JP2007105708A - Deaeration device and total organic carbon measuring apparatus using it - Google Patents

Deaeration device and total organic carbon measuring apparatus using it Download PDF

Info

Publication number
JP2007105708A
JP2007105708A JP2005302152A JP2005302152A JP2007105708A JP 2007105708 A JP2007105708 A JP 2007105708A JP 2005302152 A JP2005302152 A JP 2005302152A JP 2005302152 A JP2005302152 A JP 2005302152A JP 2007105708 A JP2007105708 A JP 2007105708A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
carbon
liquid
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005302152A
Other languages
Japanese (ja)
Other versions
JP4534949B2 (en
Inventor
Hirohisa Abe
浩久 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005302152A priority Critical patent/JP4534949B2/en
Publication of JP2007105708A publication Critical patent/JP2007105708A/en
Application granted granted Critical
Publication of JP4534949B2 publication Critical patent/JP4534949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deaeration device which removes gas in liquid without using a vacuum pump. <P>SOLUTION: The deaeration device 1 which is made of a cylindrical gas dissolving material, such as PDMS, and in which a through-hole 6 is formed is used. One end of the through-hole 6 is tapered to facilitate connection with a syringe. The deaeration device 1 is sufficiently deaerated beforehand, and an aluminum film 7 is formed on the outer surface so as not to contact with outside air. A sample liquid is supplied into the through-hole 6 by using the syringe, and brought into contact with PDMS in the through-hole to remove gas in the liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体に含まれている空気を脱気する脱気デバイスと、それを用いた全有機炭素測定装置などの分析装置に関する。   The present invention relates to a deaeration device for deaerating air contained in a liquid, and an analyzer such as a total organic carbon measuring device using the deaeration device.

従来、液体に含まれた空気やその他の気体を除去するのに使用する脱気装置として、内部に透過膜チューブが設けられた脱気チャンバに真空ポンプを接続してなる脱気装置が知られている(例えば特許文献1参照。)。
この装置では、被脱気液体を透過膜チューブに流通させ、チューブ内の壁を通して液体に含まれる気体を脱気チャンバ内へ透過させて除去するようにしている。ガス透過性のチューブは、例えばフッ素樹脂製接合部材とフッ素樹脂製チューブを接合せしめた脱気エレメントを、プラスチック製や金属製あるいはガラス製の真空チャンバ内に固定治具を用いて固定することにより製造される。
一方、ポリジメチルシロキサン(PDMS)は多量の空気を溶解することで知られ、外部動力を必要としないポンプとして研究が進められている(非特許文献1参照。)。
特開平4−203479号公報 K.Hosokawa, K.Sato, N.Ichikawa, M.Maeda; Lab Chip, 2004, 4, 181-185
Conventionally, as a degassing device used to remove air or other gas contained in a liquid, a degassing device in which a vacuum pump is connected to a degassing chamber in which a permeable membrane tube is provided is known. (For example, refer to Patent Document 1).
In this apparatus, the liquid to be deaerated is circulated through the permeable membrane tube, and the gas contained in the liquid is permeated into the deaeration chamber through the wall in the tube to be removed. A gas permeable tube is obtained by, for example, fixing a degassing element in which a fluororesin joining member and a fluororesin tube are joined to each other in a plastic, metal, or glass vacuum chamber using a fixing jig. Manufactured.
On the other hand, polydimethylsiloxane (PDMS) is known to dissolve a large amount of air, and is being researched as a pump that does not require external power (see Non-Patent Document 1).
JP-A-4-203479 K. Hosokawa, K. Sato, N. Ichikawa, M. Maeda; Lab Chip, 2004, 4, 181-185

従来の脱気装置では透過膜チューブ内に被脱気液体を連続的に流通する必要があるため、少量の被脱気液体を扱うことは困難であった。また、装置構造が複雑なために装置を小型化するのも困難であった。さらに、脱気のために高価な真空ポンプを必要とするだけでなく、脱気された気体がポンプオイルに溶解するため、定期的なメンテナンスが避けられなかった。
本発明は、真空ポンプを用いずに液体中の気体を脱気する脱気デバイスと、それを用いた全有機炭素測定装置を提供することを目的とする。
In the conventional degassing apparatus, it is necessary to continuously distribute the degassed liquid in the permeable membrane tube, so that it has been difficult to handle a small amount of the degassed liquid. Further, since the device structure is complicated, it is difficult to reduce the size of the device. Furthermore, not only an expensive vacuum pump is required for deaeration, but also the degassed gas dissolves in the pump oil, so regular maintenance is inevitable.
An object of this invention is to provide the deaeration device which deaerates the gas in a liquid, without using a vacuum pump, and the total organic carbon measuring apparatus using the same.

本発明の脱気デバイスは、予め脱気されることによりそれと接触した液体中の気体を溶解させて脱気する気体溶解性樹脂本体を備え、この気体溶解性樹脂本体には液体との接触部分が設けられている。   The degassing device of the present invention includes a gas-soluble resin main body that dissolves and degass a gas in a liquid that has been degassed in advance, and the gas-soluble resin main body has a liquid contact portion. Is provided.

上記樹脂本体は、例えば多量の空気を溶解する性質で知られているPDMSからなる。   The resin body is made of, for example, PDMS that is known to dissolve a large amount of air.

この脱気デバイスの一形態は、上記樹脂本体には接触部分として液体試料流通用の貫通穴があけられ、上記樹脂本体の外表面が気体非透過性カバーで被われているものである。   In one embodiment of the deaeration device, a through hole for circulating a liquid sample is formed as a contact portion in the resin main body, and the outer surface of the resin main body is covered with a gas impermeable cover.

またこの脱気デバイスは、例えば、使用前の状態では樹脂本体が脱気されており、上記貫通穴の両端の開口部は気体非透過性フィルムで封止されているものとすることができる。   In addition, in this deaeration device, for example, the resin main body is deaerated before use, and the openings at both ends of the through hole are sealed with a gas impermeable film.

本発明の全有機炭素測定装置は、試料水中の有機炭素を二酸化炭素に変換する有機物酸化分解部、上記有機物酸化分解部で発生した二酸化炭素を純水へ抽出する二酸化炭素抽出部、及び上記二酸化炭素抽出部で抽出した二酸化炭素量を測定するために上記純水の導電率を測定する検出部を備えている。そして、上記有機物酸化分解部へ試料水を供給する流路に、試料水中の二酸化炭素を除去する無機炭素除去部を設け、この無機炭素除去部として、本発明の脱気デバイスを用いる。   The total organic carbon measuring device of the present invention includes an organic oxidative decomposition unit that converts organic carbon in sample water into carbon dioxide, a carbon dioxide extraction unit that extracts carbon dioxide generated in the organic oxidative decomposition unit into pure water, and the carbon dioxide. In order to measure the amount of carbon dioxide extracted by the carbon extraction unit, a detection unit for measuring the conductivity of the pure water is provided. And the inorganic carbon removal part which removes the carbon dioxide in sample water is provided in the channel which supplies sample water to the above-mentioned organic matter decomposition part, and the deaeration device of the present invention is used as this inorganic carbon removal part.

また、上記二酸化炭素抽出部は、基体と、上記基体内に形成され、それぞれ入口と出口をもつ2つの流路と、上記2つの流路間を結ぶ複数の溝とを備え、上記溝は液体が通過せずにガス成分が移動できるように、その内表面の少なくとも一部の疎水性化と、その断面積の大きさの設定がなされていることが好ましい。   The carbon dioxide extraction unit includes a base, two flow paths formed in the base, each having an inlet and an outlet, and a plurality of grooves connecting the two flow paths, and the grooves are liquid. It is preferable that at least a part of the inner surface is made hydrophobic and the size of its cross-sectional area is set so that the gas component can move without passing through.

従来は気体含有液体から気体を脱気する際には真空ポンプを使用していたが、本発明の脱気デバイスは、製造現場において気体溶解性樹脂を減圧チャンバなどで予め脱気しておき、これに液体試料を接触させるようにしたので、真空ポンプを用いることなしに液体試料中の気体を脱気することができる。   Conventionally, a vacuum pump was used when degassing a gas from a gas-containing liquid, but the degassing device of the present invention previously degassed the gas-soluble resin in a decompression chamber or the like at the manufacturing site, Since the liquid sample is brought into contact with this, the gas in the liquid sample can be degassed without using a vacuum pump.

樹脂本体としてPDMSからなる脱気デバイスを用いるようにすれば、その気体を溶解する性質によって、真空ポンプに代わる脱気デバイスとして用いることができる。
脱気デバイスの樹脂本体に試料流通用の貫通穴があけられ、その外表面が気体非透過性カバーで被われているようにすれば、樹脂本体を脱気して貫通穴に試料を流して試料の脱気処理を行っているときも外表面からの気体の溶解がないので、長時間にわたって使用することができるようになる。
If a degassing device made of PDMS is used as the resin body, it can be used as a degassing device instead of a vacuum pump depending on the property of dissolving the gas.
If the resin body of the degassing device has a through hole for sample distribution and its outer surface is covered with a gas impermeable cover, the resin body is degassed and the sample is allowed to flow through the through hole. Even when the sample is degassed, there is no dissolution of gas from the outer surface, so that the sample can be used for a long time.

また、使用前に樹脂本体を脱気しておき、貫通穴部分の両端を気体非透過性フィルムで封止するようにすれば、減圧チャンバなどがない場所においてもすぐに脱気デバイスとして使用することができる。   In addition, if the resin main body is deaerated before use and both ends of the through hole portion are sealed with a gas impermeable film, it can be used immediately as a deaeration device even in a place where there is no decompression chamber or the like. be able to.

全有機炭素測定装置の無機炭素除去部として本発明の脱気デバイスを用いれば、従来用いていた真空ポンプを用いる必要がなくなるので、測定を簡便に行うことができる。
また、全有機炭素測定装置の二酸化炭素抽出部に、液体が通過せずにガス成分が移動できるように、その内表面の少なくとも一部が疎水性化された溝を備えたものを使用するようにすれば、ガス透過膜を使用したものに比べて二酸化炭素の抽出速度を速めることができる。
If the degassing device of the present invention is used as the inorganic carbon removing unit of the total organic carbon measuring device, it is not necessary to use a conventionally used vacuum pump, so that the measurement can be performed easily.
Also, use a carbon dioxide extraction part of the total organic carbon measurement device that has a groove in which at least a part of its inner surface is made hydrophobic so that the gas component can move without passing through the liquid. If so, the extraction rate of carbon dioxide can be increased as compared with those using a gas permeable membrane.

以下、図面を参照して本発明の実施例を説明する。
[実施例1]
図1は脱気デバイスの一実施例を示す斜視図である。脱気デバイス1としては、例えばPDMSを基材とした直径10mm、長さ50mmの円柱の中心に内径0.1mmの貫通穴をあけたデバイスを用いる。貫通穴の一端(図では上端)は、試料を注入する際のシリンジなどの器具との接合を容易にするため、テーパ形状に加工されている。
PDMSは空気を溶解することから、予め、脱気デバイス1を1kPa以下の真空チャンバ内で30分以上真空脱気し、測定現場まで搬送するために可搬な真空容器中に保管しておく。
Embodiments of the present invention will be described below with reference to the drawings.
[Example 1]
FIG. 1 is a perspective view showing an embodiment of a deaeration device. As the deaeration device 1, for example, a device in which a through hole having an inner diameter of 0.1 mm is formed at the center of a cylinder having a diameter of 10 mm and a length of 50 mm using PDMS as a base material is used. One end (the upper end in the figure) of the through hole is processed into a tapered shape in order to facilitate joining with an instrument such as a syringe when a sample is injected.
Since PDMS dissolves air, the degassing device 1 is vacuum degassed for 30 minutes or more in a vacuum chamber of 1 kPa or less in advance and stored in a portable vacuum container for transport to the measurement site.

次に脱気デバイス1を用いたTOC測定方法の一例を説明する。
測定現場において試料をシリンジ2に採取した後、脱気デバイス1を真空容器から取り出して、図2に示されるように、一端(上端)をシリンジ2に装着し、さらに他端を全有機炭素測定装置4の試料導入口3に接続する。図2は脱気デバイス1がシリンジ2と試料導入部3との間に接続されたときの斜視図である。
Next, an example of a TOC measurement method using the deaeration device 1 will be described.
After collecting the sample in the syringe 2 at the measurement site, the degassing device 1 is taken out from the vacuum container, and one end (upper end) is attached to the syringe 2 as shown in FIG. Connect to the sample inlet 3 of the apparatus 4. FIG. 2 is a perspective view when the deaeration device 1 is connected between the syringe 2 and the sample introduction part 3.

シリンジ2をゆっくりと押し込むことで、試料を脱気デバイス1内に通過させ、全有機炭素測定装置4へ注入して分析を行う。試料が脱気デバイス1内を通過する時、試料内に含まれる無機炭素は、二酸化炭素として脱気デバイス1内へ再溶解することにより除去される。   By slowly pushing the syringe 2, the sample is passed through the deaeration device 1 and injected into the total organic carbon measuring device 4 for analysis. When the sample passes through the degassing device 1, inorganic carbon contained in the sample is removed by re-dissolving into the degassing device 1 as carbon dioxide.

[実施例2]
脱気デバイスの他の実施例を図3を参照して説明する。この脱気デバイスは図1の脱気デバイスの外面に外気遮断用皮膜を設けたものである。
実施例1の脱気デバイス1は構造が簡単で安価に作製することができるが、真空容器などの保管容器から取り出すと外部から空気の再溶解が始まるため速やかに使用しなければならない。この問題を解決するために、脱気デバイス1の外面を通気性の乏しいPET(ポリエチレンテレフタラート)などのプラスチックやアルミニウム蒸着膜などの金属からなる気体非透過性カバー(外気遮断用皮膜)5で被覆することで、脱気デバイス1への外気の再溶解を防ぐ。
[Example 2]
Another embodiment of the deaeration device will be described with reference to FIG. This deaeration device is obtained by providing an outer air blocking film on the outer surface of the deaeration device of FIG.
The deaeration device 1 of Example 1 has a simple structure and can be manufactured at low cost. However, when the deaeration device 1 is taken out from a storage container such as a vacuum container, re-dissolution of air starts from the outside, and must be used promptly. In order to solve this problem, the outer surface of the deaeration device 1 is covered with a gas impermeable cover (outside air blocking film) 5 made of a plastic such as PET (polyethylene terephthalate) having poor air permeability or a metal such as an aluminum vapor deposition film. By covering, re-dissolution of the outside air into the deaeration device 1 is prevented.

さらに、脱気デバイス1の中央の貫通穴6を塞ぐように薄いフィルム状の膜7で外気を遮断する構造にし、使用時にシリンジや全有機炭素測定装置の試料導入口でその膜7を破り接続するように設計すれば、搬送用の真空容器を必要としないために、運搬が容易で且つ簡便に使用可能な脱気デバイスとすることができる。   Furthermore, a thin film-like membrane 7 is used to block the outside air so as to close the central through hole 6 of the deaeration device 1, and the membrane 7 is broken and connected at the sample inlet of the syringe or the total organic carbon measuring device at the time of use. If designed to do so, a vacuum container for transport is not required, and thus a deaeration device that is easy to transport and can be used easily can be obtained.

気体非透過性カバー5としてアルミニウム蒸着膜を用いる場合、脱気デバイス1の中央の貫通穴6を塞ぐようにプラスチックなどの薄いフィルム膜7を予め形成する。その後、脱気デバイス1の全体を真空中で脱気した後、脱気デバイス1の外面全体にアルミニウム膜を蒸着することで、貫通穴6以外の表面がアルミニウム蒸着膜で覆われた脱気デバイスを得ることができる。   When an aluminum vapor deposition film is used as the gas impermeable cover 5, a thin film film 7 such as plastic is formed in advance so as to close the central through hole 6 of the deaeration device 1. Then, after deaeration of the whole deaeration device 1 in a vacuum, an aluminum film is vapor-deposited on the entire outer surface of the deaeration device 1 so that the surface other than the through hole 6 is covered with an aluminum vapor deposition film. Can be obtained.

[実施例3]
図4及び図5を参照して本発明のさらに他の実施例を説明する。チップ上に構成された全有機炭素測定装置において、流路の一部をPDMSで作製し予め脱気しておくことで、無機炭素除去を行う。図4は2流路型ガス交換チップの斜視図、図5は図4のガス交換チップを用いた全有機炭素測定装置の要部平面図である。
基板41は例えば石英ガラス基板であり、その上面に1000μm以下、好ましくは数百μm以下の幅と深さを持つ流路60が形成されている。流路60は試料水流路62と測定水流路64を含む。
[Example 3]
Still another embodiment of the present invention will be described with reference to FIGS. In the total organic carbon measuring device configured on the chip, inorganic carbon is removed by preparing a part of the flow path with PDMS and degassing in advance. FIG. 4 is a perspective view of a two-channel gas exchange chip, and FIG. 5 is a plan view of the main part of the total organic carbon measuring device using the gas exchange chip of FIG.
The substrate 41 is, for example, a quartz glass substrate, and a flow path 60 having a width and depth of 1000 μm or less, preferably several hundred μm or less, is formed on the upper surface thereof. The channel 60 includes a sample water channel 62 and a measurement water channel 64.

他方の基板42も例えば石英ガラス基板であり、両流路62,64の流路端に対応する位置に、流路62から試料水を排出するための穴45、流路64に測定水を導入するための穴46、及び流路64から測定水を排出するための穴47が形成されている。また両基板41,42の少なくとも一方には、両流路62,64間を結ぶように、図6,7で詳細に後述する疎水性を有する複数の溝66が形成されている。   The other substrate 42 is also a quartz glass substrate, for example, and the measurement water is introduced into the hole 45 for discharging the sample water from the flow path 62 and the flow path 64 at positions corresponding to the flow path ends of both flow paths 62 and 64. A hole 46 for discharging the measurement water from the flow path 64 is formed. A plurality of grooves 66 having hydrophobicity, which will be described later in detail in FIGS. 6 and 7, are formed on at least one of the substrates 41 and 42 so as to connect the flow paths 62 and 64.

43はPDMS基板であり、試料水流路62の導入口に対応する位置には、試料水を試料水流路62に導入するための穴44が形成されている。基板42及びPDMS基板43は、流路62,64が形成されている面と溝68が形成されている面が内側になるように基板41と対面させた状態で接合され、一体化された基体となっている。   43 is a PDMS substrate, and a hole 44 for introducing the sample water into the sample water channel 62 is formed at a position corresponding to the inlet of the sample water channel 62. The substrate 42 and the PDMS substrate 43 are joined and integrated with the substrate 41 so that the surface on which the flow paths 62 and 64 are formed and the surface on which the groove 68 is formed are inward. It has become.

試料導入穴44につながる試料水流路62の一部はPDMS基板43と接触して無機炭素除去部51を構成しており、無機炭素除去部51は、試料水に最初から溶け込んでいる二酸化炭素などの気体成分を除去するものである。無機炭素除去部51の下流には試料水中の有機物を紫外線ランプ54からの紫外線エネルギーにより、さらには酸化剤の添加や触媒(例えば酸化チタン)の作用も加わって、酸化する有機物酸化分解部52が設けられている。有機物酸化分解部52のさらに下流には、導電率を測定するために試料水中の二酸化炭素を測定水側に抽出するための二酸化炭素抽出部53が設けられている。   A part of the sample water flow path 62 connected to the sample introduction hole 44 is in contact with the PDMS substrate 43 to form an inorganic carbon removing unit 51, and the inorganic carbon removing unit 51 includes carbon dioxide dissolved in the sample water from the beginning. The gas component is removed. Downstream of the inorganic carbon removing unit 51, there is an organic matter oxidative decomposition unit 52 that oxidizes organic matter in the sample water by the ultraviolet energy from the ultraviolet lamp 54, and further by the addition of an oxidizing agent and the action of a catalyst (for example, titanium oxide). Is provided. Further downstream of the organic oxidative decomposition unit 52, a carbon dioxide extraction unit 53 is provided for extracting carbon dioxide in the sample water to the measurement water side in order to measure the conductivity.

図6は上記で説明した二酸化炭素抽出部53の一例を詳細に示す図であり、(A)は流路と溝の配置を示す平面図、(B)は(A)のA−A線位置での断面図である。
基板41の片面に流路62,64が形成されている。他方の基板42にはその片面に流路62,64間を結ぶ位置に疎水性の表面を有する複数の溝66が形成され、流路62,64の端に対応する位置には基板42を貫通して液体の導入や排出に利用する穴45,46,47が形成されている。
FIG. 6 is a diagram showing in detail an example of the carbon dioxide extraction unit 53 described above, (A) is a plan view showing the arrangement of flow paths and grooves, and (B) is a position along the line AA in (A). FIG.
Flow paths 62 and 64 are formed on one side of the substrate 41. The other substrate 42 is formed with a plurality of grooves 66 having a hydrophobic surface at a position connecting the flow paths 62 and 64 on one side, and penetrates the substrate 42 at a position corresponding to the ends of the flow paths 62 and 64. Thus, holes 45, 46 and 47 used for introducing and discharging liquid are formed.

基板41,42は流路62,64が形成されている面と溝66が形成されている面が内側になるように対面させ、流路62,64の端に穴45,46,47が配置され、溝66が流路62,64間を結ぶように位置決めされた状態で接合されて、一体化された基体となっている。
溝66はその長さと幅が数百μm以下、好ましくは幅と高さが10μm以下である。流路62,64に液体を流したとき、溝66には液体が浸入せず、溝66を通じてガスが移動する。
The substrates 41 and 42 face each other so that the surface on which the flow paths 62 and 64 are formed and the surface on which the groove 66 is formed are inside, and holes 45, 46 and 47 are arranged at the ends of the flow paths 62 and 64. Then, the groove 66 is joined in a state of being positioned so as to connect the flow paths 62 and 64 to form an integrated base.
The groove 66 has a length and a width of several hundred μm or less, preferably a width and a height of 10 μm or less. When the liquid flows through the flow paths 62 and 64, the liquid does not enter the groove 66 and the gas moves through the groove 66.

このような流路62,64及び溝66は、例えばフォトリソグラフィとエッチングを用いた微細加工技術により、穴45,46,47は例えばサンドブラスト法により形成することができる。溝66の内面の疎水性化は、例えばCHF3ガスやCF4ガスなどのフッ素化合物ガスを流しながらRIE(反応性イオンエッチング)処理を施したり、エキシマレーザなどの光照射により分解させることにより、溝の内面をフッ素化することにより行なうことができる。
基板41,42が石英ガラスなどのガラス基板の場合はフッ酸接合法により接合することができる。フッ酸接合法では、例えば1%のフッ酸水溶液を基板41,42の界面に介在させ、必要に応じて1MPa程度に荷重しつつ、室温で24時間程度放置する。
The flow paths 62 and 64 and the groove 66 can be formed by, for example, a fine processing technique using photolithography and etching, and the holes 45, 46, and 47 can be formed by, for example, a sandblast method. Hydrophobization of the inner surface of the groove 66 can be achieved, for example, by performing RIE (reactive ion etching) while flowing a fluorine compound gas such as CHF 3 gas or CF 4 gas, or by decomposing it by light irradiation such as excimer laser. This can be done by fluorinating the inner surface of the groove.
When the substrates 41 and 42 are glass substrates such as quartz glass, they can be bonded by a hydrofluoric acid bonding method. In the hydrofluoric acid bonding method, for example, a 1% hydrofluoric acid aqueous solution is interposed at the interface between the substrates 41 and 42 and left at room temperature for about 24 hours while being loaded at about 1 MPa as necessary.

図7は二酸化炭素抽出部53の他の例を詳細に示す図であり、(A)は流路と溝の配置を示す平面図、(B)は(A)のA−A線位置での断面図である。
基板70,72はシリコン基板である。シリコン基板70の片面には流路62,64と、流路62,64間を結ぶ疎水性の表面を有する複数の溝66が形成されている。他方のシリコン基板72には流路62,64の端に対応する位置に液体の導入や排出に利用する貫通穴45,46,47が形成されている。
FIG. 7 is a diagram showing another example of the carbon dioxide extraction unit 53 in detail, (A) is a plan view showing the arrangement of flow paths and grooves, and (B) is a position at the AA line position of (A). It is sectional drawing.
The substrates 70 and 72 are silicon substrates. On one side of the silicon substrate 70, a plurality of grooves 66 having flow paths 62 and 64 and a hydrophobic surface connecting the flow paths 62 and 64 are formed. On the other silicon substrate 72, through holes 45, 46, 47 used for introducing and discharging liquid are formed at positions corresponding to the ends of the flow paths 62, 64.

シリコン基板70,72は流路62,64と溝66が形成されている面が内側になるように対面させ、流路62,64の端に穴45,46,47が配置されるように位置決めされた状態で接合されて、一体化された基体となっている。   The silicon substrates 70 and 72 face each other so that the surfaces on which the flow paths 62 and 64 and the grooves 66 are formed are inward, and are positioned so that the holes 45, 46 and 47 are arranged at the ends of the flow paths 62 and 64. In this state, they are joined together to form an integrated base.

流路62,64と溝66の寸法は図6の実施例に示されたものと同様であり、流路62,64、溝66及び穴45,46,47の形成及び溝66内表面の疎水性化処理は図6の実施例と同様に行なうことができる。この例では溝66は断面形状がV字形状をもっている。このような溝は(100)面をもつシリコン基板をアルカリエッチング液でエッチングすることにより形成される。しかし、溝66の形状はこれに限られない。シリコン基板70,72の接合はシリコン基板表面に酸化膜を形成し、その酸化膜を利用してフッ酸接合により行なうことができる。   The dimensions of the flow paths 62, 64 and the groove 66 are the same as those shown in the embodiment of FIG. 6, and the formation of the flow paths 62, 64, the groove 66 and the holes 45, 46, 47 and the hydrophobicity of the inner surface of the groove 66 are the same. The sexifying process can be performed in the same manner as in the embodiment of FIG. In this example, the groove 66 has a V-shaped cross section. Such a groove is formed by etching a silicon substrate having a (100) plane with an alkaline etchant. However, the shape of the groove 66 is not limited to this. The silicon substrates 70 and 72 can be bonded to each other by forming an oxide film on the surface of the silicon substrate and using the oxide film to bond hydrofluoric acid.

図4,図5の実施例に戻ってその使用方法を説明する。
予め、全有機炭素測定チップを1kPa以下の真空チャンバ内で30分以上真空脱気しておく。測定試料を穴44より供給すると、試料水中に最初から溶け込んでいる二酸化炭素は、無機炭素除去部51においてPDMS43へと溶解除去される。この二酸化炭素の除去を容易に行なうために、試料水中に酸の添加を行ってもよい。
Returning to the embodiment shown in FIGS. 4 and 5, the method of use will be described.
In advance, the whole organic carbon measuring chip is vacuum deaerated for 30 minutes or more in a vacuum chamber of 1 kPa or less. When the measurement sample is supplied from the hole 44, the carbon dioxide dissolved in the sample water from the beginning is dissolved and removed into the PDMS 43 in the inorganic carbon removing unit 51. In order to easily remove this carbon dioxide, an acid may be added to the sample water.

次に、試料水は有機物酸化分解部52に送られ、二酸化炭素が除去された試料水中の有機物は、紫外線ランプ54の照射により与えられた紫外線エネルギーにより酸化され、二酸化炭素になる。有機物の酸化分解により生じた二酸化炭素が溶存している試料水は、二酸化炭素抽出部53へと送られ、試料水中に含まれる二酸化炭素が測定水である純水へ移動する。純水は検出・精製部55へ送られ、純水の導電率を測定することで、二酸化炭素の濃度が定量される。純水は検出・精製部55で精製され二酸化炭素を除去された後、測定水流路64を介して循環して使用することができる。   Next, the sample water is sent to the organic matter oxidative decomposition unit 52, and the organic matter in the sample water from which the carbon dioxide has been removed is oxidized by the ultraviolet energy given by the irradiation of the ultraviolet lamp 54 to become carbon dioxide. The sample water in which the carbon dioxide generated by the oxidative decomposition of the organic matter is dissolved is sent to the carbon dioxide extraction unit 53, and the carbon dioxide contained in the sample water moves to the pure water that is the measurement water. Pure water is sent to the detection / purification unit 55, and the concentration of carbon dioxide is quantified by measuring the conductivity of pure water. The pure water can be used after being purified by the detection / purification unit 55 to remove carbon dioxide and then circulated through the measurement water channel 64.

本発明は上記の実施例に限定されるものではなく、請求項の記載範囲内において実施することができる。   The present invention is not limited to the above embodiments, but can be carried out within the scope of the claims.

液体に含まれている空気や二酸化炭素などの気体成分を脱気する脱気デバイスや、それを用いた全有機炭素測定装置などの分析装置に利用することができる。   The present invention can be used in a degassing device for degassing gas components such as air and carbon dioxide contained in a liquid, and an analyzer such as a total organic carbon measuring apparatus using the degassing device.

本発明の脱気デバイスの一実施例を示す斜視図である。It is a perspective view which shows one Example of the deaeration device of this invention. 同実施例の使用方法の一例を示す斜視図である。It is a perspective view which shows an example of the usage method of the Example. 他の実施例を示す断面図である。It is sectional drawing which shows another Example. 全有機炭素測定装置の一実施例を示す斜視図である。It is a perspective view which shows one Example of a total organic carbon measuring apparatus. 同実施例の要部平面図である。It is a principal part top view of the Example. 同実施例における二酸化炭素抽出部の一例を詳細に示す図であり、(A)は流路と溝の配置を示す平面図、(B)は(A)のA−A線位置での断面図である。It is a figure which shows an example of the carbon dioxide extraction part in the same Example in detail, (A) is a top view which shows arrangement | positioning of a flow path and a groove | channel, (B) is sectional drawing in the AA line position of (A). It is. 同実施例における二酸化炭素抽出部の他の例を詳細に示す図であり、(A)は流路と溝の配置を示す平面図、(B)は(A)のA−A線位置での断面図である。It is a figure which shows the other example of the carbon dioxide extraction part in the same Example in detail, (A) is a top view which shows arrangement | positioning of a flow path and a groove | channel, (B) is in the AA line position of (A). It is sectional drawing.

符号の説明Explanation of symbols

1 脱気デバイス
2 シリンジ
3 試料導入口
4 全有機炭素測定装置
5 気体非透過性カバー
6 貫通穴
7 フィルム状の膜
41,42 基板
43 PDMS
44,45,46,47 穴
51 無機炭素除去部
52 有機物酸化分解部
53 二酸化炭素抽出部
54 紫外線ランプ
55 検出・精製部
DESCRIPTION OF SYMBOLS 1 Deaeration device 2 Syringe 3 Sample inlet 4 Total organic carbon measuring device 5 Gas impermeable cover 6 Through-hole 7 Film-like film | membrane 41,42 Board | substrate 43 PDMS
44, 45, 46, 47 Hole 51 Inorganic carbon removal part 52 Organic matter oxidative decomposition part 53 Carbon dioxide extraction part 54 Ultraviolet lamp 55 Detection / purification part

Claims (6)

予め脱気されることによりそれと接触した液体中の気体を溶解させて脱気する気体溶解性樹脂本体を備え、
該気体溶解性樹脂本体には液体との接触部分が設けられている脱気デバイス。
It comprises a gas-soluble resin body that degass by degassing in advance by dissolving the gas in the liquid that has come into contact with it,
A degassing device in which the gas-soluble resin main body is provided with a contact portion with a liquid.
前記樹脂本体はPDMSからなる請求項1に記載の脱気デバイス。   The deaeration device according to claim 1, wherein the resin body is made of PDMS. 前記樹脂本体には前記接触部分として液体試料流通用の貫通穴があけられ、前記樹脂本体の外表面が気体非透過性カバーで被われている請求項1又は2に記載の脱気デバイス。   The degassing device according to claim 1 or 2, wherein a through hole for circulating a liquid sample is formed in the resin body as the contact portion, and an outer surface of the resin body is covered with a gas impermeable cover. 使用前の状態では前記樹脂本体が脱気されており、前記貫通穴の両端の開口部は気体非透過性フィルムで封止されている請求項3に記載の脱気デバイス。   The deaeration device according to claim 3, wherein the resin main body is deaerated before use, and openings at both ends of the through hole are sealed with a gas impermeable film. 試料水中の有機炭素を二酸化炭素に変換する有機物酸化分解部、前記有機物酸化分解部で発生した二酸化炭素を純水へ抽出する二酸化炭素抽出部、及び前記二酸化炭素抽出部で抽出した二酸化炭素量を測定するために前記純水の導電率を測定する検出部を備えた全有機炭素測定装置において、
前記有機物酸化分解部へ試料水を供給する流路に、試料水中の二酸化炭素を除去する無機炭素除去部を設け、この無機炭素除去部として、請求項1又は2に記載の脱気デバイスを用いることを特徴とする全有機炭素測定装置。
An organic matter oxidative decomposition part that converts organic carbon in sample water into carbon dioxide, a carbon dioxide extraction part that extracts carbon dioxide generated in the organic matter oxidative decomposition part into pure water, and an amount of carbon dioxide extracted by the carbon dioxide extraction part In the total organic carbon measuring device provided with a detection unit for measuring the conductivity of the pure water to measure,
An inorganic carbon removing unit that removes carbon dioxide in the sample water is provided in a flow path for supplying the sample water to the organic matter oxidative decomposition unit, and the degassing device according to claim 1 or 2 is used as the inorganic carbon removing unit. Total organic carbon measuring device characterized by that.
前記二酸化炭素抽出部は、
基体と、
前記基体内に形成され、それぞれ入口と出口をもつ2つの流路と、
前記2つの流路間を結ぶ複数の溝と、を備え、
前記溝は液体が通過せずにガス成分が移動できるように、その内表面の少なくとも一部の疎水性化と、その断面積の大きさの設定がなされている請求項5に記載の全有機炭素測定装置。
The carbon dioxide extraction unit is
A substrate;
Two flow paths formed in the substrate, each having an inlet and an outlet;
A plurality of grooves connecting the two flow paths,
The all-organic structure according to claim 5, wherein at least a part of the inner surface of the groove is made hydrophobic and the size of the cross-sectional area is set so that the gas component can move without liquid passing through the groove. Carbon measuring device.
JP2005302152A 2005-10-17 2005-10-17 Degassing device and total organic carbon measuring device using it Active JP4534949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302152A JP4534949B2 (en) 2005-10-17 2005-10-17 Degassing device and total organic carbon measuring device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302152A JP4534949B2 (en) 2005-10-17 2005-10-17 Degassing device and total organic carbon measuring device using it

Publications (2)

Publication Number Publication Date
JP2007105708A true JP2007105708A (en) 2007-04-26
JP4534949B2 JP4534949B2 (en) 2010-09-01

Family

ID=38031976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302152A Active JP4534949B2 (en) 2005-10-17 2005-10-17 Degassing device and total organic carbon measuring device using it

Country Status (1)

Country Link
JP (1) JP4534949B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163939A (en) * 2010-02-10 2011-08-25 Sumitomo Bakelite Co Ltd Microchannel device
JPWO2022014665A1 (en) * 2020-07-17 2022-01-20

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022802A (en) * 1988-06-09 1990-01-08 Toray Ind Inc Reverse-osmosis separation membrane treating device
JPH06134210A (en) * 1992-10-21 1994-05-17 Toray Ind Inc Deaeration film module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022802A (en) * 1988-06-09 1990-01-08 Toray Ind Inc Reverse-osmosis separation membrane treating device
JPH06134210A (en) * 1992-10-21 1994-05-17 Toray Ind Inc Deaeration film module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010009532, K.Hosokawa,K.Sato,N.Ichikawa,M.Maeda, "Power−free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle−based DNA analysis", Lab Chip, 2004, Vol4, 181−185 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163939A (en) * 2010-02-10 2011-08-25 Sumitomo Bakelite Co Ltd Microchannel device
JPWO2022014665A1 (en) * 2020-07-17 2022-01-20
WO2022014665A1 (en) * 2020-07-17 2022-01-20 株式会社島津製作所 Inspection device
JP7400978B2 (en) 2020-07-17 2023-12-19 株式会社島津製作所 Inspection equipment

Also Published As

Publication number Publication date
JP4534949B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4807358B2 (en) Pressure differential bubble movement control method, and gas exchange device, conductivity measuring device, total organic carbon measuring device, reaction device, and cell culture device using the method
JP4844630B2 (en) Total organic carbon measuring device
JP5258560B2 (en) Integrated deaeration and deaerator
US9044712B2 (en) Supersaturated fluid degassing
US8069991B2 (en) System and method for liquid filtration with reduced hold-up volume
JP4535123B2 (en) Gas exchange chip, gas extraction method using the same, and total organic carbon measurement device
JP4534949B2 (en) Degassing device and total organic carbon measuring device using it
JP2008241325A (en) Whole organic carbon meter having air bubble removing function
EP2040064A1 (en) Device for measuring total organic carbon
JP4736534B2 (en) Gas permeation filter, gas exchange chip, and total organic carbon measuring device
JP2005227161A (en) Measuring instrument for measuring carbon component in water
WO2009125493A1 (en) Total organic carbon analyzer
JP2005321265A (en) Gas exchange device and underwater carbon component measuring device
JP4090361B2 (en) Method and apparatus for producing ozone-containing ultrapure water
JP5282703B2 (en) Liquid feeding device and total organic carbon measuring device using the same
JP4835122B2 (en) Gas-liquid separation chip, manufacturing method thereof, and total organic carbon measuring apparatus using the same
JP2000009642A (en) Device for measuring fine particle in liquid
JP2007275744A (en) Gas recovery and recycling method and gas recovery and recycling apparatus
WO2012157668A1 (en) Filtration apparatus and method for washing filtration apparatus
JP2009183822A (en) Leakage inspection method for hollow fiber membrane module
JP2006337032A (en) Pipe connecting method and microchip device
JP2002168765A (en) Inspection method and inspection device of liquid
JP2006175387A (en) Liquid feed device and microfluidic device equipped with it
JP2009240897A (en) Bubble removing method for inside of degassing module
JPH0790125B2 (en) Circulating filtration method for effervescent aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4534949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4