JP2007263084A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2007263084A
JP2007263084A JP2006092741A JP2006092741A JP2007263084A JP 2007263084 A JP2007263084 A JP 2007263084A JP 2006092741 A JP2006092741 A JP 2006092741A JP 2006092741 A JP2006092741 A JP 2006092741A JP 2007263084 A JP2007263084 A JP 2007263084A
Authority
JP
Japan
Prior art keywords
steam
supply system
compressor
turbine
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092741A
Other languages
Japanese (ja)
Inventor
Toshihiko Fukushima
敏彦 福島
Koichi Chino
耕一 千野
Shigeo Hatamiya
重雄 幡宮
Takanori Shibata
貴範 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006092741A priority Critical patent/JP2007263084A/en
Publication of JP2007263084A publication Critical patent/JP2007263084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system capable of varying a supply ratio of heat and electricity. <P>SOLUTION: Supply water 10 supplied by a water-supply pump 9 is made overheated steam with exhaust gas 7 from an outlet of a gas turbine 3 used as a heat source of an exhaust gas boiler 8, and a steam turbine 11 is driven to operate a steam compressor 12. The steam compressor 12 generates the overheated steam by compressing water cooling medium 17, which has been reduced in pressure at an expansion valve 14 and vaporized with a heat source of exhaust heat 18 or the like in an evaporator 13, mixes it with overheated steam at an outlet of the steam turbine 11 and supplies it to steam utilizing equipment. As a generator motor 15 is connected to the steam turbine 11, when a demand for electricity increases more than that for steam, the generator motor 15 can be operated as a power generator to increase electric output. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱電供給システムに関するものである。   The present invention relates to a thermoelectric supply system.

従来の圧縮機で水蒸気を圧縮し高温の水蒸気を得る熱電供給システムでは、特公平7−4212号公報に記載されているように蒸気の供給と電気の供給はバッチで行うように構成されている。また、蒸気タービンの復水器の排熱をヒートポンプで回収する熱電供給システムにおいても、特開2000−251125号公報に記載されているように発電量と回収熱量の割合は最初のシステム構成で決定するよう構成されている。   In a thermoelectric supply system that compresses water vapor with a conventional compressor and obtains high-temperature water vapor, steam supply and electricity supply are performed in batch as described in Japanese Patent Publication No. 7-4212. . Also, in a thermoelectric supply system that recovers exhaust heat of a steam turbine condenser with a heat pump, the ratio between the amount of power generation and the amount of recovered heat is determined by the initial system configuration as described in Japanese Patent Laid-Open No. 2000-251125. It is configured to

特公平7−4212号公報Japanese Patent Publication No. 7-4212 特開2000−251125号公報JP 2000-251125 A

従来の熱電供給システムでは、電気と熱の供給割合が固定されていたので、夏場に電力の需要が増加した場合には発電機を駆動する原動機の出力が増加して排熱量が増加し供給熱が余剰となり、冬場に供給熱量の需要が増加した場合には、電気が余剰となって資源に無駄を生じる問題があった。   In conventional thermoelectric supply systems, the supply ratio of electricity and heat is fixed, so if the demand for power increases in summer, the output of the prime mover that drives the generator increases, increasing the amount of exhaust heat and supplying heat When there is a surplus and the demand for the amount of heat supplied increases in winter, there is a problem that electricity becomes surplus and wastes resources.

また、製造プロセスによっては、製造過程で電気と熱の需要割合が変化する場合があり、従来は電力が不足する場合には売電を購入し、余剰熱が発生する場合には廃棄する等の経済的にも無駄を生じる問題があった。   Also, depending on the manufacturing process, the demand ratio of electricity and heat may change during the manufacturing process. Conventionally, when power is insufficient, power sales are purchased, and when excess heat is generated, it is discarded. There was a problem that wasted economically.

本発明の目的は、電力および熱量の需要の変化に対応可能な熱電供給システムを提供することにある。   The objective of this invention is providing the thermoelectric supply system which can respond to the change of the demand of electric power and heat quantity.

上記目的は、発電機を駆動する原動機の排熱で生成した蒸気を動力源とする蒸気タービンで駆動される圧縮機で水蒸気を圧縮し、高温の水蒸気として該蒸気タービンの出口蒸気と共に蒸気利用設備に供給する熱電供給システムにおいて、蒸気タービンに発電電動機を接続したことにより達成される。   The purpose is to compress steam with a compressor driven by a steam turbine powered by steam generated by exhaust heat from a prime mover driving a generator, and use steam together with the outlet steam of the steam turbine as high-temperature steam. This is achieved by connecting a generator motor to the steam turbine in the thermoelectric supply system for supplying to the steam turbine.

また上記目的は、発電電動機および圧縮機はクラッチを介して蒸気タービンで駆動するようにしたことにより達成される。   The above object is achieved by the fact that the generator motor and the compressor are driven by a steam turbine via a clutch.

また上記目的は、大歯車にこれと噛合う複数のピニオンを配置し、各ピニオンの軸に圧縮機羽根車とタービン羽根車を取付けたことにより達成される。   The above object is achieved by arranging a plurality of pinions that mesh with the large gears, and attaching a compressor impeller and a turbine impeller to the shaft of each pinion.

また上記目的は、発電機を駆動する原動機の排熱で生成した蒸気を動力源とする蒸気タービンで駆動される圧縮機で水蒸気を圧縮し、高温の水蒸気として該蒸気タービンの出口蒸気と共に蒸気利用設備に供給する熱電供給システムにおいて、大歯車の回転軸に発電電動機の回転軸を接続し、該大歯車にこれに噛合う複数のピニオンを配置して各ピニオンの軸に圧縮機羽根車とタービン羽根車を取付けたことにより達成される。   In addition, the above object is to compress steam with a compressor driven by a steam turbine that uses steam generated by exhaust heat of a prime mover driving a generator as a power source, and use the steam together with the outlet steam of the steam turbine as high-temperature steam. In a thermoelectric supply system for supplying equipment, a rotating shaft of a generator motor is connected to a rotating shaft of a large gear, and a plurality of pinions meshing with the large gear are arranged, and a compressor impeller and a turbine are arranged on each pinion shaft. This is achieved by installing an impeller.

本発明によれば、電力および熱量の需要の変化に対応可能な熱電供給システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric supply system which can respond to the change of the demand of electric power and heat quantity can be provided.

以下、本発明の実施例を説明する   Examples of the present invention will be described below.

図1は本発明の一実施形態に係る熱電供給システムの構成図である。図1に示すように空気圧縮機1で圧縮された外気6は燃焼器2に搬送され、投入された都市ガスや灯油等の燃料5を燃焼して高温,高圧のガスとなった後、ガスタービン3を駆動して発電機4で発電する。この時、ガスタービン3出口の排気ガス7は640℃程度であるので排ガスボイラ8の熱源として、給水ポンプ9により7MPa程度に加圧された30℃程度の供給水
10を500℃程度の過熱蒸気とすることができる。
FIG. 1 is a configuration diagram of a thermoelectric supply system according to an embodiment of the present invention. As shown in FIG. 1, the outside air 6 compressed by the air compressor 1 is conveyed to the combustor 2 and burned with the fuel 5 such as city gas or kerosene to become high-temperature and high-pressure gas. The turbine 3 is driven to generate power with the generator 4. At this time, since the exhaust gas 7 at the outlet of the gas turbine 3 is about 640 ° C., as the heat source of the exhaust gas boiler 8, the supply water 10 of about 30 ° C. pressurized to about 7 MPa by the feed water pump 9 is superheated steam of about 500 ° C. It can be.

この過熱蒸気を蒸気タービン11で0.4Mpa 程度まで膨脹させると、蒸気流量1kg/s当り約610kW程度の動力を発生できるので、水蒸気圧縮機12を駆動できる。この水蒸気圧縮機12は、ポンプ16により供給され膨脹弁14で0.20Mpa ,60℃程度に減圧され蒸発器13内で排熱18等を熱源として蒸発した水冷媒17を0.4Mpa程度に圧縮して過熱蒸気を生成する。このとき、水蒸気圧縮機12を中間冷却4段圧縮機にすると、過熱蒸気温度は210℃程度になるので蒸気タービン11出口の170℃程度の過熱蒸気と混合して190℃程度の蒸気として蒸気利用設備(図示せず)に供給できる。   When this superheated steam is expanded to about 0.4 Mpa by the steam turbine 11, power of about 610 kW can be generated per 1 kg / s of the steam flow rate, so that the steam compressor 12 can be driven. This water vapor compressor 12 compresses water refrigerant 17 which is supplied by a pump 16 and decompressed by an expansion valve 14 to about 0.20 Mpa and about 60 ° C. and evaporated in the evaporator 13 using exhaust heat 18 and the like as a heat source to about 0.4 Mpa. To produce superheated steam. At this time, if the steam compressor 12 is an intermediate-cooled four-stage compressor, the superheated steam temperature is about 210 ° C., so it is mixed with superheated steam at about 170 ° C. at the outlet of the steam turbine 11 and used as steam at about 190 ° C. It can be supplied to equipment (not shown).

ここで、蒸気タービン11には発電電動機15が接続されているので、蒸気より電気の需要が増加した場合には、発電電動機15を発電機として作動させ電気出力を増加できる。なお、このとき水蒸気圧縮機12の容量を吸入ベーン(図示せず)等により制御することはいうまでもない。また電気の需要が減少する場合、通常燃焼器2に投入する燃料5を減少させるので、排気ガス7の熱量も減少し蒸気タービン11の出力も低減する。この時、蒸気の需要が減少しない場合や増加した場合、発電電動機15をモータとして作動させ水蒸気圧縮機12の駆動動力を増加させて蒸気供給量の維持や増加を図ることができる。   Here, since the generator motor 15 is connected to the steam turbine 11, when the demand for electricity increases from steam, the generator motor 15 can be operated as a generator to increase the electrical output. At this time, it goes without saying that the capacity of the water vapor compressor 12 is controlled by a suction vane (not shown) or the like. When the demand for electricity decreases, the amount of fuel 5 that is normally charged into the combustor 2 is decreased, so that the amount of heat of the exhaust gas 7 is decreased and the output of the steam turbine 11 is also decreased. At this time, when the demand for steam does not decrease or increases, it is possible to operate the generator motor 15 as a motor and increase the driving power of the steam compressor 12 to maintain or increase the steam supply amount.

図2は本発明の他の実施例に係る熱電供給システムの構成図である。排ガスボイラ8出口に節炭器19を設置し、供給水10を予熱すると共に予熱した供給水10の一部を蒸気タービン11と水蒸気圧縮機12に接続した膨脹機21へ循環し、他は高圧供給ポンプ
20で排ガスボイラ8へ供給するように構成した点が図1に示す実施例と異なる。
FIG. 2 is a configuration diagram of a thermoelectric supply system according to another embodiment of the present invention. A economizer 19 is installed at the outlet of the exhaust gas boiler 8 to preheat the feed water 10 and circulate a part of the preheated feed water 10 to the expander 21 connected to the steam turbine 11 and the steam compressor 12, and the others are high pressure The point which comprised so that it might supply to the exhaust gas boiler 8 with the supply pump 20 differs from the Example shown in FIG.

このように構成すると排ガスボイラ8出口の180℃程度の排ガスから更に熱を回収し蒸気タービン11を駆動できると共に、膨脹機21で動力を回収できるのでシステムの熱効率を向上できる。なおこの時、膨脹機21入口は0.2Mpa,120℃程度である。   With this configuration, heat can be further recovered from the exhaust gas of about 180 ° C. at the outlet of the exhaust gas boiler 8 to drive the steam turbine 11 and power can be recovered by the expander 21, so that the thermal efficiency of the system can be improved. At this time, the inlet of the expander 21 is about 0.2 Mpa and about 120 ° C.

図3は本発明の他の実施例に係る熱電供給システムの構成図である。蒸気タービン11と発電電動機15とをクラッチ22を介して接続し、蒸気タービン11と水蒸気圧縮機
12とをクラッチ23を介して接続すると共に水蒸気圧縮機12の出口に弁24を設けた点が図1に示した実施例と異なる。
FIG. 3 is a configuration diagram of a thermoelectric supply system according to another embodiment of the present invention. The steam turbine 11 and the generator motor 15 are connected via a clutch 22, the steam turbine 11 and the steam compressor 12 are connected via a clutch 23, and a valve 24 is provided at the outlet of the steam compressor 12. This is different from the embodiment shown in FIG.

このように構成すると、電気の需要が極端に高い場合にはクラッチ22を接続し発電電動機15を発電機として作動させると共に、クラッチ23を遮断し、弁24を閉じて水蒸気圧縮機12の運転を停止できるので、蒸気タービン11は発電にのみ使用でき発電量を増加できる。また、発電電動機15をモータとして使用する必要がない場合には、クラッチ22を遮断することにより、発電電動機15を空転させる際に生じる損失をなくすことができる。   With this configuration, when the demand for electricity is extremely high, the clutch 22 is connected and the generator motor 15 is operated as a generator, the clutch 23 is disconnected, the valve 24 is closed, and the steam compressor 12 is operated. Since it can be stopped, the steam turbine 11 can be used only for power generation and can increase the amount of power generation. Further, when it is not necessary to use the generator motor 15 as a motor, the loss caused when the generator motor 15 is idled can be eliminated by disengaging the clutch 22.

図4は本発明の他の実施例に係る熱電供給システムの構成図である。排ガスボイラ8出口に節炭器19を設置し、供給水10を予熱すると共に予熱した供給水10の一部を蒸気タービン11と水蒸気圧縮機12に接続した膨脹機21へ循環し、他は高圧供給ポンプ
20で排ガスボイラ8へ供給するように構成し、水蒸気圧縮機12出口に弁24を、膨脹機21入口に弁25を設置した点が図3に示す実施例と異なる。
FIG. 4 is a configuration diagram of a thermoelectric supply system according to another embodiment of the present invention. A economizer 19 is installed at the outlet of the exhaust gas boiler 8 to preheat the feed water 10 and circulate a part of the preheated feed water 10 to the expander 21 connected to the steam turbine 11 and the steam compressor 12, and the others are high pressure 3 is different from the embodiment shown in FIG. 3 in that the supply pump 20 supplies the exhaust gas boiler 8 with a valve 24 at the outlet of the steam compressor 12 and a valve 25 at the inlet of the expander 21.

このように構成すると電気の需要が極端に高い場合にはクラッチ22を接続し発電電動機15を発電機として作動させると共に、クラッチ23を遮断し、弁24と弁25を閉じて水蒸気圧縮機12の運転を停止できるので、蒸気タービン11は発電にのみ使用でき発電量を増加できる。また排ガスボイラ8出口の180℃程度の排ガスから更に熱を回収し蒸気タービン11を駆動すると共に、水蒸気圧縮機12を駆動する際には膨脹機21で動力を回収できるのでシステムの熱効率を向上できる。   With this configuration, when the demand for electricity is extremely high, the clutch 22 is connected to operate the generator motor 15 as a generator, the clutch 23 is disconnected, the valve 24 and the valve 25 are closed, and the steam compressor 12 Since the operation can be stopped, the steam turbine 11 can be used only for power generation and the power generation amount can be increased. Further, heat is further recovered from the exhaust gas of about 180 ° C. at the outlet of the exhaust gas boiler 8 to drive the steam turbine 11, and when the steam compressor 12 is driven, power can be recovered by the expander 21, so that the thermal efficiency of the system can be improved. .

図5は本発明の他の実施例に係る熱電供給システムの構成図である。水蒸気圧縮機12a,12b,12cを多段に設置し、各段間に噴霧冷却用のノズル29a,29bを設けてポンプ28で噴霧水を供給すると共に、大歯車26に噛合うピニオン27a,27b,
27cを介して蒸気タービン11の動力を水蒸気圧縮機12a,12b,12cに伝達するように構成した点が図3の実施例と異なる。
FIG. 5 is a configuration diagram of a thermoelectric supply system according to another embodiment of the present invention. Steam compressors 12a, 12b, 12c are installed in multiple stages, spray cooling nozzles 29a, 29b are provided between the stages, spray water is supplied by a pump 28, and pinions 27a, 27b meshing with the large gear 26 are provided.
3 is different from the embodiment of FIG. 3 in that the power of the steam turbine 11 is transmitted to the steam compressors 12a, 12b, and 12c through 27c.

このように構成すると、水蒸気圧縮機の駆動動力を低減できると共に、大歯車26とピニオン27aおよび27bのギヤ比を任意に設定できるので各段における水蒸気圧縮機を最適回転速度で運転でき更なる熱効率の向上が図れる。なお圧縮機段数は、運転状況に応じて任意に設定できることはいうまでもない。   With this configuration, the driving power of the steam compressor can be reduced, and the gear ratio between the large gear 26 and the pinions 27a and 27b can be arbitrarily set, so that the steam compressor in each stage can be operated at an optimum rotational speed and further thermal efficiency can be achieved. Can be improved. Needless to say, the number of compressor stages can be set arbitrarily according to the operating conditions.

図6は本発明の他の実施例に係る熱電供給システムの構成図である。水蒸気圧縮機12a,12b,12cを多段に設置し、各段間に噴霧冷却用のノズル29a,29bを設けてポンプ28で噴霧水を供給すると共に、大歯車26に噛合うピニオン27a,27b,
27cを介して蒸気タービン11の動力を水蒸気圧縮機12a,12b,12cに伝達するように構成した点が図4の実施例と異なる。
FIG. 6 is a configuration diagram of a thermoelectric supply system according to another embodiment of the present invention. Steam compressors 12a, 12b, 12c are installed in multiple stages, spray cooling nozzles 29a, 29b are provided between the stages, spray water is supplied by a pump 28, and pinions 27a, 27b meshing with the large gear 26 are provided.
4 differs from the embodiment shown in FIG. 4 in that the power of the steam turbine 11 is transmitted to the steam compressors 12a, 12b, and 12c through 27c.

このように構成すると、水蒸気圧縮機の駆動動力を低減できると共に、大歯車26とピニオン27aおよび27bのギヤ比を任意に設定できるので各段における水蒸気圧縮機を最適回転速度で運転でき更なる熱効率の向上が図れる。   With this configuration, the driving power of the steam compressor can be reduced, and the gear ratio between the large gear 26 and the pinions 27a and 27b can be arbitrarily set, so that the steam compressor in each stage can be operated at an optimum rotational speed and further thermal efficiency can be achieved. Can be improved.

図7は本発明の他の実施例に係る熱電供給システムの構成図である。水蒸気圧縮機12a,12b,12cを多段に設置し、各段間に噴霧冷却用のノズル29a,29bを設けてポンプ28で噴霧水を供給すると共に、大歯車26の回転軸に発電電動機15の回転軸を接続し、大歯車26に噛合うピニオン27aに蒸気タービン11を、ピニオン27bに水蒸気圧縮機12aを、ピニオン27cに水蒸気圧縮機12b,12cを取付けた点が図1の実施例と異なる。   FIG. 7 is a configuration diagram of a thermoelectric supply system according to another embodiment of the present invention. Steam compressors 12a, 12b, and 12c are installed in multiple stages, spray cooling nozzles 29a and 29b are provided between the stages, spray water is supplied by a pump 28, and the generator motor 15 is connected to the rotating shaft of the large gear 26. 1 is different from the embodiment of FIG. 1 in that the steam turbine 11 is attached to the pinion 27a meshing with the large gear 26, the steam compressor 12a is attached to the pinion 27b, and the steam compressors 12b and 12c are attached to the pinion 27c. .

このように構成すると、水蒸気圧縮機の駆動動力を低減でき、大歯車26とピニオン
27aおよび27bのギヤ比を任意に設定できるので各段における水蒸気圧縮機を最適回転速度で運転できると共に、低速の発電電動機15を使用できるため信頼性が向上できる。
With this configuration, the driving power of the water vapor compressor can be reduced, and the gear ratio between the large gear 26 and the pinions 27a and 27b can be arbitrarily set. Therefore, the water vapor compressor in each stage can be operated at the optimum rotational speed, and the low speed can be reduced. Since the generator motor 15 can be used, reliability can be improved.

図8は本発明の他の実施例に係る熱電供給システムの構成図である。大歯車26と発電電動機15をクラッチ22を介して結合し、蒸気タービン11とピニオン27aをクラッチ23を介して結合した点が、図7に示した実施例と異なる。   FIG. 8 is a configuration diagram of a thermoelectric supply system according to another embodiment of the present invention. 7 differs from the embodiment shown in FIG. 7 in that the large gear 26 and the generator motor 15 are coupled via the clutch 22, and the steam turbine 11 and the pinion 27a are coupled via the clutch 23.

このように構成すると、発電電動機15をモータとして使用する必要がない場合には、クラッチ22を遮断することにより、発電電動機15を空転させる際に生じる損失をなくすことができると共に、ガスタービンのメンテナンス時にもクラッチ23を遮断してクラッチ22を接続し発電電動機15をモータとして作動させることにより水蒸気を発生できる。   With this configuration, when it is not necessary to use the generator motor 15 as a motor, it is possible to eliminate the loss caused when the generator motor 15 is idled by disengaging the clutch 22 and to maintain the gas turbine. Sometimes the steam 23 can be generated by disengaging the clutch 23 and connecting the clutch 22 to operate the generator motor 15 as a motor.

本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention. 本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention. 本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention. 本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention. 本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention. 本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention. 本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention. 本発明の一実施形態に係る熱電供給システムの構成図である。It is a lineblock diagram of the thermoelectric supply system concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1…空気圧縮機、2…燃焼器、3…ガスタービン、4…発電機、8…排ガスボイラ、
11…蒸気タービン、12…水蒸気圧縮機、13…蒸発器、14…膨脹弁、15…発電電動機、17…水冷媒。
DESCRIPTION OF SYMBOLS 1 ... Air compressor, 2 ... Combustor, 3 ... Gas turbine, 4 ... Generator, 8 ... Exhaust gas boiler,
DESCRIPTION OF SYMBOLS 11 ... Steam turbine, 12 ... Steam compressor, 13 ... Evaporator, 14 ... Expansion valve, 15 ... Generator motor, 17 ... Water refrigerant.

Claims (4)

発電機を駆動する原動機の排熱で生成した蒸気を動力源とする蒸気タービンで駆動される圧縮機で水蒸気を圧縮し、高温の水蒸気として該蒸気タービンの出口蒸気と共に蒸気利用設備に供給する熱電供給システムにおいて、蒸気タービンに発電電動機を接続したことを特徴とする熱電供給システム。   Thermoelectric power is compressed by a compressor driven by a steam turbine powered by steam generated by the exhaust heat of the prime mover that drives the generator, and supplied to the steam utilization equipment together with the steam exiting the steam turbine as high-temperature steam. A thermoelectric supply system characterized in that a generator motor is connected to a steam turbine in the supply system. 請求項1記載の熱電供給システムにおいて、
発電電動機および圧縮機はクラッチを介して蒸気タービンで駆動するようにしたことを特徴とする熱電供給システム。
The thermoelectric supply system according to claim 1, wherein
A thermoelectric supply system in which a generator motor and a compressor are driven by a steam turbine via a clutch.
請求項1若しくは2のいずれかに記載の熱電供給システムにおいて、
大歯車にこれと噛合う複数のピニオンを配置し、各ピニオンの軸に圧縮機羽根車とタービン羽根車を取付けたことを特徴とする熱電供給システム。
In the thermoelectric supply system according to claim 1 or 2,
A thermoelectric supply system comprising a plurality of pinions engaging with a large gear, and a compressor impeller and a turbine impeller attached to each pinion shaft.
発電機を駆動する原動機の排熱で生成した蒸気を動力源とする蒸気タービンで駆動される圧縮機で水蒸気を圧縮し、高温の水蒸気として該蒸気タービンの出口蒸気と共に蒸気利用設備に供給する熱電供給システムにおいて、大歯車の回転軸に発電電動機の回転軸を接続し、該大歯車にこれに噛合う複数のピニオンを配置して各ピニオンの軸に圧縮機羽根車とタービン羽根車を取付けたことを特徴とする熱電供給システム。

Thermoelectric power is compressed by a compressor driven by a steam turbine powered by steam generated by the exhaust heat of the prime mover that drives the generator, and supplied to the steam utilization equipment together with the steam exiting the steam turbine as high-temperature steam. In the supply system, the rotation shaft of the generator motor is connected to the rotation shaft of the large gear, a plurality of pinions that mesh with the large gear are arranged, and the compressor impeller and the turbine impeller are attached to the shaft of each pinion. A thermoelectric supply system characterized by that.

JP2006092741A 2006-03-30 2006-03-30 Cogeneration system Pending JP2007263084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092741A JP2007263084A (en) 2006-03-30 2006-03-30 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092741A JP2007263084A (en) 2006-03-30 2006-03-30 Cogeneration system

Publications (1)

Publication Number Publication Date
JP2007263084A true JP2007263084A (en) 2007-10-11

Family

ID=38636301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092741A Pending JP2007263084A (en) 2006-03-30 2006-03-30 Cogeneration system

Country Status (1)

Country Link
JP (1) JP2007263084A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151675A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Steam turbine test facility, low load test method, and load cutoff test method
JP2010243013A (en) * 2009-04-02 2010-10-28 Miura Co Ltd Exhaust gas heat recovery device
JP2013255896A (en) * 2012-06-13 2013-12-26 Ihi Corp Device for recovering volatile organic compound, and system for treating the volatile organic compound
JP2014185550A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd High temperature component cooling device, gas turbine combined plant, high temperature component cooling method
JP2017502645A (en) * 2013-12-16 2017-01-19 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Compressed air energy storage (CAES) system and method
CN108119198A (en) * 2018-01-31 2018-06-05 福建省东锅节能科技有限公司 The new complementary energy waste heat recovery generating system of steel plant and its method of work
KR20190074476A (en) * 2017-12-20 2019-06-28 한국에너지기술연구원 Heat pump with turbine and control method of the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151675A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Steam turbine test facility, low load test method, and load cutoff test method
JP2010243013A (en) * 2009-04-02 2010-10-28 Miura Co Ltd Exhaust gas heat recovery device
JP2013255896A (en) * 2012-06-13 2013-12-26 Ihi Corp Device for recovering volatile organic compound, and system for treating the volatile organic compound
JP2014185550A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd High temperature component cooling device, gas turbine combined plant, high temperature component cooling method
JP2017502645A (en) * 2013-12-16 2017-01-19 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Compressed air energy storage (CAES) system and method
US10584634B2 (en) 2013-12-16 2020-03-10 Nuovo Pignone Srl Compressed-air-energy-storage (CAES) system and method
KR20190074476A (en) * 2017-12-20 2019-06-28 한국에너지기술연구원 Heat pump with turbine and control method of the same
KR102006921B1 (en) * 2017-12-20 2019-08-02 한국에너지기술연구원 Heat pump with turbine and control method of the same
CN108119198A (en) * 2018-01-31 2018-06-05 福建省东锅节能科技有限公司 The new complementary energy waste heat recovery generating system of steel plant and its method of work
WO2019148553A1 (en) * 2018-01-31 2019-08-08 福建省东锅节能科技有限公司 Novel waste energy and waste heat recovery power generation system for iron and steel plant and working method therefor
CN108119198B (en) * 2018-01-31 2019-09-20 福建省东锅节能科技有限公司 Steel plant's complementary energy waste heat recovery generating system and its working method

Similar Documents

Publication Publication Date Title
EP2122139B1 (en) Power augmentation of combustion turbines by injection of cold air upstream of compressor
EP3314096B1 (en) Power system and method for producing useful power from heat provided by a heat source
US5678401A (en) Energy supply system utilizing gas and steam turbines
EP2836693B1 (en) Compressed-air energy-storage system
JP6183994B2 (en) Gas turbine compressor inlet pressurization with torque converter system
US20140150443A1 (en) Gas Turbine Engine with Integrated Bottoming Cycle System
JP2021065088A (en) Compressed air energy storage (caes) system and method
US11280226B2 (en) Waste heat recovery system
JP2007263084A (en) Cogeneration system
EP3746648A1 (en) Energy storage device and system
JP5766927B2 (en) Power generation system
AU2018325293A1 (en) A combined heat recovery and chilling system and method
EP3420201B1 (en) Waste heat recovery cascade cycle and method
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP2711085B2 (en) Gas turbine equipment
JP2003106163A (en) Gas and air combined turbine facility and power plant and operating method thereof
RU2199020C2 (en) Method of operation and design of combination gas turbine plant of gas distributing system
US11506088B2 (en) Hydro-turbine drive methods and systems for application for various rotary machineries
JP2009097389A (en) Decompression installation provided with energy recovery function
RU101104U1 (en) COMBINED ENERGY SYSTEM
JPH09144561A (en) Hydrogen combustion gas turbine plant
RU199019U1 (en) Gas distribution station with an expander-compressor gas turbine power plant with a split shaft
JPH11153041A (en) Gas turbine system
EP2642091A1 (en) Combined cycle power plant
JP2006328977A (en) Turbine system and its construction method