JP2006328037A - Binaphthyl derivative, host material and hole transport material each made therefrom, and organic el device using the hole transport material - Google Patents

Binaphthyl derivative, host material and hole transport material each made therefrom, and organic el device using the hole transport material Download PDF

Info

Publication number
JP2006328037A
JP2006328037A JP2005212187A JP2005212187A JP2006328037A JP 2006328037 A JP2006328037 A JP 2006328037A JP 2005212187 A JP2005212187 A JP 2005212187A JP 2005212187 A JP2005212187 A JP 2005212187A JP 2006328037 A JP2006328037 A JP 2006328037A
Authority
JP
Japan
Prior art keywords
group
binaphthyl derivative
hole transport
organic
binaphthyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005212187A
Other languages
Japanese (ja)
Other versions
JP4832017B2 (en
Inventor
Junji Kido
淳二 城戸
Kazushi Shimizu
一志 清水
Yuya Agata
祐也 阿形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2005212187A priority Critical patent/JP4832017B2/en
Publication of JP2006328037A publication Critical patent/JP2006328037A/en
Application granted granted Critical
Publication of JP4832017B2 publication Critical patent/JP4832017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new binaphthyl derivative for forming wide-gap hole transport layer suitable to new phosphorescent materials, to provide a host material and a hole transport material each made from the new binaphthyl derivative, and to provide a new organic EL(light-emitting) device using the hole transport material. <P>SOLUTION: The new binaphthyl derivative such as 3,3'-diphenylamino-2,2'-dimethoxy-1,1'-binaphthyl is provided. The host material and the hole transport material each made from the new binaphthyl derivative are provided respectively. The new organic EL device using the hole transport material is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規なビナフチル誘導体、それよりなるホスト材料、ホール輸送材料およびそれを用いた有機EL素子に関する。   The present invention relates to a novel binaphthyl derivative, a host material comprising the same, a hole transport material, and an organic EL device using the same.

有機ELの実用化に向けた研究開発が、国内外の電気メーカーや材料メーカーなどが中心になって進められている。液晶表示素子や発光ダイオードなどの既に世間に知られているディスプレイなどと、互角に渡り歩いていくには消費電力の低減および素子の長寿命化が必須の課題としてあげられている。
そこで、この問題を解決する目的で、近年リン光材料による有機EL素子の検討が成されている。
リン光材料は従来の蛍光材料と異なり、三重項励起状態を使用することができるため量子効率が非常に高く、エネルギー失活がほとんどなく内部発光量子収率でほぼ100%に達する材料である。
しかしこのリン光材料は、濃度消光を起こしやすいため蛍光材料同様にホスト材料との併用が必要になってくる。
高効率発光を得るためには、輸送材料やホスト材料の最適化を図らないといけないが、リン光材料は蛍光材料とは異なり三重項エネルギーを完全に閉じこめないと満足な効果が得られない。特に青色の材料に関してはエネルギーレベルが非常に高い。そのためこれまで使用していたα−NPDでは十分なエネルギーの閉じこめができない。これまでこの青色リン光エネルギーを閉じ込めることができるワイドギャップ化された輸送材料やホスト材料が無く、青色リン光材料の開発を妨げる一つの要因になっていた。
Research and development for the practical application of organic EL is being promoted mainly by domestic and foreign electric and material manufacturers. Reducing power consumption and prolonging the life of the elements are indispensable issues for walking alongside displays that are already known to the public such as liquid crystal display elements and light emitting diodes.
Therefore, in order to solve this problem, an organic EL element using a phosphorescent material has recently been studied.
Unlike conventional fluorescent materials, phosphorescent materials can use triplet excited states, so that quantum efficiency is very high, energy deactivation is hardly caused, and the internal emission quantum yield reaches almost 100%.
However, since this phosphorescent material easily causes concentration quenching, it is necessary to use it together with a host material in the same manner as a fluorescent material.
In order to obtain high-efficiency light emission, it is necessary to optimize transport materials and host materials, but unlike phosphor materials, phosphorescent materials cannot obtain satisfactory effects unless triplet energy is completely confined. Especially for blue materials, the energy level is very high. Therefore, the α-NPD that has been used so far cannot confine sufficient energy. Until now, there was no wide-gap transport material or host material capable of confining this blue phosphorescent energy, which was one factor hindering the development of blue phosphorescent materials.

本発明の第1の目的は、新規なリン光材料に適したワイドギャップなホール輸送層を形成するための新規なビナフチル誘導体を提供する点にある。
本発明の第2の目的は、新規なビナフチル誘導体よりなるホスト材料、ホール輸送材料、およびこれを用いた新規な有機EL素子を提供する点にある。
A first object of the present invention is to provide a novel binaphthyl derivative for forming a wide-gap hole transport layer suitable for a novel phosphorescent material.
The second object of the present invention is to provide a host material comprising a novel binaphthyl derivative, a hole transport material, and a novel organic EL device using the same.

本発明の第1は、下記一般式(1)

Figure 2006328037
(式中、Q、Q、QおよびQは、下記式
Figure 2006328037
であり、ArとArは置換基を有することもあるアリール基およびヘテロアリール基よりなる群からそれぞれ独立して選ばれた基であり、ArとArはそれぞれ一体になってヘテロアリール基を形成していてもよく、RおよびRは水素、アルキル基、アルコキシ基、アリール基、アリールオキシ基、ヘテロアリール基、ヘテロアリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基およびハロゲンよりなる群からそれぞれ独立して選ばれた基であり、mおよびnは、それぞれ独立して0または1の整数を表わし、少なくともmまたはnのいずれか一方は1である)
で示されるビナフチル誘導体に関する。
本発明の第2は、一般式(1)におけるQとQのうちの少なくともいずれか一方およびQとQのうち少なくともいずれか一方が、ArとArが一体になったヘテロアリール基である請求項1記載のビナフチル誘導体に関する。
本発明の第3は、前記ヘテロアリール基が、下記式(2)
Figure 2006328037
(式中、R20〜R27は水素、アルキル基、アルコキシ基、アリール基、アリールオキシ基、ヘテロアリール基、ヘテロアリールオキシ基およびハロゲンよりなる群からそれぞれ独立して選ばれた基である。)
で示されるカルバゾリル基である請求項2記載のビナフチル誘導体に関する。
本発明の第4は、3.1eVを越える広いエネルギーギャップを有するものである請求項1〜3いずれか記載のビナフチル誘導体に関する。
本発明の第5は、請求項1〜4いずれか記載のビナフチル誘導体よりなることを特徴とするホスト材料に関する。
本発明の第6は、請求項1〜4いずれか記載のビナフチル誘導体よりなることを特徴とするホール輸送材料に関する。
本発明の第7は、請求項1〜4いずれか記載のビナフチル誘導体を用いたことを特徴とする有機EL素子に関する。
本発明の第8は、請求項1〜4いずれか記載のビナフチル誘導体を発光層またはホール輸送層に用いたことを特徴とする有機EL素子に関する。
本発明の第9は、発光材料として燐光材料を用いた請求項7または8記載の有機EL素子に関する。
本発明の第10は、その発光ピーク波長が480nmよりも短波長の青色発光を示す燐光材料を発光材料として用いた請求項9記載の有機EL素子に関する。 The first of the present invention is the following general formula (1)
Figure 2006328037
(Where Q 1 , Q 2 , Q 3 and Q 4 are
Figure 2006328037
Ar 1 and Ar 2 are groups independently selected from the group consisting of an aryl group and a heteroaryl group, which may have a substituent, and Ar 1 and Ar 2 are each a heteroaryl group. R 1 and R 2 may be hydrogen, alkyl group, alkoxy group, aryl group, aryloxy group, heteroaryl group, heteroaryloxy group, alkoxycarbonyl group, aryloxycarbonyl group, heteroaryl A group independently selected from the group consisting of an oxycarbonyl group and a halogen, m and n each independently represents an integer of 0 or 1, and at least one of m or n is 1.
It relates to the binaphthyl derivative shown by these.
In the second aspect of the present invention, at least one of Q 1 and Q 2 and at least one of Q 3 and Q 4 in the general formula (1) are heterogeneous in which Ar 1 and Ar 2 are integrated. The binaphthyl derivative according to claim 1, which is an aryl group.
In a third aspect of the present invention, the heteroaryl group has the following formula (2):
Figure 2006328037
(Wherein R 20 to R 27 are groups independently selected from the group consisting of hydrogen, alkyl groups, alkoxy groups, aryl groups, aryloxy groups, heteroaryl groups, heteroaryloxy groups, and halogens. )
The binaphthyl derivative according to claim 2, which is a carbazolyl group represented by the formula:
A fourth aspect of the present invention relates to the binaphthyl derivative according to any one of claims 1 to 3, which has a wide energy gap exceeding 3.1 eV.
5th of this invention is related with the host material characterized by consisting of the binaphthyl derivative in any one of Claims 1-4.
6th of this invention is related with the hole transport material which consists of a binaphthyl derivative in any one of Claims 1-4.
A seventh aspect of the present invention relates to an organic EL device using the binaphthyl derivative according to any one of claims 1 to 4.
The eighth of the present invention relates to an organic EL device characterized in that the binaphthyl derivative according to any one of claims 1 to 4 is used for a light emitting layer or a hole transport layer.
A ninth aspect of the present invention relates to the organic EL element according to claim 7 or 8, wherein a phosphorescent material is used as the light emitting material.
The tenth aspect of the present invention relates to the organic EL element according to claim 9, wherein a phosphorescent material that emits blue light having an emission peak wavelength shorter than 480 nm is used as a light emitting material.

前記、Ar、Ar、R〜RおよびR20〜R27におけるアリール基としては、置換基を有することもある1環または多環構造のいずれのものであってもよい。具体例を挙げるとフェニル、ビフェニル、ターフェニル、クオーターフェニル、クウィンクフェニル、セスキフェニル、セプチフェニル、オクチフェニル、ノビフェニル、デシフェニル、ナフチル、アズレニル、アントラニル、フェナンソレニル、ナフタセニル、クリセニル、ペンタレニル、インデニル、アズレニル、ヘプタデニル、ビフェニレル、as−インダセニル、s−インダセニル、アセナフチレニル、フルオレニル、フェナレニル、フルオラセニル、アセフェナンソラレニル、アセアンソリレニル、トリフェニレル、ピレニル、プレイアデニル、ピセニル、ペリレニル、ペンタフェニル、ペンタセニル、テトラフェニレニル、ヘキサフェニル、ヘキサアセニル、ルビセニル、コロネリル、トリナフチレニル、ヘキサフェニル、ヘキサアセニル、ルビセニル、コロネリル、トリナフテレニル、ヘプタフェニル、ヘプタセニル、ピランセニル、オバレニルなどを挙げることができる。 The aryl group in Ar 1 , Ar 2 , R 1 to R 2 and R 20 to R 27 may be a monocyclic or polycyclic structure that may have a substituent. Specific examples include phenyl, biphenyl, terphenyl, quarterphenyl, quinckphenyl, sesquiphenyl, septiphenyl, octiphenyl, nobiphenyl, decylphenyl, naphthyl, azulenyl, anthranyl, phenanthrenyl, naphthacenyl, chrysenyl, pentarenyl, indenyl, azulenyl, Heptadenyl, biphenylyl, as-indacenyl, s-indacenyl, acenaphthylenyl, fluorenyl, phenalenyl, fluoracenyl, acephenanthrarenyl, aceanthrylenyl, triphenylyl, pyrenyl, preadenyl, picenyl, perylenyl, pentaphenyl, pentaphenyl, tetraphenylenyl Nyl, hexaphenyl, hexaacenyl, ruvicenyl, coronyl, trinaphthylenyl, hexaphenyl, hex It Aseniru, rubicenyl, coronenyl, Torinafutereniru, heptaphenyl, heptacenyl, Piranseniru, and ovalenyl.

前記、Ar、Ar、R〜RおよびR20〜R27におけるヘテロアリール基としては、置換基を有することもある各種へテロアリール基であり、1環または多環構造のいずれのものであってもよい。具体例を挙げると、フラニル、ピロロニル、3−ピロロニル、ピラゾリル、イミダゾリル、オキサゾリル、チアゾリル、1,2,3−オキサジアゾリル、トリアゾリル、ピラニル、ピリジニル、ピリダジニル、ピリミジニル、ピラジニル、1,3,5−トリアジニル、ベンゾフラニル、インドリル、ベンゾ〔b〕チオフェニル、ベンゾイミダゾリル、ベンゾチアゾリル、プリニル、キノリニル、イソキノリニル、シンノリニル、キノキサリニル、カルバゾリル、アクリジニル、1,10−フェントレニルなどを挙げることができる。 The heteroaryl groups in Ar 1 , Ar 2 , R 1 to R 2 and R 20 to R 27 are various heteroaryl groups that may have a substituent, and are either monocyclic or polycyclic structures. It may be. Specific examples include furanyl, pyrrolonyl, 3-pyrrolonyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, 1,2,3-oxadiazolyl, triazolyl, pyranyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,3,5-triazinyl, Examples thereof include benzofuranyl, indolyl, benzo [b] thiophenyl, benzimidazolyl, benzothiazolyl, purinyl, quinolinyl, isoquinolinyl, cinnolinyl, quinoxalinyl, carbazolyl, acridinyl, 1,10-fentrenyl and the like.

また、ArとArが結合した場合の形としてはArとArが結合しているN原子も含めてその構造例を示すと

Figure 2006328037
などを挙げることができる。
勿論これらの環構造においても必要に応じて置換基を有する場合も含んでいる。 In addition, when Ar 1 and Ar 2 are bonded, the structure example including the N atom to which Ar 1 and Ar 2 are bonded is shown.
Figure 2006328037
And so on.
Of course, these ring structures include cases where they have substituents as necessary.

前記R〜RおよびR20〜R27におけるアルキル基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシルなどを挙げることができる。これらについては直鎖でも枝分かれでも構わない。 Examples of the alkyl group in R 1 to R 2 and R 20 to R 27 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, Examples include heptadecyl, octadecyl, nonadecyl, eicosyl and the like. These may be linear or branched.

前記R〜RおよびR20〜R27におけるアルコキシ基としては、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキシロキシ、ヘプチロキシ、オクトキシ、ノニロキシ、デシロキシ、フンデシロシキシ、ドデシロキシ、トリデシロキシ、テトラデシロキシ、ペンタデシロキシ、ヘキサデシロキシ、ヘプタデシロキシ、オクタデシロキシ、ノナデシロキシ、エイコシロキシなどを挙げることができる。これらについては直鎖でも枝分かれでも構わない。R〜Rのアルコキシカルボニル基におけるアルコキシ部分は前記アルコキシ基と同様である。 Examples of the alkoxy group in R 1 to R 2 and R 20 to R 27 include methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptyloxy, octoxy, nonyloxy, decyloxy, decyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, pentade Examples include siloxy, hexadecyloxy, heptadecyloxy, octadecyloxy, nonadecyloxy, eicosiloxy and the like. These may be linear or branched. The alkoxy moiety in the alkoxycarbonyl group of R 1 to R 2 is the same as the alkoxy group.

前記R〜RおよびR20〜R27におけるハロゲンとしては、いずれのハロゲンでもよい。 The halogen in R 1 to R 2 and R 20 to R 27 may be any halogen.

前記アリールオキシ基、アリールオキシカルボニル基におけるアリール部分は前記アリール基と同様であり、ヘテロアリールオキシ基、ヘテロアリールオキシカルボニル基におけるヘテロアリール部分はヘテロアリール基と同様であり、アリール基、アリーロキシ基、ヘテロアリール基、ヘテロアリールオキシ基、アリールオキシカルボニル基、ヘテロアリーロキシカルボニル基における置換基としては、アルキル基、アルコキシル基、アルコキシカルボニル基、アリールオキシカルボニル基およびハロゲンをあげることができ、アルキル基やアルコキシ基としては前述のものを例示することができ、アルコキシカルボニル基につくアルキルグループやアリールオキシカルボニル基につくアリールグループについても同様に前述のものを例示することができる。
また、アルキル基やアルコキシ基における置換基としては、エステル基やハロゲンを挙げることができる。
The aryl moiety in the aryloxy group and aryloxycarbonyl group is the same as the aryl group, the heteroaryl moiety in the heteroaryloxy group and heteroaryloxycarbonyl group is the same as the heteroaryl group, and the aryl group, aryloxy group, Examples of the substituent in the heteroaryl group, heteroaryloxy group, aryloxycarbonyl group, and heteroaryloxycarbonyl group include an alkyl group, an alkoxyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, and a halogen. The above-mentioned thing can be illustrated as an alkoxy group, The above-mentioned thing is similarly illustrated about the alkyl group attached to an alkoxycarbonyl group, and the aryl group attached to an aryloxycarbonyl group. Rukoto can.
In addition, examples of the substituent in the alkyl group or alkoxy group include an ester group and a halogen.

本発明化合物の代表的な合成方法の1例を下記に示す。R〜RおよびAr、Arは前記のとおりである。

Figure 2006328037
式中、R、R、Ar、Arは前記と同一であり、Xはハロゲンである。好ましくは臭素または塩素である。 An example of a typical method for synthesizing the compound of the present invention is shown below. R 1 to R 2 and Ar 1 and Ar 2 are as described above.
Figure 2006328037
In the formula, R 1 , R 2 , Ar 1 and Ar 2 are the same as described above, and X is halogen. Preferred is bromine or chlorine.

また、本発明の化合物の例を下記に示す。   Examples of the compound of the present invention are shown below.

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

Figure 2006328037
Figure 2006328037

多くの発光材料は濃度消光を起こしやすくこのため効率の低下を起こしやすい。リン光材料もこの例外でなく、高効率化を維持するめには発光材料よりもエネルギーレベルの大きな材料(すなわちホスト材料)の中に分散させて使用する必要がある。
ホスト材料に求められる特性としては、均一なアモルファス膜になることやキャリアーの輸送能力があること等が挙げられる。
特に青色リン光材料に使用されるホスト材料としてはリン光材料の三重項エネルギーが他の緑や赤に比べて大きいため、これまで使用されているようなホスト材料では十分な青色の効率を達成するのが困難であり、ワイドギャップ化させる必要がある。
すなわちリン光ゲスト材料よりも大きな三重項エネルギーを有していること(ワイドギャップ化)の必要である。
今回のホスト材料としての本発明化合物はこの点に着目し合成を行ったものである。ホスト材料に混ぜられるゲスト化合物の量はおよそ4%から8%程度が理想的とされている。また、その膜厚は、40nm〜60nm位が適当とされている。
Many light-emitting materials tend to cause concentration quenching, and thus easily reduce efficiency. The phosphorescent material is no exception. To maintain high efficiency, it is necessary to use the phosphorescent material dispersed in a material having a higher energy level than the light emitting material (that is, a host material).
Properties required for the host material include a uniform amorphous film and a carrier transport capability.
Especially as a host material used for blue phosphorescent materials, the triplet energy of phosphorescent materials is larger than other green and red, so that the host materials used so far achieve sufficient blue efficiency. It is difficult to do so, and it is necessary to make a wide gap.
That is, it is necessary to have a triplet energy larger than that of the phosphorescent guest material (wide gap formation).
The compound of the present invention as the host material was synthesized by paying attention to this point. The amount of the guest compound mixed with the host material is ideally about 4% to 8%. The film thickness is suitably about 40 to 60 nm.

ホスト材料については、あくまでもゲスト材料(例えばこの場合ではリン光材料であるが)にホスト内で発生させた励起子を与え、ゲスト材料を発光に導くのが本来の目的である。しかしホスト内にゲスト分子が存在しない場合、ホスト内で生成した励起子同士はホスト内で再結合を起こしホスト材料が発光を起こす。このためホスト材料が発光材料として機能することになる。もしホストの中で発生した励起子がホストの膜を突き抜けてホスト層の外へ出るような場合、良好な励起子移動が起こらないためゲスト材料が発光しなくなる。
このためホスト材料が良好な発光材料であることは、ホスト−ゲスト効果の一つの基本だと考えられる。
このビナフチル化合物については、その3位にトリアリールアミン骨格を有しているためホール輸送機能を持つ。このためこの材料は、ホール輸送層に使用することが可能である。
As for the host material, the original purpose is to provide the guest material (for example, a phosphorescent material in this case) with excitons generated in the host and to guide the guest material to light emission. However, when there is no guest molecule in the host, excitons generated in the host recombine in the host and the host material emits light. For this reason, the host material functions as a light emitting material. If excitons generated in the host penetrate the host film and go out of the host layer, the exciton migration does not occur and the guest material does not emit light.
Therefore, it is considered that one of the host-guest effects is that the host material is a good light-emitting material.
Since this binaphthyl compound has a triarylamine skeleton at the 3-position, it has a hole transport function. For this reason, this material can be used for the hole transport layer.

請求項9についてみると、本発明化合物のビナフチル骨格は広いエネルギーレベルを持つ化合物であり、大きな三重項エネルギーを有しているため、青色リン光材料から赤色リン光材料にかけてのゲスト材料であるリン光材料に対して使用できるホスト材料である。   As for claim 9, since the binaphthyl skeleton of the compound of the present invention is a compound having a wide energy level and has a large triplet energy, phosphorous which is a guest material from a blue phosphorescent material to a red phosphorescent material. It is a host material that can be used for optical materials.

現在既存のホスト材料としてCBP(4,4′−ジカルバゾリル−1,1′−ビフェニル)があるが、この化合物の三重項エネルギーが青色のリン光材料に対して十分ではないため満足のできるリン光発光を得ることができなかった。しかし今回開発した新規ビナフチル誘導体に関しては、材料のねじれが大きいため十分な三重項エネルギーをもっており、多大なエネルギーが必要な480nmより短波長な青色リン光材料を組み合わせてみると、有機EL素子としても良好な結果が得られる。   Currently, there is CBP (4,4'-dicarbazolyl-1,1'-biphenyl) as an existing host material, but the phosphorescence is satisfactory because the triplet energy of this compound is not sufficient for blue phosphorescent materials. Luminescence could not be obtained. However, the new binaphthyl derivative developed this time has sufficient triplet energy due to the large twist of the material, and when combined with a blue phosphorescent material having a wavelength shorter than 480 nm, which requires a lot of energy, it can be used as an organic EL device. Good results are obtained.

バッファー層とは一般に注入層のことをさしているが、その中には、電荷注入層やホール注入層も含まれている。
電荷注入層は、電極(ITO電極、Al電極)からそれぞれホールと電子を有機材料に効率よく注入する役目を持っている。
The buffer layer generally refers to an injection layer, which includes a charge injection layer and a hole injection layer.
The charge injection layer has a role of efficiently injecting holes and electrons from the electrodes (ITO electrode, Al electrode) to the organic material.

(1)新規なビナフチル誘導体を提供することができた。
(2)この新規なビナフチル誘導体をホール輸送材料として使用して、リン光材料を含有する有機EL素子を作成したところ、従来に使用されているホール輸送層にα−NPDを用いた有機EL素子に比べ最大で約1.3倍の効率向上が認められた〔例えば、図5において、輝度が10の場合の視感効率はα−NPDの値(◇印)、3DTA2MBNの値(△印)の方が1.3倍位高い位置にある〕。すなわち、本発明の新規ビナフチル誘導体はα−NPDの代換品として極めてすぐれたものであり、この分野の材料の豊富化に貢献するものである。
(3)本発明のビナフチル誘導体のエネルギーギャップ(ビナフチル化合物のHOMO値からLUMO値を引いた値)を測定したところ、3.4eVであり、α−NPDの3.1eVに比べてワイドギャップ化が図られており、大きなエネルギーを必要とする青色リン光材料を駆動させるためにも適応でき、これまで懸念されていた有機EL素子の高効率化、低消費電力化に貢献できる。いいかえれば、α−NPDのエネルギーギャップでは青色リン光材料を充分発光させることができなかったが、本発明の化合物をホスト材料とすることにより、青色リン光材料を発光させることができた。
(1) A novel binaphthyl derivative could be provided.
(2) Using this novel binaphthyl derivative as a hole transporting material, an organic EL device containing a phosphorescent material was prepared. As a result, an organic EL device using α-NPD in a conventionally used hole transporting layer maximum efficiency improved by about 1.3 times in was observed [for example, in FIG. 5, the value of luminous efficiency alpha-NPD if the luminance is 10 2 compared to (◇ symbol), the value of 3DTA2MBN (△ mark ) Is about 1.3 times higher]. That is, the novel binaphthyl derivative of the present invention is an excellent substitute for α-NPD, and contributes to the enrichment of materials in this field.
(3) The energy gap of the binaphthyl derivative of the present invention (the value obtained by subtracting the LUMO value from the HOMO value of the binaphthyl compound) was measured to be 3.4 eV, which is a wider gap than that of α-NPD of 3.1 eV. The present invention can be adapted to drive a blue phosphorescent material that requires a large amount of energy, and can contribute to higher efficiency and lower power consumption of organic EL elements that have been feared so far. In other words, although the blue phosphorescent material could not emit light sufficiently with the energy gap of α-NPD, the blue phosphorescent material could emit light by using the compound of the present invention as a host material.

以下、実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited at all by this.

実施例1
(1)1,1′−ビ−2−ナフトール〔1,1′−Bi−2−Naphthol(BINOL)〕の合成

Figure 2006328037
1000mL四つ口フラスコに塩化鉄六水和物30.9g(0.114mol)、脱イオン水750mlを加え溶解させた。この水溶液に2−ナフトール(2−Naphthol)15.0g(0.104mol)を加え室温で17時間、40℃で7時間撹拌した。析出物を濾別乾燥し、メタノールを溶媒として活性炭脱色後、溶媒を留去してエタノールで再結晶することにより、白色結晶の目的物を得た〔収量7.79g(0.027mol),収率52%〕。 Example 1
(1) Synthesis of 1,1′-bi-2-naphthol [1,1′-Bi-2-Naphthol (BINOL)]
Figure 2006328037
In a 1000 mL four-necked flask, 30.9 g (0.114 mol) of iron chloride hexahydrate and 750 ml of deionized water were added and dissolved. 2-Naphthol (15.0 g, 0.104 mol) was added to the aqueous solution, and the mixture was stirred at room temperature for 17 hours and at 40 ° C. for 7 hours. The precipitate was filtered and dried, and the activated carbon was decolorized using methanol as a solvent, and then the solvent was distilled off and recrystallized with ethanol to obtain the desired product as white crystals (yield 7.79 g (0.027 mol), yield). Rate 52%].

(2)2,2′−ジメトキシ−1,1′−ビナフチル〔2,2′−Dimethoxy−1,1′−binaphthyl(2MBN)〕の合成

Figure 2006328037
200mL四つ口フラスコに1,1′−ビ−2−ナフトール(BINOL)5.00g(17.5mmol)、炭酸カリウム5.04g(36.5mmol)、ジメチルホルムアミド80mlを加えしばらく撹拌した後、ヨウ化メチル12.0g(84.0mmol)を加えて50℃で48時間撹拌した。反応後室温に戻し、脱イオン水にて再沈澱をおこない、6時間分散洗浄をおこなった。析出物を濾別乾燥することにより、白色粉末の目的物を得た〔収量5.40g(17.2mmol),収率98%〕。 (2) Synthesis of 2,2'-dimethoxy-1,1'-binaphthyl [2,2'-Dimethoxy-1,1'-binaphthyl (2MBN)]
Figure 2006328037
To a 200 mL four-necked flask, 5.00 g (17.5 mmol) of 1,1′-bi-2-naphthol (BINOL), 5.04 g (36.5 mmol) of potassium carbonate and 80 ml of dimethylformamide were added and stirred for a while. 12.0 g (84.0 mmol) of methyl chloride was added and stirred at 50 ° C. for 48 hours. After the reaction, the temperature was returned to room temperature, reprecipitated with deionized water, and dispersed and washed for 6 hours. The precipitate was separated by filtration and dried to obtain the target product as a white powder [yield 5.40 g (17.2 mmol), yield 98%].

(3)3,3′−ジブロモ−2,2′−ジメトキシ−1,1′−ビナフチル
〔3,3′−Dibromo−2,2′−dimethoxy−1,1′−binaphthyl(3B2MBN)〕の合成

Figure 2006328037
300mL四つ口フラスコに窒素気流下、脱水ジエチルエーテル200ml、テトラメチルエチレンジアミン3.84ml(25.5mmol)、n−ブチルリチウム(1.6Mヘキサン溶液)21.8ml(34.7mmol)を入れ室温で15分撹拌し、さらに2,2′−ジメトキシ−1,1′−ビナフチル(2MBN)3.64g(11.6mmol)を加えて3時間撹拌した。反応液をメタノール−ドライアイスバスにて−78℃に冷却し、臭素7.2ml(140mmol)を20分かけて滴下した。滴下後、徐々に室温に戻しながら18時間撹拌し、反応後、亜硫酸水素ナトリウム飽和水溶液120mLを加えて4時間撹拌した。反応液をジエチルエーテル、脱イオン水で希釈し、エーテル層を抽出、飽和食塩水で洗浄後、有機層を硫酸マグネシウムで乾燥した。溶媒留去後、シリカゲルカラムクロマトグラフィー〔展開溶媒:酢酸エチル/n−ヘキサン=1:8(v/v)〕により精製し、白色固体の目的物を得た〔収量3.22g(6.82mmol),収率58.8%〕。 (3) Synthesis of 3,3′-dibromo-2,2′-dimethoxy-1,1′-binaphthyl [3,3′-Dibromo-2,2′-dimoxy-1,1′-binaphytyl (3B2MBN)]
Figure 2006328037
In a 300 mL four-necked flask, under a nitrogen stream, 200 ml of dehydrated diethyl ether, 3.84 ml (25.5 mmol) of tetramethylethylenediamine, and 21.8 ml (34.7 mmol) of n-butyllithium (1.6 M hexane solution) were added at room temperature. After stirring for 15 minutes, 3.64 g (11.6 mmol) of 2,2′-dimethoxy-1,1′-binaphthyl (2MBN) was added and stirred for 3 hours. The reaction solution was cooled to −78 ° C. in a methanol-dry ice bath, and 7.2 ml (140 mmol) of bromine was added dropwise over 20 minutes. After dropping, the mixture was stirred for 18 hours while gradually returning to room temperature. After the reaction, 120 mL of a saturated aqueous solution of sodium hydrogen sulfite was added and stirred for 4 hours. The reaction solution was diluted with diethyl ether and deionized water, the ether layer was extracted, washed with saturated brine, and the organic layer was dried over magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography [developing solvent: ethyl acetate / n-hexane = 1: 8 (v / v)] to obtain the desired product as a white solid [yield 3.22 g (6.82 mmol). ), Yield 58.8%].

(4)3,3′−ジフェニルアミノ−2,2′−ジメトキシ−1,1′−ビナフチル
〔3,3′−Diphenylamino−2,2′−dimethoxy−1,1′−binaphthyl(3DPA2MBN)〕の合成

Figure 2006328037
200mL四つ口フラスコに窒素気流下、o−キシレン80ml、酢酸パラジウム(II)0.04g(0.176mmol)、トリ−tert−ブチルホスフィン(Tri−tert−butylphosphine)0.132g(0.667mmol)を加え、しばらく撹拌したのち3,3′−ジブロモ−2,2′−ジメトキシ−1,1′−ビナフチル(3B2MBN)1.00g(2.12mmol)、ジフェニルアミン(Diphenylamine)0.90g(5.29mmol)、ナトリウム−t−ブチレート(Sodium tert−butylate)0.743g(7.43mmol)を加えて140℃で18時間撹拌した。反応停止後溶媒を留去し、クロロホルムに溶解、脱イオン水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去してシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム)により精製し、白色固体の目的物を得た〔収量1.17g(1.80mmol),収率85%〕。 (4) 3,3′-Diphenylamino-2,2′-dimethoxy-1,1′-binaphthyl [3,3′-Diphenylamino-2,2′-dimoxy-1,1′-binaphtyyl (3DPA2MBN)] Composition
Figure 2006328037
In a 200 mL four-necked flask, 80 ml of o-xylene, 0.04 g (0.176 mmol) of palladium (II) acetate, 0.132 g (0.667 mmol) of tri-tert-butylphosphine (Tri-tert-butylphosphine) After stirring for a while, 3,3'-dibromo-2,2'-dimethoxy-1,1'-binaphthyl (3B2MBN) 1.00 g (2.12 mmol), diphenylamine 0.90 g (5.29 mmol) ), 0.743 g (7.43 mmol) of sodium tert-butylate (Sodium tert-butylate) was added, and the mixture was stirred at 140 ° C. for 18 hours. After termination of the reaction, the solvent was distilled off, and the residue was dissolved in chloroform and washed with deionized water and saturated saline. The organic layer was dried over magnesium sulfate, the solvent was distilled off, and the residue was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the desired product as a white solid [yield 1.17 g (1.80 mmol), yield 85%].

実施例2
(1)3,3′−ジトリルアミノ−2,2′−ジメトキシ−1,1′−ビナフチル(3DTA2MBN)の合成

Figure 2006328037
300mL四つ口フラスコに窒素気流下、o−キシレン200ml、酢酸パラジウム(II)〔Palladium(II)acetate〕 0.107g(0.470mmol)、トリ−t−ブチルホスフィン(Tri−tert−butylphosphine)0.352g(1.78mmol)を加えしばらく撹拌したのち実施例1の(3)で得られた3,3′−ジブロモ−2,2′−ジメトキシ−1,1′−ビナフチル(3B2MBN)2.67g(5.66mmol)、p,p′−ジトルイルアミン(p,p′−Ditolylamine)2.78g(14.1mmol)、ナトリウム−t−ブチレート(Sodium tert−butylate)1.98g(19.8mmol)を加えて140℃で18時間撹拌した。反応停止後溶媒を留去し、クロロホルムに溶解、脱イオン水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去してシリカゲルカラムクロマトグラフィー〔展開溶媒:クロロホルム/n−ヘキサン=1:1(v/v)〕により精製し、淡黄色固体の目的物を得た〔収量2.89g(4.10mmol),収率72.4%〕。 Example 2
(1) Synthesis of 3,3′-ditolylamino-2,2′-dimethoxy-1,1′-binaphthyl (3DTA2MBN)
Figure 2006328037
In a 300 mL four-necked flask, 200 ml of o-xylene, palladium acetate (II) [Palladium (II) acetate] 0.107 g (0.470 mmol), tri-tert-butylphosphine (Tri-tert-butylphosphine) 0 After adding .352 g (1.78 mmol) and stirring for a while, 2.67 g of 3,3′-dibromo-2,2′-dimethoxy-1,1′-binaphthyl (3B2MBN) obtained in (3) of Example 1 was obtained. (5.66 mmol), 2.78 g (14.1 mmol) of p, p'-ditolylamine, 1.98 g (19.8 mmol) of sodium tert-butyrate And stirred at 140 ° C. for 18 hours. After termination of the reaction, the solvent was distilled off, and the residue was dissolved in chloroform and washed with deionized water and saturated saline. After drying the organic layer with magnesium sulfate, the solvent was distilled off and the residue was purified by silica gel column chromatography [developing solvent: chloroform / n-hexane = 1: 1 (v / v)] to obtain the desired product as a pale yellow solid. [Yield 2.89 g (4.10 mmol), Yield 72.4%].

実施例3
(1)5,5′,6,6′,7,7′,8,8′−オクタヒドロ−2,2′−ジメトキシ−1,1′−ビナフチル(5,5′,6,6′,7,7′,8,8′−octahydro−2,2′−dimethoxy−1,1′−binaphthyl)(H−2MBN)の合成

Figure 2006328037
100mL四つ口フラスコにアセトン50ml、5,5′,6,6′,7,7′,8,8′−オクタヒドロ−2,2′−ジヒドロキシ−1,1′−ビナフチル(5,5′,6,6′,7,7′,8,8′−octahydro−2,2′−dihydroxy−1,1′−binaphthyl)3.00g(0.01mol)、炭酸カリウム2.70g(0.023mol)、ヨードメタン10.0g(0.1mol)を入れ窒素気流下24時間還流した。24時間後、ヨードメタン5.0g(0.05mol)を加えさらに24時間還流した。反応停止後、溶媒を留去しクロロホルムに溶解させ脱イオン水で洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去してシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム)により精製し、白色固体の目的物を得た〔収量1.76g(5.46mmol)、収率54.6%〕。 Example 3
(1) 5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dimethoxy-1,1′-binaphthyl (5,5 ′, 6,6 ′, 7 , 7 ', 8,8'-octahydro- 2,2'-dimethoxy-1,1'-binaphthyl) synthesis of (H 8 -2MBN)
Figure 2006328037
In a 100 mL four-necked flask, 50 ml of acetone, 5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dihydroxy-1,1′-binaphthyl (5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dihydroxy-1,1′-binaphytyl) 3.00 g (0.01 mol), potassium carbonate 2.70 g (0.023 mol) Then, 10.0 g (0.1 mol) of iodomethane was added and refluxed for 24 hours under a nitrogen stream. After 24 hours, 5.0 g (0.05 mol) of iodomethane was added and the mixture was further refluxed for 24 hours. After stopping the reaction, the solvent was distilled off, dissolved in chloroform and washed with deionized water. The organic layer was dried over magnesium sulfate, the solvent was distilled off, and the residue was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the desired product as a white solid [yield 1.76 g (5.46 mmol), yield 54.6%].

(2)3,3′−ジブロモ−5,5′,6,6′,7,7′,8,8′−オクタヒドロ−2,2′−ジメトキシ−1,1′−ビナフチル
(3,3′−Dibromo−5,5′,6,6′,7,7′,8,8′−octahydro−2,2′−dimethoxy−1,1′−binaphthyl)(H−3B2MBN)の合成

Figure 2006328037
200mL四つ口フラスコに窒素気流下、脱水ジエチルエーテル100ml、テトラメチルエチレンジアミン1.70ml(11.3mmol)、n−ブチルリチウム(1.6Mヘキサン溶液)9.65ml(15.4mmol)を入れ室温で15分撹拌し、さらにH−2MBN 1.65g(5.12mmol)を加えて3時間撹拌した。反応液をメタノール−ドライアイスバスにて−78℃に冷却し、臭素3.2ml(61.9mmol)を15分かけて滴下した。滴下後、徐々に室温に戻しながら18時間撹拌し、反応後、亜硫酸水素ナトリウム飽和水溶液60mLを加えて2時間撹拌した。反応液をジエチルエーテル、脱イオン水で希釈し、エーテル層を抽出、飽和食塩水で洗浄後、有機層を硫酸マグネシウムで乾燥した。溶媒留去後、シリカゲルカラムクロマトグラフィー〔展開溶媒:酢酸エチル/n−ヘキサン=1:3(v/v)〕により精製し、黄色粘体の目的物を得た〔収量2.35g(4.89mmol),収率95.5%〕。 (2) 3,3′-dibromo-5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dimethoxy-1,1′-binaphthyl (3,3 ′ Synthesis of Dibromo-5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dimoxy-1,1′-binaphthyl) (H 8 -3B2MBN)
Figure 2006328037
In a 200 mL four-necked flask, under a nitrogen stream, 100 ml of dehydrated diethyl ether, 1.70 ml (11.3 mmol) of tetramethylethylenediamine and 9.65 ml (15.4 mmol) of n-butyllithium (1.6 M hexane solution) were added at room temperature. After stirring for 15 minutes, 1.65 g (5.12 mmol) of H 8 -2MBN was further added and stirred for 3 hours. The reaction solution was cooled to −78 ° C. in a methanol-dry ice bath, and 3.2 ml (61.9 mmol) of bromine was added dropwise over 15 minutes. After dropping, the mixture was stirred for 18 hours while gradually returning to room temperature. After the reaction, 60 mL of a saturated aqueous solution of sodium hydrogen sulfite was added and stirred for 2 hours. The reaction solution was diluted with diethyl ether and deionized water, the ether layer was extracted, washed with saturated brine, and the organic layer was dried over magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography [developing solvent: ethyl acetate / n-hexane = 1: 3 (v / v)] to obtain a yellow viscous product (yield 2.35 g (4.89 mmol)). ), Yield 95.5%].

(3)3,3′−ジトルイルアミノ−5,5′,6,6′,7,7′,8,8′−オクタヒドロ−2,2′−ジメトキシ−1,1′−ビナフチル
〔3,3′−Ditolylamino−5,5′,6,6′,7,7′,8,8′−octahydro−2,2′−dimethoxy−1,1′−binaphthyl〕(H−3DTA2MBN)の合成

Figure 2006328037
300mL四つ口フラスコに窒素気流下、o−キシレン200ml、酢酸パラジウム(II)〔Palladium(II) acetate〕0.093g(0.406mmol)、トリ−t−ブチルホスフィン(Tri−tert−butylphosphine) 0.304g(1.54mol)、H−3B2MBN 2.35g(4.89 mmol)、p,p′−ジトルイルアミン(p,p′−Ditolylamine)2.40g(12.2mmol)、ナトリウム−t−ブチレート(Sodium tert−butylate)1.71g(17.1mmol)を加えて140℃で18時間撹拌した。反応停止後溶媒を留去し、クロロホルムに溶解、脱イオン水、飽和食塩水で洗浄した。有機層を硫酸ナトリウムで乾燥後、溶媒を留去してシリカゲルカラムクロマトグラフィー〔展開溶媒:クロロホルム/n−ヘキサン=1:1(v/v)〕により精製し、薄黄色固体の目的物を得た〔収量2.13g(2.99mmol),収率61.1%〕。 (3) 3,3′-ditoluylamino-5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dimethoxy-1,1′-binaphthyl [3 Synthesis of 3′-Ditolylamino-5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dimoxy-1,1′-binaphytyl] (H 8 -3DTA2MBN)
Figure 2006328037
O-xylene 200 ml, palladium acetate (II) [Palladium (II) acetate] 0.093 g (0.406 mmol), tri-tert-butylphosphine in a 300 mL four-necked flask under nitrogen stream 0 .304g (1.54mol), H 8 -3B2MBN 2.35g (4.89 mmol), p, p'- Jitoruiruamin (p, p'-Ditolylamine) 2.40g (12.2mmol), sodium -t -1.71 g (17.1 mmol) of butyrate (Sodium tert-butylate) was added and stirred at 140 ° C. for 18 hours. After termination of the reaction, the solvent was distilled off, and the residue was dissolved in chloroform and washed with deionized water and saturated saline. After drying the organic layer with sodium sulfate, the solvent was distilled off and the residue was purified by silica gel column chromatography [developing solvent: chloroform / n-hexane = 1: 1 (v / v)] to obtain the desired product as a pale yellow solid. [Yield 2.13 g (2.99 mmol), Yield 61.1%].

実施例4
ビナフチル誘導体よりなる各種のホール輸送材料を用いバッファー層を導入した下記構成の緑色リン光素子を作製し、α−NPDとの比較をおこなった。
デバイス1:〔ITO/TPDPES:TBPAH(200Å)/3DPA2MBN(実施例1)(200Å)/CBP:7wt%Ir(ppy)(300Å)/BCP(100Å)/Alq(200Å)/LiF(5Å)/Al〕
デバイス2:〔ITO/TPDPES:TBPAH(200Å)/3DTA2MBN(実施例2)(200Å)/CBP:7wt%Ir(ppy)(300Å)/BCP(100Å)/Alq(200Å)/LiF(5Å)/Al〕
デバイス3:〔ITO/TPDPES:TBPAH(200Å)/H−3DTA2MBN(実施例3)(200Å)/CBP:7wt%Ir(ppy)(300Å)/BCP(100Å)/Alq(200Å)/LiF(5Å)/Al〕
デバイス4:〔ITO/TPDPES:TBPAH(200Å)/α−NPD(200Å)/CBP:7wt%Ir(ppy)(300Å)/BCP(100Å)/Alq(200Å)/LiF(5Å)/Al〕
Example 4
A green phosphorescent device having the following constitution in which a buffer layer was introduced using various hole transport materials made of a binaphthyl derivative was prepared and compared with α-NPD.
Device 1: [ITO / TPDPES: TBPAH (200Å) / 3DPA2MBN (Example 1) (200Å) / CBP: 7 wt% Ir (ppy) 3 (300Å) / BCP (100Å) / Alq 3 (200Å) / LiF (5Å) ) / Al]
Device 2: [ITO / TPDPES: TBPAH (200Å) / 3DTA2MBN (Example 2) (200Å) / CBP: 7 wt% Ir (ppy) 3 (300Å) / BCP (100Å) / Alq 3 (200Å) / LiF (5Å) ) / Al]
Device 3: [ITO / TPDPES: TBPAH (200 Å) / H 8 -3DTA2MBN (Example 3) (200 Å) / CBP: 7 wt% Ir (ppy) 3 (300 Å) / BCP (100 Å) / Alq 3 (200 Å) / LiF (5cm) / Al]
Device 4: [ITO / TPDPES: TBPAH (200 Å) / α-NPD (200 Å) / CBP: 7 wt% Ir (ppy) 3 (300 Å) / BCP (100 Å) / Alq 3 (200 Å) / LiF (5 Å) / Al ]

デバイス1〜3は、本発明の有機EL素子であり、
デバイス4は比較例の有機EL素子である。
また、前記素子構成中のTPDPES、TBPAH、α−NPD、Ir(ppy)、BCP、CBP、Alqは下記のとおりである。
TPDPESは、ポリ〔オキシ−1,4−フェニレンスルホニル−1,4−フェニレンオキシ−1,4−フェニレン(フェニルイミノ)(1,1′−ビフェニル)−4,4′−ジイル(フェニルイミノ)−1,4−フェニレン〕{poly〔oxy−1,4−phenylensulfonyl−1,4−phenyleneoxy−1,4−phenylene)(phenylimino)(1,1′−biphenyl)−4,4′−diyl(phenylimino)−1,4−phenylene〕}(9CI)(CA INDEX NAME)の略称である。
TBPAHはトリス(4−ブロモフェニル)アミニウム ヘキサクロロアンチモネート〔Tris(4−bromophenyl)aminium hexachloroantimonate〕である。
α−NPD〔N,N′−ジフェニル−N,N′−ジ(1−ナフチル)ベンジジン〕

Figure 2006328037
Ir(ppy)〔トリス(2−フェニルピリジナト)イリジウム(III)〕
Figure 2006328037
Alq〔トリス−(8−キノリノラトアルミニウム)〕
Figure 2006328037
BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナンスロリン)
Figure 2006328037
CBP〔4,4′−ジカルバゾリルビフェニル〕
Figure 2006328037
Devices 1 to 3 are the organic EL elements of the present invention,
Device 4 is an organic EL element of a comparative example.
Further, TPDPES, TBPAH, α-NPD, Ir (ppy) 3 , BCP, CBP, and Alq 3 in the device structure are as follows.
TPDPES is a poly [oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylene (phenylimino) (1,1'-biphenyl) -4,4'-diyl (phenylimino)- 1,4-phenylene] {poly [oxy-1,4-phenylsulfonyl-1,4-phenylene-1,4-phenylene) (phenylimino) (1,1′-biphenyl) -4,4′-diyl (phenylimino) -1,4-phenylene]} (9CI) (CA INDEX NAME).
TBPAH is tris (4-bromophenyl) aminium hexachloroantimonate [Tris (4-bromophenyl) aminium hexachloroantimonate].
α-NPD [N, N′-diphenyl-N, N′-di (1-naphthyl) benzidine]
Figure 2006328037
Ir (ppy) 3 [Tris (2-phenylpyridinato) iridium (III)]
Figure 2006328037
Alq 3 [Tris- (8-quinolinolato aluminum)]
Figure 2006328037
BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)
Figure 2006328037
CBP [4,4'-dicarbazolylbiphenyl]
Figure 2006328037

各有機EL素子の各層は下記のとおりの役目を果たすものである。
ITO:陽極
TPDPES:TBPAH:ホール注入層(バッファー層)
3DPA2MBN,3DTA2MBN,H−3DTA2MBN,α−NPD
:ホール輸送層
CBP:7wt%Ir(ppy):発光層
BCP:ホールブロック層
Alq:電子輸送層
LiF:電子注入層
Al:背面電極
Each layer of each organic EL element fulfills the following role.
ITO: anode TPDPES: TBPAH: hole injection layer (buffer layer)
3DPA2MBN, 3DTA2MBN, H 8 -3DTA2MBN, α-NPD
: Hole transport layer CBP: 7 wt% Ir (ppy) 3 : light emitting layer BCP: hole block layer Alq 3 : electron transport layer LiF: electron injection layer Al: back electrode

(1)デバイス1の製造条件
TPDPES/10wt%TBPAH in 1,2−ジクロロエタン
:スピンコート(1500rpm,10sec)
3DPA2MBN:真空度4.4×10−6torr,蒸着速度3−4Å/sec
Ir(ppy):真空度3.9×10−6torr,蒸着速度35Å/100sec
CBP:真空度3.6×10−6torr,蒸着速度5Å/sec
BCP:真空度3.6×10−6torr,蒸着速度2−3Å/sec
Alq:真空度4.5×10−6torr,蒸着速度3−4Å/sec
LiF:真空度1.8×10−5torr,蒸着速度2Å/sec
Al:真空度3.0×10−5torr,蒸着速度10−11Å/sec
(1) Manufacturing conditions of device 1 TPDPES / 10 wt% TBPAH in 1,2-dichloroethane
: Spin coating (1500 rpm, 10 sec)
3DPA2MBN: Degree of vacuum 4.4 × 10 −6 torr, deposition rate 3-4 Å / sec
Ir (ppy) 3 : Degree of vacuum 3.9 × 10 −6 torr, vapor deposition rate 35 Å / 100 sec
CBP: Degree of vacuum 3.6 × 10 −6 torr, deposition rate 5 Å / sec
BCP: Degree of vacuum 3.6 × 10 −6 torr, deposition rate 2-3 Å / sec
Alq 3 : Degree of vacuum 4.5 × 10 −6 torr, vapor deposition rate 3-4 Å / sec
LiF: Degree of vacuum 1.8 × 10 −5 torr, deposition rate 2 Å / sec
Al: Degree of vacuum 3.0 × 10 −5 torr, vapor deposition rate 10 −11 Å / sec

(2)デバイス2の製造条件
TPDPES/10wt%TBPAH in 1,2−ジクロロエタン
:スピンコート(1500rpm,10sec)
3DTA2MBN:真空度5.2×10−6torr,蒸着速度3−4Å/sec
Ir(ppy):真空度4.5×10−6torr,蒸着速度35Å/100sec
CBP:真空度4.5×10−6torr,蒸着速度4−5Å/sec
BCP:真空度4.1×10−6torr,蒸着速度3−4Å/sec
Alq:真空度5.2×10−6torr,蒸着速度3−4Å/sec
LiF:真空度1.7×10−5torr,蒸着速度1−2Å/sec
Al:真空度3.0×10−5torr,蒸着速度10−11Å/sec
(2) Manufacturing condition of device 2 TPDPES / 10 wt% TBPAH in 1,2-dichloroethane
: Spin coating (1500 rpm, 10 sec)
3DTA2MBN: Degree of vacuum 5.2 × 10 −6 torr, vapor deposition rate 3-4 Å / sec
Ir (ppy) 3 : Degree of vacuum 4.5 × 10 −6 torr, deposition rate 35 Å / 100 sec
CBP: Degree of vacuum 4.5 × 10 −6 torr, deposition rate 4-5 Å / sec
BCP: Degree of vacuum 4.1 × 10 −6 torr, deposition rate 3-4 Å / sec
Alq 3 : Degree of vacuum 5.2 × 10 −6 torr, vapor deposition rate 3-4 Å / sec
LiF: degree of vacuum 1.7 × 10 −5 torr, vapor deposition rate 1-2 Å / sec
Al: Degree of vacuum 3.0 × 10 −5 torr, vapor deposition rate 10 −11 Å / sec

(3)デバイス3の製造条件
TPDPES/10wt%TBPAH in 1,2−ジクロロエタン
:スピンコート(1500rpm,10sec)
−3DTA2MBN:真空度5.6×10−6torr,蒸着速度2−3Å/sec
Ir(ppy):真空度5.0×10−6torr,蒸着速度35Å/100sec
CBP:真空度5.0×10−6torr,蒸着速度4−5Å/sec
BCP:真空度4.7×10−6torr,蒸着速度3Å/sec
Alq:真空度5.0×10−6torr,蒸着速度3Å/sec
LiF:真空度2.0×10−5torr,蒸着速度2Å/sec
Al:真空度2.5×10−5torr,蒸着速度10−11Å/sec
(3) Manufacturing conditions of device 3 TPDPES / 10 wt% TBPAH in 1,2-dichloroethane
: Spin coating (1500 rpm, 10 sec)
H 8 -3DTA2MBN: Degree of vacuum 5.6 × 10 −6 torr, vapor deposition rate 2-3 Å / sec
Ir (ppy) 3 : Degree of vacuum 5.0 × 10 −6 torr, vapor deposition rate 35 Å / 100 sec
CBP: Degree of vacuum 5.0 × 10 −6 torr, deposition rate 4-5 Å / sec
BCP: Degree of vacuum 4.7 × 10 −6 torr, deposition rate 3 Å / sec
Alq 3 : degree of vacuum 5.0 × 10 −6 torr, vapor deposition rate 3 Å / sec
LiF: Degree of vacuum 2.0 × 10 −5 torr, deposition rate 2 Å / sec
Al: degree of vacuum 2.5 × 10 −5 torr, vapor deposition rate 10 −11 Å / sec

(4)デバイス4の製造条件
TPDPES/10wt%TBPAH in 1,2−ジクロロエタン
:スピンコート(1500rpm,10sec)
α−NPD:真空度4.3×10−6torr,蒸着速度2Å/sec
Ir(ppy):真空度3.8×10−6torr,蒸着速度35Å/100sec
CBP:真空度3.8×10−6torr,蒸着速度5Å/sec
BCP:真空度3.5×10−6torr,蒸着速度2−3Å/sec
Alq:真空度3.9×10−6torr,蒸着速度3−4Å/sec
LiF:真空度1.7×10−5torr,蒸着速度1−2Å/sec
Al:真空度3.0×10−5torr,蒸着速度10−11Å/sec
(4) Manufacturing condition of device 4 TPDPES / 10 wt% TBPAH in 1,2-dichloroethane
: Spin coating (1500 rpm, 10 sec)
α-NPD: Degree of vacuum 4.3 × 10 −6 torr, vapor deposition rate 2 Å / sec
Ir (ppy) 3 : Degree of vacuum 3.8 × 10 −6 torr, vapor deposition rate 35 Å / 100 sec
CBP: Degree of vacuum 3.8 × 10 −6 torr, vapor deposition rate 5 Å / sec
BCP: Degree of vacuum 3.5 × 10 −6 torr, deposition rate 2-3 Å / sec
Alq 3 : Degree of vacuum 3.9 × 10 −6 torr, vapor deposition rate 3-4 Å / sec
LiF: degree of vacuum 1.7 × 10 −5 torr, vapor deposition rate 1-2 Å / sec
Al: Degree of vacuum 3.0 × 10 −5 torr, vapor deposition rate 10 −11 Å / sec

Figure 2006328037
Figure 2006328037

Figure 2006328037
バッファー層を導入することでホールの注入性が向上し3DPA2MBN以外の材料に関してはNPDを用いた素子の発光効率を大きく上回った。
すなわち、100cd/m当りの電力効率の項をみてもα−NPDは32.8(lm/W)であるのに対し、3DTA2MBNは39.0(lm/W)、H−3DTA2MBNは37.0(lm/W)であり、これらはα−NPDを超えている。
Figure 2006328037
By introducing the buffer layer, the hole injection property was improved, and the luminous efficiency of the element using NPD was greatly exceeded for materials other than 3DPA2MBN.
That is, α-NPD is 32.8 (lm / W) in terms of power efficiency per 100 cd / m 2 , whereas 3DTA2MBN is 39.0 (lm / W) and H 8 -3DTA2MBN is 37. 0.0 (lm / W), which exceeds α-NPD.

各素子の電流の入りやすさはα−NPDと3DTA2MBNはほぼ同等であり、以下H−3DTA2MBN、3DPA2MBNの順であった。3DTA2MBNおよびH−3DTA2MBNを用いた素子はα−NPDを用いた素子にくらべ効率が高いことがわかる。 The easiness of input of current in each element was almost the same between α-NPD and 3DTA2MBN, and in the order of H 8 -3DTA2MBN and 3DPA2MBN. It can be seen that the device using 3DTA2MBN and H 8 -3DTA2MBN has higher efficiency than the device using α-NPD.

ビナフチル誘導体よりなるホール輸送材料を用いた緑色リン光素子はバッファー層を導入しない場合、ホール輸送層にα−NPDを用いた場合よりも電流が入っていかず高電圧駆動し、効率も低いことがわかっている。これはビナフチル系ホール輸送材料のホール注入性が低いためであると考えられる。そこでバッファー層を導入し同様にα−NPDとの比較をおこなったところ、3DTA2MBNとH−3DTA2MBNにおいてα−NPDよりも効率が向上した。このことからこれらの材料がIr(ppy)の発光にもとづく三重項励起子の移動を効率的に抑制しているものと考えられる。さらに3DTA2MBNはNPD並みに電流が入っていっており、ホール注入性は低いもののα−NPDと同等のホール輸送性を有していると考えられる。またホール輸送性は各材料のイオン化ポテンシャルの順と一致しており、3DTA2MBN>H−3DTA2MBN>3DPA2MBNであることがわかった。3DTA2MBNと3DPA2MBNの比較よりアリールアミン系ではジフェニルアミンよりもジトリルアミンを有する方がホール輸送性を有していると言える。 When a green phosphorescent device using a hole transport material made of a binaphthyl derivative is not introduced with a buffer layer, it is driven at a higher voltage and has a lower efficiency than the case where α-NPD is used for the hole transport layer know. This is considered to be because the hole injection property of the binaphthyl-based hole transport material is low. Therefore, when a buffer layer was introduced and compared with α-NPD in the same manner, the efficiency of 3DTA2MBN and H 8 -3DTA2MBN was improved as compared with α-NPD. From this, it is considered that these materials efficiently suppress the movement of triplet excitons based on the emission of Ir (ppy) 3 . Further, 3DTA2MBN contains a current similar to that of NPD, and although it has a low hole injection property, it is considered to have a hole transport property equivalent to that of α-NPD. The hole transporting are consistent with the order of the ionization potential of the material was found to be 3DTA2MBN> H 8 -3DTA2MBN> 3DPA2MBN. From the comparison of 3DTA2MBN and 3DPA2MBN, it can be said that the arylamine system has a hole transporting property rather than diphenylamine.

実施例4におけるデバイス1〜4のそれぞれの電流密度−電圧特性を示すグラフである。10 is a graph showing current density-voltage characteristics of devices 1 to 4 in Example 4; 実施例4におけるデバイス1〜4のそれぞれの輝度−電圧特性を示すグラフである。12 is a graph showing luminance-voltage characteristics of devices 1 to 4 in Example 4. 実施例4におけるデバイス1〜4のそれぞれの輝度−電流密度特性を示すグラフである。10 is a graph showing luminance-current density characteristics of devices 1 to 4 in Example 4. 実施例4におけるデバイス1〜4のそれぞれの視感効率−電圧特性を示すグラフである。It is a graph which shows each luminous efficiency-voltage characteristic of the devices 1-4 in Example 4. FIG. 実施例4におけるデバイス1〜4のそれぞれの視感効率−輝度特性を示すグラフである。14 is a graph showing luminous efficiency-luminance characteristics of devices 1 to 4 in Example 4. 実施例4におけるデバイス1〜4のそれぞれの電流効率−電圧特性を示すグラフである。10 is a graph showing current efficiency-voltage characteristics of devices 1 to 4 in Example 4. 実施例4におけるデバイス1〜4のそれぞれの外部量子効率−輝度特性を示すグラフである。10 is a graph showing external quantum efficiency-luminance characteristics of devices 1 to 4 in Example 4. 実施例4におけるデバイス1〜4のELスペクトルを示すグラフである。6 is a graph showing EL spectra of devices 1 to 4 in Example 4.

Claims (10)

下記一般式(1)
Figure 2006328037
(式中、Q、Q、QおよびQは、下記式
Figure 2006328037
であり、ArとArは置換基を有することもあるアリール基およびヘテロアリール基よりなる群からそれぞれ独立して選ばれた基であり、ArとArはそれぞれ一体になってヘテロアリール基を形成していてもよく、RおよびRは水素、アルキル基、アルコキシ基、アリール基、アリールオキシ基、ヘテロアリール基、ヘテロアリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基およびハロゲンよりなる群からそれぞれ独立して選ばれた基であり、mおよびnは、それぞれ独立して0または1の整数を表わし、少なくともmまたはnのいずれか一方は1である)
で示されるビナフチル誘導体。
The following general formula (1)
Figure 2006328037
(Where Q 1 , Q 2 , Q 3 and Q 4 are
Figure 2006328037
Ar 1 and Ar 2 are groups independently selected from the group consisting of an aryl group and a heteroaryl group, which may have a substituent, and Ar 1 and Ar 2 are each a heteroaryl group. R 1 and R 2 may be hydrogen, alkyl group, alkoxy group, aryl group, aryloxy group, heteroaryl group, heteroaryloxy group, alkoxycarbonyl group, aryloxycarbonyl group, heteroaryl A group independently selected from the group consisting of an oxycarbonyl group and a halogen, m and n each independently represents an integer of 0 or 1, and at least one of m or n is 1.
A binaphthyl derivative represented by:
一般式(1)におけるQとQのうちの少なくともいずれか一方およびQとQのうち少なくともいずれか一方が、ArとArが一体になったヘテロアリール基である請求項1記載のビナフチル誘導体。 2. At least one of Q 1 and Q 2 and at least one of Q 3 and Q 4 in the general formula (1) is a heteroaryl group in which Ar 1 and Ar 2 are integrated. The binaphthyl derivative described. 前記ヘテロアリール基が、下記式(2)
Figure 2006328037
(式中、R20〜R27は水素、アルキル基、アルコキシ基、アリール基、アリールオキシ基、ヘテロアリール基、ヘテロアリールオキシ基およびハロゲンよりなる群からそれぞれ独立して選ばれた基である。)
で示されるカルバゾリル基である請求項2記載のビナフチル誘導体。
The heteroaryl group has the following formula (2)
Figure 2006328037
(Wherein R 20 to R 27 are groups independently selected from the group consisting of hydrogen, alkyl groups, alkoxy groups, aryl groups, aryloxy groups, heteroaryl groups, heteroaryloxy groups, and halogens. )
The binaphthyl derivative according to claim 2, which is a carbazolyl group represented by the formula:
3.1eVを越える広いエネルギーギャップを有するものである請求項1〜3いずれか記載のビナフチル誘導体。   The binaphthyl derivative according to any one of claims 1 to 3, which has a wide energy gap exceeding 3.1 eV. 請求項1〜4いずれか記載のビナフチル誘導体よりなることを特徴とするホスト材料。   A host material comprising the binaphthyl derivative according to claim 1. 請求項1〜4いずれか記載のビナフチル誘導体よりなることを特徴とするホール輸送材料。   A hole transport material comprising the binaphthyl derivative according to claim 1. 請求項1〜4いずれか記載のビナフチル誘導体を用いたことを特徴とする有機EL素子。   An organic EL device comprising the binaphthyl derivative according to claim 1. 請求項1〜4いずれか記載のビナフチル誘導体を発光層またはホール輸送層に用いたことを特徴とする有機EL素子。   An organic EL device, wherein the binaphthyl derivative according to claim 1 is used in a light emitting layer or a hole transport layer. 発光材料として燐光材料を用いた請求項7または8記載の有機EL素子。   The organic EL device according to claim 7 or 8, wherein a phosphorescent material is used as the light emitting material. その発光ピーク波長が480nmよりも短波長の青色発光を示す燐光材料を発光材料として用いた請求項9記載の有機EL素子。
The organic EL device according to claim 9, wherein a phosphorescent material exhibiting blue light emission whose emission peak wavelength is shorter than 480 nm is used as a light emitting material.
JP2005212187A 2005-04-25 2005-07-22 Binaphthyl derivative, host material comprising the same, hole transport material, and organic EL device using the same Expired - Fee Related JP4832017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212187A JP4832017B2 (en) 2005-04-25 2005-07-22 Binaphthyl derivative, host material comprising the same, hole transport material, and organic EL device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005127142 2005-04-25
JP2005127142 2005-04-25
JP2005212187A JP4832017B2 (en) 2005-04-25 2005-07-22 Binaphthyl derivative, host material comprising the same, hole transport material, and organic EL device using the same

Publications (2)

Publication Number Publication Date
JP2006328037A true JP2006328037A (en) 2006-12-07
JP4832017B2 JP4832017B2 (en) 2011-12-07

Family

ID=37550108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212187A Expired - Fee Related JP4832017B2 (en) 2005-04-25 2005-07-22 Binaphthyl derivative, host material comprising the same, hole transport material, and organic EL device using the same

Country Status (1)

Country Link
JP (1) JP4832017B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065497A3 (en) * 2008-12-01 2010-07-22 E. I. Du Pont De Nemours And Company Electroactive materials
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
US8420232B2 (en) 2008-12-04 2013-04-16 E I Du Pont De Nemours And Company Binaphthyl-arylamine polymers
US8431245B2 (en) 2009-09-29 2013-04-30 E. I. Du Pont De Nemours And Company Deuterated compounds for luminescent applications
US8440324B2 (en) 2005-12-27 2013-05-14 E I Du Pont De Nemours And Company Compositions comprising novel copolymers and electronic devices made with such compositions
WO2013070026A1 (en) * 2011-11-10 2013-05-16 Samyangems Co., Ltd. 1,1'-binaphthyl-4,4'-diamine derivatives for luminescence of organic electroluminescent device and organic electroluminescent device using them
US8460802B2 (en) 2007-06-01 2013-06-11 E I Du Pont De Nemours And Company Charge transport materials for luminescent applications
US8465848B2 (en) 2006-12-29 2013-06-18 E I Du Pont De Nemours And Company Benzofluorenes for luminescent applications
US8487055B2 (en) 2006-08-24 2013-07-16 E I Du Pont De Nemours And Company Hole transport polymers
US8497495B2 (en) 2009-04-03 2013-07-30 E I Du Pont De Nemours And Company Electroactive materials
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
US8652655B2 (en) 2007-11-19 2014-02-18 E I Du Pont De Nemours And Company Electroactive materials
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
JP2014534161A (en) * 2011-08-03 2014-12-18 メルク パテント ゲーエムベーハー Materials for electronic devices
US9178001B2 (en) 2011-06-30 2015-11-03 Samsung Display Co., Ltd. Organic light emitting diode and method for manufacturing the same
WO2021049293A1 (en) * 2019-09-09 2021-03-18 第一工業製薬株式会社 METHOD FOR PRODUCING 1,1'-bi-2-NAPHTHOL COMPOUND

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255948A (en) * 1996-03-19 1997-09-30 Motorola Inc Organic electroluminescence device provide with new hole transport material
JPH10255984A (en) * 1997-01-07 1998-09-25 Mitsubishi Chem Corp Organic electroluminescent element
JP2003026641A (en) * 2001-07-13 2003-01-29 Mitsubishi Chemicals Corp Binaphthyl compound, method for producing the same and organic electroluminescent element
JP2004014187A (en) * 2002-06-04 2004-01-15 Mitsubishi Chemicals Corp Organic electroluminescent element
JP2004107292A (en) * 2002-09-20 2004-04-08 Tosoh Corp New binaphthalene derivative and method for producing the same
JP2006100756A (en) * 2003-11-07 2006-04-13 Sony Corp Organic electroluminescent element and indicating device
JP2006120763A (en) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, lighting device, and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255948A (en) * 1996-03-19 1997-09-30 Motorola Inc Organic electroluminescence device provide with new hole transport material
JPH10255984A (en) * 1997-01-07 1998-09-25 Mitsubishi Chem Corp Organic electroluminescent element
JP2003026641A (en) * 2001-07-13 2003-01-29 Mitsubishi Chemicals Corp Binaphthyl compound, method for producing the same and organic electroluminescent element
JP2004014187A (en) * 2002-06-04 2004-01-15 Mitsubishi Chemicals Corp Organic electroluminescent element
JP2004107292A (en) * 2002-09-20 2004-04-08 Tosoh Corp New binaphthalene derivative and method for producing the same
JP2006100756A (en) * 2003-11-07 2006-04-13 Sony Corp Organic electroluminescent element and indicating device
JP2006120763A (en) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, lighting device, and display device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440324B2 (en) 2005-12-27 2013-05-14 E I Du Pont De Nemours And Company Compositions comprising novel copolymers and electronic devices made with such compositions
US8487055B2 (en) 2006-08-24 2013-07-16 E I Du Pont De Nemours And Company Hole transport polymers
US8465848B2 (en) 2006-12-29 2013-06-18 E I Du Pont De Nemours And Company Benzofluorenes for luminescent applications
US8460802B2 (en) 2007-06-01 2013-06-11 E I Du Pont De Nemours And Company Charge transport materials for luminescent applications
US8889269B2 (en) 2007-11-19 2014-11-18 E I Du Pont De Nemours And Company Electroactive materials
US8652655B2 (en) 2007-11-19 2014-02-18 E I Du Pont De Nemours And Company Electroactive materials
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
US9574084B2 (en) 2008-05-16 2017-02-21 E I Du Pont De Nemours And Company Hole transport composition
US9099653B2 (en) 2008-12-01 2015-08-04 E I Du Pont De Nemours And Company Electroactive materials
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
WO2010065497A3 (en) * 2008-12-01 2010-07-22 E. I. Du Pont De Nemours And Company Electroactive materials
US8420232B2 (en) 2008-12-04 2013-04-16 E I Du Pont De Nemours And Company Binaphthyl-arylamine polymers
US8890131B2 (en) 2009-02-27 2014-11-18 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8497495B2 (en) 2009-04-03 2013-07-30 E I Du Pont De Nemours And Company Electroactive materials
US8431245B2 (en) 2009-09-29 2013-04-30 E. I. Du Pont De Nemours And Company Deuterated compounds for luminescent applications
KR101799077B1 (en) 2011-06-30 2017-11-20 삼성디스플레이 주식회사 An organic light emitting diode and method for preparing the same
US9178001B2 (en) 2011-06-30 2015-11-03 Samsung Display Co., Ltd. Organic light emitting diode and method for manufacturing the same
JP2014534161A (en) * 2011-08-03 2014-12-18 メルク パテント ゲーエムベーハー Materials for electronic devices
JP2017128573A (en) * 2011-08-03 2017-07-27 メルク パテント ゲーエムベーハー Materials for electronic devices
WO2013070026A1 (en) * 2011-11-10 2013-05-16 Samyangems Co., Ltd. 1,1'-binaphthyl-4,4'-diamine derivatives for luminescence of organic electroluminescent device and organic electroluminescent device using them
WO2021049293A1 (en) * 2019-09-09 2021-03-18 第一工業製薬株式会社 METHOD FOR PRODUCING 1,1'-bi-2-NAPHTHOL COMPOUND

Also Published As

Publication number Publication date
JP4832017B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4832017B2 (en) Binaphthyl derivative, host material comprising the same, hole transport material, and organic EL device using the same
KR101450959B1 (en) Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same
TWI655196B (en) Amine derivatives, organic light-emitting material and organic electroluminescent device using the same
CN103258963B (en) Light-emitting component, light-emitting device and electronic equipment
JP5911418B2 (en) Organic light emitting device
JP5154569B2 (en) Novel fluorene derivative and organic electronic device using the same
KR20210067970A (en) Organic light emitting device
KR101861263B1 (en) Anthracene deriva tives and organic light-emitting diode including the same
KR20110097784A (en) Aromatic amine derivative, and organic electroluminescent element
JP2012082187A (en) New condensed polycyclic compound, and organic light-emitting element having the same
KR20160088229A (en) organic light-emitting diode with High efficiency and long lifetime
KR20190132945A (en) Compound and organic light emitting device comprising same
KR102223472B1 (en) Heterocyclic compound and organic light emitting device comprising same
JPWO2012001969A1 (en) Aromatic amine derivative and organic electroluminescence device using the same
KR102196624B1 (en) Organic light emitting device
KR101748942B1 (en) Hetero-cyclic compound and organic light emitting device comprising the same
KR20210111199A (en) Organic light emitting device
KR20200096158A (en) Multicyclic compound and organic light emitting device comprising same
KR102256782B1 (en) Multicyclic compound and organic light emitting device comprising the same
KR102375399B1 (en) Compound and organic light emitting device comprising the same
KR20220068525A (en) Compound and organic light emitting device comprising same
KR102230987B1 (en) Multicyclic compound and organic light emitting device comprising the same
KR20150129486A (en) An electroluminescent compound and an electroluminescent device comprising the same
KR102643077B1 (en) Heterocyclic compound and organic light emitting device comprising the same
KR20190129509A (en) Multicyclic compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4832017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees