JP2007039789A - Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF - Google Patents
Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF Download PDFInfo
- Publication number
- JP2007039789A JP2007039789A JP2006090634A JP2006090634A JP2007039789A JP 2007039789 A JP2007039789 A JP 2007039789A JP 2006090634 A JP2006090634 A JP 2006090634A JP 2006090634 A JP2006090634 A JP 2006090634A JP 2007039789 A JP2007039789 A JP 2007039789A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- plating
- thickness
- mass
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は、コネクタ、端子、リレ−、スイッチ等の導電性ばね材として好適な、良好な耐熱剥離性を有するCu−Ni−Si−Zn−Sn系合金すずめっき条に関する。 The present invention relates to a Cu—Ni—Si—Zn—Sn alloy tin-plated strip having good heat-resistant peelability suitable as a conductive spring material for connectors, terminals, relays, switches and the like.
端子、コネクタ等に使用される電子材料用銅合金には、合金の基本特性として高い強度、高い電気伝導性又は熱伝導性を両立させることが要求される。また、これらの特性以外にも、曲げ加工性、耐応力緩和特性、耐熱性、めっきとの密着性、半田濡れ性、エッチング加工性、プレス打ち抜き性、耐食性等が求められる。
高強度及び高導電性の観点から、近年、電子材料用銅合金としては従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、時効硬化型の銅合金の使用量が増加している。時効硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。
Copper alloys for electronic materials used for terminals, connectors, and the like are required to have both high strength, high electrical conductivity, and thermal conductivity as basic characteristics of the alloy. In addition to these characteristics, bending workability, stress relaxation resistance, heat resistance, adhesion to plating, solder wettability, etching workability, press punchability, corrosion resistance, and the like are required.
From the viewpoint of high strength and high conductivity, in recent years, the amount of age-hardening type copper alloys has increased in place of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials. is doing. In an age-hardening type copper alloy, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, the strength of the alloy is increased, and at the same time, the amount of solid solution elements in copper is reduced. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.
時効硬化型銅合金のうち、Cu−Ni−Si系合金は高強度と高導電率とを併せ持つ代表的な銅合金であり、電子機器用材料として実用化されている。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより強度と導電率が上昇する。
Cu−Ni−Si系合金の一般的な製造プロセスでは、まず大気溶解炉を用い、木炭被覆下で、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延および熱処理を行い、所望の厚みおよび特性を有する条や箔に仕上げる。
Of the age-hardening type copper alloys, Cu—Ni—Si alloys are representative copper alloys having both high strength and high conductivity, and have been put into practical use as materials for electronic devices. In this copper alloy, strength and electrical conductivity are increased by precipitation of fine Ni—Si intermetallic particles in the copper matrix.
In a general manufacturing process of a Cu—Ni—Si based alloy, first, using an atmospheric melting furnace, raw materials such as electrolytic copper, Ni, Si, etc. are melted under charcoal coating to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling, cold rolling and heat treatment are performed to finish the strip or foil having a desired thickness and characteristics.
Cu−Ni−Si系合金条にはSnめっきを施すことがある。この場合、Snめっきの耐熱剥離特性等を改善する目的で、合金に少量のZnを添加することが多い。さらに、強度を改善すること、およびSnめっきスクラップを原料として用いること等を目的とし、少量のSnが添加されることが多い(以下、Cu−Ni−Si−Zn−Sn系合金)。Cu−Ni−Si−Zn−Sn系合金のSnめっき条は、Snの優れた半田濡れ性、耐食性、電気接続性を生かし、自動車用および民生用の端子、コネクタ等として使われている。 Sn plating may be applied to the Cu—Ni—Si alloy strip. In this case, a small amount of Zn is often added to the alloy for the purpose of improving the heat-resistant peeling characteristics of Sn plating. Furthermore, a small amount of Sn is often added for the purpose of improving strength and using Sn plating scrap as a raw material (hereinafter referred to as Cu—Ni—Si—Zn—Sn based alloy). The Sn-plated strip of Cu—Ni—Si—Zn—Sn alloy is used as terminals and connectors for automobiles and consumer use, taking advantage of Sn's excellent solder wettability, corrosion resistance, and electrical connectivity.
Cu−Ni−Si−Zn−Sn系合金のSnめっき条は、一般的に、連続めっきラインにおいて、脱脂および酸洗の後、電気めっき法により下地めっき層を形成し、次に電気めっき法によりSnめっき層を形成し、最後にリフロー処理を施しSnめっき層を溶融させる工程で製造される。
Cu−Ni−Si−Zn−Sn系合金Snめっき条の下地めっきとしては、Cu下地めっきが一般的であり、耐熱性が求められる用途に対してはCu/Ni二層下地めっきが施されることもある。ここで、Cu/Ni二層下地めっきとは、Ni下地めっき、Cu下地めっき、Snめっきの順に電気めっきを行なった後にリフロー処理を施しためっきであり、リフロー後のめっき皮膜層の構成は表面からSn相、Cu−Sn相、Ni相、母材となる。この技術の詳細は特許文献1、特許文献2、特許文献3等に開示されている。
In general, a Sn-plated strip of a Cu-Ni-Si-Zn-Sn-based alloy is formed by degreasing and pickling in a continuous plating line, and then forming a base plating layer by electroplating, and then by electroplating. A Sn plating layer is formed, and finally a reflow process is performed to melt the Sn plating layer.
As the base plating of the Cu-Ni-Si-Zn-Sn-based alloy Sn plating strip, Cu base plating is common, and for applications requiring heat resistance, Cu / Ni two-layer base plating is applied. Sometimes. Here, the Cu / Ni two-layer base plating is a plating obtained by performing an electroplating in the order of Ni base plating, Cu base plating, and Sn plating, followed by a reflow treatment. To Sn phase, Cu—Sn phase, Ni phase, and base material. Details of this technique are disclosed in Patent Document 1, Patent Document 2, Patent Document 3, and the like.
Cu−Ni−Si−Zn−Sn系合金のリフローSnめっき条には、高温で長時間保持した際にめっき層が母材より剥離する現象(以下、熱剥離)が生じやすいという弱点があり、従来から改善が試みられてきた。
特許文献4では、硬さを指標として時効条件を限定することにより、熱剥離の改善を図っている。特許文献5では、Mgを0.1質量%以下にし、SおよびOを0.0015質量%以下にすれば、熱剥離を改善できるとしている。
The Cu-Ni-Si-Zn-Sn-based alloy reflow Sn plating strip has a weak point that a phenomenon that the plating layer is peeled off from the base material (hereinafter referred to as thermal peeling) easily occurs when held at a high temperature for a long time. Improvements have been attempted from the past.
In Patent Document 4, improvement of thermal peeling is attempted by limiting the aging conditions using hardness as an index. In Patent Document 5, it is said that thermal peeling can be improved by setting Mg to 0.1 mass% or less and S and O to 0.0015 mass% or less.
しかし、これら従来技術だけでは、耐熱剥離性が良好な材料を工業的に安定して製造するには至っておらず、特に105℃近傍の温度環境下での耐熱剥離性が不安定という課題があった。また、耐熱剥離性に対し、より長期間の信頼性が求められるようになり、従来技術の更なる改善が必要となった。なお、特許文献4、特許文献5とも、熱剥離改善効果が検証された試験温度は150℃であり、このときの試験時間は最長で1000hである。
本発明の目的は、すずめっきの耐熱剥離特性を改善したCu−Ni−Si−Zn−Sn系合金条およびそのすずめっき条を提供することである。
However, these conventional techniques alone have not yet produced an industrially stable material with good heat-resistant peelability, and there is a problem that heat-resistant peelability is unstable in a temperature environment near 105 ° C. It was. In addition, long-term reliability has been required for heat-resistant peelability, and further improvement of the prior art has become necessary. Note that in both Patent Documents 4 and 5, the test temperature at which the effect of improving thermal peeling is verified is 150 ° C., and the test time at this time is 1000 h at the longest.
An object of the present invention is to provide a Cu—Ni—Si—Zn—Sn alloy strip and a tin plating strip thereof with improved heat-resistant peeling characteristics of tin plating.
本発明者は、Cu−Ni−Si−Zn−Sn系合金のリフローSnめっき条の耐熱剥離特性を改善する方策を鋭意研究した。その結果、従来から知られているSおよびO濃度の規制に加え、P、As、Sb、Bi、CaおよびMgの濃度を規制し、さらに導電率を指標として固溶Si濃度を規制することにより、耐熱剥離性を大幅に改善できることを見出した。 The present inventor has intensively studied measures for improving the heat-resistant peeling property of the reflow Sn plating strip of the Cu—Ni—Si—Zn—Sn alloy. As a result, in addition to the conventionally known regulation of S and O concentration, by regulating the concentration of P, As, Sb, Bi, Ca and Mg, and further regulating the solid solution Si concentration using conductivity as an index It was found that the heat-resistant peelability can be greatly improved.
本発明は、この発見に基づき成されたものであり、
(1)1.0〜4.5質量%のNi、Niの質量%に対し1/6〜1/4のSi、0.1〜2.0質量%のZnおよび0.05〜2.0質量%のSnを含有し、残部がCuおよび不可避的不純物からなり,不可避的不純物中P、As、SbおよびBi濃度の合計が100質量ppm以下、CaおよびMg濃度の合計が100質量ppm以下であり、OおよびS濃度がそれぞれ15質量ppm以下であり、導電率EC(%IACS)が次式の範囲に調整されていることを特徴とするSnめっきの耐熱剥離性に優れるCu−Ni−Si−Zn−Sn系合金条
50<EC+(22×[%Sn]+4.5×[%Zn])<60
([%i]は元素iの質量%濃度)
(2)Ag、Cr、Co、MnおよびMoのなかの一種以上を合計で0.01〜0.5質量%含有することを特徴とする上記(1)のCu−Ni−Si−Zn−Sn系合金条
(3)上記(1)又は(2)のCu−Ni−Si−Zn−Sn系合金条を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Cu相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Cu相の厚みが0〜0.8μmであることを特徴とする、耐熱剥離性に優れるCu−Ni−Si−Zn−Sn系合金すずめっき条
(4)上記(1)又は(2)のCu−Ni−Si−Zn−Sn系合金条を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Ni相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Ni相の厚みが0.1〜0.8μmであることを特徴とする、耐熱剥離性に優れるCu−Ni−Si−Zn−Sn系合金すずめっき条
を提供する。
The present invention has been made based on this discovery,
(1) 1.0 to 4.5 mass% Ni, 1/6 to 1/4 Si, 0.1 to 2.0 mass% Zn and 0.05 to 2.0 mass% with respect to Ni mass% It contains Sn by mass, the balance is made of Cu and inevitable impurities, and the total concentration of P, As, Sb and Bi in the inevitable impurities is 100 mass ppm or less, and the total of Ca and Mg concentrations is 100 mass ppm or less. Cu-Ni-Si excellent in heat-removability of Sn plating, characterized in that the O and S concentrations are each 15 ppm by mass or less, and the electrical conductivity EC (% IACS) is adjusted within the range of the following formula −Zn—Sn alloy strip 50 <EC + (22 × [% Sn] + 4.5 × [% Zn]) <60
([% I] is the mass% concentration of element i)
(2) Cu—Ni—Si—Zn—Sn according to (1) above, which contains one or more of Ag, Cr, Co, Mn and Mo in a total amount of 0.01 to 0.5% by mass. (3) The Cu—Ni—Si—Zn—Sn alloy strip of (1) or (2) above is used as a base material, and the Sn phase, Sn—Cu alloy phase, Cu phase are formed from the surface to the base material. Each layer comprises a plating film, the Sn phase thickness is 0.1 to 1.5 μm, the Sn—Cu alloy phase thickness is 0.1 to 1.5 μm, and the Cu phase thickness is 0 to 0.8 μm. Cu-Ni-Si-Zn-Sn alloy tin-plated strip excellent in heat-resistant peelability characterized by the following: (4) The Cu-Ni-Si-Zn-Sn-based alloy strip of (1) or (2) above The plating film is composed of the Sn phase, Sn-Cu alloy phase, and Ni phase layers from the surface to the base material. The Sn phase has a thickness of 0.1 to 1.5 μm, the Sn—Cu alloy phase has a thickness of 0.1 to 1.5 μm, and the Ni phase has a thickness of 0.1 to 0.8 μm. Provided is a Cu—Ni—Si—Zn—Sn alloy tin-plated strip excellent in peelability.
(1)母材の成分
(イ)NiとSi濃度
Ni及びSiは、時効処理を行うことにより、Ni2Siを主とする金属間化合物の微細な粒子を形成する。その結果、合金の強度が著しく増加し、同時に電気伝導度も上昇する。
Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4の範囲とする。Siがこの範囲から外れると、導電率が低下する。特に、Si添加量がNiの1/4を超えると、耐熱剥離性に有害な固溶Siが増え、めっき層が早期に剥離するため注意が必要である。より好ましいSiの範囲は、Niの1/5.5〜1/4.2である。
Niは1.0〜4.5質量%の範囲で添加する。Niが1.0質量%を下回ると充分な強度が得られない。Niが4.5質量%を超えると、熱間圧延で割れが発生する。
(1) Component (a) Ni and Si Concentration of Base Material Ni and Si form fine particles of an intermetallic compound mainly containing Ni 2 Si by performing an aging treatment. As a result, the strength of the alloy is significantly increased and at the same time the electrical conductivity is increased.
The addition concentration (mass%) of Si is in the range of 1/6 to 1/4 of the addition concentration (mass%) of Ni. If Si deviates from this range, the conductivity decreases. In particular, if the amount of Si added exceeds 1/4 of Ni, solute Si harmful to heat-resistant peelability increases, and care should be taken because the plating layer peels off early. A more preferable range of Si is 1 / 5.5 to 1 / 4.2 of Ni.
Ni is added in the range of 1.0 to 4.5 mass%. If Ni is less than 1.0% by mass, sufficient strength cannot be obtained. When Ni exceeds 4.5 mass%, a crack will generate | occur | produce by hot rolling.
(ロ)Zn濃度
Znはめっきの耐熱剥離性を改善する元素であり、0.1質量%以上の添加でその効果が発現する。一方、2.0質量%を超えるZnを添加しても、さらに耐熱剥離特性が向上することはなく導電率が低下するのみである。より好ましいZnの添加量は、0.2〜1.5質量%である。
(B) Zn concentration Zn is an element that improves the heat-resistant peelability of plating, and its effect is exhibited by addition of 0.1 mass% or more. On the other hand, the addition of Zn exceeding 2.0% by mass does not further improve the heat-resistant peeling property and only decreases the conductivity. A more preferable addition amount of Zn is 0.2 to 1.5 mass%.
(ハ)Sn濃度
Snは母材の高強度化のために添加する。Snが0.05質量%未満では高強度化の効果が発現せず、2.0質量%を超えると導電率の低下が著しくなる。より好ましいSnの添加量は、0.1〜1.0質量%である。
(C) Sn concentration Sn is added to increase the strength of the base material. If the Sn content is less than 0.05% by mass, the effect of increasing the strength will not be exhibited. The addition amount of Sn is more preferably 0.1 to 1.0% by mass.
(ニ)不純物
5B族のP、As、SbおよびBiは、めっきと母材との界面に濃化することにより、熱剥離を促進する元素である。そこで、これらの濃度を合計で100質量ppm以下に規制する。より好ましい濃度は5質量ppm以下である。
Pは銅合金の脱酸剤や合金元素として良く用いられる元素であり、特開平01−263243に見られるように、比較的多量のPがCu−Ni−Si系合金に添加されることもある。また、特許第3391427号の実施例においてSnめっき素材として開示されているCu−Ni−Si−Zn−Sn合金も、0.01質量%以上のPを含有している。P濃度を低く抑えるためには、脱酸剤や合金元素としてPを添加しないことはもちろん、Pを含有する銅合金スクラップを原料として用いないことなども必要である。
(D) Impurities P, As, Sb and Bi of Group 5B are elements that promote thermal separation by concentrating at the interface between the plating and the base material. Therefore, these concentrations are regulated to 100 ppm by mass or less in total. A more preferable concentration is 5 mass ppm or less.
P is an element often used as a deoxidizer or an alloy element of a copper alloy. As seen in JP-A-01-263243, a relatively large amount of P may be added to a Cu—Ni—Si alloy. . Further, the Cu—Ni—Si—Zn—Sn alloy disclosed as the Sn plating material in the example of Japanese Patent No. 3391427 also contains 0.01 mass% or more of P. In order to keep the P concentration low, it is necessary not to add P as a deoxidizer or alloy element, but also to not use copper alloy scrap containing P as a raw material.
As、SbおよびBiは、伸銅品の主要原料である電気銅が含有する代表的な不純物である。これらの濃度を低く抑えるためには、品位の低い電気銅の使用を避ける必要がある。
P、As、SbおよびBiの合計濃度の下限値は特に規制されるものではないが、1質量ppm未満に下げようとすると多大な精錬コストが必要となるため、1質量ppm以上にするのが通常である。
As, Sb, and Bi are typical impurities contained in electrolytic copper, which is the main raw material for copper-drawn products. In order to keep these concentrations low, it is necessary to avoid the use of low-grade electrolytic copper.
The lower limit value of the total concentration of P, As, Sb and Bi is not particularly restricted, but if it is attempted to lower it to less than 1 mass ppm, a great amount of refining costs are required. It is normal.
次に、めっきと母材の界面に濃化することにより熱剥離を促進する元素として、P、As、Sb、Bi以外に、MgとCaがある。そこで、MgとCaの濃度を合計で100質量ppm以下に規制する。より好ましい濃度は5質量ppm以下である。
Mgは銅合金の脱酸剤や合金元素として良く用いられる元素であり、Cu−Ni−Si系合金にMgを添加し応力緩和特性等を改善した合金もある(特許第2572042号)。Mgを低く抑えるためには、脱酸剤や合金元素としてMgを添加しないことはもちろん、Mgを含有する銅合金スクラップを原料として用いないことなども必要である。
Next, in addition to P, As, Sb, and Bi, there are Mg and Ca as elements that promote thermal separation by concentrating at the interface between the plating and the base material. Therefore, the total concentration of Mg and Ca is regulated to 100 mass ppm or less. A more preferable concentration is 5 mass ppm or less.
Mg is an element often used as a deoxidizer or an alloy element of a copper alloy, and there is an alloy in which Mg is added to a Cu—Ni—Si based alloy to improve stress relaxation characteristics (Japanese Patent No. 2572204). In order to keep Mg low, it is necessary not to add Mg as a deoxidizer or an alloy element, but also not to use copper alloy scrap containing Mg as a raw material.
Caは、Cu−Ni−Si−Zn−Snを溶製する際に、耐火物や溶湯被覆剤等から混入しやすい元素である。溶湯と接触する資材にCaを含有しないものを用いることが肝要である。
MgおよびCaの合計濃度の下限値は特に規制されるものではないが、0.5ppm未満に下げようとすると多大な精錬コストが必要となるため、0.5ppm以上にするのが通常である。
OおよびSの各濃度は、特許文献2と同様、15質量ppm以下に規制する。いずれかの濃度が15質量ppmを超えると、めっき耐熱剥離性が劣化する。
Ca is an element that is easily mixed from a refractory or a molten metal coating agent when melting Cu—Ni—Si—Zn—Sn. It is important to use a material that does not contain Ca as a material in contact with the molten metal.
Although the lower limit of the total concentration of Mg and Ca is not particularly restricted, it is usually set to 0.5 ppm or more because a large refining cost is required to lower it to less than 0.5 ppm.
Each concentration of O and S is regulated to 15 mass ppm or less as in Patent Document 2. If any of the concentrations exceeds 15 ppm by mass, the plating heat-resistant peelability deteriorates.
(ホ)Ag、Cr、Co、Mn、およびMo
Ag、Cr、Co、Mn、およびMoは、強度、耐熱性の改善のため,合計で0.01〜0.5質量%添加される。その添加量合計が0.01質量%未満では、強度、耐熱性改善の効果が発現せず、0.5質量%を超えて添加されると,導電率が低下する。高導電率の要求から、合計で0.01〜0.15質量%添加されることが好ましい。
(E) Ag, Cr, Co, Mn, and Mo
Ag, Cr, Co, Mn, and Mo are added in a total of 0.01 to 0.5% by mass in order to improve strength and heat resistance. When the total amount added is less than 0.01% by mass, the effect of improving strength and heat resistance is not exhibited, and when the amount added exceeds 0.5% by mass, the electrical conductivity decreases. It is preferable to add 0.01 to 0.15 mass% in total from the request | requirement of high electrical conductivity.
(ヘ)母材の導電率
Cu中に固溶しているSiは、めっきと母材との界面に濃化し、熱剥離を促進する。本発明合金の製造プロセスでは、時効処理により強度と導電率を作りこむ。時効処理において、Cu中に固溶しているSiとNiが反応し、微細なNi2Si粒子が生成する。そして、Ni2Si粒子の作用により強度が上昇し、Cu中に固溶するSiとNiが減少する結果として導電率が上昇する。したがって、導電率を固溶Si濃度の指標として用いることが可能であり、導電率が高いほど固溶Si濃度が低く、耐熱剥離性は良好といえる。ただし、導電率を指標として耐熱剥離性を精度良く制御するためには、本発明合金が含有するSnとZnの導電率への影響を補正する必要がある。本発明者は、良好な耐熱剥離性を得るための導電率EC(%IACS)の条件として、次の実験式を得た。ここで[%i]は元素iの質量%濃度である。
50<EC’<60
ここで、EC’=EC+(22×[%Sn]+4.5×[%Zn])
EC’が50以下の場合、固溶Siが多すぎ良好な耐熱剥離特性が得られない。一方、60以上のEC’を得るためには、高温または長時間の時効を行う必要があり、この場合Ni2Si粒子が粗大化して強度が低下する。したがって、EC’が50〜60の範囲に収まるように時効処理を行えばよい。
(F) Conductivity of base material Si dissolved in Cu concentrates at the interface between the plating and the base material and promotes thermal peeling. In the manufacturing process of the alloy of the present invention, strength and conductivity are created by aging treatment. In the aging treatment, Si and Ni dissolved in Cu react with each other, and fine Ni 2 Si particles are generated. Then, the strength increases due to the action of the Ni 2 Si particles, and the conductivity increases as a result of the decrease of Si and Ni dissolved in Cu. Therefore, it is possible to use the conductivity as an index of the solid solution Si concentration, and it can be said that the higher the conductivity, the lower the solid solution Si concentration and the better the heat-resistant peelability. However, in order to accurately control the heat-resistant peelability using the conductivity as an index, it is necessary to correct the influence of Sn and Zn contained in the alloy of the present invention on the conductivity. The present inventor obtained the following empirical formula as a condition of the electrical conductivity EC (% IACS) for obtaining good heat-resistant peelability. Here, [% i] is the mass% concentration of the element i.
50 <EC '<60
Here, EC ′ = EC + (22 × [% Sn] + 4.5 × [% Zn])
When EC ′ is 50 or less, the amount of dissolved Si is too much and good heat-resistant peeling characteristics cannot be obtained. On the other hand, in order to obtain EC ′ of 60 or more, it is necessary to perform aging at a high temperature or for a long time. In this case, Ni 2 Si particles are coarsened and the strength is lowered. Therefore, the aging process may be performed so that EC ′ falls within the range of 50-60.
(ト)めっきの厚み
(ト−1)Cu下地めっきの場合(請求項3)
Cu−Ni−Si−Zn−Sn系合金母材上に、電気めっきによりCuめっき層およびSnめっき層を順次形成し、その後リフロー処理を行う。このリフロー処理により、Cuめっき層とSnめっき層が反応してSn−Cu合金相が形成され、めっき層構造は、表面側よりSn相、Sn−Cu合金相、Cu相となる。
リフロー後のこれら各相の厚みは、
・Sn相:0.1〜1.5μm
・Sn−Cu合金相:0.1〜1.5μm
・Cu相:0〜0.8μm
の範囲に調整する。
Sn相が0.1μm未満になると半田濡れ性が低下し、1.5μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい範囲は0.2〜1.0μmである。
(G) Thickness of plating (G-1) In the case of Cu base plating (Claim 3)
On the Cu—Ni—Si—Zn—Sn alloy base material, a Cu plating layer and an Sn plating layer are sequentially formed by electroplating, and then a reflow process is performed. By this reflow treatment, the Cu plating layer and the Sn plating layer react to form an Sn—Cu alloy phase, and the plating layer structure becomes an Sn phase, an Sn—Cu alloy phase, and a Cu phase from the surface side.
The thickness of each phase after reflow is
-Sn phase: 0.1-1.5 μm
Sn-Cu alloy phase: 0.1 to 1.5 μm
Cu phase: 0 to 0.8 μm
Adjust to the range.
When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable range is 0.2 to 1.0 μm.
Sn−Cu合金相は硬質なため、0.1μm以上の厚さで存在すると挿入力の低減に寄与する。一方、 Sn−Cu合金相の厚さが1.5μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい厚みは0.5〜1.2μmである。
Cu−Ni−Si−Zn−Sn系合金ではCu下地めっきを行うことにより、半田濡れ性が向上する。したがって、電着時に0.1μm以上のCu下地めっきを施す必要がある。このCu下地めっきは、リフロー時にSn−Cu合金相形成に消費され消失しても良い。すなわち、リフロー後のCu相厚みの下限値は規制されず、厚みがゼロになってもよい。
Since the Sn—Cu alloy phase is hard, if it exists in a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Sn—Cu alloy phase exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness is 0.5 to 1.2 μm.
In the Cu—Ni—Si—Zn—Sn alloy, the solder wettability is improved by performing the Cu base plating. Therefore, it is necessary to apply a Cu base plating of 0.1 μm or more during electrodeposition. This Cu base plating may be consumed and lost for Sn—Cu alloy phase formation during reflow. That is, the lower limit value of the Cu phase thickness after reflow is not regulated, and the thickness may be zero.
Cu相の厚みの上限値は、リフロー後の状態で0.8μm以下とする。0.8μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましいCu相の厚みは0.4μm以下である。
電気めっき時の各めっきの厚みを、Snめっきは0.5〜1.9μmの範囲、Cuめっきは0.1〜 1.1μmの範囲で適宜調整し、230〜600℃、3〜30秒間の範囲のなかの適当な条件でリフロー処理を行うことにより、上記めっき構造が得られる。
The upper limit value of the thickness of the Cu phase is 0.8 μm or less in the state after reflow. When the thickness exceeds 0.8 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness of the Cu phase is 0.4 μm or less.
The thickness of each plating at the time of electroplating is appropriately adjusted in the range of 0.5 to 1.9 μm for Sn plating and in the range of 0.1 to 1.1 μm for Cu plating, and 230 to 600 ° C. for 3 to 30 seconds. The plating structure can be obtained by performing the reflow process under an appropriate condition within the range.
(ト−2)Cu/Ni下地めっきの場合(請求項4)
Cu−Ni−Si−Zn−Sn系合金母材上に、電気めっきによりNiめっき層、Cuめっき層およびSnめっき層を順次形成し、その後リフロー処理を行う。このリフロー処理により、CuめっきはSnと反応してSn−Cu合金相となり、Cu相は消失する。一方Ni層は、ほぼ電気めっき上がりの状態で残留する。その結果、めっき層の構造は、表面側よりSn相、Sn−Cu合金相、Ni相となる。
リフロー後のこれら各相の厚みは、
・Sn相:0.1〜1.5μm
・Sn−Cu合金相:0.1〜1.5μm
・Ni相:0.1〜0.8μm
の範囲に調整する。
(G-2) In the case of Cu / Ni base plating (Claim 4)
On the Cu—Ni—Si—Zn—Sn alloy base material, an Ni plating layer, a Cu plating layer, and an Sn plating layer are sequentially formed by electroplating, and then a reflow process is performed. By this reflow treatment, the Cu plating reacts with Sn to become a Sn—Cu alloy phase, and the Cu phase disappears. On the other hand, the Ni layer remains almost in the state after electroplating. As a result, the structure of the plating layer becomes Sn phase, Sn—Cu alloy phase, and Ni phase from the surface side.
The thickness of each phase after reflow is
-Sn phase: 0.1-1.5 μm
Sn-Cu alloy phase: 0.1 to 1.5 μm
・ Ni phase: 0.1-0.8μm
Adjust to the range.
Sn相が0.1μm未満になると半田濡れ性が低下し、1.5μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい範囲は0.2〜1.0μmである。
Sn−Cu合金相は硬質なため、0.1μm以上の厚さで存在すると挿入力の低減に寄与する。一方、Sn−Cu合金相の厚さが1.5μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい厚みは0.5〜1.2μmである。
When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable range is 0.2 to 1.0 μm.
Since the Sn—Cu alloy phase is hard, if it exists in a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Sn—Cu alloy phase exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness is 0.5 to 1.2 μm.
Ni相の厚みは0.1〜0.8μmとする。Niの厚みが0.1μm未満ではめっきの耐食性や耐熱性が低下する。Niの厚みが0.8μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましいNi相の厚みは0.1〜0.3μmである。
電気めっき時の各めっきの厚みを、Snめっきは0.5〜1.9μmの範囲、Cuめっきは0.1〜0.7μm、Niめっきは0.1〜0.8μmの範囲で適宜調整し、230〜600℃、3〜30秒間の範囲のなかの適当な条件でリフロー処理を行うことにより、上記めっき構造が得られる。
The thickness of the Ni phase is 0.1 to 0.8 μm. If the thickness of Ni is less than 0.1 μm, the corrosion resistance and heat resistance of the plating deteriorate. When the thickness of Ni exceeds 0.8 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness of the Ni phase is 0.1 to 0.3 μm.
The thickness of each plating at the time of electroplating is appropriately adjusted within the range of 0.5 to 1.9 μm for Sn plating, 0.1 to 0.7 μm for Cu plating, and 0.1 to 0.8 μm for Ni plating. The above-described plating structure can be obtained by performing the reflow treatment under appropriate conditions in the range of 230 to 600 ° C. and 3 to 30 seconds.
市販の電気銅をアノードとして、硝酸銅浴中で電解を行い、カソードに高純度銅を析出させた。この高純度銅中のP、As、Sb、Bi、Ca、MgおよびS濃度は、いずれも1質量ppm未満であった。以下、この高純度銅を実験材料に用いた。
高周波誘導炉用い、内径60mm、深さ200mmの黒鉛るつぼ中で2kgの高純度銅を溶解した。溶湯表面を木炭片で覆った後、所定量のNi、Si、ZnおよびSnを添加し、溶湯温度を1200℃に調整した。次に、P、As、Sb、Bi、Ca、MgおよびSを添加して不純物濃度を調整した。O濃度が高い試料を作製する場合は、溶湯表面の一部を被覆した木炭から露出させた。
その後、溶湯を金型に鋳込み、幅60mm、厚み30mmのインゴットを製造し、以下の工程で、Cu下地リフローSnめっき材およびCu/Ni下地リフローSnめっき材に加工した。
Electrolysis was performed in a copper nitrate bath using commercially available electrolytic copper as an anode, and high purity copper was deposited on the cathode. The P, As, Sb, Bi, Ca, Mg, and S concentrations in this high purity copper were all less than 1 ppm by mass. Hereinafter, this high purity copper was used as an experimental material.
Using a high-frequency induction furnace, 2 kg of high-purity copper was dissolved in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the molten metal surface with charcoal pieces, predetermined amounts of Ni, Si, Zn and Sn were added to adjust the molten metal temperature to 1200 ° C. Next, P, As, Sb, Bi, Ca, Mg and S were added to adjust the impurity concentration. When producing a sample having a high O concentration, a part of the molten metal surface was exposed from the coated charcoal.
Thereafter, the molten metal was cast into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm, and processed into a Cu base reflow Sn plating material and a Cu / Ni base reflow Sn plating material in the following steps.
(工程1)950℃で3時間加熱した後、厚さ8mmまで熱間圧延する。
(工程2)熱間圧延板表面の酸化スケールをグラインダーで研削、除去する。
(工程3)板厚0.3mmまで冷間圧延する。
(工程4)溶体化処理として800℃で10秒間加熱し水中で急冷する。
(工程5)時効処理として、所定温度に保持した電気炉中に所定時間挿入した後、大気中で冷却する。
(工程6)10質量%硫酸−1質量%過酸化水素溶液による酸洗および#1200エメリー紙による機械研磨を順次行ない、表面酸化膜を除去する。
(工程7)板厚0.25mmまで冷間圧延する。
(工程8)アルカリ水溶液中で試料をカソードとして電解脱脂を行う。
(工程9)10質量%硫酸水溶液を用いて酸洗する。
(工程10)次の条件でNi下地めっきを施す(Cu/Ni下地の場合のみ)。
・めっき浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸30g/L。
・めっき浴温度:50℃。
・電流密度:5A/dm2。
・Niめっき厚みは、電着時間により調整。
(工程11)次の条件でCu下地めっきを施す。
・めっき浴組成:硫酸銅200g/L、硫酸60g/L。
・めっき浴温度:25℃。
・電流密度:5A/dm2。
・Cuめっき厚みは、電着時間により調整。
(工程12)次の条件でSnめっきを施す。
・めっき浴組成:酸化第1錫41g/、フェノールスルホン酸268g/L、界面活性剤5g/L。
・めっき浴温度:50℃。
・電流密度:9A/dm2。
・Snめっき厚みは、電着時間により調整。
(工程13)リフロー処理として、温度を400℃、雰囲気ガスを窒素(酸素1vol%以下)に調整した加熱炉中に、試料を10秒間挿入し水冷する。
このように作製した試料について、次の評価を行った。
(Step 1) After heating at 950 ° C. for 3 hours, hot rolling to a thickness of 8 mm.
(Step 2) The oxidized scale on the surface of the hot rolled plate is ground and removed with a grinder.
(Step 3) Cold rolling to a plate thickness of 0.3 mm.
(Step 4) As a solution treatment, it is heated at 800 ° C. for 10 seconds and rapidly cooled in water.
(Step 5) As an aging treatment, after being inserted into an electric furnace maintained at a predetermined temperature for a predetermined time, it is cooled in the atmosphere.
(Step 6) Pickling with 10% by mass sulfuric acid-1% by mass hydrogen peroxide solution and mechanical polishing with # 1200 emery paper are sequentially performed to remove the surface oxide film.
(Step 7) Cold rolling to a plate thickness of 0.25 mm.
(Step 8) Electrolytic degreasing is performed using a sample as a cathode in an alkaline aqueous solution.
(Step 9) Pickling with a 10% by mass sulfuric acid aqueous solution.
(Step 10) Ni base plating is performed under the following conditions (only for Cu / Ni base).
-Plating bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 30 g / L.
-Plating bath temperature: 50 ° C.
Current density: 5A / dm 2.
・ Ni plating thickness is adjusted by electrodeposition time.
(Step 11) Cu base plating is performed under the following conditions.
-Plating bath composition: copper sulfate 200 g / L, sulfuric acid 60 g / L.
-Plating bath temperature: 25 ° C.
Current density: 5A / dm 2.
・ Cu plating thickness is adjusted by electrodeposition time.
(Step 12) Sn plating is performed under the following conditions.
Plating bath composition: stannous oxide 41 g / phenol sulfonic acid 268 g / L, surfactant 5 g / L.
-Plating bath temperature: 50 ° C.
Current density: 9A / dm 2.
・ Sn plating thickness is adjusted by electrodeposition time.
(Step 13) As a reflow treatment, the sample is inserted into a heating furnace adjusted to 400 ° C. and the atmosphere gas to nitrogen (oxygen 1 vol% or less) for 10 seconds and water-cooled.
The following evaluation was performed about the sample produced in this way.
(a)母材の成分分析
機械研磨と化学エッチングによりめっき層を完全に除去した後、Ni、Si、ZnおよびSn濃度をICP−発光分光法で、P、As、Sb、Bi、Ca、MgおよびS濃度をICP−質量分析法で、O濃度を不活性ガス溶融−赤外線吸収法で測定した。
(b)母材の導電率測定
機械研磨と化学エッチングによりめっき層を完全に除去した後、4端子法により導電率を測定した。
(c)強度
引張り方向が圧延方向と平行になる方向に、JIS−Z2201(2003年)に規定された13B号試験片を採取した。この試験片を用いてJIS−Z2241(2003年)に従って引張試験を行い0.2%オフセット耐力を求めた。この測定はめっき付のまま行った。
(d)電解式膜厚計によるめっき厚測定
リフロー後の試料に対しSn相およびSn−Cu合金相の厚みを測定した。なお、この方法ではCu相およびNi相の厚みを測ることはできない。
(A) Analysis of composition of base material After completely removing the plating layer by mechanical polishing and chemical etching, the concentrations of Ni, Si, Zn and Sn are determined by ICP-emission spectroscopy, and P, As, Sb, Bi, Ca, Mg The S concentration was measured by ICP-mass spectrometry, and the O concentration was measured by inert gas melting-infrared absorption method.
(B) Measurement of conductivity of base material After the plating layer was completely removed by mechanical polishing and chemical etching, the conductivity was measured by a four-terminal method.
(C) Strength A specimen No. 13B defined in JIS-Z2201 (2003) was collected in a direction in which the tensile direction was parallel to the rolling direction. Using this test piece, a tensile test was performed according to JIS-Z2241 (2003) to obtain a 0.2% offset proof stress. This measurement was performed with plating.
(D) Plating thickness measurement by electrolytic film thickness meter The thickness of the Sn phase and the Sn—Cu alloy phase was measured on the sample after reflow. Note that the thickness of the Cu phase and Ni phase cannot be measured by this method.
(e)GDSによるめっき厚測定
リフロー後の試料をアセトン中で超音波脱脂した後、GDS(グロー放電発光分光分析装置)により、Sn、Cu、Niの深さ方向の濃度プロファイルを求めた。測定条件は次の通りである。
・装置:JOBIN YBON社製 JY5000RF−PSS型
・Current Method Program:CNBinteel−12aa−0。
・Mode:Constant Electric Power=40W。
・Ar−Presser:775Pa。
・Current Value:40mA(700V)。
・Flush Time:20sec。
・Preburne Time:2sec。
・Determination Time:Analysis Time=30sec、Sampling Time=0.020sec/point。
(E) Measurement of plating thickness by GDS After the reflowed sample was ultrasonically degreased in acetone, the concentration profile of Sn, Cu, and Ni in the depth direction was determined by GDS (Glow Discharge Emission Spectrometer). The measurement conditions are as follows.
-Apparatus: JY5000RF-PSS type made by JOBIN YBON-Current Method Program: CNBintel-12aa-0.
-Mode: Constant Electric Power = 40W.
Ar-Presser: 775 Pa.
-Current Value: 40 mA (700 V).
-Flush Time: 20 sec.
Preburn Time: 2 sec.
Determination Time: Analysis Time = 30 sec, Sampling Time = 0.020 sec / point.
Cu濃度プロファイルデータより、リフロー後に残留しているCu下地めっき(Cu相)の厚みを求めた。GDSによる代表的な濃度プロファイルとして後述する実施例2のCu下地めっきのデータを図1に示す。深さ1.6μmのところに、母材よりCu濃度が高い層が認められる。この層はリフロー後に残留しているCu下地めっきであり、この層の厚みを読み取りCu相の厚みとした。なお、母材よりCuが高い層が認められない場合は、Cu下地めっきは消失した(Cu相の厚みはゼロ)と見なした。また、Ni濃度プロファイルデータより、Ni下地めっき(Ni相)の厚みを求めた。 From the Cu concentration profile data, the thickness of the Cu base plating (Cu phase) remaining after reflow was determined. FIG. 1 shows data of a Cu base plating of Example 2 described later as a typical concentration profile by GDS. A layer having a Cu concentration higher than that of the base material is observed at a depth of 1.6 μm. This layer is the Cu base plating remaining after the reflow, and the thickness of this layer was read and taken as the thickness of the Cu phase. In addition, when the layer whose Cu is higher than a base material was not recognized, it was considered that Cu undercoat disappeared (the thickness of Cu phase was zero). Further, the thickness of the Ni base plating (Ni phase) was obtained from the Ni concentration profile data.
(f)耐熱剥離性
幅10mmの短冊試験片を採取し、105℃または150℃の温度で、大気中3000時間まで加熱した。その間、100時間毎に試料を加熱炉から取り出し、曲げ半径0.5mmの90°曲げと曲げ戻し(90°曲げを往復一回)を行なった。そして、曲げ内周部表面を光学顕微鏡(倍率50倍)で観察し、めっき剥離の有無を調べた。
(1)実施例1
(F) Heat-resistant peelability A strip test piece having a width of 10 mm was collected and heated at a temperature of 105 ° C. or 150 ° C. in the atmosphere for up to 3000 hours. In the meantime, the sample was taken out from the heating furnace every 100 hours, and 90 ° bending and bending back with a bending radius of 0.5 mm were performed (90 ° bending was reciprocated once). And the bending inner peripheral part surface was observed with the optical microscope (50-times multiplication factor), and the presence or absence of plating peeling was investigated.
(1) Example 1
母材の不純物の耐熱剥離性への影響を調査した実施例を表1に示す。全試料とも、470℃、6時間の時効を行った。
Cu下地めっき材については、Cuの厚みを0.3μm、Snの厚みを0.8μmとして電気めっきを行ったところ、試料によらず、400℃で10秒間リフローした後のSn相の厚みは約0.4μm、Cu−Sn合金相の厚みは約1μmとなり、Cu相は消失していた。
Cu/Ni下地めっき材については、Niの厚みを0.2μm、Cuの厚みを0.3μm、Snの厚みを0.8μmとして電気めっきを行ったところ、400℃で10秒間リフローした後のSn相の厚みは約0.4μm、Cu−Sn合金相の厚みは約1μmとなり、Cu相は消失し、Ni相は電着時の厚み(0.2μm)のまま残留していた。
本発明合金である発明例1〜25については、Cu下地、Cu/Ni下地にかかわらず、105℃、150℃とも3000h加熱してもめっき剥離が生じていない。
Table 1 shows examples in which the influence of impurities on the base material on the heat-resistant peelability was investigated. All samples were aged at 470 ° C. for 6 hours.
For the Cu base plating material, when the electroplating was performed with the Cu thickness of 0.3 μm and the Sn thickness of 0.8 μm, the Sn phase thickness after reflowing at 400 ° C. for 10 seconds was about The thickness of the 0.4 μm Cu—Sn alloy phase was about 1 μm, and the Cu phase disappeared.
For the Cu / Ni base plating material, when electroplating was performed with Ni thickness of 0.2 μm, Cu thickness of 0.3 μm, and Sn thickness of 0.8 μm, Sn after reflowing at 400 ° C. for 10 seconds The thickness of the phase was about 0.4 μm, the thickness of the Cu—Sn alloy phase was about 1 μm, the Cu phase disappeared, and the Ni phase remained as it was at the time of electrodeposition (0.2 μm).
Inventive Examples 1 to 25 which are the alloys of the present invention, regardless of the Cu underlayer and the Cu / Ni underlayer, plating peeling does not occur even when heated at 105 ° C. and 150 ° C. for 3000 h.
発明例1〜4および比較例1〜3では、Mg、Ca、S、O濃度が低い条件下で、P、As、SbおよびBi濃度を変化させている。P、As、Sb、Biの合計濃度が100ppmを超えると、剥離時間が3000hを下回っている。剥離時間の短縮はP、As、Sb、Biの合計濃度が高いほど顕著である。また、150℃での剥離時間が105℃での剥離時間より短かく、P、As、Sb、Biの悪影響は150℃でより顕著に発現するといえる。
発明例1、5〜8および比較例4〜5では、P、As、Sb、Bi、S、O濃度が低い条件下で、MgおよびCa濃度を変化させている。MgとCaの合計濃度が100ppmを超えると、105℃での剥離時間が3000hを下回っている。一方、150℃では剥離時間の短縮が認められず、MgとCaの悪影響は105℃でより顕著に発現するといえる。
In Invention Examples 1 to 4 and Comparative Examples 1 to 3, the P, As, Sb, and Bi concentrations are changed under conditions where the Mg, Ca, S, and O concentrations are low. When the total concentration of P, As, Sb, and Bi exceeds 100 ppm, the peeling time is less than 3000 h. The shortening of the peeling time is more remarkable as the total concentration of P, As, Sb, and Bi is higher. Further, the peeling time at 150 ° C. is shorter than the peeling time at 105 ° C., and it can be said that the adverse effects of P, As, Sb, and Bi are more prominent at 150 ° C.
In Invention Examples 1, 5 to 8 and Comparative Examples 4 to 5, the Mg and Ca concentrations are changed under conditions where the P, As, Sb, Bi, S, and O concentrations are low. When the total concentration of Mg and Ca exceeds 100 ppm, the peeling time at 105 ° C. is less than 3000 h. On the other hand, the shortening of the peeling time is not recognized at 150 ° C., and it can be said that the adverse effects of Mg and Ca are more pronounced at 105 ° C.
比較例6および7は、それぞれSおよびOが15質量ppmを超える合金である。両者ともに105℃および150℃のめっき剥離時間が3000hを下回っている。 Comparative Examples 6 and 7 are alloys in which S and O exceed 15 ppm by mass, respectively. In both cases, the plating peeling time at 105 ° C. and 150 ° C. is less than 3000 h.
比較例8は、Si濃度がNi濃度の1/4を超えた合金であり、105℃および150℃のめっき剥離時間がかなり短縮している。また、固溶Siの増加に伴い導電率が低下しEC’が50未満になっている。
比較例9は、Zn濃度が0.1%を下回る合金であり、105℃および150℃のめっき剥離時間がかなり短縮している。
(2)実施例2
Comparative Example 8 is an alloy in which the Si concentration exceeds 1/4 of the Ni concentration, and the plating stripping time at 105 ° C. and 150 ° C. is considerably shortened. In addition, the electrical conductivity decreases with increasing solute Si, and EC ′ is less than 50.
Comparative Example 9 is an alloy having a Zn concentration of less than 0.1%, and the plating peeling time at 105 ° C. and 150 ° C. is considerably shortened.
(2) Example 2
母材の導電率と耐熱剥離性との関係を調査した実施例を表2に示す。母材の導電率は時効条件により変化させた。全試料とも、P、As、SbおよびBiの合計濃度を5質量ppm以下に、MgとCaの合計濃度を5質量ppm以下に、OおよびS濃度をそれぞれ15質量ppm以下に調整した。
Cu下地めっき材については、Cuの厚みを0.6μm、Snの厚みを0.8μmとして電気めっきを行ったところ、試料によらず、400℃で10秒間リフローした後のSn相の厚みは約0.4μm、Cu−Sn合金相の厚みは約1μmとなり、Cu相の厚みは約0.3μmとなった。
Cu/Ni下地めっき材については、Niの厚みを0.3μm、Cuの厚みを0.2μm、Snの厚みを0.8μmとして電気めっきを行ったところ、400℃で10秒間リフローした後のSn相の厚みは約0.5μm、Cu−Sn合金相の厚みは約0.8μmとなり、Cu相は消失し、Ni相は電着時の厚み(0.3μm)のまま残留していた。
Table 2 shows examples in which the relationship between the conductivity of the base material and the heat-resistant peelability was investigated. The conductivity of the base material was changed depending on the aging conditions. In all samples, the total concentration of P, As, Sb, and Bi was adjusted to 5 mass ppm or less, the total concentration of Mg and Ca was adjusted to 5 mass ppm or less, and the O and S concentrations were adjusted to 15 mass ppm or less.
As for the Cu base plating material, when the electroplating was performed with the Cu thickness of 0.6 μm and the Sn thickness of 0.8 μm, the Sn phase thickness after reflowing at 400 ° C. for 10 seconds was about The thickness of the 0.4 μm Cu—Sn alloy phase was about 1 μm, and the thickness of the Cu phase was about 0.3 μm.
Regarding the Cu / Ni base plating material, when the electroplating was performed with the Ni thickness being 0.3 μm, the Cu thickness being 0.2 μm, and the Sn thickness being 0.8 μm, the Sn after reflowing at 400 ° C. for 10 seconds. The thickness of the phase was about 0.5 μm, the thickness of the Cu—Sn alloy phase was about 0.8 μm, the Cu phase disappeared, and the Ni phase remained as it was at the time of electrodeposition (0.3 μm).
本発明合金である発明例26〜31については、105℃、150℃とも3000時間加熱してもめっき剥離が生じていない。
発明例26〜28および比較例10〜11は、同様の成分の母材に対し、時効条件を変えたものである。EC’が50を下回ると(比較例10)、105℃または150℃での剥離時間が3000hを下回っている。剥離時間の短縮は105℃の方が顕著である。EC’が60を超えると(比較例11)、0.2%耐力が著しく低下している。
母材成分が同様の発明例29と比較例12の関係、発明例30と比較例13との関係、発明例31と比較例14との関係についても、上記と同じことがいえる。
(3)実施例3
In Invention Examples 26 to 31, which are the alloys of the present invention, plating peeling does not occur even when heated at 3000C and 150C for 3000 hours.
Invention Examples 26 to 28 and Comparative Examples 10 to 11 are obtained by changing the aging conditions with respect to the base materials having the same components. When EC ′ is less than 50 (Comparative Example 10), the peeling time at 105 ° C. or 150 ° C. is less than 3000 h. The shortening of the peeling time is more remarkable at 105 ° C. When EC ′ exceeds 60 (Comparative Example 11), the 0.2% proof stress is significantly reduced.
The same can be said for the relationship between Invention Example 29 and Comparative Example 12 having the same base material components, the relationship between Invention Example 30 and Comparative Example 13, and the relationship between Invention Example 31 and Comparative Example 14.
(3) Example 3
めっきの厚みが耐熱剥離性に及ぼす影響を調査した実施例を表3および4に示す。何れの実施例も,母材組成はCu−1.62%Ni−0.35%Si−0.41%Zn−0.50%Sn、P、As、SbおよびBiの合計濃度は3.5質量ppm、MgとCaの合計濃度は2.6質量ppm、O濃度は12質量ppm、S濃度は9質量ppmであり、EC’は55.4である。
表3はCu下地めっきでのデータである。本発明合金である発明例32〜40については、105℃、150℃とも3000h加熱してもめっき剥離が生じていない。
Tables 3 and 4 show examples in which the influence of the plating thickness on the heat-resistant peelability was investigated. In each example, the base material composition is Cu-1.62% Ni-0.35% Si-0.41% Zn-0.50% Sn, P, As, Sb, and Bi. Mass ppm, the total concentration of Mg and Ca is 2.6 mass ppm, the O concentration is 12 mass ppm, the S concentration is 9 mass ppm, and EC ′ is 55.4.
Table 3 shows data for the Cu base plating. In Invention Examples 32 to 40, which are the alloys of the present invention, plating peeling does not occur even when heated at 3000C and 150C for 3000 hours.
発明例32〜35および比較例17では、Snの電着厚みを0.9μmとし、Cu下地の厚みを変化させている。リフロー後のCu下地厚みが0.8μmを超えた比較例17では105℃、150℃とも、剥離時間が3000hを下回っている。 In Invention Examples 32-35 and Comparative Example 17, the Sn electrodeposition thickness was 0.9 μm and the thickness of the Cu base was changed. In Comparative Example 17 in which the Cu underlayer thickness after reflow exceeded 0.8 μm, the peeling time was less than 3000 h at both 105 ° C. and 150 ° C.
発明例34、36〜39および比較例15〜16ではCu下地の電着厚みを0.8μmとし、Snの厚みを変化させている。Snの電着厚みを2.0μmとし他と同じ条件でリフローを行った比較例15では、リフロー後のSn相の厚みが1.5μmを超えている。またSnの電着厚みを2.0μmとしリフロー時間を延ばした比較例16ではリフロー後のSn−Cu合金相厚みが1.5μmを超えている。Sn相またはSn−Cu合金相の厚みが規定範囲を超えたこれら合金では、105℃、150℃とも、剥離時間が3000hを下回っている。 In Invention Examples 34, 36 to 39 and Comparative Examples 15 to 16, the electrodeposition thickness of the Cu base was 0.8 μm, and the Sn thickness was changed. In Comparative Example 15 in which the Sn electrodeposition thickness was 2.0 μm and reflow was performed under the same conditions as the others, the thickness of the Sn phase after reflow exceeded 1.5 μm. In Comparative Example 16 in which the Sn electrodeposition thickness was 2.0 μm and the reflow time was extended, the Sn—Cu alloy phase thickness after reflow exceeded 1.5 μm. In these alloys in which the thickness of the Sn phase or Sn—Cu alloy phase exceeds the specified range, the peeling time is less than 3000 h at both 105 ° C. and 150 ° C.
表4はCu/Ni下地めっきでのデータである。何れの実施例もCu相は消失していた。本発明合金の合金条にめっきした発明例41〜48については、105℃、150℃とも3000時間加熱してもめっき剥離が生じていない。
発明例41〜43および比較例20では、Snの電着厚みを0.9μm 、Cuの電着厚みを0.2μmとし、Ni下地の厚みを変化させている。リフロー後のNi相の厚みが0.8μmを超えた比較例20では105℃、150℃とも、剥離時間が3000hを下回っている。
Table 4 shows data for the Cu / Ni base plating. In all examples, the Cu phase was lost. With respect to Invention Examples 41 to 48 plated on the alloy strips of the alloys of the present invention, plating peeling did not occur even when heated at 3000C and 150C for 3000 hours.
In Invention Examples 41 to 43 and Comparative Example 20, the electrodeposition thickness of Sn is 0.9 μm, the electrodeposition thickness of Cu is 0.2 μm, and the thickness of the Ni base is changed. In Comparative Example 20 in which the thickness of the Ni phase after reflow exceeded 0.8 μm, the peeling time was less than 3000 h at both 105 ° C. and 150 ° C.
発明例44〜47および比較例18ではCu下地の電着厚みを0.15μm、Ni下地の電着厚みを0.2μmとし、Snの厚みを変化させている。リフロー後のSn相の厚みが1.5μmを超えた比較例18では105℃、150℃とも、剥離時間が3000hを下回っている。
Snの電着厚みを2.0μm、Cuの電着厚みを0.8μmとし、リフロー時間を他の実施例より延ばした比較例19では、Sn−Cu合金相厚みが1.5μmを超え、105℃、150℃とも、剥離時間が3000hを下回っている。
In Invention Examples 44 to 47 and Comparative Example 18, the electrodeposition thickness of the Cu base was 0.15 μm, the electrodeposition thickness of the Ni base was 0.2 μm, and the Sn thickness was changed. In Comparative Example 18 in which the thickness of the Sn phase after reflow exceeds 1.5 μm, the peeling time is less than 3000 h at both 105 ° C. and 150 ° C.
In Comparative Example 19 in which the Sn electrodeposition thickness was 2.0 μm, the Cu electrodeposition thickness was 0.8 μm, and the reflow time was extended from the other examples, the Sn—Cu alloy phase thickness exceeded 1.5 μm, 105 The peeling time is less than 3000h at both ℃ and 150 ℃.
Claims (4)
50<EC+(22×[%Sn]+4.5×[%Zn])<60
([%i]は元素iの質量%濃度) 1.0 to 4.5 mass% Ni, 1/6 to 1/4 Si, 0.1 to 2.0 mass% Zn and 0.05 to 2.0 mass% of Ni with respect to Ni mass% Sn is contained, the balance is made of Cu and inevitable impurities, and the total concentration of P, As, Sb, and Bi in the inevitable impurities is 100 ppm by mass or less, and the total of Ca and Mg concentrations is 100 ppm by mass or less. Cu-Ni-Si-Zn-, which is excellent in the heat-resistant peelability of Sn plating, characterized in that the S concentration is not more than 15 ppm by mass and the conductivity EC (% IACS) is adjusted in the range of the following formula: Sn alloy strip 50 <EC + (22 × [% Sn] + 4.5 × [% Zn]) <60
([% I] is the mass% concentration of element i)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006090634A JP2007039789A (en) | 2005-03-29 | 2006-03-29 | Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005096487 | 2005-03-29 | ||
JP2005192997 | 2005-06-30 | ||
JP2006090634A JP2007039789A (en) | 2005-03-29 | 2006-03-29 | Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007039789A true JP2007039789A (en) | 2007-02-15 |
Family
ID=37798052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006090634A Pending JP2007039789A (en) | 2005-03-29 | 2006-03-29 | Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007039789A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008013836A (en) * | 2006-07-10 | 2008-01-24 | Dowa Holdings Co Ltd | High-strength copper alloy sheet showing little anisotropy, and manufacturing method therefor |
JP2009009887A (en) * | 2007-06-29 | 2009-01-15 | Mitsubishi Shindoh Co Ltd | Copper alloy strip material for terminal and its manufacturing method |
WO2009057788A1 (en) * | 2007-11-01 | 2009-05-07 | The Furukawa Electric Co., Ltd. | Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same |
WO2009123139A1 (en) * | 2008-03-31 | 2009-10-08 | 日鉱金属株式会社 | Tin-plated cu-ni-si alloy strip with excellent unsusceptibility to thermal tin deposit peeling |
JP2012122114A (en) * | 2010-12-10 | 2012-06-28 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY SHEET HAVING EXCELLENT DEEP DRAWABILITY AND FATIGUE RESISTANCE, AND METHOD FOR PRODUCING THE SAME |
JPWO2011039875A1 (en) * | 2009-09-30 | 2013-02-21 | Jx日鉱日石金属株式会社 | Cu-Ni-Si alloy tin-plated strip with excellent heat-resistant peelability for tin plating |
JP2014005481A (en) * | 2012-06-21 | 2014-01-16 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY Sn PLATED SHEET AND MANUFACTURING METHOD THEREFOR |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297531A (en) * | 1987-05-29 | 1988-12-05 | Kobe Steel Ltd | Copper alloy for terminal and lead frame having excellent hot workability and its production |
JPH11256256A (en) * | 1998-03-06 | 1999-09-21 | Kobe Steel Ltd | Copper alloy for electric and electronic parts |
JP2002266042A (en) * | 2001-03-09 | 2002-09-18 | Kobe Steel Ltd | Copper alloy sheet having excellent bending workability |
JP2002298963A (en) * | 2001-03-30 | 2002-10-11 | Kobe Steel Ltd | Sn PLATED COPPER ALLOY MATERIAL FOR FITTING CONNECTION TERMINAL AND FITTING CONNECTION TERMINAL |
JP2004068026A (en) * | 2001-07-31 | 2004-03-04 | Kobe Steel Ltd | Conducting material for connecting parts and manufacturing method therefor |
JP2005097653A (en) * | 2003-09-24 | 2005-04-14 | Kobe Steel Ltd | Copper alloy provided with high strength and bending workability |
JP2005226097A (en) * | 2004-02-10 | 2005-08-25 | Kobe Steel Ltd | Tinned copper alloy material for electrical/electronic component, and its production method |
-
2006
- 2006-03-29 JP JP2006090634A patent/JP2007039789A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297531A (en) * | 1987-05-29 | 1988-12-05 | Kobe Steel Ltd | Copper alloy for terminal and lead frame having excellent hot workability and its production |
JPH11256256A (en) * | 1998-03-06 | 1999-09-21 | Kobe Steel Ltd | Copper alloy for electric and electronic parts |
JP2002266042A (en) * | 2001-03-09 | 2002-09-18 | Kobe Steel Ltd | Copper alloy sheet having excellent bending workability |
JP2002298963A (en) * | 2001-03-30 | 2002-10-11 | Kobe Steel Ltd | Sn PLATED COPPER ALLOY MATERIAL FOR FITTING CONNECTION TERMINAL AND FITTING CONNECTION TERMINAL |
JP2004068026A (en) * | 2001-07-31 | 2004-03-04 | Kobe Steel Ltd | Conducting material for connecting parts and manufacturing method therefor |
JP2005097653A (en) * | 2003-09-24 | 2005-04-14 | Kobe Steel Ltd | Copper alloy provided with high strength and bending workability |
JP2005226097A (en) * | 2004-02-10 | 2005-08-25 | Kobe Steel Ltd | Tinned copper alloy material for electrical/electronic component, and its production method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008013836A (en) * | 2006-07-10 | 2008-01-24 | Dowa Holdings Co Ltd | High-strength copper alloy sheet showing little anisotropy, and manufacturing method therefor |
JP2009009887A (en) * | 2007-06-29 | 2009-01-15 | Mitsubishi Shindoh Co Ltd | Copper alloy strip material for terminal and its manufacturing method |
WO2009057788A1 (en) * | 2007-11-01 | 2009-05-07 | The Furukawa Electric Co., Ltd. | Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same |
JP4851596B2 (en) * | 2007-11-01 | 2012-01-11 | 古河電気工業株式会社 | Method for producing copper alloy material |
WO2009123139A1 (en) * | 2008-03-31 | 2009-10-08 | 日鉱金属株式会社 | Tin-plated cu-ni-si alloy strip with excellent unsusceptibility to thermal tin deposit peeling |
JPWO2011039875A1 (en) * | 2009-09-30 | 2013-02-21 | Jx日鉱日石金属株式会社 | Cu-Ni-Si alloy tin-plated strip with excellent heat-resistant peelability for tin plating |
JP2012122114A (en) * | 2010-12-10 | 2012-06-28 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY SHEET HAVING EXCELLENT DEEP DRAWABILITY AND FATIGUE RESISTANCE, AND METHOD FOR PRODUCING THE SAME |
JP2014005481A (en) * | 2012-06-21 | 2014-01-16 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY Sn PLATED SHEET AND MANUFACTURING METHOD THEREFOR |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4986499B2 (en) | Method for producing Cu-Ni-Si alloy tin plating strip | |
KR101081779B1 (en) | Cu-Zn ALLOY STRIP EXCELLENT IN THERMAL SEPARATION RESISTANCE FOR Sn PLATING AND Sn-PLATED STRIP THEREOF | |
KR100774226B1 (en) | Cu-Ni-Si-Zn-Sn BASED PLATING BATH EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING AND TIN PLATING BATH THEREOF | |
JP2007039789A (en) | Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF | |
KR101058763B1 (en) | Whisker-Resistant Cu-Kn Alloy Heat Resistant Sn-Plated Strip | |
JP5393739B2 (en) | Cu-Ni-Si alloy tin plating strip | |
JP2006307336A (en) | Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY | |
JP4699252B2 (en) | Titanium copper | |
JP4489738B2 (en) | Cu-Ni-Si-Zn alloy tin plating strip | |
WO2011039875A1 (en) | Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating | |
JP4820228B2 (en) | Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof | |
KR100774225B1 (en) | Cu-Ni-Si-Zn BASED ALLOY TIN PLATING BATH | |
JP4247256B2 (en) | Cu-Zn-Sn alloy tin-plated strip | |
JP2007291459A (en) | TINNED STRIP OF Cu-Sn-P-BASED ALLOY | |
JP4538424B2 (en) | Cu-Zn-Sn alloy tin-plated strip | |
JP2003089832A (en) | Copper alloy foil having excellent thermal peeling resistance of plating | |
JP4642701B2 (en) | Cu-Ni-Si alloy strips with excellent plating adhesion | |
JP2004232049A (en) | Cu PLATING TITANIUM COPPER | |
JP2007146293A (en) | Cu-Ni-Si-Mg-BASED COPPER ALLOY STRIP | |
WO2009123139A1 (en) | Tin-plated cu-ni-si alloy strip with excellent unsusceptibility to thermal tin deposit peeling | |
JP2005048225A (en) | Copper alloy for terminal/connector, and manufacturing method therefor | |
JP2005325390A (en) | Cu-Ni-Si-Mg-BASED COPPER ALLOY STRIP | |
JP4804191B2 (en) | Cu-Zn alloy tin plating strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070920 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20100120 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100202 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100401 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100401 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100830 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110705 |