の流体の圧力を背圧室12dに導くことができる。尚、背圧室12d内の圧油圧力(油圧)は、後述の弁制御手段14によって制御されるようになっている。
また、開閉弁13は、背圧室12dにおいて、当該開閉弁13とバネ支持部18との間に設置されたバネ16により、シリンダ側貫通孔12bと切換弁側貫通孔12cとの間の連通流路Xを遮断することとなる方向(図中右方向)に向かって付勢されており、開閉弁13の先端部13aを、連通流路室12aの内壁に段状に形成された弁座12eに対して当接させることにより、当該連通流路Xを遮断している。
流路34は、シリンダ側流路32と切換弁側流路33との間を連通可能に形成されているとともに、シリンダ側貫通孔12bと切換弁側貫通孔12cとの間の連通流路Xを経由する圧油の経路とは異なる経路としてシリンダ側流路32と切換弁側流路33とを接続する他の流路を構成している。なお、流路34と切換弁側流路33との間には逆止弁39が配置されている。
バルブハウジング10に組み込まれる方向切換弁11は、リフトシリンダへの圧油の給排を制御するために設けられている。そして、この方向切換弁11は、スプール22、スプール22が変位可能に配置されるスプール孔23、及びスプール22を中立位置に保持するためのスプリング室24等を備えており、図示しないリフトレバーが操作されることで、スプール22の変位に伴って供給位置と中立位置と排出位置とに切り換えられるスプール弁として構成されている。図1では、方向切換弁11が中立位置にある状態を示しており、この中立位置ではリフトシリンダに対して圧油の給排が行われない。この中立位置の状態からスプール22が図中矢印aで示す方向に変位することで供給位置に切り換えられ、後述のように、油圧ポンプからの圧油がリフトシリンダに供給されることになる(図2参照)。一方、図1に示す中立位置の状態からスプール22が図中矢印bで示す方向に変位することで排出位置に切り換えられ、リフトシリンダからタンクに圧油が排出されることになる(図3参照)。なお、スプール22には、その中途の2箇所において縮径するように第1ランド部22a及び第2ランド部22bが形成されている。
なお、上述した構成を備える開閉弁13は、バネ16と背圧室12dに作用する油圧とによって開閉弁13の背圧室12d側端面に生じる付勢力と、開閉弁13の他端面13c(切換弁側流体室12h側に位置する端面)に作用する油圧によって生じる付勢力とに基づいて作動する。従って、バネ16及び背圧室12dの油圧による付勢力が開閉弁13の他端面13cに作用する油圧による付勢力より大きければ、開閉弁13が弁座12eに着座した状態に保たれる。一方、開閉弁13の他端面13cに作用する油圧による付勢力の方がバネ16及び背圧室12dの油圧による付勢力よりも大きければ、開弁状態へと移行する。尚、開閉弁13の他端面13cが位置する切換弁側流体室12h内は切換弁側貫通孔12cを介して切換弁側流路33に連通しているため、切換弁側流路33の油圧とほぼ等しい油圧が開閉弁13の他端面13cに作用する。
また、上述した構成を備える流量制御弁12は、開閉弁13が連通流路Xを開通した状態において、連通開度を大きくする方向(図中右方向)に、バネ17によりバネ支持部材18を介して伝えられる付勢力と、背圧室12dにおける流量制御弁12の端面に作用する油圧による付勢力を受ける。また、連通開度を小さくする方向(図中左方向)には、切換弁側流体室12h側の端面に油圧による付勢力を受ける。更に、バネ支持部材18は、開閉弁13及びバネ16を介して、開閉弁13が区画する前後の領域(背圧室12dと切換弁側流体室12h)の油圧差に対応した付勢力を受ける。
流量制御弁12の位置は、これらの付勢力が釣り合う位置に保たれることになる。また、開閉弁13が連通流路Xを開通した状態において、切換弁側流体室12h及び切換弁側流路33の油圧が高くなると、流量制御弁12及び開閉弁13に作用する背圧室12d側への付勢力(図中左方向への付勢力)が高まる。開閉弁13に作用する付勢力は、バネ16により(開閉弁13がバネ支持部材18に当接した場合は当該ばね16と開閉弁13とにより)、バネ支持部材18に伝達される。また、流量制御弁12に作用する付勢力もバネ支持部材18に伝達される。これより、バネ支持部材18を介してバネ17は収縮するように変形し、バネ17の弾性力が上記付勢力と釣り合う状態になるまで流量制御弁12は背圧室12d方向(図中左向き)に変位する。結果として、シリンダ側貫通孔12bとシリンダ側開口部35aとの間の絞りにおける連通開度が小さくなるように変更されることになる。このように、その切換弁側流路33の油圧に応じて流量制御弁12が変位することになる。
弁制御手段14は、流量制御弁12及び開閉弁13の作動を制御するものであり、図1に示すように、パイロット流路20と電磁切換弁21とを備えて構成されている。
パイロット流路20は、後述の電磁切換弁21の切り換えに伴って流量制御弁12及び開閉弁13の背圧室12dとタンクとを連通可能な流路としてバルブハウジング10内に形成されており、シリンダ側流路32の油圧よりも低いパイロット圧力を背圧室12dに生成可能なパイロット圧生成手段を構成している。即ち、パイロット流路20は、方向切換弁11のスプール孔23に開口20aにて開口するよう形成されるとともに、方向切換弁11が排出位置へと切り換えられる際のスプールの変位(図中矢印b方向への変位)に伴って背圧室12dと第2タンク流路38とを連通可能なように形成されている。なお、パイロット流路20におけるスプール孔23への開口20aは、第2ランド部22bが対向するように位置している部分のみが開口した面積として機能して第2タンク流路38と連通されることになる。即ち、パイロット流路20の開口20aは、スプール22に形成された第2ランド部22bを介して、スプール22の図中矢印b方向への変位とともに開口面積を変更可能となっている。
電磁切換弁21は、流量制御弁12及び開閉弁13の背圧室12dとパイロット流路20との間を連通及び遮断するように切り換え可能な電磁弁として構成されている。この電磁切換弁21は、バルブハウジング10に組みつけられたリミットスイッチ25の作動状態を検知する図示しない制御装置によって励磁・消磁の状態が制御される。そして、方向切換弁11が中立位置及び供給位置のときには背圧室12dとパイロット流路20との間を遮断し(図1、図2参照)、一方、方向切換弁11が排出位置のときには背圧室12dとパイロット流路20との間を連通させる(図3、図4参照)。背圧室12dとパイロット流路20との間が遮断された状態では、開閉弁13の導圧路13bを介して誘導されたシリンダ側流路32の油圧が背圧室12dに作用することになる。一方、背圧室12dとパイロット流路20との間が連通された状態では、シリンダ側流路32の油圧よりも低い前述のパイロット圧力である第2タンク流路38の油圧がパイロット流路20を介して背圧室12dに作用することになる。この構成により、電磁切換弁21は、方向切換弁11が中立位置及び供給位置のときはシリンダ側流路32の油圧を背圧室12dに作用させ、方向切換弁11が排出位置のときは上記パイロット圧力を背圧室12dに作用させるよう切り換える切換手段を構成している。
弁制御手段13は、上述したパイロット流路20と電磁切換弁21とを備えることで、方向切換弁11が中立位置及び供給位置のときはシリンダ側流路32と切換弁側流路33との間を遮断することとなる方向に向かって(弁座12e側に向かって)開閉弁13を付勢するようシリンダ側流路32の油圧を背圧室12dに作用させるように作動することになる。一方、方向切換弁11が排出位置のときはシリンダ側流路32の油圧よりもよりも低い前述のパイロット圧力を背圧室12dに作用させるように作動することになり、開閉弁13が弁座12eから離座して開弁状態となる。そして、切換弁側流路33の油圧に応じて流量制御弁12が変位することで、前述したように、シリンダ側貫通孔12bとシリンダ側開口部35aとの間で形成される絞りが調整されることになる。
次に、上述した油圧制御装置1の作動について説明する。図1に示すように方向切換弁11が中立位置の状態のときは、供給流路36及び切換弁側流路33の間と、第1タンク流路37及び切換弁側流路33の間とをそれぞれ遮断するようにスプール22が位置している。このため切換弁側流路33への圧油の供給も切換弁側流路33からの圧油の排出もいずれも行われない状態になっている。また、このとき、電磁切換弁21は開閉弁13の背圧室12dとパイロット流路20との間を遮断しているため、シリンダ側流路32の油圧が導圧路13bを介して背圧室12dに作用する。このシリンダ側流路32の油圧とバネ16とによって生じる付勢力が切換弁側流路33の油圧による付勢力よりも上回るため、開閉弁13の先端部13aが弁座12eに当接して閉弁した状態で保持される。同様に、流量制御弁12は段状部分12fを弁支持室35の内壁に形成された凸状部分35fに当接した状態で保持される。これにより、リフトシリンダから圧油が流出する方向における流れが開閉弁13にて遮断されているため、リフトシリンダの没入動作が抑制され、フォークが所定の高さに保持されることになる。なお、流路34から切換弁側流路33へと至る経路についても逆止弁39により遮断されている。
次に、上述の中立位置から供給位置に方向切換弁11を切り換える場合の作動について説明する。図2は、方向切換弁11が供給位置の状態における油圧制御装置1の断面図である。中立位置から供給位置に方向切換弁11が切り換えられると、スプール22が図1の矢印a方向に変位する。このため、供給流路36から供給されるポンプからの圧油は、図2において矢印で示すように、連通路36aを経て、スプール22の第1ランド部22aとスプール孔23との間に形成される流路を介して切換弁側流路33へと供給される(なお、第1タンク流路37と切換弁側流路33とは遮断されたままである)。そして、切換弁側流路33の油圧が高くなることで、バネとシリンダ側流路32の油圧とにより逆止弁39に作用している付勢力よりも切換弁側流路33の油圧による付勢力が上回り、逆止弁39が開弁される。これにより、切換弁側流路33とシリンダ側流路32とが流路34を介して連通されてシリンダ側流路32に圧油が供給される。そして、リフトシリンダへと圧油が供給されてフォークの上昇動作が行われることになる。なお、このとき、電磁切換弁21はパイロット流路20と背圧室12dとを遮断した状態のままであるため、背圧室12dに作用する油圧とバネ16とによる付勢力の方が切換弁側流路33の油圧による付勢力よりも大きく、開閉弁13は、閉弁状態に保たれている。同様に、流量制御弁12は段状部分12fを弁支持室35の内壁に形成された凸状部分35fに当接した状態で保持される。
最後に、図1に示す中立位置から排出位置に方向切換弁11を切り換える場合の作動について説明する。図3は、方向切換弁11が排出位置の状態において開閉弁13が変位した状態を示す油圧制御装置1の断面図である。図4は、開閉弁13の変位と共に流量制御弁12が変位した状態を示す油圧制御装置1の断面図である。中立位置から排出位置に方向切換弁11が切り換えられると、スプール22が図1の矢印b方向に変位する。このため、切換弁側流路33と第1タンク流路37とがスプール22の第1ランド部22aとスプール孔23との間に形成される流路を介して連通されることになる。
また、方向切換弁11が排出位置に切り換えられると、電磁切換弁21がパイロット流路20と背圧室12dとの間を連通するように切り換えられるため、背圧室12d内の圧油は、パイロット流路20へと流出することになる。そして、スプール22の移動に伴って第2ランド部22bがパイロット流路20のスプール孔23への開口20aに対応する位置に到達する。到達すると、さらにスプール22が変位することで、開口20aにおいてスプール22によって遮断されることなくスプール孔23に連通した状態になった開口面積がスプール22の変位とともに徐々に大きくなるように変更されることになる。このようにスプール22の変位に応じて開口20aの開口面積が変更されることで、パイロット流路20からは、その開口面積に応じた流量の圧油が第2タンク流路38へと排出されることになる。なお、スプール22が十分に変位してパイロット流路20の開口20aが全て開口した状態になると、パイロット流路20と第2タンク流路38との連通状態は変化しないことになる。
方向切換弁11が排出位置に切り換えられると、上述のように、背圧室12dの圧油は図3に矢印で示すようにパイロット流路20を介して第2タンク流路38へと排出されるため、背圧室12dの圧力が低下することになる。そして、シリンダ側流路32の油圧よりも低い前述のパイロット圧力が背圧室12dに作用することになる。このため、背圧室12dの油圧とバネ16とによる付勢力よりも切換弁側流体室12hの油圧による付勢力の方が大きくなり開閉弁13が弁座12eから離座してシリンダ側貫通孔12bと切換弁側貫通孔12cとの間の連通流路Xが連通することになる。当該連通流路が連通すると、リフトシリンダからの圧油がシリンダ側流路32及び当該連通流路Xを経て切換弁側流路33へと排出され、さらに、第1タンク流路37からタンクへと排出されることになる。これにより、フォークが下降動作が行われることになる。
また、図4に示すように、方向切換弁弁11が排出位置にあってリフトシリンダから圧油が排出されている状態のとき(フォークの下降動作中)に、切換弁側流路33の油圧が変動すると、背圧室12dの油圧及びバネ17による付勢力と切換弁側流体室12h側の油圧等による付勢力とのバランスが瞬間的に崩れてしまうため、流量制御弁12が変位することになる。そして、その流量制御弁12の変位に応じて、シリンダ側貫通孔12bとシリンダ側開口部35aとの間の絞りにおける連通開度(図中αで示す)が変更される。流量制御弁12は、切換弁側流体室12h側の油圧が高くなると当該連通開度を小さくする方向(図中左方向)に変位し、また、切換弁側流体室12h側の油圧が低くなると当該連通開度を大きくする方向(図中右方向)に変位する。これより、シリンダ側流路32から切換弁側流体室12hへの流量が変更され、切換弁側貫通孔12cから切換弁側流路33へ流れる油の圧力が調整されることになる。これにより、フォークの下降速度を調整できる下降圧力補償機能が発揮されることになる。
以上説明したように、第1実施形態の油圧制御装置1によると、方向切換弁11が中立位置のときには、シリンダ側流路32と切換弁側流路32との間を遮断することとなる方向に向かって開閉弁13を付勢するようシリンダ側流路32の油圧が開閉弁13の背圧室12dに作用する。このため、方向切換弁11が中立位置のときは、シリンダ側流路32と切換弁側流路33との間を遮断する閉弁状態に開閉弁13を保持することができ、リフトシリンダからの圧油の排出を規制してリフトシリンダの没入動作(自然降下動作)を規制することができるオペレートチェック弁の機能が果たされることになる。
また、方向切換弁11が中立位置から排出位置に切り換えられると、シリンダ側流路32の油圧よりも低いパイロット圧力が開閉弁13の背圧室12dに作用する。このため、背圧室12dからの開閉弁13の付勢力を弱めて開閉弁13の状態を閉弁状態から開弁状態へと(シリンダ側流路32と連通流路Xとを連通させる状態へと)移行させることができ、リフトシリンダからタンクに圧油を排出することができる。そして、方向切換弁11が排出位置のときには、切換弁側流路33の油圧の変動に伴って流量制御弁12が弁支持室35内で変位することにより、その流量制御弁12の変位量に応じてシリンダ側流路32と切換弁側流体室12hとの間の連通開度を変更する絞りが形成されることになる。このため、リフトシリンダからの排出流量を調整するフローレギュレータの機能も果たされることになる。
そして、流量制御弁12の内部に開閉弁13を配置することにより、オペレートチェック弁の機能とフローレギュレータの機能とを実現するとともに、構造が複雑になってしまうことを抑制してコンパクトな油圧制御装置を得ることができる。
また、流量制御弁12の変位によらず開閉弁13により連通流路Xを遮断することができるため、遮断時において流量制御弁12の変位による連通開度の変化の影響を受けにくい。そのため、連通流路Xが流量制御弁12により絞られた状態で排出動作を停止する場合においても流量制御弁12が変位して連通開度の絞りが全開になる前に開閉弁13により連通流路Xを遮断してリフトシリンダの下降動作を停止することができる。これより、排出動作を停止する際に、排出流量が瞬間的に増加することを抑制し、安定してリフトシリンダの停止動作を行うことができる。
また、油圧制御装置1によると、方向切換弁11が排出位置に切り換えられて圧油の排出が行われているときに、連通流路Xとなる切換弁側流体室12hの油圧が高くなると流量制御弁12の変位により連通開度が絞られて、その油圧が低減されることになる。このため、リフトシリンダから排出する流量を所定の範囲に調整することができる。これにより、フォークの下降速度を調整できる下降圧力補償機能を実現することができる。
また、油圧制御装置1によると、開閉弁13が着座する弁座12eを連通流路室12aに一体的に形成することで、開閉弁13によりシリンダ側貫通孔12bと切換弁側貫通孔12cとの間の連通流路Xを遮断又は開通するための構造をより簡素化することができる。
また、油圧制御装置1によると、開閉弁13の内部に導圧路13bを形成しているため、方向切換弁11が中立位置及び供給位置のときにシリンダ側流路32の油圧を背圧室12dに作用させることを簡素な構成で実現することができる。
また、油圧制御装置1によると、それぞれ独立して構成されるパイロット流路(パイロット圧生成手段)20と電磁切換弁(切換手段)21とが協働して作動することで弁制御手段13が実現されることになる。そして、パイロット流路20によってパイロット圧力が生成している状態で電磁切換弁21を切り換えることで、電磁切換弁21による切り換えタイミングで速やかにパイロット圧力を背圧室12dに作用させることができる。このため、開閉弁13の応答特性を高めることができる。
また、油圧制御装置1によると、背圧室12dとタンクとを連通可能なパイロット流路20を設けるという簡素な構成で、シリンダ側流路32の油圧よりも低いパイロット圧力を生成するパイロット圧生成手段を容易に実現することができる。そして、方向切換弁11通過前の切換弁側流路33の油圧と方向切換弁11通過後の第2タンク流路38の油圧(タンクの油圧)との圧力差を所定の範囲に保つように流量制御弁12を作動させることができる。このため、フォークに作用する負荷圧力の大きさによらず、方向切換弁11の操作量に応じてフォークの下降速度を調整できる下降圧力補償機能を実現することができる。
また、油圧制御装置1によると、方向切換弁11が排出位置へと切り換えられる際におけるスプール孔23内でのスプール22の変位に伴ってスプール孔23へのパイロット流路20の開口している部分を介して背圧室12dとタンクとの連通状態を徐々に変更することができる。これにより、方向切換弁11を排出位置に切り換え始めた初期段階において、開閉弁13を徐々に開く状態になるように作動させる構成を実現でき、微操作性を向上させることができる。即ち、フォーク下降時の微操作性を向上させることができる。また、ランド部(第2ランド部22b)が形成されたスプール22の変位とともにパイロット流路20のスプール孔23への開口面積が変更されるものであるため、方向切換弁11を排出位置に切り換え始めた初期段階における微操作性を向上させることを簡素な構成で実現することができる。
また、油圧制御装置1によると、背圧室12dとパイロット流路20との間にリーク量の少ない電磁切換弁21を配設することで切換手段が構成されているため、タンクへの圧油の漏れを抑制することができる。また、これにより、方向切換弁11が中立位置のときにおけるフォークの没入動作量(自然降下動作量)を小さくすることができる。
また、油圧制御装置1によると、方向切換弁11が供給位置に切り換えられたときは、シリンダ側貫通孔12bと切換弁側貫通孔12cとの間の連通流路Xを通過しない経路である流路34を通過して圧油がシリンダ側流路32へと供給される。このため、流路34を単純な流路構成にすることで、リフトシリンダに圧油を供給する際の圧力損失を低減することができる。
(第2実施形態)
図5は第2実施形態に係る油圧制御装置を例示した断面図である。図5に示す油圧制御装置2は、弁支持室35の内壁と流量制御弁12の外周面との間に補助連通流路Yが形成されている点で第1実施形態と異なる。当該補助連通流路Yは、弁支持室35の内壁に形成された溝と流量制御弁12の外周面に形成された溝とを含んで形成される流路である。第2実施形態においては、第1実施形態と同一部品には同一の符号を付して説明を省略する。
上述した油圧制御装置2の作動について説明する。
図5に示すように方向切換弁11が中立位置の状態のときは、第1実施形態と同様に、開閉弁13の先端部13aが弁座12eに当接して閉弁した状態で保持される。また、流量制御弁12は、バネ17により付勢されることにより、当該流量制御弁12の外周面に段状に形成されている補助弁部12gを、弁支持室35の内壁に形成されている補助弁座35gに当接して着座した状態を維持している。そのため、補助連通流路Yは閉塞した状態となっている。これにより、リフトシリンダから圧油が流出する方向における流れが開閉弁13及び補助弁部12gの当接部にて遮断されているため、リフトシリンダの没入動作が抑制され、フォークが所定の高さに保持されることになる。
また、中立位置から供給位置に方向切換弁11を切り換える場合の作動については第1実施形態と同様となる。
次に、図5に示す中立位置から排出位置に方向切換弁11を切り換える場合の作動について説明する。図6は、方向切換弁11が排出位置の状態における油圧制御装置1の断面図である。
方向切換弁11が排出位置に切り換えられると、開閉弁13が弁座12eから離座してシリンダ側貫通孔12bから切換弁側貫通孔12cを結ぶ連通流路が連通することになる。
方向切換弁11が排出位置に切り換えられて圧油の排出が行われているときに、連通流路となる切換弁側流体室12hの油圧が高くなると、流量制御弁12に対する切換弁側流体室12h側からの付勢力が大きくなり、バネ17を縮める方向(図中左方向)に変位し、シリンダ側流路32と切換弁側流体室12hとの間の連通開度αが絞られる。このとき補助弁部12gは流量制御弁12と共に変位し、補助弁座35gに着座した状態から離座した状態に移行する。そのため、補助連通流路Yが遮断された状態から、開通状態に移行することになる。
流量制御弁12の変位が小さく連通開度αの絞りが小さい場合においては、シリンダ側貫通孔12bを通って切換弁側流体室12hに流れる流量に比べ、補助連通流路Yを通って流れる流量は相対的に小さいものである。流量制御弁12の変位が大きくなり連通開度αの絞りが大きくなった場合においては、補助連通流路Yの流れは略一定に保たれるためシリンダ側貫通孔12bを通って切換弁側流体室12hに流れる流量に比べ、相対的に補助連通流路Yを流れる流量は大きくなる。これより、流量制御弁12が過剰に変位することによりシリンダ側貫通孔12bを通る流路が完全に絞られて遮断された場合においても、補助連通流路Yを介してシリンダ側流路32から切換弁側流路33への排出流量を一定量確保することができる。したがって、下降動作中にシリンダ側流路から切換弁側流路への排出が一時的に停止することがなく、下降動作を滑らかに行うことが可能である。また、流量制御弁12の補助弁部12gが着座する補助弁座35gを弁支持室35に一体的に形成することで、補助弁部12gにより補助連通流路Yを遮断するための構造をより簡素化でき、容易に作製可能である。
(第3実施形態)
図7は第3実施形態に係る油圧制御装置を例示した断面図である。図7に示す油圧制御装置3は、流量制御弁12の端部にダンパ40を備える点で、第1実施形態と異なる。また、第1実施形態と異なる形状の開閉弁43を備えるものである。第3実施形態においては、第1実施形態と同一部品には同一の符号を付して説明を省略する。
油圧制御装置3においては、流量制御弁12における背圧室12d側端部と逆側に位置する端部に弁支持室35を区画して油室35hを形成するダンパ40を備えている。ダンパ40は、流量制御弁12の変位に伴って変位するように取り付けられており、油室35h内部と外部とを連通する第1流路40aと第2流路40bとが形成されている。第1流路40aは、連通流路室12aから油室35hに向かってのみ流通可能とする逆止弁40cを備えた流路である。また、第2流路40bは、油室35hから切換弁側流路33に連通するように形成された流路抵抗の大きいオリフィスである。そのため、油室35hに流体が流入する際は、第1流路40aから低い流路抵抗で流入する。また、油室35hから流体が排出される際は、第1流路40aは逆止弁40cにより遮断されるため、流路抵抗の大きい第2流路40bから流出することになる。
この構成により、流量制御弁12が油室35hの容積を小さくする方向、即ち連通開度を大きくする方向(図中右方向)に変位する場合においては、油室35h内の圧油は第2流路40bを介して絞られて切換弁側流路33へと流出することになる。これより、流量制御弁12の当該方向へ変位する際にダンパ40により受ける変位抵抗が大きくなり変位速度は小さくなる。一方、流量制御弁12が油室35hの容積を大きくする方向、即ち連通開度を小さくする方向(図中左方向)に変位する場合においては、油室35h内に流路抵抗の小さい第1流路40aを介して圧油が流入することになる。これより、流量制御弁12の当該方向へ変位する際においてはダンパ40により受ける変位抵抗は少ない。
これにより、方向切換弁11が排出位置へと切り換えられて弁制御手段14の作動に基づいて流量制御弁12が変位したときに発生してしまい易い油圧脈動をこのダンパ40によって減衰させることができる。このため、フォークに荷を積載した状態でそのフォークの下降操作を行っている際に、積載している荷に上記油圧脈動に伴う振動が発生することを抑制することができる。また、逆止弁40cを備える第1流路40aとオリフィスからなる第2流路40bとにより、油室35hに流体が流入する際の流路抵抗に比べ、油室35hから流体が排出される際の流路抵抗を大きくするための構造を簡素化でき、容易に形成することができる。
また、開閉弁43の外周面には、シリンダ側貫通孔12bと切換弁側貫通孔12cとの間の連通流路Xの遮断時においてシリンダ側貫通孔12bと連通するような溝部43aが形成されている。溝部43aは、連通流路Xを遮断する方向(図中右方向)に開閉弁43を付勢するための力が作用する遮断圧作用壁面43bと、連通流路Xを開通する方向(図中左方向)に開閉弁43を付勢するための力が作用する開通圧作用壁面43cと、溝底43dからなり、遮断圧作用壁面43bの面積は、開通圧作用壁面43cの面積に比べて小さくなるように形成されている。また、溝底43dにはシリンダ側流路32の流体の圧力を背圧室12dに導くことができる貫通孔である導圧路43eが形成されている。尚、本実施形態のように遮断圧作用壁面43b、開通圧作用壁面43cが開閉弁43の変位方向と垂直に形成されている場合に限らず、遮断圧作用壁面43bの開閉弁43の変位方向を法線方向とする平面への投影面積が、開通圧作用壁面43cの当該投影面積より小さくなるように形成されていればよい。
これにより、溝部43a内においては、開閉弁43の変位方向への受圧面積差によって連通流路Xを開通させる向きにより大きな付勢力が働くことになり、開閉弁43が連通流路Xを遮断する方向に変位する際においては、当該付勢力が変位抵抗として作用する。また、開通方向へ変位する場合に比べ、遮断方向に変位する場合においては、壁面43bに比べて開閉弁43の径方向外側に突出した状態で形成されている壁面43cはより大きな流体抵抗を受けることになる。したがって、遮断の際における開閉弁43の変位を比較的低速度で行うようにすることができ、連通流路X遮断時の衝撃を小さくすることが可能となる。
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能なものである。また、本発明は、例えば、次のように変更して実施してもよい。
(1)本実施形態においては、フォークリフトにおけるフォーク昇降動作用のリフトシリンダを作動させるために適用した場合について説明したが、他の用途にも本発明を適用することができる。
(2)弁支持室、流量制御弁、開閉弁の形状については、必ずしも本実施形態の通りでなくてもよく、適宜変更して実施することができる。
(3)弁制御手段のパイロット圧調整手段については、必ずしもタンクの流体圧力を背圧室に誘導するパイロット流路でなくても、本発明を適用することができる。また、弁制御手段の切換手段についても、必ずしも電磁切換弁によるものでなくても本発明を適用することができる。例えば、電磁切換弁の代わりに油圧パイロット方式の切換弁を用いて構成されているものであってもよい。この場合、電気配線を用いることなく弁制御手段の切換が可能である。
(4)方向切換弁が電磁比例制御弁で構成されているものであってもよい。この場合、電磁油圧制御システムを構成することができる。
本発明の第1実施形態に係る油圧制御装置を例示した断面図である。 図1に示す油圧制御装置の作動を説明する断面図である。 図1に示す油圧制御装置の作動を説明する断面図である。 図1に示す油圧制御装置の作動を説明する断面図である。 本発明の第2実施形態に係る油圧制御装置を例示した断面図である。 図5に示す油圧制御装置の作動を説明する断面図である。 本発明の第3実施形態に係る油圧制御装置を例示した断面図である。
符号の説明
1、2、3 油圧制御装置
10 バルブハウジング
11 方向切換弁
12 流量制御弁
12a 連通流路室
12b シリンダ側貫通孔
12c 切換弁側貫通孔
12d 背圧室(連通流路室、弁支持室)
12h 切換弁側流体室(連通流路室)
13 開閉弁
14 弁制御手段
16、17 バネ(付勢手段)
20 パイロット流路(パイロット圧生成手段)
21 電磁切換弁(切換手段)
22 スプール(方向切換弁)
32 シリンダ側流路
33 切換弁側流路
35 弁支持室
35a シリンダ側開口部
35b 切換弁側開口部
40 ダンパ
43 開閉弁

Claims (17)

  1. シリンダへの流体の給排を制御するための方向切換弁を有し、当該方向切換弁が、ポンプからの流体を前記シリンダのボトム室に供給する供給位置と前記シリンダのボトム室からタンクに流体を排出する排出位置と前記シリンダに対して流体を給排しない中立位置とに切り換えられる油圧制御装置であって、
    前記シリンダに連通するシリンダ側流路と前記方向切換弁に連通する切換弁側流路との間に形成され、前記シリンダ側流路に連続するシリンダ側開口部と前記切換弁側流路に連続する切換弁側開口部とを有する弁支持室と、
    前記弁支持室内に変位可能に配置され、内部に形成された連通流路室を有するとともに、当該連通流路室内から前記シリンダ側開口部に連通可能に形成されたシリンダ側貫通孔と当該連通流路室内から前記切換弁側開口部に連通可能に形成された切換弁側貫通孔とを有する流量制御弁と、
    前記連通流路室内に変位可能に配置され、当該連通流路室を区画して背圧室を形成するとともに、前記シリンダ側貫通孔と前記切換弁側貫通孔との間の連通流路を遮断可能な開閉弁と、
    前記流量制御弁と前記開閉弁の作動を制御する弁制御手段と、
    を備え、
    前記流量制御弁と前記弁支持室とは、当該流量制御弁の変位量に応じて、前記シリンダ側開口部と前記シリンダ側貫通孔との間で、前記シリンダ側流路と前記連通流路室との間の連通開度を変更する絞りを形成し、
    前記弁制御手段は、前記方向切換弁が前記中立位置及び前記供給位置のときは前記連通流路を遮断することとなる方向に向かって前記開閉弁を付勢するよう前記シリンダ側流路の流体圧力を前記背圧室に作用させ、前記方向切換弁が前記排出位置のときは前記連通流路を開通することとなる方向に向かって前記開閉弁を変位させるよう前記シリンダ側流路の流体圧力よりも低いパイロット圧力を前記背圧室に作用させることを特徴とする油圧制御装置。
  2. 前記流量制御弁は、前記切換弁側流路の流体圧力が高くなると、当該切換弁側流路の流体圧力に応じて変位することで前記連通開度が小さくなることを特徴とする請求項1に記載の油圧制御装置。
  3. 前記背圧室には、前記連通流路を遮断することとなる方向に向かって前記開閉弁を付勢する付勢手段が配設されていることを特徴とする請求項1又は請求項2に記載の油圧制御装置。
  4. 前記背圧室には、前記連通開度が大きくなる方向に向かって前記流量制御弁を付勢する付勢手段が配設されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の油圧制御装置。
  5. 前記連通流路室は、前記開閉弁が当接して着座することで前記連通流路を遮断することとなる弁座を形成していることを特徴とする請求項1乃至請求項4のいずれか1項に記載の油圧制御装置。
  6. 前記開閉弁には、当該開閉弁内部に形成されて、前記シリンダ側流路と前記背圧室とを連通する導圧路が形成されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の油圧制御装置。
  7. 前記弁制御手段は、
    前記シリンダ側流路の流体圧力よりも低い前記パイロット圧力を生成するパイロット圧生成手段と、
    前記方向切換弁が前記中立位置及び前記供給位置のときは前記シリンダ側流路の流体圧力を前記背圧室に作用させ、前記方向切換弁が前記排出位置のときは前記パイロット圧力を前記背圧室に作用させるよう切り換える切換手段と、
    を備えていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の油圧制御装置。
  8. 前記パイロット圧生成手段は、前記切換手段の切り換えに伴って前記背圧室とタンクとを連通可能なパイロット流路であることを特徴とする請求項7に記載の油圧制御装置。
  9. 前記方向切換弁は、スプールの変位に伴って切り換えられるスプール弁であって、
    前記パイロット流路は、前記スプールが変位可能に配置されるスプール孔に開口するとともに、前記方向切換弁が前記排出位置へと切り換えられる際の前記スプールの変位に伴って前記背圧室とタンクとを連通することを特徴とする請求項8に記載の油圧制御装置。
  10. 前記パイロット流路における前記スプール孔への開口は、前記スプールに形成されたランド部を介して、前記スプールの変位とともに開口面積を変更可能であることを特徴とする請求項9に記載の油圧制御装置。
  11. 前記切換手段は、前記背圧室と前記パイロット流路との間を連通及び遮断するよう切り換え可能な電磁切換弁であることを特徴とする請求項8乃至請求項10のいずれか1項に記載の油圧制御装置。
  12. 前記弁支持室の内壁と前記流量制御弁の外周面との間に形成され、前記シリンダ側流路から前記切換弁側流路に連通可能な補助連通流路を更に備え、
    前記補助連通流路は、当該内壁の一部と当該外周面の一部とが接触して遮断された状態において、前記流量制御弁が前記連通開度を小さくするように変位したときに、開通した状態に移行することを特徴とする請求項1乃至請求項11のいずれか1項に記載の油圧制御装置。
  13. 前記流量制御弁は、当該流量制御弁の外周面に段状に形成されて当該流量制御弁とともに前記補助連通流路内を変位可能な補助弁部を有し、
    前記弁支持室は、前記補助連通流路内において、前記補助弁部が当接して着座することで当該補助連通流路を遮断することとなる補助弁座を形成しており、
    前記補助連通流路は、遮断された状態において、前記流量制御弁が前記連通開度を小さくするように変位したときに、前記補助弁部が当該補助弁座から離座して開通した状態に移行することを特徴とする請求項12に記載の油圧制御装置。
  14. 前記シリンダ側流路と前記切換弁側流路との間は、前記連通流路又は前記補助連通流路を経由する経路のいずれとも異なる経路として形成された他の流路を介しても接続され、
    前記方向切換弁が前記供給位置に切り換えられたときにポンプからの流体が前記他の流路を介して前記シリンダ側流路へと供給されることを特徴とする請求項1乃至請求項13のいずれか1項に記載の油圧制御装置。
  15. 前記流量制御弁は、当該流量制御弁における前記背圧室側端部と逆側に位置する端部に配置され前記弁支持室を区画して油室を形成するダンパを備え、
    前記ダンパは、前記油室内部と当該油室外部とを連通する流路を有しており、
    前記油室に流体が流入する際の流路抵抗に比べ、前記油室から流体が排出される際の流路抵抗が大きいことを特徴とする請求項1乃至請求項14のいずれか1項に記載の油圧制御装置。
  16. 前記油室内部と当該油室外部とを連通する流路は、当該油室と前記連通流路室とを連通する第1流路と、当該油室と前記切換弁側流路とを連通する第2流路とからなり、
    前記第1流路は、前記連通流路室から前記油室に向かってのみ流通可能とする逆止弁を備えた流路であり、
    前記第2流路は、前記油室から前記切換弁側流路に連通するように形成されたオリフィスであることを特徴とする請求項15に記載の油圧制御装置。
  17. 前記開閉弁は、前記連通流路の遮断時において前記シリンダ側貫通孔と連通するように形成された溝部を有し、
    当該溝部は、前記連通流路を遮断する方向に当該開閉弁を付勢するための力が作用する遮断圧作用壁面と、前記連通流路を開通する方向に当該開閉弁を付勢するための力が作用する開通圧作用壁面とを有し、
    前記遮断圧作用壁面は、当該開閉弁の変位方向を法線方向とする平面への投影面積が、前記開通圧作用壁面の当該投影面積より小さいことを特徴とする請求項1乃至請求項16のいずれか1項に記載の油圧制御装置。
JP2006085209A 2006-03-27 2006-03-27 油圧制御装置 Withdrawn JP2007263142A (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2006085209A JP2007263142A (ja) 2006-03-27 2006-03-27 油圧制御装置
EP20070740755 EP1999385B1 (en) 2006-03-27 2007-03-26 Hydraulic control apparatus
US12/086,042 US8109198B2 (en) 2006-03-27 2007-03-26 Hydraulic control apparatus
CA2624265A CA2624265C (en) 2006-03-27 2007-03-26 Hydraulic control apparatus
AU2007236781A AU2007236781B2 (en) 2006-03-27 2007-03-26 Hydraulic control apparatus
PCT/JP2007/057319 WO2007116846A1 (en) 2006-03-27 2007-03-26 Hydraulic control apparatus
CN2007800010711A CN101351650B (zh) 2006-03-27 2007-03-26 液压控制装置
KR1020087007847A KR100976358B1 (ko) 2006-03-27 2007-03-26 유압 제어 장치
TW96110436A TWI319794B (en) 2006-03-27 2007-03-27 Hydraulic control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085209A JP2007263142A (ja) 2006-03-27 2006-03-27 油圧制御装置

Publications (1)

Publication Number Publication Date
JP2007263142A true JP2007263142A (ja) 2007-10-11

Family

ID=38191279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085209A Withdrawn JP2007263142A (ja) 2006-03-27 2006-03-27 油圧制御装置

Country Status (9)

Country Link
US (1) US8109198B2 (ja)
EP (1) EP1999385B1 (ja)
JP (1) JP2007263142A (ja)
KR (1) KR100976358B1 (ja)
CN (1) CN101351650B (ja)
AU (1) AU2007236781B2 (ja)
CA (1) CA2624265C (ja)
TW (1) TWI319794B (ja)
WO (1) WO2007116846A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244492A (zh) * 2012-12-29 2013-08-14 柳州柳工液压件有限公司 定量泵负载敏感液压系统三通压力补偿器
JPWO2015075839A1 (ja) * 2013-11-25 2017-03-16 株式会社島津製作所 流量制御弁
WO2020044701A1 (ja) * 2018-08-30 2020-03-05 Kyb株式会社 流体圧制御装置
CN114364883A (zh) * 2019-09-06 2022-04-15 Smc 株式会社 流量控制器及具备该流量控制器的驱动装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671610B2 (ja) 2010-05-17 2015-02-18 ボルボ コンストラクション イクイップメント アーベー 建設機械の油圧制御弁
TR201708846A2 (tr) * 2017-06-15 2017-09-21 Hema Enduestri Anonim Sirketi Hi̇droli̇k kaldiricilar i̇çi̇n bi̇r kontrol valfi̇
CN108119428B (zh) * 2017-11-10 2019-12-31 武汉船用机械有限责任公司 一种大流量比例方向阀
CN111936948B (zh) * 2018-03-26 2024-07-23 株式会社博迈立铖 流量控制装置
EP3792503B1 (en) * 2018-05-10 2023-09-06 Shimadzu Corporation Priority flow control valve

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226311B2 (ja) * 1973-08-24 1977-07-13
DE2461021A1 (de) * 1974-12-21 1976-06-24 Bosch Gmbh Robert Vorrichtung zur steuerung wenigstens einer hydraulischen stelleinrichtung
US4716929A (en) * 1987-05-04 1988-01-05 B. W. Rogers Company Flow control valve
US5048395A (en) 1987-07-07 1991-09-17 Kayaba Industry Co. Ltd. Control device for cylinder
US4955461A (en) * 1988-10-31 1990-09-11 Vickers, Incorporated Valve system for preventing uncontrolled descent in fork lift trucks
JP2557000B2 (ja) * 1990-05-15 1996-11-27 株式会社小松製作所 操作弁装置
JP2581853Y2 (ja) * 1992-05-28 1998-09-24 株式会社小松製作所 圧力補償弁
JPH06193606A (ja) * 1992-12-22 1994-07-15 Komatsu Ltd 圧力補償弁を備えた操作弁
JPH08159105A (ja) 1994-11-30 1996-06-18 Toyooki Kogyo Co Ltd 液圧制御弁装置
DE4446145A1 (de) * 1994-12-23 1996-06-27 Bosch Gmbh Robert Hydraulische Steuerung in Monoblockbauweise zum Heben und Senken einer Last mit mindestens zwei elektromagnetisch betätigbaren Proportionalwegeventilelementen
US5579642A (en) * 1995-05-26 1996-12-03 Husco International, Inc. Pressure compensating hydraulic control system
DE69824066T2 (de) * 1997-03-21 2005-05-25 Kabushiki Kaisha Toyota Jidoshokki, Kariya Hydraulisches Steuergerät für Flurförderzeuge
JPH10338491A (ja) * 1997-06-10 1998-12-22 Toyota Autom Loom Works Ltd フォークリフトの荷役用油圧装置
DE19800721A1 (de) 1998-01-12 1999-07-15 Danfoss As Steuervorrichtung für einen hydraulischen Motor
DE19804398A1 (de) * 1998-02-04 1999-08-05 Linde Ag Ventilanordnung für die Arbeitshydraulik eines Arbeitsfahrzeugs
JP2000179504A (ja) * 1998-12-16 2000-06-27 Kayaba Ind Co Ltd 油圧制御装置
JP3679300B2 (ja) * 1999-06-10 2005-08-03 日立建機株式会社 可変容量型液圧回転機の容量制御弁
DE19955524B4 (de) 1999-11-18 2008-04-17 Robert Bosch Gmbh Vorrichtung zur Steuerung eines hydraulischen Volumenstroms eines belasteten Arbeitsmittels
JP2001316096A (ja) 2000-02-28 2001-11-13 Toyota Industries Corp 産業車両の油圧装置
JP3737034B2 (ja) 2001-02-07 2006-01-18 日本発条株式会社 結合窓と、それを用いた導波管型インピーダンス整合器
JP2002327706A (ja) * 2001-04-27 2002-11-15 Kayaba Ind Co Ltd 油圧制御装置
DE50309629D1 (de) * 2002-03-04 2008-05-29 Bosch Rexroth Ag Ventilanordnung
JP4359123B2 (ja) 2003-11-17 2009-11-04 株式会社豊田自動織機 産業車両の油圧制御装置
DE102004048642A1 (de) 2004-10-04 2006-04-06 Bosch Rexroth Aktiengesellschaft Hydraulische Steueranordnung
JP4559825B2 (ja) 2004-11-08 2010-10-13 株式会社豊田自動織機 油圧制御装置
US7913612B2 (en) * 2005-12-14 2011-03-29 Kayaba Industry Co., Ltd. Actuator control device
JP4729456B2 (ja) * 2006-08-21 2011-07-20 株式会社豊田自動織機 油圧制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244492A (zh) * 2012-12-29 2013-08-14 柳州柳工液压件有限公司 定量泵负载敏感液压系统三通压力补偿器
JPWO2015075839A1 (ja) * 2013-11-25 2017-03-16 株式会社島津製作所 流量制御弁
WO2020044701A1 (ja) * 2018-08-30 2020-03-05 Kyb株式会社 流体圧制御装置
CN114364883A (zh) * 2019-09-06 2022-04-15 Smc 株式会社 流量控制器及具备该流量控制器的驱动装置

Also Published As

Publication number Publication date
CA2624265A1 (en) 2007-10-18
WO2007116846A1 (en) 2007-10-18
US8109198B2 (en) 2012-02-07
CN101351650B (zh) 2011-04-20
TWI319794B (en) 2010-01-21
KR20080055873A (ko) 2008-06-19
TW200817593A (en) 2008-04-16
KR100976358B1 (ko) 2010-08-18
CN101351650A (zh) 2009-01-21
EP1999385A1 (en) 2008-12-10
EP1999385B1 (en) 2013-07-03
CA2624265C (en) 2010-04-06
AU2007236781A1 (en) 2007-10-18
AU2007236781B2 (en) 2009-11-05
US20090242050A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP2007263142A (ja) 油圧制御装置
JP4729456B2 (ja) 油圧制御装置
JP2006336870A (ja) 油圧制御装置
JP4441386B2 (ja) 流量切換型フローディバイダ
KR102342222B1 (ko) 유량 조정 밸브 및 밸브 구조체
JP4559825B2 (ja) 油圧制御装置
JP2009063115A (ja) 流体圧制御装置
JP4359123B2 (ja) 産業車両の油圧制御装置
JPH03125001A (ja) 油圧駆動システム
JP6725081B2 (ja) コントロールバルブ
JP2008089030A (ja) 油圧制御装置
US20190376534A1 (en) Electromagnetic pressure reducing valve and fluid pressure control device including electromagnetic pressure reducing valve
JP3981671B2 (ja) 油圧制御装置
JP4083963B2 (ja) 油圧制御装置
JP2006052763A (ja) 産業機械用制御回路
JP4083962B2 (ja) 油圧制御装置
JP2007177948A (ja) ロードセンシング方式の油圧制御装置に用いられる油圧制御弁
JP2005140253A (ja) 油圧制御装置
JP2002048102A (ja) 油圧制御装置
JP2004204923A (ja) 油圧制御装置
JP2003278708A (ja) 油圧制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100624