JP2007229821A - Surface-coated cutting tool - Google Patents
Surface-coated cutting tool Download PDFInfo
- Publication number
- JP2007229821A JP2007229821A JP2006050978A JP2006050978A JP2007229821A JP 2007229821 A JP2007229821 A JP 2007229821A JP 2006050978 A JP2006050978 A JP 2006050978A JP 2006050978 A JP2006050978 A JP 2006050978A JP 2007229821 A JP2007229821 A JP 2007229821A
- Authority
- JP
- Japan
- Prior art keywords
- titanium compound
- containing oxygen
- cutting tool
- phase
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
本発明は、硬質被覆層を表面に被着形成した、優れた耐欠損性および耐摩耗性等の切削特性を有する表面被覆切削工具に関する。 The present invention relates to a surface-coated cutting tool having excellent cutting resistance such as fracture resistance and wear resistance, in which a hard coating layer is formed on the surface.
近年の鋳造技術向上に伴って、被削材のニアネットシェイプ化の進行、さらに高強度素材の開発により薄肉化、複雑形状化が進んでいる。また、近年の切削加工の高能率化に従って、切削速度が速い高速切削加工が増えており、切削液を使用した切削条件下であっても刃先が非常に高温になる場合がある。さらに、複雑形状を加工するために、強断続加工や連続加工を含んだ複合加工部を高速切削加工する場合も多くなってきている。 Along with the recent improvement in casting technology, thinning and complex shapes are progressing due to the progress of near-net shaping of work materials and the development of high-strength materials. In addition, as cutting efficiency increases in recent years, high-speed cutting with high cutting speed is increasing, and the cutting edge may become very hot even under cutting conditions using a cutting fluid. Furthermore, in order to process a complex shape, there is an increasing number of cases in which high-speed cutting is performed on a composite processing portion including hard interrupted processing and continuous processing.
従来より、超硬合金やサーメット、セラミックス等の硬質基体の表面に、TiC層、TiN層、TiCN層、Al2O3層およびTiAlN層等の単層または複層からなる硬質被覆層を被着形成した表面被覆切削工具が多用されている。 Conventionally, a hard coating layer composed of a single layer or multiple layers such as a TiC layer, a TiN layer, a TiCN layer, an Al 2 O 3 layer and a TiAlN layer is applied to the surface of a hard substrate such as cemented carbide, cermet or ceramics. The formed surface-coated cutting tool is frequently used.
しかし、このような従来の表面被覆切削工具では、複合加工部を高速切削する際に、高温安定性に優れるが密着性に劣るAl2O3の剥離や耐酸化性に劣るTiCN膜の拡散摩耗が見られた。これが引き金となって硬質被覆層の剥離や境界損傷が発生し、切刃の欠損や異常摩耗の発生等の工具損傷により工具の長寿命化が困難であるという問題があった。 However, in such a conventional surface-coated cutting tool, when high-speed cutting is performed on a composite processed part, Al 2 O 3 is peeled off at a high temperature stability but poor in adhesion, and diffusion wear of the TiCN film is poor in oxidation resistance. It was observed. This triggers peeling of the hard coating layer and boundary damage, and there is a problem that it is difficult to extend the tool life due to tool damage such as chipping of the cutting edge and occurrence of abnormal wear.
これに対し、特許文献1や特許文献2において、硬質被覆層として柱状結晶からなるTiCN膜を用いることで、切削工具としての耐欠損性や耐チッピング性が向上することが開示されている。
On the other hand, Patent Document 1 and
また、特許文献3や特許文献4においては、TiCN膜とAl2O3膜の間に針状のTiCNO膜を中間層として成膜しAl2O3膜の付着力を向上させることが開示されている。
しかしながら、上記特許文献1および特許文献2に記載されているように硬質被覆層に柱状晶TiCN膜を導入する場合、強度に優れた柱状晶TiCNのために耐欠損性や耐チッピング性は向上するが、耐酸化性は改善されているとはいえないため、刃先の高温化による拡散摩耗現象は抑制されず、複合加工部の乾式加工や高速切削となると耐摩耗性が急激に低下して工具寿命が短くなるという問題点があった。
However, when a columnar crystal TiCN film is introduced into the hard coating layer as described in Patent Document 1 and
さらに、上記特許文献3および特許文献4に記載されているように結合相に針状粒子を持つ中間層を蒸着することで中間層表面に突起が多数生成され、Al2O3膜と中間層との接触面積が増加することで、密着性に優れたα型Al2O3を導入する場合、高温安定性に優れたα型Al2O3のよって、高温での耐摩耗性は向上するが、強断続加工時にはその衝撃力のために十分であるとはいえないため、複合加工部の乾式加工や高速切削となると耐欠損性や耐チッピング性が低下して工具寿命が短くなるという問題があった。
Furthermore, as described in
本発明は、上記問題点を解決するためになされたものであり、その目的は、複合加工部における乾式切削や高速切削においても優れた耐摩耗性、耐欠損性を発揮することができる、長寿命な表面被覆切削工具を提供することにある。 The present invention has been made to solve the above-described problems, and its purpose is to provide excellent wear resistance and fracture resistance even in dry cutting and high-speed cutting in a composite processed portion. The object is to provide a long-life surface-coated cutting tool.
本発明者は、上記課題に対し、表面被覆切削工具に高強度かつ耐酸化性に優れた被覆層を導入することで、高温条件下での耐衝撃性が高まり、その結果、高速切削かつ強断続切削による硬質被覆層の剥離や拡散摩耗を防ぐことができ、複合加工部における乾式切削や高速切削においても優れた耐摩耗性、耐欠損性を発揮する表面被覆切削工具とすることができることを知見した。 The present inventor has improved the impact resistance under high-temperature conditions by introducing a coating layer having high strength and excellent oxidation resistance into the surface-coated cutting tool. It is possible to prevent peeling of hard coating layer and diffuse wear due to intermittent cutting, and to be a surface-coated cutting tool that exhibits excellent wear resistance and fracture resistance even in dry cutting and high-speed cutting in composite processed parts. I found out.
すなわち、本発明の表面被覆切削工具は、基体の表面に複層からなる硬質被覆層を被着形成した表面被覆切削工具であって、前記硬質被覆層は、酸素を含むチタン化合物相と、該酸素を含むチタン化合物相に隣接し且つ4族元素の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも一つの化合物からなる非酸化物相とを含んでおり、前記酸素を含むチタン化合物は、前記基体表面に平行な断面視でのアスペクト比が8〜100の範囲にある針状の結晶粒子から構成されているとともに、前記酸素を含むチタン化合物相と前記非酸化物相との界面近傍領域では、前記酸素を含むチタン化合物相と前記非酸化物相との錯綜領域が存在することを特徴とする表面被覆切削工具である。 That is, the surface-coated cutting tool of the present invention is a surface-coated cutting tool in which a hard coating layer composed of a plurality of layers is deposited on the surface of a substrate, and the hard coating layer includes a titanium compound phase containing oxygen, An oxygen-containing titanium compound phase and a non-oxide phase comprising at least one compound selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4 elements, and the titanium compound containing oxygen is And composed of needle-like crystal particles having an aspect ratio in the range of 8 to 100 in a cross-sectional view parallel to the substrate surface, and in the vicinity of the interface between the titanium compound phase containing oxygen and the non-oxide phase In the region, the surface-coated cutting tool is characterized in that a complex region of the titanium compound phase containing oxygen and the non-oxide phase exists.
ここで、前記酸素を含むチタン化合物の結晶粒子は、前記基体表面に垂直な断面視での平均結晶高さが1〜10μmであることが、切削工具の耐摩耗性および耐欠損性をより高めることができるために望ましい。 Here, the crystal grain of the titanium compound containing oxygen has an average crystal height of 1 to 10 μm in a cross-sectional view perpendicular to the surface of the substrate, thereby further improving the wear resistance and fracture resistance of the cutting tool. Desirable because it can.
さらに、前記酸素を含むチタン化合物はTi2O3を含み、前記非酸化物相がTiCNおよびTiNの少なくとも一方からなることで、耐酸化性を向上させることができるため望ましい。 Furthermore, the titanium compound containing oxygen contains Ti 2 O 3 and the non-oxide phase is preferably made of at least one of TiCN and TiN, so that the oxidation resistance can be improved.
また、前記酸素を含むチタン化合物の結晶粒子が、前記基体表面に平行な断面視での平均長軸幅が1〜4μm、平均短軸幅が0.03〜0.5μmであるで、結晶組織としての強度が向上し、チッピング、欠損を抑制する点で望ましい。 The crystal grain of the titanium compound containing oxygen has an average major axis width of 1 to 4 μm and an average minor axis width of 0.03 to 0.5 μm in a cross-sectional view parallel to the substrate surface. This is desirable in terms of improving strength and suppressing chipping and defects.
さらに、前記非酸化物相は前記硬質被覆層の表層として窒化チタン層からなり、前記基体の上面および側面の交差部上においては、前記酸素を含むチタン化合物が露出するとともに該酸素を含むチタン化合物と錯綜するように前記窒化チタン層がその一部を残存させて露出するように研磨加工されたものであることで、切刃が平滑になり、チッピングや突発欠損の原因となりうる粒子の突起やくぼみ等が減少してチッピングや突発欠損の発生をより効果的に抑制する点で望ましい。 Further, the non-oxide phase is a titanium nitride layer as a surface layer of the hard coating layer, and the titanium compound containing oxygen is exposed and the titanium compound containing oxygen is exposed on the intersection of the upper surface and the side surface of the substrate. The titanium nitride layer is polished so as to leave a part of the titanium nitride layer so as to be exposed, so that the cutting edge becomes smooth and the protrusions of particles that can cause chipping and sudden defects This is desirable in that the depressions are reduced and the occurrence of chipping and sudden defects is more effectively suppressed.
なお、前記硬質被覆層の表面の最大高さRzが0.5〜1.5μmであることで、刃先が安定になり、チッピングや欠損を抑制する点で望ましい。 In addition, when the maximum height Rz of the surface of the hard coating layer is 0.5 to 1.5 μm, it is desirable in that the cutting edge becomes stable and chipping and chipping are suppressed.
本発明の表面被覆切削工具は、基体の表面に2層以上の多層膜を積層した構造の硬質被覆層において、表層に隣接する内層として耐酸化性および衝撃に対する耐久性をより優れたものとすることができる高アスペクト比の針状結晶の酸素を含むチタン化合物を配し、さらに表層として前記針状結晶粒子間の隙間を埋め込むように非酸化物相を形成させることで、高温状態で強い衝撃がかかっても、前記高アスペクト比針状結晶は折れにくく、かつ酸化しにくいので、優れた耐摩耗性と耐欠損性が得られる。 The surface-coated cutting tool of the present invention is a hard coating layer having a structure in which two or more multilayer films are laminated on the surface of a substrate, and has better oxidation resistance and impact resistance as an inner layer adjacent to the surface layer. High-aspect-ratio acicular crystals of oxygen-containing titanium compounds are arranged, and a non-oxide phase is formed as a surface layer so as to fill the gaps between the acicular crystal grains, thereby providing strong impact at high temperatures. Even if it is applied, the high-aspect ratio needle-like crystal is not easily broken and is not easily oxidized, so that excellent wear resistance and fracture resistance can be obtained.
したがって、耐酸化性と耐欠損性が求められる加工においても、拡散摩耗や被覆層の損傷が生じることなく、被覆層全体の摩耗や欠損を防止できる。 Therefore, even in processing that requires oxidation resistance and chipping resistance, it is possible to prevent wear and chipping of the entire coating layer without causing diffusion wear and damage to the coating layer.
特に、ねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)のような高硬度黒鉛粒子が分散した鋳鉄等の金属の高速重断続切削等のような工具切刃に高温で強い衝撃がかかる過酷な切削条件下や、さらにはこれら断続切削と連続切削とを組み合わせた複合切削条件下において、例え突発的に大きな衝撃が硬質被覆層にかかったときであっても、高強度な針状結晶が存在することで硬質被覆層がチッピングしたり欠損したりすることなく衝撃に耐えることができる結果、硬質被覆層全体のチッピングや剥離を防止できるとともに、耐摩耗性が維持される優れた切削工具が得られる。もちろん、鋼の切削においても従来工具に対して耐欠損性および耐摩耗性に優れた工具となる。 In particular, severe impact is applied to tool cutting edges such as high-speed heavy interrupted cutting of metals such as cast iron in which high-hardness graphite particles are dispersed, such as gray cast iron (FC material) and ductile cast iron (FCD material). High-strength acicular crystals exist even under severe cutting impact on the hard coating layer under cutting conditions or even combined cutting conditions combining these intermittent cutting and continuous cutting. As a result, the hard coating layer can withstand impacts without chipping or chipping. As a result, the entire hard coating layer can be prevented from chipping and peeling, and an excellent cutting tool that maintains wear resistance can be obtained. It is done. Of course, even in steel cutting, the tool is superior in fracture resistance and wear resistance to conventional tools.
前記酸素を含むチタン化合物は、前記基体表面に平行な断面視でのアスペクト比が8〜100の範囲にある針状の結晶粒子に制御し、さらにその針状結晶粒子間を非酸化物が埋め込むように形成されることにより、高い強度を有する高アスペクト比結晶の隙間に切削加工時に被削材が侵入することなく、高温での耐チッピング性を備えることが可能である。さらに酸素を含むことから、耐酸化性にも優れることで、すくい面のクレータ摩耗も抑制することができる。 The titanium compound containing oxygen is controlled to be acicular crystal particles having an aspect ratio in the range of 8 to 100 in a cross-sectional view parallel to the substrate surface, and a non-oxide is embedded between the acicular crystal particles. By being formed in this way, it is possible to provide chipping resistance at high temperatures without the work material entering the gaps between the high aspect ratio crystals having high strength during cutting. Furthermore, since it contains oxygen, crater wear on the rake face can also be suppressed due to excellent oxidation resistance.
また、前記基体表面に垂直な断面視での平均結晶高さが1〜10μmであることで、耐チッピング性と耐摩耗性の両面を適正に備えることができる。 Further, when the average crystal height in a cross-sectional view perpendicular to the substrate surface is 1 to 10 μm, both chipping resistance and wear resistance can be appropriately provided.
さらに、前記酸素を含むチタン化合物はTi2O3を含むことで、Ti2O3は酸化物のため耐酸化性に非常に優れる。さらに前記非酸化物相がTiCNおよびTiNの少なくとも一方からなることで、チタン原子が酸化物と非酸化物との結合力を向上させることで、膜剥離が原因となる耐チッピング性を向上させることが出来る。 Furthermore, the titanium compound containing oxygen contains Ti 2 O 3 , and since Ti 2 O 3 is an oxide, it has excellent oxidation resistance. Furthermore, when the non-oxide phase is made of at least one of TiCN and TiN, titanium atoms improve the bonding force between the oxide and the non-oxide, thereby improving the chipping resistance caused by film peeling. I can do it.
また、前記酸素を含むチタン化合物の結晶粒子が、前記基体表面に平行な断面視での平均長軸幅が1〜4μm、平均短軸幅が0.03〜0.5μmであれば、基体表面に平行な断面視でも高アスペクト比の結晶粒子となり、この高アスペクト比結晶粒子がランダムに存在することによって、クラック進展を抑制して高靭性化するために優れた耐チッピング性が得られる。 In addition, if the crystal grains of the titanium compound containing oxygen have an average major axis width of 1 to 4 μm and an average minor axis width of 0.03 to 0.5 μm in a cross-sectional view parallel to the substrate surface, the substrate surface Even when viewed in a cross-section parallel to the crystal grains, high-aspect-ratio crystal grains are present, and the presence of these high-aspect-ratio crystal grains at random provides excellent chipping resistance in order to suppress crack propagation and increase toughness.
さらに、前記硬質被覆層の最表面層として窒化チタン層からなり、前記酸素を含むチタン化合物が露出するとともに該酸素を含むチタン化合物と錯綜するように前記窒化チタン層がその一部を残存させて露出するように研磨加工された際に、切刃付近において低摩擦である窒化チタン層と耐酸化性に優れた酸素を含むチタン化合物が存在することで、低摩擦のために切屑排出がスムーズに行われ、さらに耐酸化性に優れるために拡散摩耗を抑制することから、すくい面における耐摩耗性が向上する。さらに、窒化チタンが表層に存在することで、使用済みコーナーの識別も容易に行うことができる。 Further, the outermost layer of the hard coating layer is a titanium nitride layer, and the titanium nitride layer is left so that the titanium compound containing oxygen is exposed and complexed with the titanium compound containing oxygen. When exposed to polishing, the presence of a titanium nitride layer with low friction near the cutting edge and a titanium compound containing oxygen with excellent oxidation resistance allows for smooth chip discharge due to low friction. In addition, since the diffusion wear is suppressed in order to have excellent oxidation resistance, the wear resistance on the rake face is improved. Furthermore, since titanium nitride is present on the surface layer, the used corner can be easily identified.
なお、硬質被覆層の表面の最大高さRzが0.5〜1.5μmの範囲内にある場合には、すくい面上での切屑のすべりが向上するので切屑排出がスムーズに行われるために、耐摩耗性が向上する。 In addition, in the case where the maximum height Rz of the surface of the hard coating layer is in the range of 0.5 to 1.5 μm, since chip slip on the rake face is improved, chip discharge is performed smoothly. , Wear resistance is improved.
本発明の表面被覆切削工具の実施の形態の一例について、スローアウェイチップ型切削工具(以下、本発明の表面被覆切削工具を単に工具と略すことがある。)1の要部拡大断面図(図面代用写真)である図1、基体表面に硬質被覆層として酸素を含むチタン化合物相までを製膜した状態の要部拡大断面図(図面代用写真)である図2、図2のA方向矢視図(図面代用写真)である図3を用いて説明する。 1 is an enlarged cross-sectional view of a main part of a throw-away tip type cutting tool (hereinafter, the surface-coated cutting tool of the present invention may be simply abbreviated as a tool) 1 according to an example of an embodiment of a surface-coated cutting tool of the present invention. FIG. 1 is a substitute photograph), FIG. 2 is an enlarged cross-sectional view of the main part in a state where even a titanium compound phase containing oxygen is formed as a hard coating layer on the substrate surface (drawing substitute photograph) in FIG. A description will be given with reference to FIG. 3 which is a drawing (a photograph substituted for a drawing).
本発明の工具1は、基体2の表面に、硬質被覆層3を成膜してなる。
The tool 1 of the present invention is formed by forming a
ここで、本発明によれば、硬質被覆層3が、酸素を含むチタン化合物相(以下、酸素含有相と称す)4と、該酸素を含むチタン化合物相に隣接し且つ4族元素の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも一つの化合物からなる非酸化物相5を含んでおり、酸素含有相4は、基体2表面に略平行な断面視でのアスペクト比が8〜100の範囲にある針状の結晶粒子(以下、針状粒子と称す)6から構成されているとともに、酸素含有相4と非酸化物相5との界面近傍領域では、酸素含有相4と非酸化物相5との錯綜領域7が存在することを特徴とするものである。
Here, according to the present invention, the
上記錯綜領域7を作製するには、例えば酸素を含むチタン化合物からなる針状粒子から構成された針状粒子層8と、酸素を含まない4族元素の化合物からなる上部層9とを順次続けて積層することによって可能である。
In order to produce the
上記針状粒子層8は、酸素を含有し、微細な形状を有するため、高強度で耐酸化性に優れるが、図2に示されるように粒子間に隙間が多く存在する。その隙間を非酸化化合物からなる上部層9で埋めることで、切削加工時の被削材の溶着を防ぎ、針状粒子層8の優れた強度と耐酸化性を発揮させることができる。
Since the
つまり、上部層9で針状粒子層8の隙間を埋めないと、その隙間に被削材の溶解物や切り屑が入り込むことで被削材が溶着し、膜剥離や刃先のチッピングが発生してしまう。 That is, if the upper layer 9 does not fill the gap between the needle-like particle layers 8, the work material is welded by the melted material and chips of the work material entering the gap, and film peeling and chipping of the blade edge occur. End up.
また、針状粒子6を基体2表面に平行な断面視でのアスペクト比が8を下回ると、針状粒子層8の強度が不十分となり、突発欠損等の損傷が発生してしまう。
In addition, when the aspect ratio of the
一方、アスペクト比が100を越えると、針状粒子6の粒子間の隙間が大きくなりすぎてしまい、上部層9を成膜するだけでは隙間を埋めることができずに被削材が溶着して膜剥離や刃先のチッピングが発生してしまう。
On the other hand, when the aspect ratio exceeds 100, the gaps between the needle-
なお、本発明において針状結晶からなる酸素を含むチタン化合物粒子10の基体表面に平行な断面視平均結晶幅を測定する方法としては、膜厚方向に対し、結晶高さの中心まで膜除去加工を行った硬質被覆層3を含む断面についてX線マイクロアナライザ(EPMA)、オージェ電子分光法(AES)、透過電子顕微鏡像(TEM)などによる元素マッピングにより、各針状結晶の長軸方向の中心である位置において測定した短軸幅を値w1とし、各針状結晶の長軸幅をw2とし、w2/w1の式で求まる値をアスペクト比とする。なお、長軸は3000倍〜5000倍の観察視野で最も長く観察された結晶のものを任意箇所における3点平均値とし、短軸は5000倍の観察視野での3点平均値とする。
In the present invention, the method of measuring the average crystal width in cross-sectional view parallel to the substrate surface of the
ここで、上記方法にて酸素含有チタン化合物粒子10を測定した際に、基体表面に垂直な断面視での平均結晶高さhが1〜10μm、特に、2〜7μmの範囲内とすることが、切削工具の耐摩耗性および耐欠損性を高めるために望ましい。
Here, when the oxygen-containing
なお、本発明において針状結晶からなる酸素を含むチタン化合物粒子10の基体表面に垂直な断面視での平均結晶高さを測定する方法としては、硬質被覆層3を含む断面について走査型電子顕微鏡(SEM)写真(図2)、X線マイクロアナライザ(EPMA)、オージェ電子分光法(AES)、透過電子顕微鏡像(TEM)などによる元素マッピングより測定した高さを値hとする。なお、任意箇所における10点測定した値の平均値とする。
In the present invention, the method for measuring the average crystal height in a cross-sectional view perpendicular to the substrate surface of the
また、上記方法にてチタン化合物粒子10を測定した際に、前記基体表面に平行な断面視での平均長軸幅が1〜4μm、特に1.5〜3μm、平均短軸幅が0.03〜0.5μm、特に0.07〜0.3μmの範囲内とすることが、結晶組織としての強度が向上し、チッピング、欠損を抑制する点で望ましい。
Further, when the
ここで、酸素含有相4はチタンと酸素を含有する化合物、例えば、酸化チタン(Ti2O3、TiO2)、炭酸化チタン(TiCO)、窒酸化チタン(TiNO)等を含むことで、酸化物の非常に優れた耐酸化性によって高温になりやすい乾式の高速切削において優れた耐摩耗性を発揮することができる。 Here, the oxygen-containing phase 4 is oxidized by containing a compound containing titanium and oxygen, for example, titanium oxide (Ti 2 O 3 , TiO 2 ), titanium carbonate (TiCO), titanium nitride oxide (TiNO), and the like. Excellent wear resistance can be exhibited in dry high-speed cutting that tends to become high temperature due to the extremely excellent oxidation resistance of the object.
さらに非酸化物相5がTiCNおよびTiNの少なくとも一方からなることで、チタン原子が酸化物と非酸化物との結合力を向上させることで、膜剥離が原因となる耐チッピング性を向上させることが出来る。
Furthermore, when the
さらに、非酸化物相5は硬質被覆層3の表層として窒化チタンからなり、基体2の上面および側面の交差部、すなわち切刃上においては、酸素含有相4が露出するとともに非酸化物相5と錯綜するように前記窒化チタン層がその一部を残存させて露出するように研磨加工されたものであることで、切刃が平滑になって、工具損傷の要因となりうる突起やくぼみを減少させることができ、、チッピングの発生をより効果的に抑制する点で望ましい。
Further, the
さらに、硬質被覆層の表層として窒化チタン層からなり、前記酸素を含むチタン化合物が露出するとともに該酸素を含むチタン化合物と錯綜するように前記窒化チタン層がその一部を残存させて露出するように研磨加工された際に、切刃付近において摩擦係数の小さい窒化チタンと耐酸化性に優れた酸素含有チタン化合物が存在することで、低摩擦であるためにすくい面上での切屑のすべりがよくなって切屑排出がスムーズに行われ、さらに耐酸化性に優れるために拡散摩耗を抑制することから、すくい面における耐摩耗性が向上する点で望ましい。さらに、窒化チタンが表層に存在することで、使用済みコーナーの識別も容易に行われる点で望ましい。 Further, a titanium nitride layer is formed as a surface layer of the hard coating layer so that the titanium compound containing oxygen is exposed and part of the titanium nitride layer is exposed so as to be complexed with the titanium compound containing oxygen. When it is polished, the presence of titanium nitride with a small friction coefficient near the cutting edge and an oxygen-containing titanium compound with excellent oxidation resistance makes it possible to prevent chips from slipping on the rake face due to low friction. This improves the wear resistance on the rake face because it improves the chip discharge smoothly and suppresses the diffusion wear because of excellent oxidation resistance. Furthermore, the presence of titanium nitride on the surface layer is desirable in that the used corners can be easily identified.
なお、硬質被覆層の最表面の最大高さRzが0.5〜1.5μmの範囲内にある場合には、上述したように被覆層表面での切屑のすべり性がさらに向上するので、切屑排出がよりスムーズとなるために、異常摩耗が発生しないため望ましい。とりわけ、硬質被覆層の最表面の最大高さRzに加えて、硬質被覆層の最表面の算術平均粗さRaが0.05〜0.3μmの範囲内にある場合には、切屑排出をさらに良好な状態に容易に調整することができる。 In addition, when the maximum height Rz of the outermost surface of the hard coating layer is in the range of 0.5 to 1.5 μm, as described above, the slip property of the chips on the surface of the coating layer is further improved. It is desirable because abnormal wear does not occur because the discharge becomes smoother. In particular, in addition to the maximum height Rz of the outermost surface of the hard coating layer, when the arithmetic average roughness Ra of the outermost surface of the hard coating layer is in the range of 0.05 to 0.3 μm, chip discharge is further reduced. It can be easily adjusted to a good state.
ここで、硬質被覆層3の表面の最大高さRzを測定する方法としては、JIS B0601’01に準拠して触針式表面粗さ測定器を用いて測定すればよく、かかる測定が困難な場合には、レーザー顕微鏡や原子間力顕微鏡等の測定器を用い、硬質被覆層3の表面5における凹凸形状を走査しながら見積もることによって測定することが可能である。この表面粗さ(Rz、Ra)の測定においては、触針式表面粗さ測定器を用いる場合には、カットオフ値:0.25mm、基準長さ:0.8mm、走査速度:0.1mm/秒にて測定する。
Here, as a method for measuring the maximum height Rz of the surface of the
なお、本発明の工具1に使用する基体2としては、炭化タングステン(WC)、炭化チタン(TiC)または炭窒化チタン(TiCN)と、所望により周期律表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)の鉄族金属から成る結合相にて結合させた超硬合金やサーメット、または窒化珪素(Si3N4)や酸化アルミニウム(Al2O3)質セラミック焼結体、立方晶窒化ホウ素(cBN)、ダイヤモンドを主体とした超硬質焼結体等の硬質材料、または炭素鋼、高速度鋼、合金鋼等の金属等の高硬度材料を用いるとよい。図1に示す例では、炭化タングステン(WC)を主成分とした硬質相とコバルト(Co)からなる結合相とで構成される超硬合金にて基体2が構成されている。基体2が超硬合金からなる場合には、硬度および靭性のバランスが良くて高速乾式切削加工や鋳鉄加工をする際にも安定した切削加工をすることができる。
In addition, as the base |
(本発明の表面被覆切削工具の製造方法)
また、上述した本発明の表面被覆切削工具1を製造するには、まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加して混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって、上述した硬質材料からなる基体2を作製する。そして、上記基体2の表面に所望によって研磨加工や切刃部のホーニング加工を施す。
(Method for producing surface-coated cutting tool of the present invention)
In order to manufacture the above-described surface-coated cutting tool 1 of the present invention, first, a metal powder is added to an inorganic powder such as a metal carbide, nitride, carbonitride, or oxide that can be formed by firing the hard alloy described above. , Carbon powder, etc., are added and mixed as appropriate, and after molding into a predetermined tool shape by a known molding method such as press molding, cast molding, extrusion molding, cold isostatic pressing, etc., in vacuum or non-oxidizing By baking in an atmosphere, the
次に、その表面に例えば化学気相蒸着(CVD)法によって被覆層3を成膜する。
Next, the
まず、反応ガス組成として塩化チタン(TiCl4)ガスを1.0〜4.0体積%、窒素(N2)ガスを5.0〜60体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜900℃、10〜30kPaの条件で下地層であるTiN層を成膜する。 First, as a reaction gas composition, titanium chloride (TiCl 4 ) gas is mixed at 1.0 to 4.0% by volume, nitrogen (N 2 ) gas is at 5.0 to 60% by volume, and the remainder is hydrogen (H 2 ) gas The gas is adjusted and introduced into the reaction chamber, and a TiN layer as a base layer is formed in the chamber under conditions of 800 to 900 ° C. and 10 to 30 kPa.
次に、例えば、反応ガス組成として、体積%で塩化チタン(TiCl4)ガスを1.0〜4.0体積%、窒素(N2)ガスを0〜60体積%、アセトニトリル(CH3CN)ガスを0.1〜2.0体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を780〜880℃、5〜20kPaにて炭窒化チタン層を成膜する。 Next, for example, as a reaction gas composition, titanium chloride (TiCl 4 ) gas is 1.0 to 4.0 volume%, nitrogen (N 2 ) gas is 0 to 60 volume%, and acetonitrile (CH 3 CN) is volume%. A mixed gas consisting of 0.1 to 2.0% by volume of gas and the remainder consisting of hydrogen (H 2 ) gas was prepared and introduced into the reaction chamber, and the film formation temperature was 780 to 880 ° C. at 5 to 20 kPa. A titanium nitride layer is formed.
次いで反応ガス組成として塩化チタン(TiCl4)ガスを0.1〜3体積%、メタン(CH4)ガスを0.1〜10体積%、窒素(N2)ガスを5〜60体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、5〜30kPaとして結合層を成膜する。 Next, the reaction gas composition is 0.1 to 3% by volume of titanium chloride (TiCl 4 ) gas, 0.1 to 10% by volume of methane (CH 4 ) gas, 5 to 60% by volume of nitrogen (N 2 ) gas, and the rest Prepares a mixed gas composed of hydrogen (H 2 ) gas and introduces it into the reaction chamber, and forms a bonding layer at 950 to 1100 ° C. and 5 to 30 kPa in the chamber.
次に、酸素含有化合物層4を成膜する。この時、TiCNO組成酸素含有化合物の反応ガス組成として塩化チタン(TiCl4)ガスを1.2〜2.5体積%、二酸化炭素(CO2)ガスを1.0〜3.0体積%、メタン(CH4)ガスを1.0〜10体積%、窒素(N2)ガスを5〜60体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、5〜20kPaとする。または、TiCO組成酸素含有化合物の反応ガス組成として塩化チタン(TiCl4)ガスを1.2〜2.5体積%、二酸化炭素(CO2)ガスを1.0〜3.0体積%、メタン(CH4)ガスを1.0〜10体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、5〜20kPaとする。 Next, the oxygen-containing compound layer 4 is formed. At this time, as the reaction gas composition of the TiCNO composition oxygen-containing compound, titanium chloride (TiCl 4 ) gas is 1.2 to 2.5% by volume, carbon dioxide (CO 2 ) gas is 1.0 to 3.0% by volume, methane A mixed gas consisting of 1.0 to 10% by volume of (CH 4 ) gas, 5 to 60% by volume of nitrogen (N 2 ) gas, and the remaining hydrogen (H 2 ) gas was prepared and introduced into the reaction chamber, The inside of a chamber shall be 950-1100 degreeC and 5-20 kPa. Alternatively, as the reaction gas composition of the TiCO composition oxygen-containing compound, titanium chloride (TiCl 4 ) gas is 1.2 to 2.5% by volume, carbon dioxide (CO 2 ) gas is 1.0 to 3.0% by volume, methane ( A mixed gas composed of 1.0 to 10% by volume of CH 4 ) gas and the remaining hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber, and the inside of the chamber is set to 950 to 1100 ° C. and 5 to 20 kPa.
さらに、TiNO組成酸素含有化合物の反応ガス組成として塩化チタン(TiCl4)ガスを1.2〜2.5体積%、二酸化炭素(CO2)ガスを1.0〜3.0体積%、窒素(N2)ガスを5〜60体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、5〜20kPaとする。 Further, as a reaction gas composition of the TiNO composition oxygen-containing compound, titanium chloride (TiCl 4 ) gas is 1.2 to 2.5% by volume, carbon dioxide (CO 2 ) gas is 1.0 to 3.0% by volume, nitrogen ( A mixed gas composed of 5 to 60% by volume of N 2 ) gas and the remaining hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber, and the inside of the chamber is set to 950 to 1100 ° C. and 5 to 20 kPa.
ここで、本実施態様によれば、酸素含有化合物層4形成時の反応ガスにおいて、塩化チタン(TiCl4)と二酸化炭素(CO2)の合計流量VTiCl4+CO2(L/min)をCVD炉有効体積Va(L)で割った比率VTiCl4+CO2/Vaが0.015〜0.035であるとすくい面断面方向の酸素含有化合物のアスペクト比が8〜20の範囲に制御ができる。ここでVTiCl4+CO2/Vaが0.015以下の場合、酸素含有化合物のアスペクト比が小さくなる。また、VTiCl4+CO2/Vaが0.035以上の場合、酸素含有化合物のアスペクト比が大きくなる。 Here, according to this embodiment, the total flow rate V TiCl 4 + CO 2 (L / min) of titanium chloride (TiCl 4 ) and carbon dioxide (CO 2 ) is used as the reaction gas when forming the oxygen-containing compound layer 4 in the CVD furnace. When the ratio V TiCl 4 + CO 2 / Va divided by the effective volume Va (L) is 0.015 to 0.035, the aspect ratio of the oxygen-containing compound in the rake face cross-sectional direction can be controlled in the range of 8 to 20. Here, when V TiCl 4 + CO 2 / Va is 0.015 or less, the aspect ratio of the oxygen-containing compound becomes small. In addition, when V TiCl4 + CO2 / Va is 0.035 or more, the aspect ratio of the oxygen-containing compound is increased.
さらに、酸素含有化合物層4形成時の反応ガスにおいて、二酸化炭素(CO2)の流量を塩化チタン(TiCl4)の流量で割った比率CO2/TiCl4(流量比)が0.7〜2.0の範囲にあると酸化含有化合物の結晶高さを1.0〜10μmの範囲に容易に制御ができる。CO2/TiCl4(流量比)が0.7以下の場合、塩化チタンに対する酸素が十分に存在しないためと、酸素含有化合物の結晶高さが小さくなる傾向にある。また、CO2/TiCl4(流量比)が2.0以上の場合、酸素含有化合物の結晶高さが非常に大きくなる傾向にあった。さらに、上記比率VTiCl4+CO2/Va(L/min)が0.015〜0.035、CO2/TiCl4(流量比)が0.7〜2.0の範囲であり、VTiCl4+CO2/Vaが0.015〜0.035の範囲である場合、三酸化二チタン(Ti2O3)の存在が確認された。なお、Ti2O3の存在は、X線回折法により、任意箇所を測定した後に同定を行い決定した。 Further, in the reaction gas when the oxygen-containing compound layer 4 is formed, the ratio CO 2 / TiCl 4 (flow rate ratio) obtained by dividing the flow rate of carbon dioxide (CO 2 ) by the flow rate of titanium chloride (TiCl 4 ) is 0.7-2. When it is in the range of 0.0, the crystal height of the oxide-containing compound can be easily controlled in the range of 1.0 to 10 μm. When CO 2 / TiCl 4 (flow rate ratio) is 0.7 or less, the crystal height of the oxygen-containing compound tends to be small because there is not enough oxygen relative to titanium chloride. When CO 2 / TiCl 4 (flow rate ratio) was 2.0 or more, the crystal height of the oxygen-containing compound tended to be very large. Further, the ratio V TiCl 4 + CO 2 / Va (L / min) is in the range of 0.015 to 0.035, CO 2 / TiCl 4 (flow rate ratio) is in the range of 0.7 to 2.0, and V TiCl 4 + CO 2 When / Va is in the range of 0.015 to 0.035, the presence of dititanium trioxide (Ti 2 O 3 ) was confirmed. The presence of Ti 2 O 3 was determined by identification after measuring an arbitrary portion by X-ray diffraction.
次に、針状結晶である酸素含有化合物を埋め込む膜の反応ガスにおいて、TiCN組成酸素含有化合物の反応ガス組成として塩化チタン(TiCl4)ガスを0.5〜1.2体積%、メタン(CH4)ガスを1.0〜10体積%、窒素(N2)ガスを5〜60体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、6kPaとする。 Next, in the reaction gas of the film in which the oxygen-containing compound that is an acicular crystal is embedded, as the reaction gas composition of the TiCN composition oxygen-containing compound, 0.5 to 1.2% by volume of titanium chloride (TiCl 4 ) gas, methane (CH 4 ) A mixed gas consisting of 1.0 to 10% by volume of gas, 5 to 60% by volume of nitrogen (N 2 ) gas, and the remaining hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber. Is 950 to 1100 ° C. and 6 kPa.
または、TiC組成酸素含有化合物の反応ガス組成として塩化チタン(TiCl4)ガスを0.5〜1.2体積%、メタン(CH4)ガスを1.0〜10体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、6kPaとする。 Or, titanium chloride (TiCl 4) gas as a reaction gas composition of TiC composition oxygenate 0.5-1.2 vol%, 1.0 to 10 vol% methane (CH 4) gas, the remaining hydrogen (H 2 ) A mixed gas composed of gas is adjusted and introduced into the reaction chamber, and the inside of the chamber is set to 950 to 1100 ° C. and 6 kPa.
さらに、TiN組成酸素含有化合物の反応ガス組成として塩化チタン(TiCl4)ガスを0.5〜1.2体積%、窒素(N2)ガスを5〜60体積%、残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、6kPaとする。ここで、本実施態様によれば、針状結晶間の隙間を埋め込むために、気相から成膜面に吸着した原料ガスがすぐに表面で結晶化することなく、表面拡散が十分に可能な表面拡散時間を長くした。具体的には、極力減圧状態とし、さらに原料ガスの成分比率を減少させることで、表面に吸着した原料ガス成分が、他の原料ガスと衝突する頻度を低下させることで、表面を原料ガス成分が拡散し、針状結晶間の隙間や凹部に埋め込まれるように入り込むことが可能である。 Further, as a reaction gas composition of the TiN composition oxygen-containing compound, titanium chloride (TiCl 4 ) gas is 0.5 to 1.2% by volume, nitrogen (N 2 ) gas is 5 to 60% by volume, and the remainder is hydrogen (H 2 ). A mixed gas composed of gas is adjusted and introduced into the reaction chamber, and the inside of the chamber is set to 950 to 1100 ° C. and 6 kPa. Here, according to this embodiment, in order to fill the gaps between the needle crystals, the source gas adsorbed from the gas phase to the film formation surface does not immediately crystallize on the surface, and surface diffusion is sufficiently possible. Increased surface diffusion time. Specifically, by reducing the component ratio of the raw material gas as much as possible and reducing the component ratio of the raw material gas, the frequency of the raw material gas component adsorbed on the surface collides with other raw material gases to reduce the surface of the raw material gas component Can diffuse and enter so as to be embedded in gaps or recesses between needle crystals.
さらに上層部は場合により、αアルミナ層、窒化チタン、窒化ジルコニウムなどを成膜することで、耐摩耗性の向上が可能である。そして、所望により、成膜した被覆層3表面の少なくとも切刃部を研磨加工する。この研磨加工により、被覆層3中に残存する残留応力が開放されてさらに耐欠損性に優れた工具となる。
Further, in some cases, the upper layer portion can be improved in wear resistance by forming an α alumina layer, titanium nitride, zirconium nitride or the like. Then, if desired, at least the cutting edge portion on the surface of the formed
なお、上記方法はCVD法について説明しているが、その他の成膜方法(物理蒸着法、プラズマCVD等)を用いた製造方法でも本発明の工具1は作製可能である。 In addition, although the said method demonstrated CVD method, the tool 1 of this invention is producible also with the manufacturing method using other film-forming methods (physical vapor deposition method, plasma CVD, etc.).
平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMA120408)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にてすくい面より刃先処理(ホーニングR)加工を施した。 A metal cobalt (Co) powder with an average particle diameter of 1.2 μm is added to and mixed with tungsten carbide (WC) powder with an average particle diameter of 1.5 μm at a ratio of 6% by mass, and the cutting tool shape ( After forming into CNMA120408), a binder removal treatment was performed, and a cemented carbide was produced by firing at 1500 ° C. for 1 hour in a vacuum of 0.01 Pa. Further, the prepared cemented carbide was subjected to blade edge processing (Honing R) processing from the rake face by brushing.
次に、上記超硬合金に対して、化学気相蒸着(CVD)法により各種の硬質被覆層を製膜して試料No.1〜12の表面被覆切削工具を作製した。各試料No.毎の膜構成を表2に示した。なお、表2の各層の成膜条件は表1に示した。 Next, various hard coating layers were formed on the cemented carbide by chemical vapor deposition (CVD), and sample No. 1 to 12 surface-coated cutting tools were produced. Each sample No. Table 2 shows the film configuration for each. The deposition conditions for each layer in Table 2 are shown in Table 1.
また、硬質被覆層を被覆した後、試料の表面を研磨して最表面層の層厚を表2に記載の値に調整し、表面粗さを表2の値に調整した。
得られた工具について、透過型電子顕微鏡(TEM)を用いて表2に記載する被覆層が観察できるように研磨加工して各層の断面方向からみたミクロな組織状態を観察し、針状結晶部の状態を観察して結晶高さを測定した。また、透過型電子顕微鏡(TEM)を用いた元素マッピングにより、研磨加工して針状部の基体と平行方向からみたミクロな元素分布状態を観察し、針状結晶部の長軸と短軸状態を観察した。また、Ti2O3結晶の存在は、X線回折法(XRD)により測定した。表面粗さは触針式表面粗さ計により、刃先近傍領域にて3箇所測定して平均値とした。結果は表2に示した。
そして、この工具を用いて下記の条件により、軽断続切削試験および強断続切削試験を行い、耐摩耗性および耐欠損性を評価した。 Then, using this tool, a light interrupted cutting test and a strong interrupted cutting test were performed under the following conditions to evaluate the wear resistance and fracture resistance.
(軽断続切削条件)
被削材 :FC300 1本溝入円筒材
工具形状:CNMA120408
切削速度:350m/分
送り速度:0.3mm/rev
切り込み:1.5mm
切削時間:20分
切削液 :エマルジョン15%+水85%混合液
評価項目:顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
(強断続切削条件)
被削材 :FCD700 4本溝入円筒材
工具形状:CNMA120408
切削速度:450m/分
送り速度:0.45mm/rev
切り込み:2mm
切削液 :エマルジョン15%+水85%混合液
評価項目:欠損に至る衝撃回数
衝撃回数1000回時点で顕微鏡にて切刃の状態を観察
結果は表3に示した。
Work Material: FC300 Single Grooved Cylindrical Tool Shape: CNMA120408
Cutting speed: 350 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 1.5mm
Cutting time: 20 minutes Cutting fluid: Mixture of 15% emulsion + 85% water Evaluation item: Observe the cutting edge with a microscope and measure the amount of flank wear and tip wear (strongly interrupted cutting conditions)
Work Material: FCD700 4 Grooved Cylindrical Tool Shape: CNMA120408
Cutting speed: 450 m / min Feeding speed: 0.45 mm / rev
Cutting depth: 2mm
Cutting fluid: Mixture of 15% emulsion + 85% water Evaluation item: Number of impacts leading to defects
Table 3 shows the results of observation of the state of the cutting edge with a microscope at the time of impact of 1000 times.
表1〜3より、非酸化物相および針状のチタン化合物相のどちらかが存在しない、または針状結晶が適正ではない試料No.9〜12ではチッピングが発生して耐欠損性に劣るものであった。 From Tables 1 to 3, Sample No. in which either the non-oxide phase or the acicular titanium compound phase does not exist or the acicular crystals are not appropriate. In 9-12, chipping occurred and the chipping resistance was poor.
これに対して、本発明に従い、酸素を含む針状チタン化合物相に非酸化物チタン化合物相を埋め込んだ層が存在する試料1〜8では、連続切削においても断続切削においても長寿命であり、耐欠損性および耐チッピング性とも優れた切削性能を有するものであった。 On the other hand, according to the present invention, in samples 1 to 8 in which a layer in which a non-oxide titanium compound phase is embedded in an acicular titanium compound phase containing oxygen is present, it has a long life both in continuous cutting and in intermittent cutting, Both the chipping resistance and chipping resistance had excellent cutting performance.
1:工具(表面被覆切削工具)
2:基体
3:硬質被覆層
4:酸素を含むチタン化合物相
5:非酸化物相
6:針状の結晶粒子
7:酸素を含むチタン化合物相と非酸化物相との錯綜領域
8:針状粒子層
9:上部層
10:酸素を含むチタン化合物の針状粒子
h:断面方向からみた酸素を含むチタン化合物相の平均結晶高さ(μm)
w1:基体に平行な断面視野での酸素を含むチタン化合物相の短軸幅(μm)
w2:基体に平行な断面視野での酸素を含むチタン化合物相の長軸幅(μm)
1: Tool (surface coated cutting tool)
2: Base 3: Hard coating layer 4: Oxygen-containing titanium compound phase 5: Non-oxide phase 6: Acicular crystal particles 7: Complex area of oxygen-containing titanium compound phase and non-oxide phase 8: Acicular Particle layer 9: Upper layer 10: Acicular particles of titanium compound containing oxygen h: Average crystal height (μm) of the titanium compound phase containing oxygen viewed from the cross-sectional direction
w1: minor axis width (μm) of a titanium compound phase containing oxygen in a cross-sectional field parallel to the substrate
w2: long axis width (μm) of titanium compound phase containing oxygen in a cross-sectional field parallel to the substrate
Claims (6)
前記硬質被覆層は、酸素を含むチタン化合物相と、該酸素を含むチタン化合物相に隣接し且つ4族元素の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも一つの化合物からなる非酸化物相とを含んでおり、
前記酸素を含むチタン化合物は、前記基体表面に平行な断面視でのアスペクト比が8〜100の範囲にある針状の結晶粒子から構成されているとともに、
前記酸素を含むチタン化合物相と前記非酸化物相との界面近傍領域では、前記酸素を含むチタン化合物相と前記非酸化物相との錯綜領域が存在することを特徴とする表面被覆切削工具。 A surface-coated cutting tool in which a hard coating layer composed of multiple layers is formed on the surface of a substrate,
The hard coating layer is a non-oxidized compound comprising a titanium compound phase containing oxygen and at least one compound selected from the group consisting of carbides, nitrides, and carbonitrides of group 4 elements adjacent to the titanium compound phase containing oxygen. Including the physical phase,
The titanium compound containing oxygen is composed of acicular crystal particles having an aspect ratio in the range of 8 to 100 in a cross-sectional view parallel to the substrate surface,
A surface-coated cutting tool, wherein a complex region between the titanium compound phase containing oxygen and the non-oxide phase exists in a region near the interface between the titanium compound phase containing oxygen and the non-oxide phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006050978A JP2007229821A (en) | 2006-02-27 | 2006-02-27 | Surface-coated cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006050978A JP2007229821A (en) | 2006-02-27 | 2006-02-27 | Surface-coated cutting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007229821A true JP2007229821A (en) | 2007-09-13 |
Family
ID=38550933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006050978A Pending JP2007229821A (en) | 2006-02-27 | 2006-02-27 | Surface-coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007229821A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010173025A (en) * | 2009-01-30 | 2010-08-12 | Mitsubishi Materials Corp | Surface coated cutting tool |
JP2010172989A (en) * | 2009-01-28 | 2010-08-12 | Kyocera Corp | Surface-coated cutting tool |
JP2011121145A (en) * | 2009-12-11 | 2011-06-23 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance |
JP2013506570A (en) * | 2009-10-05 | 2013-02-28 | セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング | Tool for processing metal materials |
WO2013081047A1 (en) * | 2011-11-29 | 2013-06-06 | 京セラ株式会社 | Coated tool |
WO2019146785A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
WO2019146786A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
WO2019146784A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
CN114144272A (en) * | 2019-07-29 | 2022-03-04 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
CN114144273A (en) * | 2019-07-29 | 2022-03-04 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
-
2006
- 2006-02-27 JP JP2006050978A patent/JP2007229821A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010172989A (en) * | 2009-01-28 | 2010-08-12 | Kyocera Corp | Surface-coated cutting tool |
JP2010173025A (en) * | 2009-01-30 | 2010-08-12 | Mitsubishi Materials Corp | Surface coated cutting tool |
JP2013506570A (en) * | 2009-10-05 | 2013-02-28 | セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング | Tool for processing metal materials |
JP2011121145A (en) * | 2009-12-11 | 2011-06-23 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance |
WO2013081047A1 (en) * | 2011-11-29 | 2013-06-06 | 京セラ株式会社 | Coated tool |
JPWO2013081047A1 (en) * | 2011-11-29 | 2015-04-27 | 京セラ株式会社 | Coated tool |
JPWO2019146784A1 (en) * | 2018-01-29 | 2021-01-28 | 京セラ株式会社 | Covering tool and cutting tool equipped with it |
JP7037581B2 (en) | 2018-01-29 | 2022-03-16 | 京セラ株式会社 | Covering tool and cutting tool with it |
WO2019146784A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
CN111902230A (en) * | 2018-01-29 | 2020-11-06 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
JPWO2019146785A1 (en) * | 2018-01-29 | 2021-01-28 | 京セラ株式会社 | Covering tool and cutting tool with it |
JPWO2019146786A1 (en) * | 2018-01-29 | 2021-01-28 | 京セラ株式会社 | Covering tool and cutting tool equipped with it |
WO2019146785A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
CN111902230B (en) * | 2018-01-29 | 2023-08-11 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
US11541468B2 (en) | 2018-01-29 | 2023-01-03 | Kyocera Corporation | Coated tool and cutting tool including same |
WO2019146786A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
JP7037580B2 (en) | 2018-01-29 | 2022-03-16 | 京セラ株式会社 | Covering tool and cutting tool equipped with it |
JP7037582B2 (en) | 2018-01-29 | 2022-03-16 | 京セラ株式会社 | Covering tool and cutting tool equipped with it |
US11517966B2 (en) | 2018-01-29 | 2022-12-06 | Kyocera Corporation | Coated tool, and cutting tool comprising same |
US11534835B2 (en) | 2018-01-29 | 2022-12-27 | Kyocera Corporation | Coated tool and cutting tool including same |
CN114144273A (en) * | 2019-07-29 | 2022-03-04 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
CN114144272A (en) * | 2019-07-29 | 2022-03-04 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
CN114144273B (en) * | 2019-07-29 | 2024-01-19 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
CN114144272B (en) * | 2019-07-29 | 2024-02-20 | 京瓷株式会社 | Coated cutting tool and cutting tool provided with same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5866650B2 (en) | Surface coated cutting tool | |
JP2007229821A (en) | Surface-coated cutting tool | |
JP4854359B2 (en) | Surface coated cutting tool | |
JP5710008B2 (en) | Cutting tools | |
JP2012196726A (en) | Cutting tool | |
WO2019146785A1 (en) | Coated tool, and cutting tool comprising same | |
JP5153968B2 (en) | Cutting tools | |
JP2010253594A (en) | Surface coated tool | |
JP2012144766A (en) | Coated member | |
JP2006272515A (en) | Surface coated cutting tool | |
JP2019171546A (en) | Surface-coated cutting tool and method of manufacturing the same | |
JP4942326B2 (en) | Surface covering member and cutting tool using surface covering member | |
KR102094055B1 (en) | Surface coated member, and manufacturing method for same | |
JP2019171547A (en) | Surface-coated cutting tool and method of manufacturing the same | |
JP5597469B2 (en) | Cutting tools | |
KR102492360B1 (en) | Coated tool and cutting tool equipped with the same | |
JP6162484B2 (en) | Surface covering member | |
JP6039481B2 (en) | Surface covering member | |
JP2011093003A (en) | Surface-coated member | |
JP7301969B2 (en) | Coated tool and cutting tool with the same | |
JP2014104545A (en) | Coated tool | |
JP2005264194A (en) | alpha-TYPE ALUMINUM OXIDE COATED MEMBER | |
JP6703311B2 (en) | Coated cutting tools | |
JP4936742B2 (en) | Surface coating tools and cutting tools | |
JP4663248B2 (en) | Surface coated cutting tool |