JP2007245129A - Ultrasonic cleaner - Google Patents

Ultrasonic cleaner Download PDF

Info

Publication number
JP2007245129A
JP2007245129A JP2006108009A JP2006108009A JP2007245129A JP 2007245129 A JP2007245129 A JP 2007245129A JP 2006108009 A JP2006108009 A JP 2006108009A JP 2006108009 A JP2006108009 A JP 2006108009A JP 2007245129 A JP2007245129 A JP 2007245129A
Authority
JP
Japan
Prior art keywords
ultrasonic
cleaning liquid
cleaning
tube
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006108009A
Other languages
Japanese (ja)
Inventor
Kazumasa Onishi
一正 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006108009A priority Critical patent/JP2007245129A/en
Publication of JP2007245129A publication Critical patent/JP2007245129A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jet type ultrasonic cleaner having high cleaning capacity and simple structure, cleaning by spraying a cleaning solution applied with ultrasonic vibration to a cleaning object. <P>SOLUTION: An outer periphery of a stainless steel pipe 14 of an outer diameter of 8 mm and an inner diameter of 4 mm is ground to form the outer periphery into a quadrate. Piezoelectric ceramic pieces, piezoelectric elements 13, are jointed to four sides with epoxy resin. The piezoelectric ceramic piece has dimensions of L of 58.5 mm, H of 3 mm and W of 0.51 mm, and has the polarization direction in the direction H. The natural vibration frequency of only the piezoelectric ceramic piece mainly in the direction H in a vibration mode is 1.029MHz. Silver electrodes (not shown) are provided on two faces vertical to the polarization direction. The axial direction of the pipe is set coincidental with the direction L of the piezoelectric ceramic piece. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超音波洗浄装置に関し、特に、超音波振動を加えた洗浄液を被洗浄物に吹き付けて洗浄を行う噴射形超音波洗浄装置に関するものである。  The present invention relates to an ultrasonic cleaning apparatus, and more particularly to an injection type ultrasonic cleaning apparatus that performs cleaning by spraying a cleaning liquid to which ultrasonic vibration is applied to an object to be cleaned.

半導体シリコンウェハー、液晶用のガラス、ハードディスク等の微細加工用の精密洗浄には、高周波の超音波洗浄装置が用いられており、特に、汚れの再付着の少ない噴射形超音波洗浄装置が用いられている。  High-frequency ultrasonic cleaning equipment is used for precision cleaning for fine processing of semiconductor silicon wafers, liquid crystal glass, hard disks, etc., and in particular, jet-type ultrasonic cleaning equipment with little dirt reattachment is used. ing.

噴射形超音波洗浄装置は、超音波振動を加えた洗浄液をノズル状の噴射口から吹き出し、被洗浄物に対して斜めに吹き付けて汚れを落とす構造を有しているため、汚れの再付着が少なく洗浄効果は極めて優れている。  The jet type ultrasonic cleaning device has a structure in which cleaning liquid with ultrasonic vibration is blown out from the nozzle-like jet port and sprayed obliquely against the object to be cleaned to remove the dirt. The cleaning effect is very small.

図13は従来の超音波洗浄機を示す概念図である。図13に示すように、ノズル本体1は洗浄液噴出口7、およびこの洗浄液噴出口7と連通し、洗浄液噴出口7に近づくにつれて内径が小さくなった円錐状のノズル部11を有している。また、ノズル部11の上方には図に示すように超音波振動子2が設けられており、この超音波振動子2は洗浄液供給管3からノズル本体1内部に供給される洗浄液9に対して超音波を付与する。超音波振動子2より付与された超音波は、洗浄液9とともに洗浄液噴出口7から放射されて基板である被洗浄物10に達する。このとき、基板を回転させることにより洗浄効果を高めることができる。このように超音波洗浄機を使用すると、洗浄液9による洗浄効果と超音波による洗浄効果とを得ることができる。超音波洗浄機に供給される洗浄液9としては、純水、アンモニア水や過酸化水素水等を使用することができ、また、これらの洗浄液9は80℃程度の高温で使用される場合もある。  FIG. 13 is a conceptual diagram showing a conventional ultrasonic cleaner. As shown in FIG. 13, the nozzle body 1 has a cleaning liquid outlet 7 and a conical nozzle portion 11 that communicates with the cleaning liquid outlet 7 and has an inner diameter that decreases as the cleaning liquid outlet 7 is approached. Further, as shown in the figure, an ultrasonic vibrator 2 is provided above the nozzle portion 11, and this ultrasonic vibrator 2 corresponds to the cleaning liquid 9 supplied into the nozzle body 1 from the cleaning liquid supply pipe 3. Apply ultrasound. The ultrasonic wave applied from the ultrasonic transducer 2 is radiated from the cleaning liquid outlet 7 together with the cleaning liquid 9 and reaches the object 10 to be cleaned which is a substrate. At this time, the cleaning effect can be enhanced by rotating the substrate. When the ultrasonic cleaner is used in this way, the cleaning effect by the cleaning liquid 9 and the cleaning effect by the ultrasonic wave can be obtained. As the cleaning liquid 9 supplied to the ultrasonic cleaner, pure water, ammonia water, hydrogen peroxide water, or the like can be used, and these cleaning liquids 9 may be used at a high temperature of about 80 ° C. .

ところで、超音波洗浄機では、上記のように比較的気化しやすい薬液が洗浄液9として使用されるとともに、高温で使用される場合もあるため、洗浄液供給管3やノズル本体1の内部で気泡が発生する。そして、発生した気泡は、洗浄液9とともにノズル本体1に到達し、ノズル本体1内において、洗浄液9は洗浄液噴出口7に向かって流れるが、気泡は洗浄液9に対して比重が軽いために浮上して、超音波振動子2の付近に留まることになる。このように気泡が留まると、超音波振動子2から放射される超音波エネルギーが気泡に遮られて洗浄液9に十分に伝わらず、ノズル本体1から放射される超音波が弱くなり十分な洗浄効果を得ることができない。  By the way, in the ultrasonic cleaning machine, the chemical liquid that is relatively easy to vaporize as described above is used as the cleaning liquid 9 and may be used at a high temperature. Therefore, bubbles are generated inside the cleaning liquid supply pipe 3 and the nozzle body 1. appear. The generated bubbles reach the nozzle body 1 together with the cleaning liquid 9, and the cleaning liquid 9 flows toward the cleaning liquid ejection port 7 in the nozzle main body 1, but the bubbles rise because the specific gravity is lighter than the cleaning liquid 9. Thus, it remains in the vicinity of the ultrasonic transducer 2. When bubbles remain in this way, the ultrasonic energy radiated from the ultrasonic transducer 2 is blocked by the bubbles and is not sufficiently transmitted to the cleaning liquid 9, and the ultrasonic waves radiated from the nozzle body 1 are weakened, resulting in a sufficient cleaning effect. Can't get.

また、気泡が占める面積が大きくなると、超音波振動子2からエネルギーの放出が行われずに、その寿命を縮めるばかりか超音波振動子2の破損の原因にもなる問題点もあった。このため、図13に示すようにノズル本体1の洗浄液供給管3と対向する側面に空気抜配管4を設け、発生した気泡が洗浄液9とともに空気抜配管4から排出されるようにしている。  In addition, when the area occupied by the bubbles is increased, energy is not released from the ultrasonic transducer 2, which not only shortens its life but also causes damage to the ultrasonic transducer 2. For this reason, as shown in FIG. 13, an air vent pipe 4 is provided on the side surface of the nozzle body 1 facing the cleaning liquid supply pipe 3 so that the generated bubbles are discharged from the air vent pipe 4 together with the cleaning liquid 9.

しかしながら、図13に示す超音波洗浄機では、空気抜配管4が超音波振動子2の洗浄液9との接液面より下にあるため、超音波振動子2の下部に気泡が留まってしまうという問題点があった。また、超音波振動子2のノズル部11が洗浄液噴出口7に近づくにつれて内径が小さくなる円錐状となっているため、噴射される洗浄液9は洗浄液噴出口7の中央では真直ぐ流れるが、端では内側に向かって流れるので、洗浄液9がノズル本体外で集束し、その後分散する。そのため、洗浄液噴出口7からの距離によって洗浄力が異なり、洗浄液噴出口7から離れすぎると洗浄力が低下するという問題点もあった。  However, in the ultrasonic cleaning machine shown in FIG. 13, the air vent pipe 4 is below the liquid contact surface with the cleaning liquid 9 of the ultrasonic vibrator 2, so that bubbles remain in the lower part of the ultrasonic vibrator 2. There was a problem. Further, since the nozzle portion 11 of the ultrasonic transducer 2 has a conical shape whose inner diameter decreases as it approaches the cleaning liquid ejection port 7, the jetted cleaning liquid 9 flows straight at the center of the cleaning liquid ejection port 7, but at the end. Since it flows toward the inside, the cleaning liquid 9 converges outside the nozzle body and then disperses. For this reason, the cleaning power varies depending on the distance from the cleaning liquid ejection port 7, and there is also a problem that the cleaning power decreases when the cleaning liquid ejection port 7 is too far away.

上記の気泡の滞留と洗浄液9の集束の問題を解決するため、図14に示すような超音波洗浄機が提案されている。図14に示す超音波洗浄機では、ノズル本体1の洗浄液供給管3と対向する側面に設けられた空気抜配管4が、超音波振動子2の接液面より高くなる位置に設けられている。したがって、洗浄液供給管3から供給された洗浄液9のうち噴射に必要な大部分は洗浄液噴出口7から噴射され、残部が空気抜配管4から排出され、ノズル部11内の気泡は空気抜配管4から流出する液体によって押し出されるが、このとき、空気抜配管4の位置が超音波振動子2の接液面より高くなっているので、気泡の浮力が空気抜配管4の方向に働き、気泡が出やすくなる。  In order to solve the above-described problem of air bubble retention and cleaning liquid 9 focusing, an ultrasonic cleaning machine as shown in FIG. 14 has been proposed. In the ultrasonic cleaning machine shown in FIG. 14, the air vent pipe 4 provided on the side surface of the nozzle body 1 facing the cleaning liquid supply pipe 3 is provided at a position higher than the liquid contact surface of the ultrasonic vibrator 2. . Therefore, most of the cleaning liquid 9 supplied from the cleaning liquid supply pipe 3 is ejected from the cleaning liquid outlet 7, the remaining part is discharged from the air vent pipe 4, and bubbles in the nozzle portion 11 are removed from the air vent pipe 4. At this time, since the position of the air vent pipe 4 is higher than the liquid contact surface of the ultrasonic vibrator 2, the buoyancy of the bubbles acts in the direction of the air vent pipe 4, and the bubbles are generated. It becomes easy to come out.

また、ノズル本体1のノズル部11の下部には内径が一様な平行流路12が設けられており、洗浄液供給管3からノズル本体1に供給された洗浄液9はノズル部11の上部で加速されるとともに、平行流路12を通過することによって洗浄液全体が同じ方向に流れるように整えられるので、勢いを増した洗浄力を保つことができる。(例えば特許文献1,2)  Further, a parallel flow path 12 having a uniform inner diameter is provided at the lower part of the nozzle part 11 of the nozzle body 1, and the cleaning liquid 9 supplied from the cleaning liquid supply pipe 3 to the nozzle body 1 is accelerated at the upper part of the nozzle part 11. In addition, since the entire cleaning liquid is arranged to flow in the same direction by passing through the parallel flow path 12, it is possible to maintain the cleaning power with increased momentum. (For example, Patent Documents 1 and 2)

特開平10−305248号公報JP-A-10-305248 特開2001−62350号公報JP 2001-62350 A

従来の超音波洗浄機は上記のように構成されているが、図13に示す従来の超音波洗浄機では、超音波振動子2から出た超音波が平行に進み、ノズル部11の側面に当たると、ノズル部11の側面で反射されるので、超音波振動子2から発生した超音波の一部は真直ぐに洗浄液噴出口7を通過し、また、他の超音波の一部はノズル部11の下部でさらに反射されて洗浄液噴出口7を通過し、これら洗浄液噴出口7を通過した超音波は洗浄液噴出口7の外側で集束される。図13に示す超音波洗浄機では、超音波のノズル部11での反射回数は数回であるが、図14に示す超音波洗浄機では、内径が一様な平行流路12では45度の角度で超音波が反射するので、超音波が減衰して洗浄効果が落ちるという問題点があった。  The conventional ultrasonic cleaner is configured as described above. However, in the conventional ultrasonic cleaner shown in FIG. 13, the ultrasonic waves emitted from the ultrasonic transducer 2 travel in parallel and hit the side surface of the nozzle unit 11. Then, a part of the ultrasonic waves generated from the ultrasonic vibrator 2 pass straight through the cleaning liquid ejection port 7 and a part of the other ultrasonic waves is reflected by the side surface of the nozzle part 11. The ultrasonic waves that have been further reflected at the lower part of the nozzle and passed through the cleaning liquid spout 7 are focused outside the cleaning liquid spout 7. In the ultrasonic cleaner shown in FIG. 13, the number of times of reflection of the ultrasonic wave at the nozzle section 11 is several times. However, in the ultrasonic cleaner shown in FIG. Since the ultrasonic waves are reflected at an angle, there is a problem that the ultrasonic waves are attenuated and the cleaning effect is reduced.

また、図13、図14に示す従来の超音波洗浄機では、空気抜配管4がノズル本体1の側面に設けられているので、気泡とともに洗浄液もこの空気抜配管から排出されるため、洗浄液噴出口7から噴射される洗浄液の圧力が低下し、洗浄効果が落ちるという問題点があった。  Further, in the conventional ultrasonic cleaner shown in FIGS. 13 and 14, since the air vent pipe 4 is provided on the side surface of the nozzle body 1, the cleaning liquid is discharged from the air vent pipe together with the bubbles. There was a problem that the pressure of the cleaning liquid sprayed from the outlet 7 was lowered and the cleaning effect was lowered.

本発明は、上記問題点を鑑みてなされたものあり、超音波の減衰、洗浄液の流体圧損を小さくして洗浄効果を高めることができる、超音波振動を加えた洗浄液を被洗浄物に吹き付けて洗浄を行う噴射形超音波洗浄装置を提供することを目的とする。  The present invention has been made in view of the above-mentioned problems, and it is possible to improve the cleaning effect by reducing the attenuation of ultrasonic waves and the fluid pressure loss of the cleaning liquid. It is an object of the present invention to provide an injection type ultrasonic cleaning apparatus that performs cleaning.

超音波振動を加えた洗浄液を被洗浄物に吹き付けて洗浄を行う噴射形超音波洗浄装置において、管の外表面に圧電素子を接合し、管内を流れる洗浄液に、洗浄液の流れ方向とほぼ直交する方向から超音波振動を付与するものである。In a jet type ultrasonic cleaning apparatus that performs cleaning by spraying cleaning liquid with ultrasonic vibrations on the object to be cleaned, a piezoelectric element is bonded to the outer surface of the tube, and the cleaning liquid flowing in the tube is almost orthogonal to the flow direction of the cleaning liquid. The ultrasonic vibration is applied from the direction.

前記圧電素子の形状が、管の長さ方向の長さをL、管の径方向の長さをTそして、LとTに直交する方向をWとすると、TはWより大きく、Lは2Tより大きいものである。  Assuming that the shape of the piezoelectric element is L in the length direction of the tube, T in the radial direction of the tube, and W in the direction perpendicular to L and T, T is greater than W and L is 2T. It ’s bigger.

前記圧電素子の形状がリング状であり、かつ圧電素子が複数であるものである。そして、管の長さ方向に等間隔に位置しているものである。  The piezoelectric element has a ring shape and a plurality of piezoelectric elements. And it is located at equal intervals in the length direction of the tube.

超音波の減衰および流体圧損が小さい、超音波振動を加えた洗浄液を被洗浄物に吹き付けて洗浄を行う噴射形超音波洗浄装置を提供できる。  It is possible to provide an injection type ultrasonic cleaning apparatus that performs cleaning by spraying a cleaning liquid to which an ultrasonic vibration is applied, on which an ultrasonic vibration is applied, with small ultrasonic attenuation and fluid pressure loss.

図1は、本発明の実施の形態を示す基本的な構成を示す斜視図である。  FIG. 1 is a perspective view showing a basic configuration showing an embodiment of the present invention.

外径8mm、内径4mmのステンレス製の管14の外周部を研磨して、外周部を正4角形にする。その4辺に圧電素子13である圧電セラミック8個をエポキシ樹脂により接合する。圧電セラミックの寸法はLが58.5mm、Hが3mmそしてWが0.51mmであり、かつ分極方向は矢印が示すようにH方向である。そして圧電セラミックだけの主にH方向の振動モードの固有振動数は1.029MHzである。また、図示はしないが、分極方向に垂直な2面に銀電極を設けている。また、管の軸方向と圧電セラミックのL方向を一致させている。ここで使用した圧電セラミックの形状を図5の斜視図に示す。  The outer peripheral portion of a stainless steel tube 14 having an outer diameter of 8 mm and an inner diameter of 4 mm is polished so that the outer peripheral portion is a regular square. Eight piezoelectric ceramics which are the piezoelectric elements 13 are joined to the four sides by an epoxy resin. The dimensions of the piezoelectric ceramic are 58.5 mm for L, 3 mm for H and 0.51 mm for W, and the polarization direction is the H direction as indicated by the arrow. And the natural frequency of the vibration mode mainly in the H direction of the piezoelectric ceramic is 1.029 MHz. Although not shown, silver electrodes are provided on two surfaces perpendicular to the polarization direction. Further, the axial direction of the tube is matched with the L direction of the piezoelectric ceramic. The shape of the piezoelectric ceramic used here is shown in the perspective view of FIG.

図2は、管14だけを示す斜視図である。管14の内側は誇張して表現しているが、主に径方向に伸縮振動している。  FIG. 2 is a perspective view showing only the tube 14. Although the inside of the tube 14 is exaggerated, it mainly vibrates in the radial direction.

図3は、さらに管14の内側だけの変形を示したものであり、点線が変形前であり、実線が変形した様子を示すものである。変形した実線が示すように径方向に伸縮している。  FIG. 3 further shows the deformation only inside the tube 14, where the dotted line is before deformation and the solid line is deformed. As indicated by the deformed solid line, it expands and contracts in the radial direction.

図4は、図3に示した管の内側の変形により、管の位置aからbの位置までの洗浄液の圧力の高さを示したものである。図中の上向きの矢印は圧力が高いことを示し、下向きの矢印は圧力が低いことを示す。このように軸方向に粗密波を成す。  FIG. 4 shows the height of the pressure of the cleaning liquid from the position a to the position b of the tube due to the deformation inside the tube shown in FIG. An upward arrow in the figure indicates that the pressure is high, and a downward arrow indicates that the pressure is low. In this way, a close-packed wave is formed in the axial direction.

また、図5の矢印方向の振動を効率よく得るには、圧電素子13である圧電セラミックの電気機械変換効率が高い縦効果を用いることが望ましく、そのために図5の矢印方向であるH方向の圧電セラミックの分極が必要である。振動方向と分極方向が一致した縦振動は電気機械変換効率が高く、エネルギー効率の高い振動モードである。  Further, in order to efficiently obtain the vibration in the direction of the arrow in FIG. 5, it is desirable to use the longitudinal effect having high electromechanical conversion efficiency of the piezoelectric ceramic that is the piezoelectric element 13, and for that purpose, in the direction H in the direction of the arrow in FIG. Piezoelectric ceramic polarization is required. Longitudinal vibration in which the vibration direction coincides with the polarization direction is a vibration mode with high electromechanical conversion efficiency and high energy efficiency.

図5の矢印方向の振動の所望の振動モードを効率的に得るためには、すくなくともHがWより大きいことが必要であり、式1の関係が必要である。  In order to efficiently obtain the desired vibration mode of the vibration in the direction of the arrow in FIG. 5, it is necessary that at least H is greater than W, and the relationship of Equation 1 is necessary.

式1Formula 1

W<HW <H

また、軸方向にも長く超音波エネルギーを与えるためには圧電セラミックの長さLがHの2倍より大きいことが望ましい。これを式で表現すると式2の関係が必要である。  In order to apply ultrasonic energy long in the axial direction, the length L of the piezoelectric ceramic is preferably larger than twice H. When this is expressed by an equation, the relationship of Equation 2 is necessary.

式2Formula 2

H<L/2H <L / 2

式1と式2の関係を合わせて1つの式にすると式3の関係になる。  If the relationship of Formula 1 and Formula 2 is combined into one formula, the relationship of Formula 3 is obtained.

式3Formula 3

W<H<L/2W <H <L / 2

また、管14の形状の外側が円であるときは、図6に示すように管と接する圧電素子13の面を円弧状にする。ここでWは、上面の円弧と下面の円弧の平均値をWとする。そして、長辺をLとし、高さをHとすると図6の矢印方向の振動を効率よく得るには、図5と同様に式3の関係が必要である。  When the outside of the shape of the tube 14 is a circle, the surface of the piezoelectric element 13 in contact with the tube is formed in an arc shape as shown in FIG. Here, W is an average value of the arc on the upper surface and the arc on the lower surface. Then, when the long side is L and the height is H, the relationship of the expression 3 is necessary as in FIG. 5 in order to efficiently obtain the vibration in the arrow direction of FIG.

次に図示しない超音波発振回路より約1MHzの周波数の電圧を圧電素子13である圧電セラミックに印加し、このステンレス製の円管14の一方の端である洗浄液供給口6に洗浄液9を流す。そうすると他方の端の洗浄液噴出口7から超音波振動が印加された洗浄液9が噴出される。そして図示しない被洗浄物に当たり、超音波洗浄が行われる。  Next, a voltage having a frequency of about 1 MHz is applied to the piezoelectric ceramic that is the piezoelectric element 13 from an ultrasonic oscillation circuit (not shown), and the cleaning liquid 9 is caused to flow through the cleaning liquid supply port 6 that is one end of the stainless steel circular tube 14. Then, the cleaning liquid 9 to which ultrasonic vibration is applied is ejected from the cleaning liquid outlet 7 at the other end. Then, ultrasonic cleaning is performed on an object to be cleaned (not shown).

ステンレス製の円管14は、圧電素子13の超音波振動により、概念図2〜4に示すように径方向に伸縮振動する。そして管内の洗浄液9は管が径方向に伸びたときには、圧力が小さくなりいわゆる洗浄液密度が粗になり、管が径方向に縮んだときには、圧力が高くなりいわゆる洗浄液密度が密となる。  The stainless steel circular tube 14 expands and contracts in the radial direction by the ultrasonic vibration of the piezoelectric element 13 as shown in the conceptual diagrams 2 to 4. When the pipe extends in the radial direction, the pressure of the cleaning liquid 9 in the pipe decreases and the so-called cleaning liquid density becomes rough. When the pipe contracts in the radial direction, the pressure increases and the so-called cleaning liquid density becomes dense.

流れる洗浄液は流れ方向に粗密波となり、超音波が洗浄液に載って被洗浄物に当たり、洗浄液による洗浄効果と超音波による洗浄効果が得られる。  The flowing cleaning liquid becomes a dense wave in the flow direction, and the ultrasonic wave is placed on the cleaning liquid and hits the object to be cleaned, so that the cleaning effect by the cleaning liquid and the cleaning effect by the ultrasonic wave are obtained.

従来の図13、図14に示すノズル方式の超音波洗浄機においては、超音波振動源から離れるに従い減衰しまう。また、構造が複雑であり洗浄液の圧損が大きい。  In the conventional ultrasonic cleaning machine of the nozzle type shown in FIG. 13 and FIG. Further, the structure is complicated and the pressure loss of the cleaning liquid is large.

これに対して、本発明の構成は管をそのまま使用するので、従来の複雑な構成に比較して洗浄液の圧損は大幅に低減できる。また、洗浄液流入口6から洗浄液噴出口7まで超音波振動を洗浄液に与えることができるので超音波の減衰は、ほとんどないと考えられる。  On the other hand, since the structure of the present invention uses the pipe as it is, the pressure loss of the cleaning liquid can be greatly reduced as compared with the conventional complicated structure. Further, since ultrasonic vibration can be applied to the cleaning liquid from the cleaning liquid inlet 6 to the cleaning liquid outlet 7, it is considered that there is almost no attenuation of the ultrasonic waves.

また、配管である金属管を超音波洗浄装置としてそのまま使用できるので、小型化が可能となり、しかも超音波洗浄装置として安価に製造できる。  Further, since the metal pipe as a pipe can be used as it is as an ultrasonic cleaning apparatus, it can be miniaturized and can be manufactured at low cost as an ultrasonic cleaning apparatus.

さらに金属管の内部断面積は3cm以下、好ましくは1cm以下が望ましい。なぜなら、管断面積が大きいと、粗密波が十分発達しないからである。Furthermore, the internal cross-sectional area of the metal tube is 3 cm 2 or less, preferably 1 cm 2 or less. This is because if the tube cross-sectional area is large, the rough wave does not develop sufficiently.

図7には、径方向に4個の圧電セラミックを接合したが、管に径方向の伸縮波を発生させるには図8のように複数のリング状の圧電素子13を管14に接合してもよい。ここでリング状の圧電素子13を複数用いるのは、管14の軸方向に沿って管の超音波振動の減衰を可能な限り小さくするためである。その目的のためには、リング状の圧電素子13の数は3個以上が望ましい。  Although four piezoelectric ceramics are bonded in the radial direction in FIG. 7, a plurality of ring-shaped piezoelectric elements 13 are bonded to the tube 14 as shown in FIG. Also good. The reason why a plurality of ring-shaped piezoelectric elements 13 are used here is to reduce the attenuation of ultrasonic vibration of the tube along the axial direction of the tube 14 as much as possible. For that purpose, the number of ring-shaped piezoelectric elements 13 is preferably three or more.

リング状の圧電素子13の分極方向は図8に示すように厚み方向である。そして厚みは外径より小さいことが必要である。この条件は圧電素子13に径方向の振動を励起させるためのものである。  The polarization direction of the ring-shaped piezoelectric element 13 is the thickness direction as shown in FIG. The thickness must be smaller than the outer diameter. This condition is for exciting the piezoelectric element 13 to vibrate in the radial direction.

さらに、図9の側面図、図10の平面図で示すように金属管14をテーパー状にして、テーパー部5に圧電素子13を接合してもよい。従来の構成では、テーパー部5で超音波が反射して減衰してしまうが、本発明ではテーパー部5に圧電素子13を接合しているのでテーパー部5でも径方向の伸縮振動が発生するので超音波の減衰はない。  Furthermore, as shown in the side view of FIG. 9 and the plan view of FIG. 10, the metal tube 14 may be tapered, and the piezoelectric element 13 may be joined to the tapered portion 5. In the conventional configuration, the ultrasonic wave is reflected and attenuated by the taper portion 5, but in the present invention, since the piezoelectric element 13 is joined to the taper portion 5, the taper portion 5 also generates radial stretching vibration. There is no attenuation of ultrasonic waves.

本実施の形態においても、管14をステンレス製としたが他の金属でもよく、例えばチタン、アルミニウムなどでもよい。  Also in this embodiment, the tube 14 is made of stainless steel, but other metals may be used, for example, titanium, aluminum or the like.

また、本実施の形態おいて管14の材料を金属としたが、超音波を伝播できる材料であればよく、例えばガラス管でもよい。  In the present embodiment, the material of the tube 14 is a metal, but any material that can propagate ultrasonic waves may be used. For example, a glass tube may be used.

さらに、本実施の形態において管14の外側、内側の形状を円としたが、管の外側、内側の形状を4角形を含む多角形でもよい。  Furthermore, in the present embodiment, the outer and inner shapes of the tube 14 are circles, but the outer and inner shapes of the tube may be polygons including a quadrangle.

本発明の超音波洗浄装置は、半導体シリコンウェハー、液晶用のガラス、ハードディスク等の微細加工用の精密洗浄に用いているが、他にレジスト、現像液の処理液吐出管としても用いることができる。  The ultrasonic cleaning apparatus of the present invention is used for precision cleaning for fine processing of semiconductor silicon wafers, glass for liquid crystals, hard disks, etc., but can also be used as a processing liquid discharge pipe for resist and developer. .

また本発明の超音波洗浄装置は、例えばエンドミル15の中心軸に貫通する穴16を設け、その穴16に洗浄液または切削液に流すものに用いることができる。つまり、管の外周部に加工するためのドリル刃を設けている構成である。図11はエンドミル15の平面図であり、エンドミル15の中心軸に洗浄液または切削液を流す穴16を設けている。また図12はエンドミル15に圧電素子13を取り付けたものである。  The ultrasonic cleaning apparatus of the present invention can be used, for example, in which a hole 16 penetrating the central axis of the end mill 15 is provided, and the hole 16 is made to flow into a cleaning liquid or a cutting liquid. That is, it is the structure which provided the drill blade for processing in the outer peripheral part of a pipe | tube. FIG. 11 is a plan view of the end mill 15, and a hole 16 through which a cleaning liquid or a cutting liquid flows is provided in the central axis of the end mill 15. FIG. 12 shows the end mill 15 with the piezoelectric element 13 attached.

超音波振動を加えた洗浄液を被洗浄物に吹き付けて洗浄を行う噴射形超音波洗浄装置に用いることができるものである。  The present invention can be used in a jet type ultrasonic cleaning apparatus that performs cleaning by spraying a cleaning liquid to which ultrasonic vibration is applied to an object to be cleaned.

本発明の実施の形態を示す斜視図である。It is a perspective view which shows embodiment of this invention. 図1の管だけを示す斜視図である。It is a perspective view which shows only the pipe | tube of FIG. 管の内側の振動変位を示す斜視図である。It is a perspective view which shows the vibration displacement inside a pipe | tube. 図3の管の振動変位のときの洗浄液の圧力分布である。4 is a pressure distribution of the cleaning liquid when the vibration displacement of the tube in FIG. 図1に用いた圧電セラミックの形状を示す斜視図である。It is a perspective view which shows the shape of the piezoelectric ceramic used for FIG. 別の圧電セラミックの形状を示す斜視図である。It is a perspective view which shows the shape of another piezoelectric ceramic. 管に円環状の圧電セラミックを取り付けた超音波洗浄機を示す斜視図である。It is a perspective view which shows the ultrasonic cleaning machine which attached the annular piezoelectric ceramic to the pipe | tube. 図7に用いた圧電セラミックを示す斜視図である。It is a perspective view which shows the piezoelectric ceramic used for FIG. テーパー管に圧電セラミックを取り付けた超音波洗浄機の平面図である。It is a top view of the ultrasonic cleaning machine which attached the piezoelectric ceramic to the taper tube. 図9の側面図である。FIG. 10 is a side view of FIG. 9. 中心軸に穴を設けたエンドミルを示す平面図である。It is a top view which shows the end mill which provided the hole in the central axis. 図11のエンドミルに圧電素子を接合した平面図である。It is the top view which joined the piezoelectric element to the end mill of FIG. 従来のノズル式超音波洗浄機を示す側面断面図である。It is side surface sectional drawing which shows the conventional nozzle type ultrasonic cleaning machine. 従来の別のノズル式超音波洗浄機を示す側面断面図である。It is side surface sectional drawing which shows another conventional nozzle type ultrasonic cleaner.

符号の説明Explanation of symbols

1 ノズル本体
2 超音波振動子
3 洗浄液供給管
4 空気抜配管
5 テーパー部
6 洗浄液流入口
7 洗浄液噴出口
8 超音波洗浄装置
9 洗浄液
10 被洗浄物
11 ノズル部
12 平行流路
13 圧電素子
14 管
15 エンドミル
16 穴
DESCRIPTION OF SYMBOLS 1 Nozzle body 2 Ultrasonic vibrator 3 Cleaning liquid supply pipe 4 Air vent pipe 5 Tapered part 6 Cleaning liquid inflow port 7 Cleaning liquid jet outlet 8 Ultrasonic cleaning apparatus 9 Cleaning liquid 10 Object to be cleaned 11 Nozzle part 12 Parallel flow path 13 Piezoelectric element 14 Pipe 15 End mill 16 holes

Claims (3)

超音波振動を加えた洗浄液を被洗浄物に吹き付けて洗浄を行う噴射形超音波洗浄装置において、管の外表面に圧電素子を接合し、管内を流れる洗浄液に、洗浄液の流れ方向とほぼ直交する方向から超音波振動を付与することを特徴とする。In a jet type ultrasonic cleaning apparatus that performs cleaning by spraying cleaning liquid with ultrasonic vibrations on the object to be cleaned, a piezoelectric element is bonded to the outer surface of the tube, and the cleaning liquid flowing in the tube is almost orthogonal to the flow direction of the cleaning liquid. It is characterized by applying ultrasonic vibration from the direction. 圧電素子の形状が、管の長さ方向の長さをL、管の径方向の長さをTそして、LとTに直交する方向をWとすると、TはWより大きく、Lは2Tより大きいことを特徴とする請求項1に記載の超音波洗浄装置。  When the shape of the piezoelectric element is L in the length direction of the tube, T in the radial direction of the tube, and W in the direction orthogonal to L and T, T is greater than W and L is greater than 2T. The ultrasonic cleaning apparatus according to claim 1, wherein the ultrasonic cleaning apparatus is large. 圧電素子の形状がリング状であり、かつ圧電素子が複数であるものである。そして、管の長さ方向にほぼ等間隔に位置していることを特徴とする請求項1に記載の超音波洗浄装置。  The piezoelectric element has a ring shape and a plurality of piezoelectric elements. The ultrasonic cleaning apparatus according to claim 1, wherein the ultrasonic cleaning apparatus is located at substantially equal intervals in the length direction of the tube.
JP2006108009A 2006-03-13 2006-03-13 Ultrasonic cleaner Withdrawn JP2007245129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108009A JP2007245129A (en) 2006-03-13 2006-03-13 Ultrasonic cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108009A JP2007245129A (en) 2006-03-13 2006-03-13 Ultrasonic cleaner

Publications (1)

Publication Number Publication Date
JP2007245129A true JP2007245129A (en) 2007-09-27

Family

ID=38589975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108009A Withdrawn JP2007245129A (en) 2006-03-13 2006-03-13 Ultrasonic cleaner

Country Status (1)

Country Link
JP (1) JP2007245129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776431B1 (en) * 2015-12-14 2017-09-07 현대자동차주식회사 Washer nozzle for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776431B1 (en) * 2015-12-14 2017-09-07 현대자동차주식회사 Washer nozzle for vehicle
US10293793B2 (en) 2015-12-14 2019-05-21 Hyundai Motor Company Washer nozzle for vehicle

Similar Documents

Publication Publication Date Title
US7712680B2 (en) Ultrasonic atomizing nozzle and method
TW201249583A (en) Laser machining apparatus
US9662686B2 (en) Ultrasonic cleaning method and apparatus
JP3256198B2 (en) Ultrasonic shower cleaning equipment
WO2023134313A1 (en) Megasonic cleaning system for large-sized wafer
US8486199B2 (en) Ultrasonic cleaning method and apparatus
JP2007027270A (en) Cleaning apparatus and cleaning method
JP6539468B2 (en) Ultrasonic atomizer
KR101688455B1 (en) An ultrasonic transmitter having piezoelectric element capable of transverse prevention and ultrasonic cleaning device including the same
KR100578139B1 (en) Cleaning probe and Megasonic cleaning apparatus having the same
JP2011050832A (en) Minute bubble generation apparatus and generation method
JP2007245129A (en) Ultrasonic cleaner
JP4602524B2 (en) Injection type ultrasonic cleaning equipment
JP3938129B2 (en) Ultrasonic cleaning equipment
JP2020000995A (en) Ultrasonic sound water injector
JP2020014989A (en) Degassed fine bubble liquid generating device, degassed fine bubble liquid generating method, ultrasonic treatment device and ultrasonic treatment method
CN102327883B (en) Megasonic cleaning head and megasonic cleaning system provided with same
JP4255818B2 (en) Ultrasonic cleaning nozzle and ultrasonic cleaning device
JP2004167377A (en) Ultrasonic washing machine
JP2007237157A (en) Ultrasonic washing apparatus
JP2008198632A (en) Cleaning device and method
JP7222635B2 (en) ultrasonic water injector
JP2010238744A (en) Ultrasonic cleaning unit, and ultrasonic cleaning device
JP4349244B2 (en) Ultrasonic cleaning equipment
JP2003266034A (en) Jet type ultrasonic washing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602