JP2006338963A - Lithium ion capacitor - Google Patents
Lithium ion capacitor Download PDFInfo
- Publication number
- JP2006338963A JP2006338963A JP2005160529A JP2005160529A JP2006338963A JP 2006338963 A JP2006338963 A JP 2006338963A JP 2005160529 A JP2005160529 A JP 2005160529A JP 2005160529 A JP2005160529 A JP 2005160529A JP 2006338963 A JP2006338963 A JP 2006338963A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- electrode
- lithium ion
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 123
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 123
- 239000003990 capacitor Substances 0.000 title claims abstract description 82
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000007773 negative electrode material Substances 0.000 claims abstract description 33
- 239000007774 positive electrode material Substances 0.000 claims abstract description 32
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 15
- 239000003960 organic solvent Substances 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 10
- 150000001450 anions Chemical class 0.000 claims abstract description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 5
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 27
- 239000011230 binding agent Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 21
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- -1 polytetrafluoroethylene Polymers 0.000 claims description 9
- 239000003575 carbonaceous material Substances 0.000 claims description 8
- 239000006258 conductive agent Substances 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 7
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 229920003026 Acene Polymers 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 4
- 150000001721 carbon Chemical group 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000011149 active material Substances 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 abstract description 11
- 239000000243 solution Substances 0.000 abstract description 4
- 229910052744 lithium Inorganic materials 0.000 description 34
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 18
- 239000002002 slurry Substances 0.000 description 15
- 238000003860 storage Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 230000004913 activation Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000002562 thickening agent Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000011267 electrode slurry Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical group NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical group OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Chemical group 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000001891 dimethoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical group NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、正極、負極、及び電解質としてリチウム塩の非プロトン性有機溶媒電解液を備えたリチウムイオンキャパシタに関する。 The present invention relates to a lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent electrolytic solution of a lithium salt as an electrolyte.
近年、グラファイトなどの炭素材料を負極に用い、正極にLiCoO2などのリチウム含有金属酸化物を用いた所謂リチウムイオン二次電池は高容量であり有力な蓄電装置として、主にノート型パソコンや携帯電話の主電源として実用化されている。リチウムイオン二次電池は、電池組立後、充電することにより正極のリチウム含有金属酸化物から負極にリチウムイオンを供給し、更に放電では負極のリチウムイオンを正極に戻すという、いわゆるロッキングチェア型電池であり、高電圧及び高容量、高安全性を有することを特長としている。 In recent years, a so-called lithium ion secondary battery using a carbon material such as graphite as a negative electrode and a lithium-containing metal oxide such as LiCoO 2 as a positive electrode is a high-capacity and powerful power storage device. It has been put to practical use as the main power source for telephones. The lithium ion secondary battery is a so-called rocking chair type battery in which lithium ions are supplied to the negative electrode from the lithium-containing metal oxide of the positive electrode by charging after the battery is assembled, and the lithium ion of the negative electrode is returned to the positive electrode in the discharge. It is characterized by high voltage, high capacity, and high safety.
一方、環境問題がクローズアップされる中、ガソリン車にかわる電気自動車用又はハイブリッド自動車用の蓄電装置(メイン電源と補助電源)の開発が盛んに行われ、また、自動車用の蓄電装置として、これまでは鉛電池が使用されてきた。しかし、車載用の電気設備や機器の充実により、エネルギー密度、出力密度の点から新しい蓄電装置が求められるようになってきている。 On the other hand, while environmental problems have been highlighted, the development of power storage devices (main power and auxiliary power) for electric vehicles or hybrid vehicles replacing gasoline vehicles has been actively carried out. Until now, lead batteries have been used. However, with the enhancement of in-vehicle electrical equipment and equipment, new power storage devices are being demanded in terms of energy density and output density.
かかる新しい蓄電装置としては、上記のリチウムイオン二次電池や電気二重層キャパシタが注目されている。しかし、リチウムイオン二次電池はエネルギー密度が高いものの出力特性、安全性やサイクル寿命には問題を残している。一方、電気二重層キャパシタは、ICやLSIのメモリーバックアップ用電源として利用されているが、一充電当たりの放電容量は電池に比べて小さい。しかし、瞬時の充放電特性に優れ、数万サイクル以上の充放電にも耐えるという、リチウムイオン二次電池にはない高い出力特性とメンテナンスフリー性を備えている。 As such a new power storage device, the above lithium ion secondary battery and electric double layer capacitor have attracted attention. However, although the lithium ion secondary battery has a high energy density, there are still problems in output characteristics, safety and cycle life. On the other hand, electric double layer capacitors are used as memory backup power sources for ICs and LSIs, but their discharge capacity per charge is smaller than batteries. However, it has excellent output characteristics and maintenance-free characteristics that are excellent in instantaneous charge / discharge characteristics and withstands charge / discharge of tens of thousands of cycles or more, which is not possible with lithium ion secondary batteries.
電気二重層キャパシタはこうした利点を有してはいるが、従来の一般的な電気二重層キャパシタのエネルギー密度は3〜4Wh/l程度で、リチウムイオン二次電池に比べて二桁程度小さい。電気自動車用を考えた場合、実用化には6〜10Wh/l、普及させるには20Wh/lのエネルギー密度が必要であるといわれている。 Although the electric double layer capacitor has such advantages, the energy density of the conventional general electric double layer capacitor is about 3 to 4 Wh / l, which is about two orders of magnitude smaller than that of the lithium ion secondary battery. When considering the use for electric vehicles, it is said that an energy density of 6 to 10 Wh / l is required for practical use and 20 Wh / l is necessary for spreading.
こうした高エネルギー密度、高出力特性を要する用途に対応する蓄電装置として、近年、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた、ハイブリッドキャパシタとも呼ばれる蓄電装置が注目されている。ハイブリッドキャパシタでは、通常、正極に分極性電極を使用し、負極に非分極性電極を使用するもので、電池の高いエネルギー密度と電気二重層の高い出力特性を兼ね備えた蓄電装置として注目されている。一方、このハイブリッドキャパシタにおいて、リチウムイオンを吸蔵、脱離しうる負極をリチウム金属と接触させて、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵、担持(以下、ドーピングともいう)させて負極電位を下げることにより、耐電圧を大きくしエネルギー密度を大幅に大きくすることを意図したキャパシタが提案されている。(特許文献1〜特許文献4参照) In recent years, a power storage device called a hybrid capacitor, which combines the power storage principles of a lithium ion secondary battery and an electric double layer capacitor, has attracted attention as a power storage device corresponding to applications requiring such high energy density and high output characteristics. In hybrid capacitors, a polarizable electrode is usually used for the positive electrode and a non-polarizable electrode is used for the negative electrode, which is attracting attention as a power storage device that combines high energy density of the battery and high output characteristics of the electric double layer. . On the other hand, in this hybrid capacitor, a negative electrode capable of inserting and extracting lithium ions is brought into contact with lithium metal, and lithium ions are stored and supported (hereinafter also referred to as doping) by a chemical method or an electrochemical method in advance. There has been proposed a capacitor intended to increase the withstand voltage and greatly increase the energy density by lowering the potential. (See Patent Document 1 to Patent Document 4)
この種のハイブリッドキャパシタでは、高性能は期待されるものの、負極にリチウムイオンをドーピングさせる場合に、ドーピングが極めて長時間を要することや負極全体に対する均一性のあるドーピングに問題を有し、特に、電極を捲回した円筒型電池や、複数枚の電極を積層した角型電池のような大型の高容量セルでは実用化は困難とされていた。 Although this type of hybrid capacitor is expected to have high performance, when doping lithium ions to the negative electrode, it takes a very long time for doping, and there is a problem in uniform doping with respect to the whole negative electrode. It has been considered difficult to put into practical use in large-sized high-capacity cells such as a cylindrical battery in which electrodes are wound or a square battery in which a plurality of electrodes are stacked.
しかし、この問題は、セルを構成する、負極集電体及び正極集電体の表裏に貫通する孔を設け、この貫通孔を通じてリチウムイオンを移動させ、同時にリチウムイオン供給源であるリチウム金属と負極を短絡させることにより、セルの端部にリチウム金属を配置するだけで、セル中の全負極にリチウムイオンをドーピングできることの発明により、一挙に解決するに至った(特許文献5参照)。なお、リチウムイオンのドーピングは、通常、負極に対して行なわれるが、負極とともに、又は負極の代わりに正極に行う場合も同様であることが特許文献5に記載されている。 However, this problem is that a through hole is formed in the front and back of the negative electrode current collector and the positive electrode current collector constituting the cell, and lithium ions are moved through the through hole, and at the same time, lithium metal that is a lithium ion supply source and the negative electrode By short-circuiting, it was possible to do so all at once by arranging the lithium metal at the end of the cell and doping all the negative electrodes in the cell with lithium ions (see Patent Document 5). In addition, although doping of lithium ion is normally performed with respect to a negative electrode, it is described in patent document 5 that it is the same also when performing with a negative electrode with a positive electrode instead of a negative electrode.
かくして、電極を捲回した円筒型セルや、複数枚の電極を積層した角型セルのような大型のセルでも、装置中の全負極に対して短時間にかつ負極全体に均一にリチウムイオンがドーピングでき、耐電圧が向上した事でエネルギー密度が飛躍的に増大し、電気二重層キャパシタが本来有する大きい出力密度と相俟って、高容量のキャパシタが実現する見通しが得られた。 Thus, even in a large cell such as a cylindrical cell in which electrodes are wound or a square cell in which a plurality of electrodes are stacked, lithium ions are uniformly distributed over the entire negative electrode in a short time with respect to all the negative electrodes in the apparatus. It was possible to dope and increase the withstand voltage, the energy density dramatically increased, and the high output density inherent in the electric double layer capacitor was expected to realize a high capacity capacitor.
しかし、かかる高容量のキャパシタを実用化するためには、さらに、高容量、高エネルギー密度及び高出力密度とすることが要求されている。
本発明は、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物
質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、負極及び/又は正極をリチウムイオン供給源と電気化学的に接触させて、充電前に予め負極にリチウムイオンをドーピングする方式のリチウムイオンキャパシタにおいて、更にエネルギー密度や出力密度の高い値が実現できる、改良されたキャパシタを提供することを課題とする。
In the present invention, the positive electrode active material is a material capable of reversibly supporting lithium ions and / or anions, and the negative electrode active material is a material capable of reversibly supporting lithium ions. Provided is an improved capacitor capable of realizing higher values of energy density and output density in a lithium ion capacitor in which lithium ions are doped in the negative electrode in advance before charging by electrochemical contact with an ion source. This is the issue.
上記課題を解決するため、本発明者らは鋭意研究を行った結果、正極と負極を短絡させた後の正極及び負極電位が2.0V以下となるように、充電前に、負極及び/又は正極に対してリチウムイオンを予めドーピングさせたリチウムイオンキャパシタにおいては、そこで使用される正極の材質及び形状が、得られるキャパシタのエネルギー密度や出力密度と関係し、該正極を、好ましくは特定の表面積を有する活性炭粒子を含む50〜400μmの厚みを有するシート状電極を集電体と一体化せしめた電極にすることにより、上記の課題を解決できることを見出し、本発明に到達した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the negative electrode and / or the negative electrode and / or the negative electrode and / or the negative electrode potential is 2.0 V or less after the positive electrode and the negative electrode are short-circuited. In a lithium ion capacitor in which lithium ions are pre-doped to the positive electrode, the material and shape of the positive electrode used therein are related to the energy density and output density of the obtained capacitor, and the positive electrode is preferably a specific surface area. The present inventors have found that the above-mentioned problems can be solved by using a sheet-like electrode having a thickness of 50 to 400 μm including activated carbon particles having a thickness integrated with a current collector, and reached the present invention.
かくして、本発明は、以下の要旨を有することを特徴とするものである。
(1)正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備えるリチウムイオンキャパシタであって、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極の電位が2.0V以下になるように負極及び/又は正極に対してリチウムイオンがドーピングされており、かつ、上記正極が、活性炭粒子を含む厚み50〜400μmを有するシート状電極を集電体と一体化した電極であることを特徴とするリチウムイオンキャパシタ。
(2)前記シート状電極が、導電剤及び結着剤を含む混合物である上記(1)に記載のリチウムイオンキャパシタ。
(3)前記結着剤が、フッ素樹脂である上記(1)又は(2)に記載のリチウムイオンキャパシタ。
(4)前記結着剤が、ポリ四フッ化エチレン(PTFE)または四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)である上記(1)〜(3)のいずれかに記載のリチウムイオンキャパシタ。
(5)前記正極及び/又は負極が、それぞれ表裏面を貫通する孔を有する集電体を備えており、負極とリチウムイオン供給源との電気化学的接触によってリチウムイオンがドーピングされている上記(1)〜(4)に記載のリチウムイオンキャパシタ。
(6)負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質重量が負極活物質の重量よりも大きい上記(1)〜(5)に記載のリチウムイオンキャパシタ。
(7)活性炭粒子が、比表面積600〜3000m2/gを有する上記(1)〜(6)のいずれかに記載のリチウムイオンキャパシタ。
(8)負極活物質が、炭素材料又はポリアセン系物質である上記(1)〜(7)のいずれかに記載のリチウムイオンキャパシタ。
(9)負極活物質が、芳香族系縮合ポリマーを非酸化性雰囲気にて400〜800℃で熱処理し、水素原/炭素原子が0.05〜0.5の不溶不融体である上記(1)〜(8)のいずれかに記載のリチウムイオンキャパシタ。
Thus, the present invention is characterized by having the following gist.
(1) A lithium ion capacitor comprising a positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, wherein the positive electrode active material is a substance capable of reversibly supporting lithium ions and / or anions. Yes, the negative electrode active material is a material capable of reversibly carrying lithium ions, and the lithium ion with respect to the negative electrode and / or the positive electrode so that the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited is 2.0 V or less And the positive electrode is an electrode in which a sheet-like electrode having activated carbon particles and a thickness of 50 to 400 μm is integrated with a current collector.
(2) The lithium ion capacitor according to (1), wherein the sheet-like electrode is a mixture containing a conductive agent and a binder.
(3) The lithium ion capacitor according to (1) or (2), wherein the binder is a fluororesin.
(4) The lithium according to any one of (1) to (3), wherein the binder is polytetrafluoroethylene (PTFE) or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA). Ion capacitor.
(5) The positive electrode and / or the negative electrode each including a current collector having holes penetrating the front and back surfaces, and lithium ions are doped by electrochemical contact between the negative electrode and a lithium ion supply source ( The lithium ion capacitor as described in 1)-(4).
(6) The negative electrode active material has a capacitance per unit weight of 3 times or more as compared with the positive electrode active material, and the positive electrode active material weight is greater than the weight of the negative electrode active material. The lithium ion capacitor as described in 5).
(7) The lithium ion capacitor according to any one of (1) to (6), wherein the activated carbon particles have a specific surface area of 600 to 3000 m 2 / g.
(8) The lithium ion capacitor according to any one of (1) to (7), wherein the negative electrode active material is a carbon material or a polyacene-based material.
(9) The above (A), wherein the negative electrode active material is an insoluble infusible material having a hydrogen atom / carbon atom of 0.05 to 0.5 by heat-treating an aromatic condensation polymer in a non-oxidizing atmosphere at 400 to 800 ° C. The lithium ion capacitor according to any one of 1) to (8).
本発明によれば、充電前に予め負極及び/又は正極にリチウムイオンをドーピング
する、特に大容量のキャパシタであって、高いエネルギー密度と高い出力密度を有す
るキャパシタが提供される。両極に同じ活性炭を用いる電気二重層キャパシタの容量は、C(正極)≒C(負極)より、セル全体容量はC/2となり、全体容量は片極の半分しか出ないが、本発明の充電前に予め負極及び/又は正極にリチウムイオンをドーピングしたキャパシタでは、1/C(正極)≫1/C負極)となるため、C(全体)≒C(正極)に近づき、正極活性炭の容量がセル全体の容量になる。本発明では、このキャパシタの正極として、上記の活性炭粒子を含む厚み50〜400μmを有するシート状電極を集電体と一体化した電極を使用するものであるが、この場合のキャパシタが何故に高いエネルギー密度や出力密度を有するかについては、必ずしも明らかではないが、次のように推定される。
According to the present invention, there is provided a capacitor having a high energy density and a high output density, in which a negative electrode and / or a positive electrode are preliminarily doped with lithium ions before charging. The capacity of the electric double layer capacitor using the same activated carbon for both electrodes is C (positive electrode) ≒ C (negative electrode) , so the total cell capacity is C / 2, and the total capacity is only half of one electrode. In a capacitor in which the negative electrode and / or the positive electrode are previously doped with lithium ions, 1 / C (positive electrode) >> 1 / C negative electrode) , so that C (whole) ≈ C (positive electrode) approaches, It becomes the capacity of the whole cell. In the present invention, as the positive electrode of this capacitor, an electrode in which a sheet-like electrode having a thickness of 50 to 400 μm containing the above activated carbon particles is integrated with a current collector is used. Although it is not necessarily clear whether it has energy density or power density, it is estimated as follows.
本発明のキャパシタにおける正極は、特定の厚みを有するシート状電極を集電体と一体化させた電極であり、正極活物質を増粘剤とバインダーを含むスラリー状電極を集電体に塗布した塗布電極と異なる。塗布電極の場合には、増粘剤が不可欠であり、また、バインダー量が概して多く、正極活物質粒子間の結着力が弱いため、正極を厚くしたり、正極活物質の充填密度を高くすることに限度がある。また、塗布電極では、正極活物質粒子の周りを増粘剤が覆っているため、粒子間の接触抵抗や集電体との接触抵抗は高くなる。 The positive electrode in the capacitor of the present invention is an electrode in which a sheet-like electrode having a specific thickness is integrated with a current collector, and a positive electrode active material is coated with a slurry-like electrode containing a thickener and a binder. Different from the coated electrode. In the case of a coated electrode, a thickener is indispensable, and since the binder amount is generally large and the binding force between the positive electrode active material particles is weak, the positive electrode is thickened or the packing density of the positive electrode active material is increased. There is a limit. Further, in the coated electrode, since the thickener covers the periphery of the positive electrode active material particles, the contact resistance between the particles and the contact resistance with the current collector are increased.
しかし、本発明の特定のシート状電極を集電体と一体化させた正極では、正極活物質である活性炭粒子同士を絡めて集電体に担持させて一体化することにより、増粘剤が不必要であり、かつバインダー量は減らすことができるため、正極活物質の充填密度が高められ、高いエネルギー密度を有するキャパシタになる。更に、本発明のシート状電極では、増粘剤を用いないため、接触抵抗は低くなり、このため高出力密度を有するキャパシタが得られる。特に、本発明では、バインダーとして、四フッ化エチレンなどのフッ素樹脂を使用した場合には、バインダーが細い繊維状であり、活性炭粒子を密接に絡めて集電体に担持できるため、正極を厚く成形したり、正極活物質の充填密度を極めて高くすることが可能になる。 However, in the positive electrode in which the specific sheet-like electrode of the present invention is integrated with the current collector, the thickener is obtained by entwining the activated carbon particles, which are positive electrode active materials, and carrying them on the current collector and integrating them. Since it is unnecessary and the amount of the binder can be reduced, the packing density of the positive electrode active material is increased and the capacitor has a high energy density. Furthermore, since the sheet-like electrode of the present invention does not use a thickener, the contact resistance is low, and thus a capacitor having a high output density can be obtained. In particular, in the present invention, when a fluororesin such as tetrafluoroethylene is used as the binder, the binder is in a thin fiber shape, and the active carbon particles can be closely entangled and supported on the current collector. It becomes possible to shape | mold and to make the packing density of a positive electrode active material very high.
上記のような本発明のシート状電極を集電体と一体化させた正極は、リチウムイオンがスムーズに拡散し易い大きさの粒子間空隙が均一に存在することにより、特に3.0V以下に大きな容量を有し、かつ抵抗が低い。このため、正極と負極を短絡させた後の正極の電位が2.0V以下になるように負極及び/又は正極に対してリチウムイオンがドーピングされる本発明のリチウムイオンキャパシタでは、放電時3.0V以下の領域においてリチウムイオンのドーピングが起こり、上記シート状電極を用いた正極は、高出力密度、高容量を有するキャパシタが得られるものと思われる。 The positive electrode in which the sheet-like electrode of the present invention is integrated with a current collector as described above is particularly 3.0 V or less due to the uniform presence of interparticle voids with a size that facilitates smooth diffusion of lithium ions. Has a large capacity and low resistance. Therefore, in the lithium ion capacitor of the present invention in which lithium ions are doped with respect to the negative electrode and / or the positive electrode so that the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited is 2.0 V or less, 3. Lithium ion doping occurs in the region of 0 V or less, and the positive electrode using the sheet-like electrode seems to provide a capacitor having a high output density and a high capacity.
本発明のリチウムイオンキャパシタは、正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備え、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質である。ここで、「正極」とは、放電の際に電流が流れ出る側の極であり、「負極」とは放電の際に電流が流れ込む側の極をいう。 The lithium ion capacitor of the present invention includes a positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, and the positive electrode active material is a substance capable of reversibly supporting lithium ions and / or anions. In addition, the negative electrode active material is a material capable of reversibly supporting lithium ions. Here, the “positive electrode” is an electrode on the side where current flows out during discharge, and the “negative electrode” is an electrode on the side where current flows in during discharge.
本発明のリチウムイオンキャパシタでは、負極及び/又は正極に対するリチウムイオンのドーピングにより正極と負極を短絡させた後の正極の電位が2.0V以下にされていることが必要である。負極及び/又は正極に対するリチウムイオンのドーピングされていないキャパシタでは、正極及び負極の電位はいずれも約3Vであり、充電前においては、正極と負極を短絡させた後の正極の電位は約3Vである。なお、本発明で、正極と負極を短絡させた後の正極の電位が2.0V以下とは、以下の(A)又は(B)の2つのいずれかの方法で求められる正極の電位が2.0V以下の場合をいう。即ち、(A)リチウムイオンによるドーピングの後、キャパシタセルの正極端子と負極端子を導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位、(B)充放電試験機にて12時間以上かけて0Vまで定電流放電させた後に正極端子と負極端子を導線で結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位。 In the lithium ion capacitor of the present invention, it is necessary that the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited by doping lithium ions to the negative electrode and / or the positive electrode is 2.0 V or less. In a capacitor that is not doped with lithium ions with respect to the negative electrode and / or the positive electrode, the potential of the positive electrode and the negative electrode is both about 3 V. is there. In the present invention, the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited is 2.0 V or less. The potential of the positive electrode determined by either of the following two methods (A) or (B) is 2 It means the case of 0V or less. That is, (A) After doping with lithium ions, the positive electrode terminal and the negative electrode terminal of the capacitor cell are left in a state of being directly coupled with a conductive wire for 12 hours or more, and then the short circuit is released, and within 0.5 to 1.5 hours Measured positive electrode potential, (B) Charge-discharge tester discharges constant current to 0V over 12 hours and then leaves positive electrode terminal and negative electrode terminal connected with lead wire for 12 hours or more, then releases short circuit Positive electrode potential measured within 0.5 to 1.5 hours.
また、本発明において、正極と負極とを短絡させた後の正極電位が2.0V以下というのは、リチウムイオンがドーピングされたすぐ後だけに限られるものではなく、充電状態、放電状態あるいは充放電を繰り返した後に短絡した場合など、いずれかの状態で短絡後の正極電位が2.0V以下となることである。 In the present invention, the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less, not only immediately after the lithium ions are doped, but in the charged state, discharged state or charged state. The positive electrode potential after short-circuiting is 2.0 V or less in any state, such as when short-circuiting after repeating discharge.
本発明において、正極と負極とを短絡させた後の正極電位が2.0V以下になるということに関し、以下に詳細に説明する。上述のように活性炭や炭素材は通常3V(Li/Li+)前後の電位を有しており、正極、負極ともに活性炭を用いてセルを組んだ場合、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。また、正極に活性炭、負極にリチウムイオン二次電池にて使用されている黒鉛や難黒鉛化性炭素のような炭素材を用いた、いわゆるハイブリッドキャパシタの場合も同様であり、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。正極と負極の重量バランスにもよるが充電すると負極電位が0V近傍まで推移するので、充電電圧を高くすることが可能となるため高電圧、高エネルギー密度を有したキャパシタとなる。一般的に充電電圧の上限は正極電位の上昇による電解液の分解が起こらない電圧に決められるので、正極電位を上限にした場合、負極電位が低下する分、充電電圧を高めることが可能となるのである。しかしながら、短絡時に正極電位が約3Vとなる上述のハイブリッドキャパシタでは、正極の上限電位が例えば4.0Vとした場合、放電時の正極電位は3.0Vまでであり、正極の電位変化は1.0V程度と正極の容量を充分利用できていない。更に、負極にリチウムイオンを挿入(充電)、脱離(放電)した場合、初期の充放電効率が低い場合が多く、放電時に脱離できないリチウムイオンが存在していることが知られている。これは、負極表面にて電解液の分解に消費される場合や、炭素材の構造欠陥部にトラップされるなどの説明がなされているが、この場合正極の充放電効率に比べ負極の充放電効率が低くなり、充放電を繰り返した後にセルを短絡させると正極電位は3.0Vよりも高くなり、さらに利用容量は低下する。すなわち、正極は4.0Vから2.0Vまで放電可能であるところ、4.0Vから3.0Vまでしか使えない場合、利用容量として半分しか使っていないこととなり、高電圧にはなるが高容量にはならない。 In the present invention, the fact that the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less will be described in detail below. As described above, activated carbon and carbon materials usually have a potential of about 3 V (Li / Li + ), and when the cell is assembled using activated carbon for both the positive electrode and the negative electrode, both potentials are about 3 V. Even if it is short-circuited, the positive electrode potential is about 3 V regardless. The same applies to so-called hybrid capacitors using activated carbon for the positive electrode and carbon materials such as graphite and non-graphitizable carbon used in lithium ion secondary batteries for the negative electrode. Since it becomes 3V, even if it short-circuits, a positive electrode potential is about 3V regardless. Although depending on the weight balance between the positive electrode and the negative electrode, when charged, the potential of the negative electrode transitions to around 0 V, so that the charging voltage can be increased, so that the capacitor has a high voltage and a high energy density. Generally, the upper limit of the charging voltage is determined to be a voltage at which the electrolyte solution does not decompose due to the increase in the positive electrode potential. Therefore, when the positive electrode potential is set as the upper limit, the charging voltage can be increased by the amount of decrease in the negative electrode potential. It is. However, in the above-described hybrid capacitor in which the positive electrode potential is about 3 V when short-circuited, when the upper limit potential of the positive electrode is 4.0 V, for example, the positive electrode potential during discharge is up to 3.0 V, and the positive electrode potential change is 1. The capacity of the positive electrode of about 0 V is not fully utilized. Furthermore, when lithium ions are inserted (charged) and desorbed (discharged) into the negative electrode, the initial charge / discharge efficiency is often low, and it is known that there are lithium ions that cannot be desorbed during discharge. This is explained when it is consumed in the decomposition of the electrolyte solution on the negative electrode surface or trapped in the structural defect part of the carbon material. In this case, the charge / discharge of the negative electrode is compared with the charge / discharge efficiency of the positive electrode. When the efficiency is lowered and the cell is short-circuited after repeated charging and discharging, the positive electrode potential becomes higher than 3.0 V, and the utilization capacity further decreases. In other words, the positive electrode can be discharged from 4.0 V to 2.0 V. However, when only 4.0 V to 3.0 V can be used, only half of the usage capacity is used. It will not be.
ハイブリッドキャパシタを高電圧、高エネルギー密度だけでなく、高容量そして更にエネルギー密度を高めるためには、正極の利用容量を向上させることが必要である。 In order to increase not only high voltage and high energy density, but also high capacity and energy density of the hybrid capacitor, it is necessary to improve the capacity of the positive electrode.
短絡後の正極電位が3.0Vよりも低下すればそれだけ利用容量が増え、高容量になるということである。2.0V以下になるためには、セルの充放電により充電される量だけでなく、別途リチウム金属などのリチウムイオン供給源から負極にリチウムイオンを充電することが好ましい。正極と負極以外からリチウムイオンが供給されるので、短絡させた時には、正極、負極、リチウム金属の平衡電位になるため、正極電位、負極電位ともに3.0V以下になる。リチウム金属の量が多くなる程に平衡電位は低くなる。負極材、正極材が変われば平衡電位も変わるので、短絡後の正極電位が2.0V以下になるように、負極材、正極材の特性を鑑みて負極に担持させるリチウムイオン量の調整が必要である。 If the positive electrode potential after the short circuit falls below 3.0V, the utilization capacity increases and the capacity increases. In order to be 2.0 V or less, it is preferable to charge not only the amount charged by charging / discharging the cell but also separately charging lithium ions from a lithium ion supply source such as lithium metal to the negative electrode. Since lithium ions are supplied from other than the positive electrode and the negative electrode, when they are short-circuited, the equilibrium potentials of the positive electrode, the negative electrode, and the lithium metal are reached, so that both the positive electrode potential and the negative electrode potential are 3.0 V or less. As the amount of lithium metal increases, the equilibrium potential decreases. If the negative electrode material and the positive electrode material change, the equilibrium potential also changes. Therefore, it is necessary to adjust the amount of lithium ions supported on the negative electrode in view of the characteristics of the negative electrode material and the positive electrode material so that the positive electrode potential after the short circuit becomes 2.0 V or less. It is.
本発明において、キャパシタセルを充電する前に、予め負極及び/又は正極にリチウムイオンをドーピングし、正極と負極を短絡させた後の正極の電位を2.0V以下にすることにより、正極の利用容量が高くなるため高容量となり、大きいエネルギー密度が得られる。リチウムイオンの供給量が多くなる程、正極と負極を短絡させた時の正極電位は低くなりエネルギー密度は向上する。更に高いエネルギー密度を得る上では1.5V以下、特には、1.0V以下が更に好ましい。正極および/又は負極に供給されたリチウムイオンの量が少ないと正極と負極を短絡させた時に正極電位が2.0Vよりも高くなり、セルのエネルギー密度は小さくなる。また、正極電位が1.0Vを下回ると正極活物質にもよるが、ガス発生や、リチウムイオンを不可逆に消費してしまうなどの不具合が生じるため、正極電位の測定が困難となる。また、正極電位が低くなりすぎる場合、負極重量が過剰ということであり、逆にエネルギー密度は低下する場合もある。一般的には0.1V以上であり、好ましくは0.3V以上である。 In the present invention, before charging the capacitor cell, the negative electrode and / or the positive electrode is previously doped with lithium ions, and the positive electrode potential is 2.0 V or less after the positive electrode and the negative electrode are short-circuited. Since the capacity is increased, the capacity is increased and a large energy density is obtained. As the supply amount of lithium ions increases, the positive electrode potential when the positive electrode and the negative electrode are short-circuited becomes lower and the energy density is improved. In order to obtain a higher energy density, 1.5 V or less, particularly 1.0 V or less is more preferable. When the amount of lithium ions supplied to the positive electrode and / or the negative electrode is small, the positive electrode potential becomes higher than 2.0 V when the positive electrode and the negative electrode are short-circuited, and the energy density of the cell is reduced. Further, when the positive electrode potential is lower than 1.0 V, although depending on the positive electrode active material, problems such as gas generation and irreversible consumption of lithium ions occur, so that it is difficult to measure the positive electrode potential. Further, when the positive electrode potential becomes too low, the weight of the negative electrode is excessive, and the energy density may be decreased. Generally, it is 0.1 V or more, preferably 0.3 V or more.
本発明で、リチウムイオンのドーピングは、負極と正極の片方あるいは両方いずれでもよいが、例えば正極に活性炭を用いた場合、リチウムイオンのドーピング量が多くなり正極電位が低くなると、リチウムイオンを不可逆的に消費してしまい、セルの容量が低下するなどの不具合が生じる場合がある。このため、負極と正極にドーピングするリチウムイオンは、それぞれの電極活物質を考慮し、これらの不具合を生じないようにするのが好ましい。本発明では、正極のドーピング量と負極のドーピング量を制御することは工程上煩雑となるため、リチウムイオンのドーピングは好ましくは負極に対して行われる。 In the present invention, lithium ion doping may be either one or both of the negative electrode and the positive electrode. For example, when activated carbon is used for the positive electrode, the lithium ion becomes irreversible when the amount of lithium ion doping increases and the positive electrode potential decreases. May cause problems such as a decrease in cell capacity. For this reason, it is preferable that the lithium ions doped in the negative electrode and the positive electrode do not cause these problems in consideration of the respective electrode active materials. In the present invention, since controlling the doping amount of the positive electrode and the doping amount of the negative electrode becomes complicated in the process, the doping of lithium ions is preferably performed on the negative electrode.
本発明のリチウムイオンキャパシタでは、特に、負極活物質の単位重量当たりの静電容量が正極活物質の単位重量当たりの静電容量の3倍以上を有し、かつ正極活物質重量が負極活物質重量よりも大きくする場合、高電圧且つ高容量のキャパシタが得られる。また、それと同時に、正極の単位重量当たりの静電容量に対して大きな単位重量当たりの静電容量を持つ負極を用いる場合には、負極の電位変化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量及び容量が大きくなる。正極活物質重量は負極活物質重量に対して大きいことが好ましいが、1.1倍〜10倍であることが更に好ましい。1.1倍未満であれば容量差が小さくなり、10倍を超えると逆に容量が小さくなる場合もあり、また正極と負極の厚み差が大きくなり過ぎるのでセル構成上好ましくない。 In the lithium ion capacitor of the present invention, in particular, the electrostatic capacity per unit weight of the negative electrode active material has more than three times the electrostatic capacity per unit weight of the positive electrode active material, and the positive electrode active material weight is the negative electrode active material When larger than the weight, a capacitor having a high voltage and a high capacity can be obtained. At the same time, when using a negative electrode having a capacitance per unit weight that is larger than the capacitance per unit weight of the positive electrode, the negative electrode active material weight is reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell are increased. The weight of the positive electrode active material is preferably larger than the weight of the negative electrode active material, but more preferably 1.1 times to 10 times. If it is less than 1.1 times, the capacity difference becomes small, and if it exceeds 10 times, the capacity may be reduced, and the thickness difference between the positive electrode and the negative electrode becomes too large, which is not preferable in terms of the cell structure.
なお、本発明において、キャパシタセル(以下、単にセルもいう)の静電容量及び容量は次のように定義される。セルの静電容量とは、セルの単位電圧当たりセルに流れる電気量(放電カーブの傾き)を示し、単位はF(ファラッド)である。セルの単位重量当たりの静電容量とはセルの静電容量に対するセル内に充填している正極活物質重量と負極活物質重量の合計重量の除で示され、単位はF/gである。また、正極又は負極の静電容量とは、正極あるいは負極の単位電圧当たりセルに流れる電気量(放電カーブの傾き)を示し、単位はFである。正極あるいは負極の単位重量当たりの静電容量とは正極あるいは負極の静電容量をセル内に充填している正極あるいは負極活物質重量の除で示され、単位はF/gである。 In the present invention, the capacitance and capacity of a capacitor cell (hereinafter also simply referred to as a cell) are defined as follows. The capacitance of a cell indicates the amount of electricity flowing through the cell per unit voltage of the cell (the slope of the discharge curve), and the unit is F (farad). The capacitance per unit weight of the cell is expressed by dividing the total weight of the positive electrode active material weight and the negative electrode active material weight filled in the cell with respect to the cell capacitance, and the unit is F / g. The electrostatic capacity of the positive electrode or the negative electrode indicates the amount of electricity flowing through the cell per unit voltage of the positive electrode or the negative electrode (the slope of the discharge curve), and the unit is F. The capacitance per unit weight of the positive electrode or the negative electrode is expressed by dividing the positive electrode or negative electrode capacitance in the cell by the weight of the positive electrode or negative electrode active material, and the unit is F / g.
更に、セル容量とは、セルの放電開始電圧と放電終了電圧の差、即ち電圧変化量とセルの静電容量の積であり単位はC(クーロン)であるが、1Cは1秒間に1Aの電流が流れたときの電荷量であるので本特許においては換算してmAh表示する。正極容量とは放電開始時の正極電位と放電終了時の正極電位の差(正極電位変化量)と正極の静電容量の積であり単位はCまたはmAh、同様に負極容量とは放電開始時の負極電位と放電終了時の負極電位の差(負極電位変化量)と負極の静電容量の積であり単位はCまたはmAhである。これらセル容量と正極容量、負極容量は一致する。 Furthermore, the cell capacity is the difference between the cell discharge start voltage and the discharge end voltage, that is, the product of the voltage change amount and the cell capacitance, and the unit is C (coulomb). 1C is 1A per second. Since this is the amount of charge when current flows, it is converted into mAh in this patent. The positive electrode capacity is the product of the difference between the positive electrode potential at the start of discharge and the positive electrode potential at the end of discharge (amount of change in positive electrode potential) and the electrostatic capacity of the positive electrode. The unit is C or mAh. The product of the difference between the negative electrode potential and the negative electrode potential at the end of discharge (negative electrode potential change amount) and the negative electrode capacitance, and the unit is C or mAh. These cell capacity, positive electrode capacity, and negative electrode capacity coincide.
本発明のリチウムイオンキャパシタにおいて、予め負極及び/又は正極にリチウムイオンをドーピングさせる手段は特に限定されない。例えば、リチウムイオンを供給可能な、リチウム金属などのリチウムイオン供給源をリチウム極としてキャパシタセル内に配置できる。リチウムイオン供給源の量(リチウム金属などの重量)は、所定の負極の容量が得られる量だけあればよい。この場合、負極とリチウム極は物理的な接触(短絡)でもよいし、電気化学的にドーピングさせてもよい。リチウムイオン供給源は、導電性多孔体からなるリチウム極集電体上に形成してもよい。リチウム極集電体となる導電性多孔体としては、ステンレスメッシュなどのリチウムイオン供給源と反応しない金属多孔体が使用できる。 In the lithium ion capacitor of the present invention, means for doping lithium ions into the negative electrode and / or the positive electrode in advance is not particularly limited. For example, a lithium ion supply source such as lithium metal that can supply lithium ions can be disposed in the capacitor cell as a lithium electrode. The amount of the lithium ion supply source (the weight of lithium metal or the like) may be as long as a predetermined negative electrode capacity can be obtained. In this case, the negative electrode and the lithium electrode may be in physical contact (short circuit) or may be electrochemically doped. The lithium ion supply source may be formed on a lithium electrode current collector made of a conductive porous body. As the conductive porous body serving as the lithium electrode current collector, a metal porous body that does not react with a lithium ion supply source such as a stainless mesh can be used.
大容量の多層構造のキャパシタセルでは正極及び負極にそれぞれ電気を受配電する正極集電体及び負極集電体が備えられるが、かかる正極集電体及び負極集電体が使用され、かつリチウム極が設けられるセルの場合、リチウム極が負極集電体に対向する位置に設けられ、電気化学的に負極にリチウムイオンを供給することが好ましい。この場合、正極集電体及び負極集電体として、例えばエキスパンドメタルのように表裏面を貫通する孔を備えた材料を用い、リチウム極を負極あるいは正極に対向させて配置する。この貫通孔の形態、数などは特に限定されず、後述する電解液中のリチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるように、設定することができる。 A large-capacity multilayer capacitor cell is provided with a positive electrode current collector and a negative electrode current collector for receiving and distributing electricity at the positive electrode and the negative electrode, respectively. The positive electrode current collector and the negative electrode current collector are used, and the lithium electrode In the case of a cell provided with a lithium electrode, the lithium electrode is preferably provided at a position facing the negative electrode current collector, and lithium ions are preferably supplied to the negative electrode electrochemically. In this case, as the positive electrode current collector and the negative electrode current collector, for example, a material having holes penetrating the front and back surfaces such as expanded metal is used, and the lithium electrode is disposed so as to face the negative electrode or the positive electrode. The form and number of the through holes are not particularly limited, and can be set so that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the electrode current collector.
本発明のリチウムイオンキャパシタでは、負極にドーピングするリチウム極をセル中の局所的に配置した場合もリチウムイオンのドーピングが均一に行うことができる。従って、正極及び負極を積層もしくは捲回した大容量のセルの場合も、最外周又は最外側のセルの一部にリチウム極を配置することにより、スムーズにかつ均一に負極にリチウムイオンをドーピングできる。 In the lithium ion capacitor of the present invention, the lithium ion can be uniformly doped even when the lithium electrode doped in the negative electrode is locally disposed in the cell. Therefore, even in the case of a large-capacity cell in which the positive electrode and the negative electrode are laminated or wound, the lithium electrode can be smoothly and uniformly doped with lithium ions by arranging the lithium electrode in a part of the outermost periphery or outermost cell. .
電極集電体の材質としては、種々の材質を用いることができ、正極集電体には、好ましくは、アルミニウム、ステンレスなど、負極集電体には、好ましくは、ステンレス、銅、ニッケルなどをそれぞれ用いることができる。また、セル内に配置されたリチウム供給源との電気化学的接触によりドーピングする場合のリチウムとは、リチウム金属あるいはリチウム−アルミニウム合金のように、少なくともリチウムを含有し、リチウムイオンを供給することのできる物質をいう。 Various materials can be used as the material of the electrode current collector. The positive electrode current collector is preferably made of aluminum or stainless steel, and the negative electrode current collector is preferably made of stainless steel, copper or nickel. Each can be used. In addition, when doping is performed by electrochemical contact with a lithium supply source disposed in the cell, lithium means that at least lithium is contained and lithium ions are supplied like lithium metal or lithium-aluminum alloy. A substance that can be used.
本発明のリチウムイオンキャパシタにおける正極活物質は、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンを可逆的に担持できる物質からなる。 The positive electrode active material in the lithium ion capacitor of the present invention is made of a material capable of reversibly carrying lithium ions and anions such as tetrafluoroborate.
本発明での正極活物質の一例としては活性炭があり、正極は活性炭粒子を含む厚み50〜400μmを有するシート状電極である。シート状電極の厚みを50μmより薄くすることは、一般的に工程上困難である。逆に、シート状電極の厚みが400μmを超える場合には、電極が脆くなり脱離粒子が多くなる。ここで、シート状電極の厚みとは、導電性接着剤及び集電体の厚みは含まない。 An example of the positive electrode active material in the present invention is activated carbon, and the positive electrode is a sheet electrode having a thickness of 50 to 400 μm including activated carbon particles. It is generally difficult in the process to make the thickness of the sheet-like electrode thinner than 50 μm. On the other hand, when the thickness of the sheet-like electrode exceeds 400 μm, the electrode becomes brittle and the detached particles increase. Here, the thickness of the sheet-like electrode does not include the thickness of the conductive adhesive and the current collector.
本発明の一例である活性炭の原料は、好ましくは、フェノール樹脂、石油ピッチ、石油コークス、ヤシガラ、又は石炭系コークスなどが使用されるが、好ましくはフェノール樹脂、石炭系コークスが比表面積を高くできるために好ましい。これらの活性炭の原料は、焼成して炭化され、賦活処理され、次いで粉砕される。炭化処理は、原料を加熱炉などに収容し、原料が炭化する温度で所要時間加熱して行われる。その際の温度は原材料の種類、加熱時間などによって異なるが、通常、加熱時間が1〜20時間程度とされる場合、500〜1000℃に設定される。加熱雰囲気は、窒素ガス、アルゴンガスなどの不活性ガスであることが好ましい。 The raw material of the activated carbon which is an example of the present invention is preferably phenol resin, petroleum pitch, petroleum coke, coconut husk, or coal-based coke, but preferably phenol resin and coal-based coke can increase the specific surface area. Therefore, it is preferable. These activated carbon materials are calcined, carbonized, activated, and then pulverized. The carbonization treatment is performed by storing the raw material in a heating furnace or the like and heating it for a required time at a temperature at which the raw material is carbonized. Although the temperature in that case changes with kinds of raw materials, heating time, etc., when heating time shall be about 1 to 20 hours normally, it is set to 500-1000 degreeC. The heating atmosphere is preferably an inert gas such as nitrogen gas or argon gas.
賦活方法は、KOHなどのアルカリ剤を用いて賦活したアルカリ賦活や、CO2などを用いたガス賦活、水蒸気中にて処理した水蒸気賦活などがあるが、好ましくはアルカリ賦活炭が容量を高くできるので好適である。賦活の温度は、400〜800℃が好ましく、特に600〜800℃がより好ましい。賦活温度が400℃未満であると、賦活が進行せず、静電容量が小さくなり、一方、900℃を超えると、賦活化率が極端に低下し好ましくない。賦活時間は、1〜10時間が好ましく、特に1〜5時間がより好ましい。賦活時間が1時間未満であると、正極として用いた際の内部抵抗が増大し、一方、10時間を超えると、単位体積当たりの静電容量が低下する。 The activation method includes alkali activation activated using an alkaline agent such as KOH, gas activation using CO 2 , steam activation treated in water vapor, and the like. Preferably, the alkali activated carbon can increase the capacity. Therefore, it is preferable. The activation temperature is preferably 400 to 800 ° C, and more preferably 600 to 800 ° C. When the activation temperature is less than 400 ° C., the activation does not proceed and the electrostatic capacity becomes small. On the other hand, when it exceeds 900 ° C., the activation rate is extremely lowered, which is not preferable. The activation time is preferably 1 to 10 hours, and more preferably 1 to 5 hours. When the activation time is less than 1 hour, the internal resistance when used as the positive electrode is increased. On the other hand, when it exceeds 10 hours, the capacitance per unit volume is decreased.
賦活炭は、次いで粉砕される。粉砕は、ボールミルなどの既知の粉砕機を用いて行われる。得られる活性炭粒子の粒径は、例えば平均粒子径D50が2μm以上であり、好ましくは2〜50μm、特に好ましくは2〜20μmが好適である。平均粒子径D50は、X線マイクロトラック法などによって求められる。 The activated charcoal is then crushed. The pulverization is performed using a known pulverizer such as a ball mill. The average particle diameter D50 of the activated carbon particles obtained is, for example, 2 μm or more, preferably 2 to 50 μm, particularly preferably 2 to 20 μm. The average particle diameter D50 is determined by the X-ray microtrack method or the like.
また、活性炭粒子の比表面積は好ましくは600〜3000m2/gであることが好ましい。比表面積が600m2/gより小さい場合には、該活性炭を正極としたキャパシタセルでは、充放電した際に正極の体積が2倍に膨張するため、体積あたりの容量は半分になり、本発明で目的とする効果は達成できない。比表面積は、なかでも、800m2/g以上、特には1300〜2500m2/gであるのが好適である。 The specific surface area of the activated carbon particles is preferably 600 to 3000 m 2 / g. When the specific surface area is smaller than 600 m 2 / g, in the capacitor cell using the activated carbon as the positive electrode, the volume of the positive electrode expands twice when charged / discharged, so that the capacity per volume is reduced to half. The target effect cannot be achieved. The specific surface area is, among others, 800 m 2 / g or more, and particularly it is preferable that a 1300~2500m 2 / g.
本発明におけるシート状の正極は、上記の活性炭粒子を使用して形成されるが、その手段は、好ましくは次のように手段が採用される。活性炭粒子は、必要に応じて、導電剤及び分散剤とともに、水系又は有機溶媒中に分散させてスラリー状される。スラリーには、更にバインダーが添加され、混練して塊状にした後、混練物をローラーにて厚みが50〜400μm、好ましくは50〜200μmのシート状に成形する。このシート状物を導電性接着剤などを用いて集電体の両面又は片面に接着し一体化させる。上記したスラリーの混練には、ミキサー、混練機、ディスパーなどが使用される。シート状物の厚みは、マイクロゲージなどを用いて測定し、圧延ローラーを用いて所定の厚みにすることができる。 The sheet-like positive electrode in the present invention is formed using the above activated carbon particles, and the means is preferably adopted as follows. Activated carbon particles are dispersed in an aqueous system or an organic solvent together with a conductive agent and a dispersing agent, if necessary, to form a slurry. A binder is further added to the slurry, and after kneading into a lump, the kneaded product is formed into a sheet having a thickness of 50 to 400 μm, preferably 50 to 200 μm, using a roller. This sheet-like material is bonded to and integrated with both or one side of the current collector using a conductive adhesive or the like. A mixer, a kneader, a disper or the like is used for kneading the slurry. The thickness of the sheet-like material can be measured using a micro gauge or the like, and can be set to a predetermined thickness using a rolling roller.
本発明のシート状電極において、必要に応じて使用される導電剤としては、アセチレンブラック、グラファイト、ケッチェンブラック、VGCF、金属粉末などが挙げられる。導電剤の使用量は、正極活物質の電気伝導度などにより異なるが、活性炭粒子に対して0.5〜40重量%で加えることが好ましい。導電剤の量が0.5重量%より少ないと、電極の伝導度が低くなり好ましなく、逆に、40重量%を超えると、体積あたりの正極活物質量が少なくなり好ましくない。 In the sheet-like electrode of the present invention, examples of the conductive agent used as necessary include acetylene black, graphite, ketjen black, VGCF, and metal powder. The amount of the conductive agent used varies depending on the electrical conductivity of the positive electrode active material, but is preferably 0.5 to 40% by weight with respect to the activated carbon particles. If the amount of the conductive agent is less than 0.5% by weight, the conductivity of the electrode is low, which is not preferable. Conversely, if the amount exceeds 40% by weight, the amount of the positive electrode active material per volume is not preferable.
本発明のシート状電極において使用されるバインダーとしては、フッ素樹脂やポリビニルアルコールが好ましい。なかでも、ポリ四フッ化エチレン(PTFE)または四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)が好ましい。シート状電極の作成におけるバインダーとして、ポリフッ化ビニリデンやSBRなどは使用した場合には、シート状電極を製作することが困難である。ポリフッ化ビニリデンやSBRなどのバインダーを使用し、活性炭粒子を水又は有機溶媒中に分散させてスラリーとし、該スラリーを集電体に塗布して電極を得ようとした場合には、片面当たり400μmと厚い電極の塗工を行った場合、例えば塗料が流れ、厚みむらを生じたり、乾燥時に電極が反るなどの不具合が発生しやすい。また、乾燥後に電極を切断する際には、電極の脱落が起こり、ショート原因にもなるため、スラリーを塗布する方法は厚い電極を作製するには適さない。また、活性炭粒子を水又は有機溶媒中に分散させてスラリーとし、該スラリーを集電体に塗布した電極は、シート状電極と比べて密度が低くなりやすい。 As the binder used in the sheet-like electrode of the present invention, a fluororesin or polyvinyl alcohol is preferable. Among these, polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) is preferable. When polyvinylidene fluoride, SBR, or the like is used as a binder in the production of the sheet-like electrode, it is difficult to produce the sheet-like electrode. When a binder such as polyvinylidene fluoride or SBR is used, activated carbon particles are dispersed in water or an organic solvent to form a slurry, and the slurry is applied to a current collector to obtain an electrode, 400 μm per side When a thick electrode is applied, for example, the coating material flows, causing unevenness in thickness, or the electrode is warped during drying. In addition, when the electrode is cut after drying, the electrode is dropped and causes a short circuit. Therefore, the method of applying slurry is not suitable for producing a thick electrode. Moreover, the density | concentration of the electrode which disperse | distributed activated carbon particle | grains in water or an organic solvent to make a slurry, and apply | coated this slurry to the electrical power collector tends to become low compared with a sheet-like electrode.
バインダーの使用量は、シート状電極の形状、電気伝導度などにより異なるが、正極活物質である活性炭粒子に対して好ましくは0.5〜40重量%が好適である。バインダー量が0.5重量%より少なくなると、シート形状を保持できない。逆に40重量%を超えると、体積あたりの正極活物質量が少なくなり、また、抵抗が高くなりエネルギー密度が小さくなる。 Although the usage-amount of a binder changes with shapes, electrical conductivity, etc. of a sheet-like electrode, Preferably it is 0.5 to 40 weight% with respect to the activated carbon particle which is a positive electrode active material. If the binder amount is less than 0.5% by weight, the sheet shape cannot be maintained. Conversely, when it exceeds 40% by weight, the amount of the positive electrode active material per volume decreases, the resistance increases, and the energy density decreases.
シート状電極を集電体に担持させて一体化するために用いる導電性接着剤は、黒鉛などの炭素剤または導電剤と、必要に応じて、分散剤や接着剤を水系もしくは有機系溶媒に分散させたスラリー状の導電性塗料を用いることができる。集電体としては、アルミニウム、ステンレスなどのメッシュ、エキスパンドメタル、パンチングメタルが好ましくは使用される。集電体の厚みは、好ましくは5〜100μmであり、特に好ましくは、10〜30μmであり、気孔率は、好ましくは15〜75%、特に好ましくは35〜65%である。 The conductive adhesive used for carrying the sheet electrode on the current collector and integrating it is a carbon agent such as graphite or a conductive agent, and if necessary, a dispersant or an adhesive in an aqueous or organic solvent. A dispersed slurry-like conductive paint can be used. As the current collector, meshes such as aluminum and stainless steel, expanded metal, and punching metal are preferably used. The thickness of the current collector is preferably 5 to 100 μm, particularly preferably 10 to 30 μm, and the porosity is preferably 15 to 75%, particularly preferably 35 to 65%.
シート状電極を集電体に担持させて一体化する場合、集電体又はシート状電極の一方又は双方に対して上記のスラリー状の導電性塗料を塗布し、その塗布面を圧着しすることにより、シート状電極と集電体は一体化される。この場合、好ましくはロールプレス機を使用し、圧力が好ましくは線圧で10〜1000kgにて圧着するのが好ましい。 When a sheet-like electrode is supported on a current collector and integrated, apply the above slurry-like conductive paint to one or both of the current collector or the sheet-like electrode, and crimp the application surface. Thus, the sheet-like electrode and the current collector are integrated. In this case, it is preferable to use a roll press, and the pressure is preferably 10 to 1000 kg as a linear pressure.
一方、本発明のリチウムイオンキャパシタにおける負極活物質は、リチウムイオンを可逆的に担持できる物質から形成される。好ましい物質としては、例えば、グラファイト、ハードカーボン、コークスなどの炭素材料、ポリアセン系物質(以下、PASともいう)などを挙げることができる。PASは、フェノール樹脂などを炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。炭化処理は、上記した正極における活性炭の場合と同様に、加熱炉などに収容し、フェノール樹脂などが炭化する温度で所要時間加熱することによって行われる。その際の温度は加熱時間などによって異なるが、通常、400〜800℃に設定される。粉砕工程は、ボールミルなどの既知の粉砕機を用いて行われる。 On the other hand, the negative electrode active material in the lithium ion capacitor of the present invention is formed from a material capable of reversibly carrying lithium ions. Examples of preferable substances include carbon materials such as graphite, hard carbon, and coke, and polyacene-based substances (hereinafter also referred to as PAS). PAS is obtained by carbonizing a phenol resin or the like, activated as necessary, and then pulverized. The carbonization treatment is performed by storing in a heating furnace or the like and heating for a required time at a temperature at which the phenol resin or the like is carbonized, as in the case of the activated carbon in the positive electrode. Although the temperature in that case changes with heating time etc., it is normally set to 400-800 degreeC. The pulverization step is performed using a known pulverizer such as a ball mill.
本発明の負極活物質として、なかでも、PASは、高容量が得られる点でより好ましい。PASに400mAh/g以上のリチウムイオンを担持(充電)させた後に放電させると650F/g以上の静電容量が得られ、また、500mAh/g以上のリチウムイオンを充電させると750F/g以上の静電容量が得られる。PASはアモルファス構造を有し、担持させるリチウムイオン量を増加させるほど電位が低下するので、得られるキャパシタの耐電圧(充電電圧)が高くなり、また、放電における電圧の上昇速度(放電カーブの傾き)が低くなるため、容量が若干大きくなる。よって、求められるキャパシタの使用電圧に応じて、リチウムイオン量は活物質のリチウムイオン吸蔵能力の範囲内にて設定することが望ましい。 Among these, as the negative electrode active material of the present invention, PAS is more preferable in that a high capacity can be obtained. Capacitance of 650 F / g or more can be obtained by discharging after carrying (charging) lithium ions of 400 mAh / g or more on PAS, and 750 F / g or more can be obtained by charging lithium ions of 500 mAh / g or more. Capacitance is obtained. Since PAS has an amorphous structure and the potential decreases as the amount of lithium ions carried increases, the withstand voltage (charging voltage) of the obtained capacitor increases, and the rate of voltage rise during discharge (the slope of the discharge curve) ) Is low, the capacity is slightly increased. Therefore, it is desirable to set the amount of lithium ions within the range of the lithium ion storage capacity of the active material according to the required working voltage of the capacitor.
また、PASはアモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨潤・収縮といった構造変化がないためサイクル特性に優れ、またリチウムイオンの挿入・脱離に対してなど方的な分子構造(高次構造)であるため急速充電、急速放電にも優れるので好適である。PASの前駆体である芳香族系縮合ポリマーとは、芳香族炭化水素化合物とアルデヒド類との縮合物である。芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノールなどの如き、いわゆるフェノール類を好適に用いることができる。例えば、下記式 In addition, since PAS has an amorphous structure, there is no structural change such as swelling / shrinkage with respect to insertion / extraction of lithium ions, so that cycle characteristics are excellent, and is isotropic with respect to insertion / extraction of lithium ions. Since it has a molecular structure (higher order structure), it is suitable for rapid charging and rapid discharging. The aromatic condensation polymer that is a precursor of PAS is a condensate of an aromatic hydrocarbon compound and an aldehyde. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol, xylenol and the like can be preferably used. For example, the following formula
また、上記芳香族系縮合ポリマーとしては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の1部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えばキシレン、トルエン、アニリンなどで置換した変性芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもできる。更に、メラミン、尿素で置換した変性芳香族系ポリマーを用いることもでき、フラン樹脂も好適である。 As the aromatic condensation polymer, a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, aniline, etc. A modified aromatic condensation polymer such as a condensate of phenol, xylene and formaldehyde can also be used. Furthermore, a modified aromatic polymer substituted with melamine or urea can be used, and a furan resin is also suitable.
本発明でPASは、好ましくは、不溶不融性基体として使用される。即ち、上記芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含む)中で400〜800°Cの適当な温度まで徐々に加熱することにより、水素原子/炭素原子の原子比(以下H/Cと記す)が0.5〜0.05、好ましくは0.35〜0.10の不溶不融性基体となる。 In the present invention, PAS is preferably used as an insoluble and infusible substrate. That is, by gradually heating the aromatic condensation polymer to a suitable temperature of 400 to 800 ° C. in a non-oxidizing atmosphere (including vacuum), a hydrogen atom / carbon atom ratio (hereinafter referred to as H). / C) is 0.5 to 0.05, preferably 0.35 to 0.10.
上記の不溶不融性基体は、X線回折(CuKα)によれば、メイン・ピークの位置は2θで表して24°以下に存在し、また該メイン・ピークの他に41〜46°の間にブロードな他のピークが存在する。即ち、上記不溶不融性基体は、芳香族系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造を有し、リチウムイオンを安定にドーピングすることができる。 According to X-ray diffraction (CuKα), the insoluble and infusible substrate described above has a main peak position represented by 2θ of 24 ° or less, and between 41 and 46 ° in addition to the main peak. There are other broad peaks. That is, the insoluble infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, has an amorphous structure, and can be stably doped with lithium ions.
本発明で負極活物質の有する平均粒子径D50は好ましくは0.5〜30μmであり、更に好ましくは0.5〜15μmであり、特に好ましくは0.5〜6μmである。また、負極活物質粒子の比表面積が好ましくは0.1〜2000m2/gであり、更に好ましくは0.1〜1000m2/gであり、特に好ましくは0.1〜600m2/gである。 In the present invention, the average particle diameter D50 of the negative electrode active material is preferably 0.5 to 30 μm, more preferably 0.5 to 15 μm, and particularly preferably 0.5 to 6 μm. Also, preferably the specific surface area of the anode active material particles are 0.1~2000m 2 / g, more preferably from 0.1~1000m 2 / g, particularly preferably at 0.1~600m 2 / g .
本発明における負極は、上記の負極活物質粉末から形成されるが、その手段は、既存のものが使用できる。即ち、負極活物質粉末、バインダー、必要に応じて、導電剤及び増粘剤(CMCなど)を、水系又は有機溶媒中に分散させてスラリーとし、該スラリーを上記した集電体に塗布するか、又は上記スラリーを予めシート状に成形し、これを集電体と一体化してもよい。ここで使用されるバインダーとしては、例えば、SBRなどのゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデンなどの含フッ素系樹脂、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂、アクリル重合体などを用いることができる。バインダーの使用量は、負極活物質の電気伝導度、電極形状などにより異なるが、負極活物質に対して2〜10重量%の割合で加えることが適当である。 The negative electrode in the present invention is formed from the above negative electrode active material powder, and the existing means can be used. That is, whether a negative electrode active material powder, a binder, and, if necessary, a conductive agent and a thickener (CMC, etc.) are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the current collector. Alternatively, the slurry may be previously formed into a sheet shape and integrated with the current collector. As the binder used here, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, a thermoplastic resin such as polypropylene or polyethylene, an acrylic polymer, or the like is used. Can do. The amount of the binder used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is appropriate to add it at a ratio of 2 to 10% by weight with respect to the negative electrode active material.
本発明のリチウムイオンキャパシタにおける、非プロトン性有機溶媒電解質溶液を形成する非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホランなどが挙げられる。更に、これら非プロトン性有機溶媒の二種以上を混合した混合液を用いることもできる。 Examples of the aprotic organic solvent for forming the aprotic organic solvent electrolyte solution in the lithium ion capacitor of the present invention include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, acetonitrile, and dimethoxy. Examples include ethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. Furthermore, a mixed solution in which two or more of these aprotic organic solvents are mixed can also be used.
また、上記の単一あるいは混合の溶媒に溶解させる電解質は、リチウムイオンを生成しうる電解質であれば、あらゆるものを用いることができる。このような電解質としては、例えば、LiClO4、LiAsF6、LiBF4、LiPF6、LiN(C2F5SO2)2、LiN(CF3SO2)2などが挙げられる。上記の電解質及び溶媒は、充分に脱水された状態で混合され、電解質溶液とするのであるが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも0.1モル/リットル以上とすることが好ましく、0.5〜1.5モル/lの範囲内とすることが更に好ましい。 Any electrolyte can be used as long as it is an electrolyte capable of generating lithium ions as the electrolyte dissolved in the single or mixed solvent. Examples of such an electrolyte include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and the like. The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte solution. The concentration of the electrolyte in the electrolyte is at least 0.1 mol / liter in order to reduce the internal resistance of the electrolyte. The above is preferable, and the range of 0.5 to 1.5 mol / l is more preferable.
また、本発明のリチウムイオンキャパシタとしては、特に、帯状の正極と負極とをセパレーターを介して捲回させる捲回型セル、板状の正極と負極とをセパレーターを介して各3層以上積層された角型セル、あるいは、板状の正極と負極とをセパレーターを介した各3層以上積層物を外装フィルム内に封入したフィルム型セルなどの大容量のセルに適する。これらのセルの構造は、国際公開WO00/07255号公報、国際公開WO03/003395号公報、特開2004−266091号公報などにより既に知られており、本発明のキャパシタセルもかかる既存のセルと同様な構成とすることができる。 In addition, as the lithium ion capacitor of the present invention, in particular, a wound-type cell in which a strip-like positive electrode and a negative electrode are wound through a separator, and a plate-like positive electrode and a negative electrode are laminated in three or more layers through a separator. It is suitable for a large-capacity cell such as a rectangular cell, or a film-type cell in which a laminate of three or more layers each having a plate-like positive electrode and negative electrode through a separator is enclosed in an exterior film. The structure of these cells is already known from International Publication WO00 / 07255, International Publication WO03 / 003395, Japanese Patent Application Laid-Open No. 2004-266091, etc., and the capacitor cell of the present invention is similar to such an existing cell. It can be set as a simple structure.
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(正極製造法)
(シート電極の作製)
アルカリ賦活炭(材料:石油コークス炭、D50:5μm、比表面積:1500m2/g)を10重量部、アセチレンブラック粉体0.5重量部、イソプロパノール20重量部となる組成にて充分混合したスラリーを得た後、ポリ四フッ化エチレンバインダー1重量部を加えて混練物を作成し、これを圧延ローラーを用いてシート状電極に成形し、厚さ60μmの正極(a1)を得た。
(Positive electrode manufacturing method)
(Production of sheet electrode)
Slurry in which alkali activated charcoal (material: petroleum coke charcoal, D50: 5 μm, specific surface area: 1500 m 2 / g) is sufficiently mixed in a composition of 10 parts by weight, acetylene black powder 0.5 parts by weight, and isopropanol 20 parts by weight. After that, 1 part by weight of a polytetrafluoroethylene binder was added to prepare a kneaded product, which was formed into a sheet-like electrode using a rolling roller to obtain a positive electrode (a1) having a thickness of 60 μm.
厚さ38μm(気孔率47%)のアルミニウム製エキスパンドメタル(日本金属工業社製)集電体の両面に水系のカーボン系導電接着剤をコーティングし、すぐに上記シート状電極を集電体の両面に貼り付けた。次いで、圧延ローラーにて集電体と正極シート状電極を密着させた後、真空乾燥し、正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が165μmの正極(a2)を得た。
また、正極シート状電極(a2)を、カーボン系導電接着剤を用いて厚さ20μmのアルミニウム箔片面に接着固定させ、乾燥することにより正極箔電極(a3)を得た。
An aluminum expanded metal (made by Nippon Metal Industry Co., Ltd.) current collector with a thickness of 38 μm (porosity 47%) is coated on both sides with a water-based carbon conductive adhesive, and the sheet electrode is immediately attached to both sides of the current collector. Pasted on. Next, the current collector and the positive electrode sheet-like electrode were brought into close contact with a rolling roller, and then vacuum-dried. The thickness of the whole positive electrode (the thickness of the positive electrode layer on both sides, the thickness of the conductive layer on both sides, and the thickness of the positive electrode collector) A positive electrode (a2) having a total of 165 μm was obtained.
Moreover, the positive electrode sheet electrode (a3) was obtained by bonding and fixing the positive electrode sheet electrode (a2) to one side of an aluminum foil having a thickness of 20 μm using a carbon-based conductive adhesive and drying.
(塗布電極の作製)
アルカリ賦活炭(上記で使用したのと同じ)を92重量部、アセチレンブラック粉体6重量部、アクリル系バインダー7重量部、カルボキシメチルセルロース4重量部、水200重量部となる組成にて充分混合することにより正極スラリー(b1)を得た。
(Preparation of coated electrode)
Alkaline activated charcoal (same as used above) is sufficiently mixed in a composition of 92 parts by weight, 6 parts by weight of acetylene black powder, 7 parts by weight of acrylic binder, 4 parts by weight of carboxymethylcellulose, and 200 parts by weight of water. As a result, a positive electrode slurry (b1) was obtained.
厚さ38μm(気孔率47%)のアルミニウム製エキスパンドメタル(日本金属工業社製)両面に非水系のカーボン系導電塗料をロールコーターにてコーティングし、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚み(集電体厚みと導電層厚みの合計)は52μmであり貫通孔はほぼ導電塗料により閉塞された。 For positive electrode with conductive layer formed by coating non-aqueous carbon conductive paint on both sides of aluminum expanded metal (Nippon Metal Industry Co., Ltd.) with a thickness of 38μm (porosity 47%) with a roll coater and drying A current collector was obtained. The total thickness (the sum of the current collector thickness and the conductive layer thickness) was 52 μm, and the through-hole was almost blocked by the conductive paint.
次いで、上記正極スラリー(b1)をロールコーターにて片面当たり乾燥後の厚みが60μmになるよう正極集電体の両面に塗布した。真空乾燥後、正極全体の厚み(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が172μmの正極(b2)を得た。 Next, the positive electrode slurry (b1) was applied to both surfaces of the positive electrode current collector with a roll coater so that the thickness after drying on one side was 60 μm. After vacuum drying, a positive electrode (b2) having a total positive electrode thickness (total of positive electrode layer thickness on both sides, conductive layer thickness on both sides, and positive electrode current collector thickness) of 172 μm was obtained.
また、正極スラリー(b1)を、カーボン系導電塗料をコーティングした厚さ20μmのアルミニウム箔片面に固形分目付量にして4.0mg/cm2になるよう塗工、乾燥することにより正極箔電極(b3)を得た。 Further, the positive electrode slurry (b1) was coated on a single surface of an aluminum foil having a thickness of 20 μm coated with a carbon-based conductive paint so that the solid weight per unit area was 4.0 mg / cm 2 and dried to obtain a positive electrode foil electrode ( b3) was obtained.
(正極の単位重量当たりの静電容量測定)
上記正極箔電極(a3)、(b3)を2.0×2.0cm2サイズに2枚切り出し、評価用正極および負極とした。正極、負極を厚さ60μmの紙製不織布をセパレーターとして介しキャパシタの模擬セルを組んだ。参照極としてリチウム金属を用いた。電解液としては、エチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPF6を溶解した溶液を用いた。
(Capacitance measurement per unit weight of positive electrode)
Two pieces of the positive electrode foil electrodes (a3) and (b3) were cut into a size of 2.0 × 2.0 cm 2 to obtain a positive electrode for evaluation and a negative electrode. A capacitor simulation cell was assembled with a positive electrode and a negative electrode made of a paper nonwoven fabric having a thickness of 60 μm as a separator. Lithium metal was used as a reference electrode. As the electrolytic solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 was used.
充電電流8mAにて2.5Vまで充電しその後定電圧充電を行い、総充電時間1時間の後、8mAにて0Vまで放電を行った。2.5V〜0V間の放電時間よりそれぞれ正極の単位重量当たりの静電容量を結果表1に示す。また、参照極(Li/Li+)と正極の電位差より同様に正極の単位重量当たりの静電容量も示した。 The battery was charged to 2.5 V at a charging current of 8 mA and then charged at a constant voltage. After a total charging time of 1 hour, the battery was discharged to 0 V at 8 mA. Table 1 shows the electrostatic capacity per unit weight of the positive electrode from the discharge time between 2.5V and 0V. Similarly, the electrostatic capacity per unit weight of the positive electrode was also shown from the potential difference between the reference electrode (Li / Li + ) and the positive electrode.
表1に示すように、シート状電極a3は、塗布電極b3に比較して、体積あたりの静電容量は高くなり、直流抵抗は低くなった。 As shown in Table 1, the sheet-like electrode a3 had a higher capacitance per volume and a lower DC resistance than the coating electrode b3.
(負極製造法)
厚さ0.5mmのフェノール樹脂成形板をシリコニット電気炉中に入れ、窒素雰囲気下で550℃まで50℃/時間の速度で、更に10℃/時間の速度で670℃まで昇温し、熱処理し、PASを合成した。得られたPAS板をボールミルで粉砕することにより、平均粒子径が4μmのPAS粉体を得た。このPAS粉体のH/C比は0.2であった。
(Negative electrode manufacturing method)
A 0.5 mm-thick phenolic resin molded plate is placed in a siliconite electric furnace, heated to 550 ° C. at a rate of 50 ° C./hour, and further at a rate of 10 ° C./hour to 670 ° C. in a nitrogen atmosphere, followed by heat treatment. PAS was synthesized. The obtained PAS plate was pulverized with a ball mill to obtain a PAS powder having an average particle size of 4 μm. The H / C ratio of this PAS powder was 0.2.
次に、上記PAS粉体92重量部、アセチレンブラック粉体6重量部、SBR5重量部、カルボキシメチルセルロース4重量部、水200重量部となる組成にて充分混合することによりスラリーを得た。 Next, a slurry was obtained by sufficiently mixing the composition of 92 parts by weight of the PAS powder, 6 parts by weight of acetylene black powder, 5 parts by weight of SBR, 4 parts by weight of carboxymethylcellulose, and 200 parts by weight of water.
厚さ32μm(気孔率57%)の銅製エキスパンドメタル(日本金属工業社製)両面に負極のスラリーをロールコーターにて該負極集電体の両面に成形し、真空乾燥後、全体の厚さ(両面の負極電極層厚さと両面の導電層厚さと負極集電体厚さの合計)が113μmの負極(a)を得た。 A slurry of negative electrode is formed on both sides of a copper expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) having a thickness of 32 μm (porosity 57%) on both sides of the negative electrode current collector with a roll coater. After vacuum drying, the total thickness ( A negative electrode (a) having a negative electrode layer (a) having a thickness of 113 μm was obtained (total of the negative electrode layer thickness on both sides, the conductive layer thickness on both sides, and the negative electrode current collector thickness).
また、負極粉末にハードカーボン系である市販のカーボトロンP(呉羽化学工業社製、比表面積;9m2/g、粒径;9μm)を用いて、上記負極製造法と同様に113μmの負極(b)を作成した。 In addition, by using a commercially available Carbotron P (manufactured by Kureha Chemical Industry Co., Ltd., specific surface area: 9 m 2 / g, particle size: 9 μm) as the negative electrode powder, a 113 μm negative electrode (b )created.
(負極の単位重量当たりの静電容量測定)
上記負極(a)および(b)をそれぞれ1.5×2.0cm2サイズに切り出し、評価用負極とした。対極と参照極として1.5×2.0cm2サイズ、厚み200μmのリチウム金属を厚さ50μmのポリエチレン製不織布をセパレーターとして介し模擬セルを組んだ。電解液としては、エチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPF6を溶解した溶液を用いた。
(Capacitance measurement per unit weight of negative electrode)
The negative electrodes (a) and (b) were cut into 1.5 × 2.0 cm 2 sizes, and used as negative electrodes for evaluation. As a counter electrode and a reference electrode, a simulation cell was assembled through a lithium non-woven fabric having a size of 1.5 × 2.0 cm 2 and a thickness of 200 μm and a polyethylene nonwoven fabric having a thickness of 50 μm as a separator. As the electrolytic solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 was used.
この模擬セルに対し、充電電流1mAにて負極(a)の負極活物質重量に対して600mAh/g分のリチウムイオンを充電し、その後1mAにて1.5Vまで放電を行った。放電開始後1分後の負極の電位から0.2V電位変化する間の放電時間より負極(a)の単位重量当たりの静電容量は912F/gであった。同様に、負極(b)の負極活物質重量に対して300mAh/g分のリチウムイオンを充電し、その後1mAにて1.5Vまで放電を行った。放電開始後1分後の負極の電位から0.2V電位変化する間の放電時間より負極(a)の単位重量当たりの静電容量は3526F/gであった。 The simulated cell was charged with 600 mAh / g of lithium ions with respect to the negative electrode active material weight of the negative electrode (a) at a charging current of 1 mA, and then discharged to 1.5 V at 1 mA. The electrostatic capacitance per unit weight of the negative electrode (a) was 912 F / g from the discharge time during which the potential of the negative electrode changed 0.2 V from the potential of the negative electrode 1 minute after the start of discharge. Similarly, lithium ions of 300 mAh / g were charged with respect to the weight of the negative electrode active material of the negative electrode (b), and then discharged to 1.5 V at 1 mA. The electrostatic capacitance per unit weight of the negative electrode (a) was 3526 F / g from the discharge time during which the potential of the negative electrode changed 0.2 V from the potential of the negative electrode one minute after the start of discharge.
(小型フィルムセル作成方法)
1セル当たり、正極を2.4cm×3.8cmに5枚カットし、負極を2.4cm×3.8cmに6枚カットし、セル図7のようにセパレーター(レーヨン100%)を介して積層し、150℃にて12時間乾燥した後、最上部と最下部はセパレーターを配置させて4辺をテープ止めして電極積層ユニットを得た。正極(a2)、(b2)および負極(a)、(b)の組み合わせは表2に示す。負極(a)の負極活物質重量に対して600mAh/g分のリチウム金属としては、厚さ90μmのリチウム金属箔を厚さ23μmの銅ラスに圧着したものを用い、負極(b)の負極活物質重量に対して300mAh/g分のリチウム金属としては、厚さ55μmのリチウム金属箔を厚さ23μmの銅ラスに圧着したものを用い、負極と対向するように電極積層ユニットの最外部に1枚配置した。負極(6枚)とリチウム金属を圧着したステンレス網はそれぞれ溶接し、接触させ三層積層ユニットを得た。上記三極積層ユニットの正極集電体の端子溶接部(5枚)に、予めシール部分にシーラントフィルムを熱融着した巾3mm、長さ50mm、厚さ0.1mmのアルミニウム製正極端子を重ねて超音波溶接した。同様に負極集電体の端子溶接部(6枚)に、予めシール部分にシーラントフィルムを熱融着した巾3mm、長さ50mm、厚さ0.1mmのニッケル製負極端子を重ねて超音波溶接し、縦60mm、横30mm、深さ3mmに深絞りした外装フィルム1枚と深絞りしていない外装フィルム1枚の間に設置した。
(Small film cell creation method)
For each cell, five positive electrodes are cut to 2.4 cm x 3.8 cm, and six negative electrodes are cut to 2.4 cm x 3.8 cm, and stacked via a separator (100% rayon) as shown in FIG. Then, after drying at 150 ° C. for 12 hours, separators were placed on the uppermost part and the lowermost part, and four sides were taped to obtain an electrode laminated unit. Table 2 shows combinations of the positive electrodes (a2) and (b2) and the negative electrodes (a) and (b). As lithium metal of 600 mAh / g with respect to the weight of the negative electrode active material of the negative electrode (a), a lithium metal foil having a thickness of 90 μm bonded to a copper lath having a thickness of 23 μm was used, and the negative electrode active of the negative electrode (b) was used. As lithium metal for 300 mAh / g with respect to the material weight, a lithium metal foil with a thickness of 55 μm is bonded to a copper lath with a thickness of 23 μm. Placed. The negative electrode (six pieces) and the stainless steel mesh to which the lithium metal was pressure bonded were welded and brought into contact with each other to obtain a three-layer laminated unit. The aluminum positive electrode terminal with a width of 3 mm, a length of 50 mm, and a thickness of 0.1 mm, in which a sealant film is heat-sealed in advance to the seal portion, is overlaid on the terminal welded portion (five pieces) of the positive electrode current collector of the three-pole laminated unit. And ultrasonic welding. Similarly, a nickel negative electrode terminal having a width of 3 mm, a length of 50 mm, and a thickness of 0.1 mm, in which a sealant film is thermally fused in advance to the seal portion, is superposed on the terminal welded portion (six pieces) of the negative electrode current collector, and ultrasonic welding is performed. Then, it was installed between one exterior film deeply drawn to 60 mm in length, 30 mm in width, and 3 mm in depth, and one exterior film not deeply drawn.
外装ラミネートフィルムの端子部2辺と他の1辺を熱融着した後、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPF6を溶解した溶液を真空含浸させた後、残り1辺を減圧下にて熱融着し、真空封止を行うことによりフィルム型キャパシタセルを各2セル組立てた。 After heat-sealing the two sides of the terminal portion of the exterior laminate film and the other side, 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 as an electrolytic solution. Then, a solution in which LiPF 6 was dissolved in a vacuum concentration was vacuum impregnated, and the remaining one side was heat-sealed under reduced pressure, and vacuum sealing was performed to assemble two film capacitor cells.
(セルの特性評価)
14日間室温にて放置後、各フィルム型キャパシタセルにつき1セルを分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに900F/gもしくは3500F/g以上の静電容量を得るためのリチウムイオンが予備ドーピングされたと判断した。各フィルム型キャパシタの負極の静電容量は、正極の静電容量は5.8倍以上となった。残ったフィルム型キャパシタの各セルを、25℃で24時間放置した後に、100mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、100mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、3回目の放電容量を測定した。測定結果を表2に示す。
(Characteristic evaluation of cells)
After leaving at room temperature for 14 days, one cell was disassembled for each film type capacitor cell. As a result, all of the lithium metal was completely removed. Therefore, 900 F / g or 3500 F / g or more per unit weight of the negative electrode active material. It was judged that lithium ions were pre-doped to obtain the capacitance of The electrostatic capacity of the negative electrode of each film type capacitor was 5.8 times or more that of the positive electrode. Each cell of the remaining film type capacitor was left at 25 ° C. for 24 hours, and then charged with a constant current of 100 mA until the cell voltage reached 3.6 V, and then a constant voltage of 3.8 V was applied. Voltage charging was performed for 1 hour. Next, the battery was discharged at a constant current of 100 mA until the cell voltage reached 1.9V. This 3.6V-1.9V cycle was repeated, and the third discharge capacity was measured. The measurement results are shown in Table 2.
上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、いずれも0.65〜0.95Vの範囲であり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。 When the positive electrode and the negative electrode were short-circuited after the measurement was completed and the potential of the positive electrode was measured, both were in the range of 0.65 to 0.95 V, and were 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less.
表2に示されているとおり、正極にシート状電極を用いた方が (実施例1)、スラリー電極を用いた比較例1より静電容量及びエネルギー密度は高くなり、直流抵抗は低くなった。また、負極にPAS以外の炭素材料を用いた場合においても、正極にシート状電極を用いる事で、静電容量及びエネルギー密度は高くなった(実施例2)。ただし、カーボトロンPを負極材として用いたキャパシタセルは、直流抵抗が高くなる事から、直流抵抗を考慮するとPASを負極材として用いた方が好ましい。 As shown in Table 2, the use of a sheet-like electrode for the positive electrode (Example 1) resulted in higher capacitance and energy density and lower DC resistance than Comparative Example 1 using a slurry electrode. . Further, even when a carbon material other than PAS was used for the negative electrode, the capacitance and energy density were increased by using a sheet-like electrode for the positive electrode (Example 2). However, since the capacitor cell using the carbotron P as the negative electrode material has a high DC resistance, it is preferable to use PAS as the negative electrode material in consideration of the DC resistance.
本発明のリチウムイオンキャパシタは、電気自動車、ハイブリッド電気自動車などの駆動用または補助用蓄電源として極めて有効である。また、電動自転車、電動車椅子などの駆動用蓄電源、ソーラーエネルギーや風力発電などの各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源などとして好適に用いることができる。 The lithium ion capacitor of the present invention is extremely effective as a drive or auxiliary storage power source for electric vehicles, hybrid electric vehicles and the like. Further, it can be suitably used as a storage power source for driving such as an electric bicycle or an electric wheelchair, a power storage device for various energy such as solar energy or wind power generation, or a storage power source for household electric appliances.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005160529A JP2006338963A (en) | 2005-05-31 | 2005-05-31 | Lithium ion capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005160529A JP2006338963A (en) | 2005-05-31 | 2005-05-31 | Lithium ion capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006338963A true JP2006338963A (en) | 2006-12-14 |
Family
ID=37559353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005160529A Pending JP2006338963A (en) | 2005-05-31 | 2005-05-31 | Lithium ion capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006338963A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056791A1 (en) * | 2006-11-10 | 2008-05-15 | Fuji Jukogyo Kabushiki Kaisha | Lithium-ion secondary battery |
JP2008252013A (en) * | 2007-03-30 | 2008-10-16 | Fuji Heavy Ind Ltd | Lithium-ion capacitor |
JP2009205918A (en) * | 2008-02-27 | 2009-09-10 | Nec Corp | Power storage device |
WO2010024327A1 (en) * | 2008-08-28 | 2010-03-04 | 日本ゼオン株式会社 | Electrode for lithium ion capacitor and lithium ion capacitor |
JP2010067793A (en) * | 2008-09-11 | 2010-03-25 | Japan Pionics Co Ltd | Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet |
WO2011013756A1 (en) * | 2009-07-30 | 2011-02-03 | 日本ゼオン株式会社 | Electrode for electrochemical-element, and electrochemical element |
JP2011522412A (en) * | 2008-05-29 | 2011-07-28 | コーニング インコーポレイテッド | Electrodes for electric double layer devices |
CN102618097A (en) * | 2011-01-28 | 2012-08-01 | 日立化成工业株式会社 | Conductive substrate coating for lithium ion battery, electrode for lithium ion battery and lithium ion battery |
CN107293813A (en) * | 2017-07-12 | 2017-10-24 | 成都启特安全技术有限责任公司 | A kind of battery destruct system |
CN108461302A (en) * | 2017-12-26 | 2018-08-28 | 上海奥威科技开发有限公司 | The production method of lithium-ion capacitor positive electrode and lithium-ion capacitor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414882A (en) * | 1987-07-08 | 1989-01-19 | Mitsubishi Gas Chemical Co | Secondary battery |
JPH11297578A (en) * | 1998-04-10 | 1999-10-29 | Mitsubishi Chemical Corp | Electric double-layer capacitor |
JP2000150319A (en) * | 1998-11-16 | 2000-05-30 | Asahi Glass Co Ltd | Manufacture of electric double layer capacitor and using method therefor |
WO2003003395A1 (en) * | 2001-06-29 | 2003-01-09 | Kanebo, Limited | Organic electrolyte capacitor |
-
2005
- 2005-05-31 JP JP2005160529A patent/JP2006338963A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414882A (en) * | 1987-07-08 | 1989-01-19 | Mitsubishi Gas Chemical Co | Secondary battery |
JPH11297578A (en) * | 1998-04-10 | 1999-10-29 | Mitsubishi Chemical Corp | Electric double-layer capacitor |
JP2000150319A (en) * | 1998-11-16 | 2000-05-30 | Asahi Glass Co Ltd | Manufacture of electric double layer capacitor and using method therefor |
WO2003003395A1 (en) * | 2001-06-29 | 2003-01-09 | Kanebo, Limited | Organic electrolyte capacitor |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056791A1 (en) * | 2006-11-10 | 2008-05-15 | Fuji Jukogyo Kabushiki Kaisha | Lithium-ion secondary battery |
JP2008252013A (en) * | 2007-03-30 | 2008-10-16 | Fuji Heavy Ind Ltd | Lithium-ion capacitor |
JP2009205918A (en) * | 2008-02-27 | 2009-09-10 | Nec Corp | Power storage device |
CN105355469A (en) * | 2008-05-29 | 2016-02-24 | 康宁股份有限公司 | Method for manufacturing electrodes for electric double layer devices based on mixture of fibrous polymeric material and carbon material |
JP2011522412A (en) * | 2008-05-29 | 2011-07-28 | コーニング インコーポレイテッド | Electrodes for electric double layer devices |
US8564933B2 (en) | 2008-08-28 | 2013-10-22 | Zeon Corporation | Electrode for lithium ion capacitor and lithium ion capacitor |
WO2010024327A1 (en) * | 2008-08-28 | 2010-03-04 | 日本ゼオン株式会社 | Electrode for lithium ion capacitor and lithium ion capacitor |
KR101455445B1 (en) | 2008-08-28 | 2014-10-27 | 제온 코포레이션 | Electrode for lithium ion capacitor and lithium ion capacitor |
JP5423991B2 (en) * | 2008-08-28 | 2014-02-19 | 日本ゼオン株式会社 | Lithium ion capacitor electrode and lithium ion capacitor |
JP2010067793A (en) * | 2008-09-11 | 2010-03-25 | Japan Pionics Co Ltd | Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet |
JP5549672B2 (en) * | 2009-07-30 | 2014-07-16 | 日本ゼオン株式会社 | Electrode for electrochemical element and electrochemical element |
CN102549693A (en) * | 2009-07-30 | 2012-07-04 | 日本瑞翁株式会社 | Electrode for electrochemical-element, and electrochemical element |
WO2011013756A1 (en) * | 2009-07-30 | 2011-02-03 | 日本ゼオン株式会社 | Electrode for electrochemical-element, and electrochemical element |
CN102618097A (en) * | 2011-01-28 | 2012-08-01 | 日立化成工业株式会社 | Conductive substrate coating for lithium ion battery, electrode for lithium ion battery and lithium ion battery |
CN102618097B (en) * | 2011-01-28 | 2016-09-28 | 日立化成工业株式会社 | Lithium ion battery conductive substrates coating, lithium ion battery electrode and lithium ion battery |
CN107293813A (en) * | 2017-07-12 | 2017-10-24 | 成都启特安全技术有限责任公司 | A kind of battery destruct system |
CN107293813B (en) * | 2017-07-12 | 2023-05-26 | 成都启特安全技术有限责任公司 | Battery self-destruction system |
CN108461302A (en) * | 2017-12-26 | 2018-08-28 | 上海奥威科技开发有限公司 | The production method of lithium-ion capacitor positive electrode and lithium-ion capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4731967B2 (en) | Lithium ion capacitor | |
JP4971729B2 (en) | Lithium ion capacitor | |
JP4813152B2 (en) | Lithium ion capacitor | |
JP5236765B2 (en) | Organic electrolyte capacitor | |
JP5322435B2 (en) | Negative electrode active material for electricity storage devices | |
JP4705566B2 (en) | Electrode material and manufacturing method thereof | |
JP4857073B2 (en) | Lithium ion capacitor | |
JP4924966B2 (en) | Lithium ion capacitor | |
JP2010050476A (en) | Organic electrolyte capacitor | |
WO2007074639A1 (en) | Lithium ion capacitor | |
JP2012004491A (en) | Power storage device | |
JP2006338963A (en) | Lithium ion capacitor | |
JP2006286926A (en) | Lithium ion capacitor | |
JP2006286923A (en) | Lithium ion capacitor | |
JP2007019108A (en) | Lithium ion capacitor | |
JP4731974B2 (en) | Lithium ion capacitor | |
JP2007067088A (en) | Lithium ion capacitor | |
JP2008166309A (en) | Lithium ion capacitor | |
JP4705404B2 (en) | Lithium ion capacitor | |
JP2007180429A (en) | Lithium ion capacitor | |
JP4732074B2 (en) | Lithium ion capacitor | |
JP2008060479A (en) | Lithium ion capacitor | |
JP4731979B2 (en) | Lithium ion capacitor | |
JP2006286921A (en) | Lithium ion capacitor | |
JP2007180437A (en) | Lithium ion capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110802 |