JP2007227239A - Anode for a lithium secondary battery and lithium secondary cell - Google Patents

Anode for a lithium secondary battery and lithium secondary cell Download PDF

Info

Publication number
JP2007227239A
JP2007227239A JP2006048738A JP2006048738A JP2007227239A JP 2007227239 A JP2007227239 A JP 2007227239A JP 2006048738 A JP2006048738 A JP 2006048738A JP 2006048738 A JP2006048738 A JP 2006048738A JP 2007227239 A JP2007227239 A JP 2007227239A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium secondary
secondary battery
graphite
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006048738A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sato
和之 佐藤
Katsuichiro Sawa
勝一郎 澤
Taizo Sunano
泰三 砂野
Maruo Jinno
丸男 神野
Hisaki Tarui
久樹 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006048738A priority Critical patent/JP2007227239A/en
Publication of JP2007227239A publication Critical patent/JP2007227239A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode for a lithium secondary battery capable of restraining deterioration of a current-collecting property inside an electrode due to exfoliation of a mixture layer from a collector, with a large charging and discharging capacity, and with excellent charge/discharge cycle characteristics, as well as a lithium secondary battery. <P>SOLUTION: A mixture obtained by mixing a metal material with its volume expanding/contracting by absorbing/releasing lithium, and scaly graphite with shearing stress applied in a dry state is used as an active material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池用負極及びそれを用いたリチウム二次電池に関するものである。   The present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.

近年、高出力、高エネルギー密度の新型二次電池の1つとして、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにしたリチウム二次電池が利用されている。   In recent years, as one of new secondary batteries with high output and high energy density, there has been a lithium secondary battery that uses a non-aqueous electrolyte and moves lithium ions between a positive electrode and a negative electrode for charging and discharging. It's being used.

このようなリチウム二次電池においては負極材料として372mAh/gの理論容量をもつ黒鉛が用いられているが、電池の高容量化のためには負極材料の高容量化が不可欠である。黒鉛よりも大きな理論容量を持つ負極材料の1つとして、負極活物質にリチウムと合金化する材料を用い、この負極活物質を負極集電体に付与させたものが使用されている。   In such a lithium secondary battery, graphite having a theoretical capacity of 372 mAh / g is used as the negative electrode material, but in order to increase the capacity of the battery, it is essential to increase the capacity of the negative electrode material. As one of negative electrode materials having a theoretical capacity larger than that of graphite, a material in which a negative electrode active material is alloyed with lithium and the negative electrode active material is applied to a negative electrode current collector is used.

しかしながら、このようなリチウム二次電池用電極においては、充放電反応に伴う活物質の体積の膨張・収縮により合剤層中に発生する応力により、合剤層の集電体からの剥離が生じ、電極内の集電性が低下し、充放電特性が低下するという問題が生じる場合があった。   However, in such an electrode for a lithium secondary battery, separation of the mixture layer from the current collector occurs due to stress generated in the mixture layer due to expansion / contraction of the volume of the active material accompanying the charge / discharge reaction. In some cases, the current collecting property in the electrode is lowered and the charge / discharge characteristics are lowered.

特許文献1においては、黒鉛粒子の表面に、リチウムを吸蔵・放出可能な金属などをメカノケミカル処理により固定し、さらにその表面に炭素層を形成した3層構造を有するリチウム二次電池負極用の複合炭素材料が開示されている。   In Patent Document 1, a lithium secondary battery negative electrode having a three-layer structure in which a metal capable of inserting and extracting lithium is fixed to the surface of graphite particles by mechanochemical treatment, and a carbon layer is further formed on the surface. A composite carbon material is disclosed.

しかしながら、このような従来の複合材料を用いても、集電体からの合剤層の剥離による電極内の集電性の低下を抑制することができず、良好な充放電サイクル特性を得ることができなかった。
特開2004−185975号公報
However, even if such a conventional composite material is used, it is not possible to suppress a decrease in the current collecting property in the electrode due to the peeling of the mixture layer from the current collector, and good charge / discharge cycle characteristics are obtained. I could not.
JP 2004-185975 A

本発明の目的は、集電体からの合剤層の剥離による電極内の集電性の低下を抑制することができ、充放電容量が大きく、かつ充放電サイクル特性に優れたリチウム二次電池用負極及びそれを用いたリチウム二次電池を提供することにある。   An object of the present invention is to provide a lithium secondary battery that can suppress a decrease in current collecting property in an electrode due to peeling of a mixture layer from a current collector, has a large charge / discharge capacity, and is excellent in charge / discharge cycle characteristics. And providing a lithium secondary battery using the same.

本発明のリチウム二次電池用負極は、リチウムを吸蔵・放出することにより体積が膨張・収縮する金属材料と、鱗片状黒鉛とを、乾式においてせん断応力をかけながら混合して得られる混合物を活物質として用いることを特徴としている。   The negative electrode for a lithium secondary battery of the present invention uses a mixture obtained by mixing a metallic material whose volume expands and contracts by occluding and releasing lithium and scaly graphite while applying a shear stress in a dry process. It is characterized by being used as a substance.

本発明においては、上記金属材料と鱗片状黒鉛とを、乾式においてせん断応力をかけながら混合して得られる混合物を活物質として用いている。混合時に乾式でせん断応力をかけながら混合しているので、鱗片状黒鉛に対して上記金属材料が強い力で圧着され、金属材料と鱗片状黒鉛とが強固に密着する。特に、鱗片状黒鉛は、層状構造を有するものであるので、その層状構造により、強固に金属材料を保持することができる。従って、充放電時に金属材料が膨張・収縮しても、活物質層が集電体から剥離するのを抑制することができる。   In the present invention, a mixture obtained by mixing the metal material and scaly graphite while applying a shear stress in a dry process is used as an active material. Since mixing is performed while applying a shearing stress in a dry manner, the metal material is pressed against the scaly graphite with a strong force, and the metal material and the scaly graphite adhere firmly. In particular, since scaly graphite has a layered structure, the metal material can be firmly held by the layered structure. Therefore, even if the metal material expands / shrinks during charging / discharging, the active material layer can be prevented from peeling from the current collector.

鱗片状黒鉛は、一次粒子の形状が鱗片状であり、配向性が高い黒鉛材料である。鱗片状黒鉛のc方向の厚みは一般に3μm以下であり、好ましくは0.1〜3μmである。また、鱗片状黒鉛のa方向及びb方向のそれぞれの幅の平均値は、c方向の厚みの3倍以上である。   The flaky graphite is a graphite material having a primary particle shape that is flaky and highly oriented. The thickness in the c direction of the flaky graphite is generally 3 μm or less, preferably 0.1 to 3 μm. Moreover, the average value of each width | variety of scale-like graphite a direction and b direction is 3 times or more of the thickness of c direction.

また、本発明において、金属材料と鱗片状黒鉛の混合物における鱗片状黒鉛の混合割合は、体積比率で70%以上100%未満であることが好ましく、さらに好ましくは70〜95%の範囲であり、さらに好ましくは70〜90%の範囲である。   In the present invention, the mixing ratio of the flaky graphite in the mixture of the metal material and the flaky graphite is preferably 70% or more and less than 100% by volume, more preferably in the range of 70 to 95%. More preferably, it is 70 to 90% of range.

本発明における金属材料は、Si、Sn、Ge、Alなどの、炭素材料よりエネルギー密度が大きく、リチウムの吸蔵・放出に伴い体積が膨張・収縮する金属材料が用いられる。これらの金属材料の中で、特にSiが理論容量4200mAh/gとエネルギー密度が大きく、電池の高容量化に適している。また、Siは材料自身の導電性が低いため、鱗片状黒鉛と併用して用いることにより、電圧を降下させることができる。   As the metal material in the present invention, a metal material such as Si, Sn, Ge, Al, etc., which has an energy density larger than that of the carbon material and whose volume expands / contracts as lithium is occluded / released is used. Among these metal materials, particularly, Si has a large theoretical density of 4200 mAh / g and is suitable for increasing the capacity of the battery. In addition, since Si has low electrical conductivity, the voltage can be lowered by using it together with flake graphite.

本発明において用いる金属材料は、SiやSnを含む合金材料であってもよい。このような合金材料としては、SiやSnと他の1種以上の元素との金属間化合物、SiやSnと他の1種以上の元素との共晶合金などが挙げられる。合金の作製方法としては、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法などが挙げられる。特に、液体急冷法としては、単ロール急冷法、双ロール急冷法、及びガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法などの各種アトマイズ法が挙げられる。   The metal material used in the present invention may be an alloy material containing Si or Sn. Examples of such an alloy material include an intermetallic compound of Si or Sn and one or more other elements, and a eutectic alloy of Si or Sn and one or more other elements. Examples of the method for producing the alloy include an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, and a firing method. In particular, examples of the liquid quenching method include a single roll quenching method, a twin roll quenching method, and various atomizing methods such as a gas atomizing method, a water atomizing method, and a disk atomizing method.

また、本発明で用いる金属材料粒子は、その表面を金属等で被覆したものであってもよい。被覆方法としては、無電解めっき法、電解めっき法、化学還元法、蒸着法、スパッタリング法、化学気相成長法などが挙げられる。   In addition, the metal material particles used in the present invention may have a surface coated with a metal or the like. Examples of the coating method include an electroless plating method, an electrolytic plating method, a chemical reduction method, a vapor deposition method, a sputtering method, and a chemical vapor deposition method.

本発明において用いる金属材料粒子の平均粒径は、特に限定されないが100μm以下であることが好ましく、さらに好ましくは50μm以下、最も好ましくは10μm以下である。金属材料粒子の粒径が小さいほど、良好なサイクル特性が得られる傾向にある。   The average particle diameter of the metal material particles used in the present invention is not particularly limited, but is preferably 100 μm or less, more preferably 50 μm or less, and most preferably 10 μm or less. As the particle size of the metal material particles is smaller, good cycle characteristics tend to be obtained.

本発明におけるリチウム二次電池用負極は、上記金属材料及び鱗片状黒鉛の混合物と、バインダーとを含むスラリーを金属箔集電体の上に塗布し集電体上に合剤層を形成することにより製造することができる。   The negative electrode for a lithium secondary battery in the present invention is formed by applying a slurry containing a mixture of the above metal material and scaly graphite and a binder on a metal foil current collector to form a mixture layer on the current collector. Can be manufactured.

合剤層中のバインダーは、熱可塑性樹脂であることが好ましい。   The binder in the mixture layer is preferably a thermoplastic resin.

本発明において用いる金属箔集電体としては、例えば、銅、ニッケル、鉄、チタン、コバルト等の金属またはこれらの組み合わせからなる合金のものを挙げることができる。特に、銅元素を含む金属箔が好ましく、さらに好ましくは銅箔または銅合金箔である。   Examples of the metal foil current collector used in the present invention include an alloy made of a metal such as copper, nickel, iron, titanium, cobalt, or a combination thereof. In particular, a metal foil containing a copper element is preferable, and a copper foil or a copper alloy foil is more preferable.

本発明のリチウム二次電池用負極の製造方法としては、上記金属材料と鱗片状黒鉛とを、乾式においてせん断応力をかけながら混合して混合物を作製する工程と、得られた混合物とバインダーとを均一に混合してスラリーを調製する工程と、集電体上にこのスラリーを塗布し乾燥して合剤層を形成する工程とを備える方法を挙げることができる。   As a method for producing a negative electrode for a lithium secondary battery of the present invention, the above metal material and scaly graphite are mixed while applying a shear stress in a dry process to produce a mixture, and the resulting mixture and binder are combined. Examples of the method include a step of uniformly mixing to prepare a slurry and a step of applying the slurry on a current collector and drying to form a mixture layer.

本発明のリチウム二次電池は、上記本発明の負極と、正極活物質を含む正極と、非水電解質とを備えることを特徴としている。   A lithium secondary battery according to the present invention includes the above-described negative electrode according to the present invention, a positive electrode including a positive electrode active material, and a nonaqueous electrolyte.

本発明のリチウム二次電池に用いる電解質の溶媒は、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネートと、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートとの混合溶媒が例示される。また、前記環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒との混合溶媒も例示される。また、電解質の溶質としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPFが特に好ましく用いられる。さらに電解質として、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質が例示される。本発明のリチウム二次電池の電解質は、イオン導電性を発現させる溶質としてのリチウム化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電圧で分解しない限り、制約なく用いることができる。 The solvent of the electrolyte used in the lithium secondary battery of the present invention is not particularly limited, but a cyclic carbonate such as ethylene carbonate, propylene carbonate, and butylene carbonate, and a chain such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. A mixed solvent with carbonate is exemplified. Further, mixed solvents of the cyclic carbonate and ether solvents such as 1,2-dimethoxyethane and 1,2-diethoxyethane are also exemplified. The electrolyte solutes include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 is particularly preferably used. Further, examples of the electrolyte include gel polymer electrolytes in which a polymer electrolyte such as polyethylene oxide and polyacrylonitrile is impregnated with an electrolytic solution, and inorganic solid electrolytes such as LiI and Li 3 N. The electrolyte of the lithium secondary battery of the present invention is not limited as long as the lithium compound as a solute that exhibits ionic conductivity and the solvent that dissolves and retains the lithium compound do not decompose at the time of battery charging, discharging, or storage. Can be used.

本発明のリチウム二次電池の正極活物質としては、LiCoO、LiNiO、LiMn、LiMnO、LiCo0.5Ni0.5、LiNi0.7Co0.2Mn0.1などのリチウム含有遷移金属酸化物や、MnOなどのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に挿入、脱離する物質であれば、制限なく用いることができる。 As the positive electrode active material of the lithium secondary battery of the present invention, LiCoO 2, LiNiO 2, LiMn 2 O 4, LiMnO 2, LiCo 0.5 Ni 0.5 O 2, LiNi 0.7 Co 0.2 Mn 0. Examples include lithium-containing transition metal oxides such as 1 O 2 and metal oxides such as MnO 2 that do not contain lithium. In addition, any substance that electrochemically inserts and desorbs lithium can be used without limitation.

本発明によれば、集電体からの合剤層の剥離による電極内の集電性の低下を抑制することができ、充放電容量が大きく、かつ充放電サイクル特性に優れたリチウム二次電池用負極及びリチウム二次電池とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery which can suppress the fall of the current collection property in an electrode by peeling of the mixture layer from a collector, has a large charging / discharging capacity | capacitance, and was excellent in charging / discharging cycling characteristics. Negative electrode and lithium secondary battery.

以下、本発明を実施例に基づいてさらに詳細に説明するが,本発明は以下の実施例に何ら限定されるものではなく,その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. Is.

〔負極1の作製〕
活物質材料のうち、炭素材料として平均粒径20μmの鱗片状人造黒鉛を用い、金属材料として平均粒径2.5μmのSi粉末を用いた。これらの材料を体積比が炭素:合金=9:1となるように秤量し、混合して電極合剤とした。その後、バインダーとしてのポリフッ化ビニリデンを含むN−メチルピロリドン溶液に混合し、負極合剤スラリーとした。電極合剤とバインダーの重量比は95:5とした。
[Production of Negative Electrode 1]
Of the active material, scaly artificial graphite having an average particle diameter of 20 μm was used as the carbon material, and Si powder having an average particle diameter of 2.5 μm was used as the metal material. These materials were weighed so that the volume ratio was carbon: alloy = 9: 1 and mixed to obtain an electrode mixture. Then, it mixed with the N-methylpyrrolidone solution containing the polyvinylidene fluoride as a binder, and was set as the negative mix slurry. The weight ratio of the electrode mixture to the binder was 95: 5.

この負極合剤スラリーを,集電体である銅箔上に塗布し,乾燥した。得られたものを20×20mmの正方形状に切り抜き、圧延して集電リードタブを取り付け、負極とした。   This negative electrode mixture slurry was applied onto a copper foil as a current collector and dried. The obtained product was cut into a 20 × 20 mm square shape, rolled and attached with a current collecting lead tab to obtain a negative electrode.

〔負極2の作製〕
負極1に対して、炭素材料と合金材料を混合する際にメカノフュージョン(ホソカワミクロン製)を使用し、せん断応力をかけながら混合すること以外は負極1と同様の手順で、負極2を作製した。
[Preparation of negative electrode 2]
A negative electrode 2 was produced in the same procedure as the negative electrode 1 except that mechanofusion (manufactured by Hosokawa Micron) was used to mix the carbon material and the alloy material with the negative electrode 1 and mixed while applying shear stress.

〔負極3の作製〕
負極1に対して、炭素材料として人造球状黒鉛を用いたこと以外は負極1と同様の手順で、負極3を作製した。
[Preparation of Negative Electrode 3]
A negative electrode 3 was produced in the same procedure as the negative electrode 1 except that artificial spherical graphite was used as the carbon material for the negative electrode 1.

〔負極4の作製〕
負極2に対して、炭素材料として人造球状黒鉛を用いたこと以外は負極2と同様の手順で、負極4を作製した。
[Preparation of Negative Electrode 4]
A negative electrode 4 was produced in the same procedure as the negative electrode 2 except that artificial spherical graphite was used as the carbon material for the negative electrode 2.

〔負極5の作製〕
負極2に対して、炭素材料:合金材料の体積比が3:7となるよう秤量して用いたこと以外は負極2と同様の手順で、負極5を作製した。
[Preparation of Negative Electrode 5]
A negative electrode 5 was produced in the same procedure as the negative electrode 2 except that the volume ratio of carbon material: alloy material was 3: 7 with respect to the negative electrode 2 and was used.

〔負極6の作製〕
負極2に対して、炭素材料:合金材料の体積比が7:3となるよう秤量して用いたこと以外は負極2と同様の手順で、負極6を作製した。
[Preparation of Negative Electrode 6]
A negative electrode 6 was produced in the same procedure as the negative electrode 2 except that the volume ratio of carbon material: alloy material was 7: 3 with respect to the negative electrode 2.

〔電解液の作製〕
エチレンカーボネートとジエチルカーボネートを体積比3:7の割合で混合した溶媒に、LiPFを1モル/リットルとなるように溶解して電解液を作製した。
(Preparation of electrolyte)
LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 so as to be 1 mol / liter to prepare an electrolytic solution.

〔3電極式セルの作製〕
上記負極1〜6を作用極として用い、3電極式セルを作製した。電解液としては上記電解液を用い、対極及び参照極としてはリチウム金属を用いた。
[Production of 3-electrode cell]
Using the negative electrodes 1 to 6 as working electrodes, a three-electrode cell was produced. The above electrolytic solution was used as the electrolytic solution, and lithium metal was used as the counter electrode and the reference electrode.

〔充放電試験〕
上記の3電極式セルを用いて充放電試験を行った。1mA/cmで0V(vs.Li/Li)まで定電流で充電した後、0.125mA/cmで0Vまで定電流で充電を行った。放電は、1mA/cmで2.0Vまで定電流で行った。
(Charge / discharge test)
A charge / discharge test was conducted using the above three-electrode cell. After charging at a constant current up to 0 V (vs. Li / Li + ) at 1 mA / cm 2 , charging was performed at a constant current up to 0 V at 0.125 mA / cm 2 . Discharging was performed at a constant current up to 2.0 V at 1 mA / cm 2 .

上記充放電試験で測定された1サイクル目放電容量/1サイクル目の充電容量を初期効率として、表1に示した。また、5サイクル目放電容量/1サイクル目充電容量を5サイクル後放電率として表1に示した。   The first cycle discharge capacity / first cycle charge capacity measured in the charge / discharge test is shown in Table 1 as the initial efficiency. In addition, Table 5 shows the discharge capacity at the 5th cycle / the charge capacity at the 1st cycle as a discharge rate after 5 cycles.

実施例1の電極の充電容量は700mAh/gであり、放電容量は616mAh/gであった。従って、鱗片状黒鉛を単独で用いた場合よりも、大幅に充放電容量が増加していることがわかる。   The charge capacity of the electrode of Example 1 was 700 mAh / g, and the discharge capacity was 616 mAh / g. Therefore, it can be seen that the charge / discharge capacity is significantly increased as compared with the case of using scaly graphite alone.

表1に示すように、鱗片状黒鉛とSi粉末をせん断応力をかけながら混合した実施例1の負極2は、せん断応力をかけずに混合した比較例1の負極1に比べ、初期効率(初期充放電効率)が高くなっており、また5サイクル後放電率も高くなっている。従って、充放電サイクル特性も向上していることがわかる。   As shown in Table 1, the negative electrode 2 of Example 1 in which flaky graphite and Si powder were mixed while applying shear stress was higher in initial efficiency (initial value) than the negative electrode 1 of Comparative Example 1 that was mixed without applying shear stress. (Charge / discharge efficiency) is high, and the discharge rate after 5 cycles is also high. Therefore, it can be seen that the charge / discharge cycle characteristics are also improved.

炭素材料として球状黒鉛を用いた比較例2及び比較例3においては、せん断応力により混合しても、5サイクル後放電率の向上割合が、鱗片状黒鉛を用いた場合に比べ低くなっており、充放電サイクル特性の向上は、鱗片状黒鉛を用いた場合に顕著に得られる効果であることがわかる。鱗片状黒鉛は、球状黒鉛よりも表面積が大きいため、金属材料との接触面積が大きく、また層状構造を有するものであるため、金属材料をより強固に保持することができ、本発明の効果が得られるものと思われる。   In Comparative Example 2 and Comparative Example 3 using spheroidal graphite as the carbon material, the improvement rate of the discharge rate after 5 cycles is lower than when scaly graphite is used, even if mixed by shear stress, It can be seen that the improvement of the charge / discharge cycle characteristics is an effect that is significantly obtained when scaly graphite is used. Since the scaly graphite has a surface area larger than that of the spherical graphite, the contact area with the metal material is large, and since it has a layered structure, the metal material can be held more firmly, and the effect of the present invention can be achieved. It seems to be obtained.

また、負極2(実施例1)、負極5(実施例2)、及び負極6(実施例3)の比較から明らかなように、鱗片状黒鉛の混合割合を70%以上100%未満とすることにより、初期効率及び5サイクル後放電率が高くなっており、本発明の効果がより効果的に得られることがわかる。   Further, as apparent from the comparison of the negative electrode 2 (Example 1), the negative electrode 5 (Example 2), and the negative electrode 6 (Example 3), the mixing ratio of the flake graphite is 70% or more and less than 100%. Thus, it can be seen that the initial efficiency and the discharge rate after 5 cycles are high, and the effects of the present invention can be obtained more effectively.

〔負極の顕微鏡観察〕
図1は、負極2(実施例1)の表面を示す顕微鏡写真であり、図2は負極1(比較例1)の表面を示す顕微鏡写真である。図1及び図2において、明るい粒子がSi粉末である。図1と図2の比較から明らかなように、せん断応力をかけながらSi粉末と鱗片状黒鉛を混合した負極2においては、鱗片状黒鉛中にSi粉末が取り込まれていることが観察される。従って、このように鱗片状黒鉛中にSi粉末が強固に取り込まれることにより、集電体からの合剤層の剥離が抑制され、良好な充放電サイクル特性が得られるものと思われる。
[Microscopic observation of negative electrode]
FIG. 1 is a photomicrograph showing the surface of the negative electrode 2 (Example 1), and FIG. 2 is a photomicrograph showing the surface of the negative electrode 1 (Comparative Example 1). 1 and 2, the bright particles are Si powder. As is clear from comparison between FIG. 1 and FIG. 2, in the negative electrode 2 in which Si powder and flaky graphite are mixed while applying shear stress, it is observed that Si powder is taken into the flaky graphite. Therefore, it is considered that when the Si powder is firmly taken into the flaky graphite in this way, peeling of the mixture layer from the current collector is suppressed, and good charge / discharge cycle characteristics can be obtained.

負極2(実施例1)の表面を示す顕微鏡写真。The microscope picture which shows the surface of the negative electrode 2 (Example 1). 負極1(比較例1)の表面を示す顕微鏡写真。The microscope picture which shows the surface of the negative electrode 1 (comparative example 1).

Claims (4)

リチウムを吸蔵・放出することにより体積が膨張・収縮する金属材料と、鱗片状黒鉛とを、乾式においてせん断応力をかけながら混合して得られる混合物を活物質として用いることを特徴とするリチウム二次電池用負極。   Lithium secondary characterized by using, as an active material, a mixture obtained by mixing a metallic material whose volume expands and contracts by inserting and extracting lithium and scaly graphite while applying shear stress in a dry process Battery negative electrode. 前記混合物における鱗片状黒鉛の混合割合が、体積比率で70%以上100%未満であることを特徴とする請求項1に記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the mixture ratio of the flaky graphite in the mixture is 70% or more and less than 100% by volume ratio. 前記金属材料がSiを含有していることを特徴とする請求項1または2に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1 or 2, wherein the metal material contains Si. 請求項1〜3のいずれか1項に記載の負極と、正極と、非水電解質とを備えることを特徴とするリチウム二次電池。   A lithium secondary battery comprising the negative electrode according to claim 1, a positive electrode, and a nonaqueous electrolyte.
JP2006048738A 2006-02-24 2006-02-24 Anode for a lithium secondary battery and lithium secondary cell Pending JP2007227239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048738A JP2007227239A (en) 2006-02-24 2006-02-24 Anode for a lithium secondary battery and lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048738A JP2007227239A (en) 2006-02-24 2006-02-24 Anode for a lithium secondary battery and lithium secondary cell

Publications (1)

Publication Number Publication Date
JP2007227239A true JP2007227239A (en) 2007-09-06

Family

ID=38548848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048738A Pending JP2007227239A (en) 2006-02-24 2006-02-24 Anode for a lithium secondary battery and lithium secondary cell

Country Status (1)

Country Link
JP (1) JP2007227239A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046144A1 (en) * 2012-09-19 2014-03-27 三菱化学株式会社 Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
JP2014192093A (en) * 2013-03-28 2014-10-06 Idemitsu Kosan Co Ltd Negative electrode mixture
CN104185917A (en) * 2012-03-22 2014-12-03 中央电气工业株式会社 Silicon-graphite composite particles and method for manufacturing same
WO2015162848A1 (en) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, process for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185917A (en) * 2012-03-22 2014-12-03 中央电气工业株式会社 Silicon-graphite composite particles and method for manufacturing same
JPWO2013141104A1 (en) * 2012-03-22 2015-08-03 中央電気工業株式会社 Silicon graphite composite particles and method for producing the same
WO2014046144A1 (en) * 2012-09-19 2014-03-27 三菱化学株式会社 Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
JP2014192093A (en) * 2013-03-28 2014-10-06 Idemitsu Kosan Co Ltd Negative electrode mixture
WO2015162848A1 (en) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, process for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4027255B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP5219339B2 (en) Lithium secondary battery
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
US9178214B2 (en) Anode active material for lithium rechargeable battery, method of preparing the same, and lithium battery including the anode active material
JP5043344B2 (en) Anode for non-aqueous electrolyte secondary battery
JP5098192B2 (en) COMPOSITE PARTICLE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2009076372A (en) Non-aqueous secondary battery
JP2007149604A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2004022433A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
WO2004114453A1 (en) Lithium secondary battery and method for producing same
JP2007200862A (en) Nonaqueous electrolyte secondary battery
JP5147170B2 (en) Lithium secondary battery
JP2008147153A (en) Lithium secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JP4270894B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2006120612A (en) Lithium secondary battery
JP3670938B2 (en) Lithium secondary battery
JP4953557B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
JP2001052699A (en) Lithium secondary battery
JP2004349016A (en) Charge and discharge method of nonaqueous electrolyte secondary battery
JP2000243455A (en) Lithium secondary battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP4436624B2 (en) Lithium secondary battery
JP2000277108A (en) Lithium secondary battery