JP2006317128A - Photovoltaic power generator and solar heat hot-water unit - Google Patents
Photovoltaic power generator and solar heat hot-water unit Download PDFInfo
- Publication number
- JP2006317128A JP2006317128A JP2005142702A JP2005142702A JP2006317128A JP 2006317128 A JP2006317128 A JP 2006317128A JP 2005142702 A JP2005142702 A JP 2005142702A JP 2005142702 A JP2005142702 A JP 2005142702A JP 2006317128 A JP2006317128 A JP 2006317128A
- Authority
- JP
- Japan
- Prior art keywords
- solar
- water heater
- power generator
- cell module
- photovoltaic power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、建造物の屋根上などに設置し、太陽放射エネルギーを電気エネルギーに変換する太陽光発電装置、および太陽光の熱エネルギーを利用する太陽熱温水装置に関し、詳しくは該太陽放射エネルギーが有する広帯域の波長スペクトル中の光起電力効果を有する可視光領域の該太陽放射エネルギーを該太陽光発電装置の起電力用として利用し、温熱効果を有する赤外線以上の長波長領域の該太陽放射エネルギーを該太陽熱温水装置の温熱用として利用する該太陽放射エネルギーの有効利用技術に関する。 TECHNICAL FIELD The present invention relates to a solar power generation device that is installed on a roof of a building and converts solar radiation energy into electric energy, and a solar water heater that uses solar heat energy. Using the solar radiation energy in the visible light region having the photovoltaic effect in the broadband wavelength spectrum as the electromotive force of the photovoltaic power generation device, The present invention relates to an effective utilization technique of the solar radiation energy utilized for heating of the solar water heater.
地球温暖化防止行動計画の批准など、地球規模での環境保全機運の高まりにつれ、石炭や石油など化石燃料の燃焼反応を利用せず、地球環境に負荷をかけないクリーンなエネルギー源であり該化石燃料代替エネルギー源として、さらには地震や風水害などによる大規模災害発生時のライフライン確保のため、太陽光発電装置や太陽熱温水装置などにより太陽放射エネルギーを直接に利用する装置が、試験用や事業所用にとどまらず一般家庭用をも含め急速に普及拡大しつつある。 As the global environmental conservation measures such as ratification of the Global Warming Prevention Action Plan, the fossil is a clean energy source that does not use the combustion reaction of fossil fuels such as coal and oil and does not place a burden on the global environment. Devices that directly use solar radiant energy, such as solar power generators and solar water heaters, as a fuel alternative energy source and for securing a lifeline in the event of a large-scale disaster such as an earthquake or storm and flood It is rapidly spreading and expanding not only for use but also for general household use.
一般家庭で消費されるエネルギーの60%が暖房用と給湯用であり、必要な温度は、暖房用としては18℃の室温であり、給湯用の大部分を占める風呂には42℃の湯である。いずれの用途にも必要な熱源は50℃前後の低温熱源であり、夏で70℃、冬で40℃の湯を沸かすことが出来る太陽熱温水装置でまかなうことが出来る。一方、一般家庭で消費されるエネルギーの25%が動力用および照明用であり、全てが電力でまかなわれている。 60% of the energy consumed in ordinary households is for heating and hot water supply. The required temperature is 18 ° C for heating, and 42 ° C hot water is used for baths that occupy most of the hot water supply. is there. The heat source necessary for any application is a low-temperature heat source of around 50 ° C., and can be provided by a solar hot water device that can boil hot water at 70 ° C. in summer and 40 ° C. in winter. On the other hand, 25% of the energy consumed in ordinary households is for power and lighting, and all is supplied by electric power.
電力は動力用、照明用に限らず暖房用および給湯用にも利用可能ではあるが、太陽放射エネルギーから電気エネルギーへの変換効率を考慮すれば、暖房用および給湯用の熱源としては、太陽熱温水装置により直接に熱エネルギーの形で利用する方が、高い利用効率を実現することが出来る。即ち、太陽放射エネルギーを家庭用エネルギー源として高効率に利用するには、太陽放射エネルギーを直接に熱源として利用する手段としての太陽熱温水装置、および太陽放射エネルギーを光電変換し電力源として利用する太陽光発電装置の両装置を併用することが好ましい。 Electricity can be used not only for power and lighting, but also for heating and hot water supply. However, considering the conversion efficiency from solar radiation energy to electric energy, solar water is used as a heat source for heating and hot water supply. Higher utilization efficiency can be achieved by using the apparatus directly in the form of thermal energy. That is, in order to use solar radiant energy as a household energy source with high efficiency, a solar water heater as a means for directly using solar radiant energy as a heat source, and a solar that photoelectrically converts solar radiant energy and uses it as a power source It is preferable to use both devices of the photovoltaic device together.
太陽光発電装置および太陽熱温水装置は、該両装置の受光面に十分な日射が得られることが必要で、したがって該太陽光発電装置や該太陽熱温水装置の設置場所としては、周囲に高い建造物、山あるいは樹木などの日射を遮る障害物が無く、南面が解放された広いスペースが好適であり、図6に示すごとく建造物の南面側の屋根上に太陽光発電装置の太陽電池モジュール31や太陽熱温水装置30が設置される。しかしながら、上記条件を満たす適切な設置場所に該太陽電池モジュール31および該太陽熱温水装置30を平面展開するには、必ずしも十分な設置面積が確保できるとは限らない。因みに平均的な4人家族の構成で必要な3kW規模の太陽光発電装置の太陽電池モジュールの設置に必要な面積20〜30m2は、家屋の南面側の屋根を覆いつくす面積であり、さらに太陽熱温水装置を設置する面積は残されていない。
The solar power generation device and the solar water heater need to be able to obtain sufficient solar radiation on the light receiving surfaces of the two devices. Therefore, the solar power generator and the solar water heater are installed in the surroundings with high buildings. There is no obstacle to block sunlight, such as mountains or trees, and a wide space with a free southern surface is suitable. As shown in FIG. 6, the
本発明は前述のごとく太陽光発電装置や太陽熱温水装置の設置場所に制約のある現状に鑑み、なされたもので、該太陽光発電装置および該太陽熱温水装置による太陽放射エネルギーの利用効率を損なうことなく、太陽放射エネルギーを高効率に光電変換し、且つ熱利用するために、該太陽熱温水装置への太陽光入射経路中の該太陽熱温水装置の受光面上に該太陽光発電装置を構成する太陽電池モジュールを載置し、該太陽光発電装置および該太陽熱温水装置をスタック構造とする。 As described above, the present invention has been made in view of the current situation where the installation location of the solar power generation device and the solar water heater is restricted, and impairs the utilization efficiency of solar radiation energy by the solar power generator and the solar water heater. The solar power generation device is formed on the light receiving surface of the solar water heating device in the solar light incident path to the solar water heating device in order to photoelectrically convert solar radiation energy and use heat. A battery module is placed, and the solar power generator and the solar water heater are stacked.
類似構造を特徴とする従来例として特許文献1が見られ、該従来例では太陽電池モジュールが発する熱を温水生成のために集熱する集熱器が、当該太陽電池モジュールの裏側に接するように備えることを特徴としている。しかしながら、本発明は太陽電池モジュールの主要構成部材であるシリコン材料の光起電力効果が太陽光スペクトルの可視光領域の波長においてピーク感度を示し、温熱効果を有する赤外線に対しては、該太陽電池モジュールの構成部材であるシリコン薄膜が、酸化インジウム錫で構成される透明電極と共に高い透過率特性を示すことを、巧妙に利用した太陽光発電装置および太陽熱温水装置である点で該特許文献1による発明とは異なる。
太陽光発電装置の太陽電池モジュールや太陽熱温水装置の受光面が、より大量の太陽放射エネルギーを受け取るには、広い面積の該受光面を日照条件の良好な南面で、且つ高い建造物や山などにより日射が遮られることが無い建造物の屋根上などの高所に設置する必要があるが、太陽光発電装置の太陽電池モジュールや太陽熱温水装置の設置に必要な十分な設置場所が確保できるとは限らず、設置場所の制約に対する対応手段を提供する。 In order for the solar cell module of the solar power generation device and the light receiving surface of the solar water heater to receive a larger amount of solar radiant energy, the light receiving surface of a large area should be located on the south surface with good sunlight conditions, high buildings, mountains, etc. It is necessary to install it on a high place such as on the roof of a building where solar radiation is not obstructed by it, but if you can secure a sufficient installation place necessary for installing solar cell modules and solar water heaters of solar power generators Without being limited, it provides a means for responding to restrictions on installation locations.
また、太陽熱温水装置の受光面には内部の集熱管の保護および保温のため、ガラス部材により構成された透明の天面カバーが使用されるが、該ガラス部材よりも軽量で耐衝撃性の高い透明の樹脂部材で該天面カバーを構成した場合、該樹脂部材製の該天面カバーが長期間にわたり太陽光に含まれる強い紫外線に暴露され、該樹脂部材の材料劣化によるマイクロクラックの発生により光散乱を生じ、該天面カバーの透明度低下により太陽熱温水装置内部への太陽熱エネルギーの到達量が低下し、温熱効果低下の原因となるため、樹脂部材により構成された太陽熱温水装置の天面カバーの紫外線からの保護手段を提供する。 In addition, a transparent top cover made of a glass member is used on the light receiving surface of the solar water heater to protect and keep the heat collecting tube inside, but it is lighter and has higher impact resistance than the glass member. When the top cover is composed of a transparent resin member, the top cover made of the resin member is exposed to strong ultraviolet rays contained in sunlight over a long period of time, and microcracks are generated due to material deterioration of the resin member. Since the amount of solar thermal energy reaching the inside of the solar water heater decreases due to light scattering and the transparency of the top cover is reduced, the thermal effect is reduced. Therefore, the top cover of the solar water heater constituted by a resin member Provides protection from UV rays.
太陽光発電装置および太陽熱温水装置において、該太陽熱温水装置への太陽光入射経路中の該太陽熱温水装置の受光面上に該太陽光発電装置を構成する太陽電池モジュールを載置し、該太陽電池モジュールおよび該太陽熱温水装置をスタック構造とする。 In a solar power generation device and a solar water heater, a solar cell module constituting the solar power generator is placed on a light receiving surface of the solar water heater in a sunlight incident path to the solar water heater, and the solar cell The module and the solar water heater are stacked.
太陽電池モジュールの筐体底面を軽量の透明樹脂部材により構成した該太陽電池モジュールを太陽熱温水装置の受光面上に載置し、該太陽電池モジュールを該太陽熱温水装置の天面カバーとして兼用する。 The solar cell module in which the housing bottom surface of the solar cell module is configured with a lightweight transparent resin member is placed on the light receiving surface of the solar water heater, and the solar cell module is also used as the top cover of the solar water heater.
太陽熱温水装置の受光面上に太陽電池モジュールを載置したスタック構造とすることにより、太陽放射エネルギーが有する可視光領域のエネルギーを太陽光発電装置を構成する太陽電池モジュールが光電変換用として利用し、さらに該太陽電池モジュールを透過した該太陽放射エネルギーが有する温熱効果の大きい赤外線以上の長波長領域のエネルギーを、該太陽電池モジュールの直下に配設した太陽熱温水装置の熱エネルギー源として利用することにより、広い波長領域に分布する太陽放射エネルギーを有効に活用することが可能となると共に、太陽光発電装置の光起電力効果および太陽熱温水装置の温熱効果を損なうことなく、太陽光発電装置を構成する太陽電池モジュールおよび太陽熱温水装置の設置場所の制約を満たしながら、所要のクリーンエネルギーを得ることが可能となる。 By adopting a stack structure in which a solar cell module is placed on the light receiving surface of a solar water heater, the solar cell module that constitutes the solar power generator uses the energy in the visible light region of solar radiation energy for photoelectric conversion. Further, the energy of the long wavelength region of infrared rays or more having a large thermal effect which the solar radiation energy transmitted through the solar cell module has is used as a thermal energy source of a solar water heater disposed immediately below the solar cell module. Makes it possible to effectively utilize solar radiant energy distributed over a wide wavelength range, and to configure a solar power generation device without impairing the photovoltaic effect of the solar power generation device and the thermal effect of the solar water heater. To meet the restrictions on the installation location of solar cell modules and solar water heaters It is possible to obtain a clean energy.
図1は本発明の第1の実施形態を示す斜視図である。説明のため太陽光発電装置の構成要素である太陽電池モジュール20および太陽熱温水装置11を上下に分離させ示しているが、本発明の実施形態では図1中に鎖線矢印で示すごとく該太陽電池モジュール20は太陽熱温水装置11の集熱部11bの上面に当接し載置される。太陽電池モジュール20内部には、多数の小さな太陽電池セルが面状に配設され収容されている。図2は図1中の太陽電池モジュール20中に配設される各太陽電池セル21の縦断面図である。図2に示すごとく該太陽電池セル21は、電気伝導を支配する多数キャリヤが電子であるn型シリコン21cおよび多数キャリヤが正孔であるp型シリコン21dを接合したpn接合部21e、n型シリコン21cの外表面に形成された透明電極21aおよびp型シリコン21dの外表面に形成された透明電極21bにより構成されている。
FIG. 1 is a perspective view showing a first embodiment of the present invention. For the sake of explanation, the
太陽電池セル21に太陽放射線9中の可視光線9aが照射されると光量子が原子に衝突し、電子および正孔の対が発生する。この電子および正孔が内部電界および拡散により相互に逆方向に流れ、電流が発生し、この現象を光起電力効果と呼ぶ。この時、太陽電池セル21を構成するn型シリコン21cおよびp型シリコン21dの外表面に形成された透明電極21aおよび21bに外部負荷22を接続すると、図2中に実線矢印で示すごとくp型シリコン21dから外部負荷22を通過し、n型シリコン21cに向かって電流が流れ、外部負荷22に仕事をさせることが出来る。
When the
太陽電池の光電変換効率は太陽放射線のスペクトル分布および太陽電池セルの感度スペクトル分布に依存する。図3に示すごとく該太陽電池セルの構成部材として実用に供されているアモルファスシリコン部材の分光感度特性は、波長が600nmでピークを示し、可視光領域である400〜800nmのほぼ全域にわたり感度を有している。アモルファスシリコン部材により構成される太陽電池セルの理論的な光電変換効率は25%であるが、太陽電池セル内部でのキャリヤ再結合や直列抵抗損失などの種々の動作原理上の損失のため実際には10%程度であり、現在も光電変換効率向上のための努力が継続的に払われている。 The photoelectric conversion efficiency of a solar cell depends on the spectral distribution of solar radiation and the sensitivity spectral distribution of solar cells. As shown in FIG. 3, the spectral sensitivity characteristics of an amorphous silicon member that is practically used as a constituent member of the solar battery cell shows a peak at a wavelength of 600 nm, and has a sensitivity over almost the entire range of 400 to 800 nm that is a visible light region. Have. The theoretical photoelectric conversion efficiency of a solar cell composed of an amorphous silicon member is 25%, but it is actually due to various operating principle losses such as carrier recombination and series resistance loss inside the solar cell. Is about 10%, and efforts to improve photoelectric conversion efficiency are still being made.
一方、単結晶シリコンを構成部材とする太陽電池セルの分光感度特性のピーク波長は約800nmで、理論的な変換効率は約30〜40%であるが前記同様の理由から、実際の光電変換効率は20%弱である。しかしながら、前記アモルファスシリコンを構成部材とする太陽電池セルに比較し光電変換効率が高いため、今後の主流になると考えられている。該単結晶シリコン太陽電池セルの構成部材である単結晶シリコン材料の削減によるコストパフォーマンス向上のため、太陽電池セルの厚さを約400μmから200μm以下にする技術開発も推進されており、該太陽電池のセル厚の薄型化は、太陽放射線中で温熱効果の大きい赤外線透過率を向上させ、本発明の太陽電池モジュール直下に配設した太陽熱温水装置の温熱効果をさらに向上させることができる。 On the other hand, the peak wavelength of the spectral sensitivity characteristic of the solar cell using single crystal silicon as a constituent member is about 800 nm, and the theoretical conversion efficiency is about 30 to 40%. Is just under 20%. However, since the photoelectric conversion efficiency is higher than that of a solar battery cell using amorphous silicon as a constituent member, it is considered to become the mainstream in the future. In order to improve cost performance by reducing the single-crystal silicon material that is a constituent member of the single-crystal silicon solar cell, technological development for reducing the thickness of the solar cell from about 400 μm to 200 μm or less has been promoted. The thinning of the cell thickness can improve the infrared transmittance having a large thermal effect in solar radiation, and can further improve the thermal effect of the solar water heater disposed immediately below the solar cell module of the present invention.
図2に示すごとく、太陽電池セル21の光起電力効果を生じる要素部分であるn型シリコン21cおよびp型シリコン21dの外表面には、該太陽電池セル21から外部へ電気エネルギーを取り出すための透明電極21aおよび21bが形成されている。該透明電極21aは光起電力効果を生ずるn型シリコン21cおよびp型シリコン21dに到達すべき太陽放射線9を遮断させないために、透明電極21bと共に太陽放射線の放射スペクトルに対する透過率は図4に示すごとく可視光領域および赤外線領域での透過率が高く、且つ抵抗率の低い酸化インジウム錫(Indium Tin Oxide)を透明電極材料とした薄膜で形成されている。
As shown in FIG. 2, the outer surface of the n-
赤外線カメラのレンズ部材としてシリコンが利用されているように、シリコン部材の透過スペクトル分布は、可視光領域である400nm〜800nmよりも長波長側の1200nm〜7000nmの広い範囲のスペクトル領域に分布し、この波長領域内に温熱効果の高い赤外線が含まれている。本発明では図2に示すごとく太陽放射線9に含まれる可視光線9aは、太陽電池セル21の光起電力効果に寄与し、可視光線9aより波長が長く温熱効果を有する赤外線9bは太陽電池モジュール20を構成する該太陽電池セル21を透過し、該太陽電池セル21の直下に配設された太陽熱温水装置11に吸収され、太陽熱温水装置11の温熱効果に寄与している。
As silicon is used as a lens member of an infrared camera, the transmission spectrum distribution of the silicon member is distributed in a wide spectral region of 1200 nm to 7000 nm on the longer wavelength side than the visible light region of 400 nm to 800 nm, Infrared rays having a high thermal effect are included in this wavelength region. In the present invention, as shown in FIG. 2, the
図1中に示す太陽熱温水装置11の集熱部11b内には多数の集熱管11aが配設され、貯湯部11dには給水管11eおよび給湯管11fが接続されている。太陽放射線9の放射エネルギーを構成する赤外線9bは、太陽電池モジュール20を透過し、該太陽熱温水装置11の該集熱部11bで吸収され、集熱管11a内部の水に伝わる。熱を受け取った水は、膨張し比重が軽くなり集熱管11a中を上昇し貯湯部11dの上部に移動し、貯湯部11dの底の低温水と入れ替わる。この自然循環を繰り返しながら貯湯部11d内部の水温が徐々に上昇する。
A large number of
現在、市販されている前記構成による太陽熱温水装置の集熱効率は50〜60%で、光電変換効率が10〜20%程度の太陽光発電装置と比較すると極めて高いエネルギー利用効率を実現している。即ち、太陽放射エネルギーを高効率で利用するには、太陽放射エネルギーの赤外線を直接に熱源として利用する手段としての太陽熱温水装置、および太陽放射エネルギーの可視光線を光電変換し電力源として利用する太陽光発電装置の両装置を併用することが好ましい。 Currently, the solar water heater with the above-mentioned configuration that is commercially available has a heat collection efficiency of 50 to 60%, and realizes extremely high energy utilization efficiency as compared with a photovoltaic power generation apparatus having a photoelectric conversion efficiency of about 10 to 20%. That is, in order to use solar radiant energy with high efficiency, a solar water heater as a means for directly using infrared rays of solar radiant energy as a heat source, and a solar that photoelectrically converts visible light of solar radiant energy and uses it as a power source It is preferable to use both devices of the photovoltaic device together.
図5(a)は本発明の実施形態を示す太陽電池モジュール20および太陽熱温水装置11の側面図、図5(b)は従来の太陽熱温水装置30の側面図である。図5(b)に示す従来の太陽熱温水装置30では、集熱部30bの上面に該集熱部30b内部の集熱管(図示せず)の保護および保温の目的でガラス部材により構成される透明の天面カバー30aが、該太陽熱温水装置30の筐体天面に載置されている。
FIG. 5A is a side view of the
本発明による実施形態では、図5(a)に示すごとく太陽電池モジュール20はガラス部材により構成された透明の天面カバー20aにより内部の太陽電池セルを保護しているが、底面は軽量化のため透明の樹脂部材により構成された底面カバー20bにより内部の太陽電池セルを支持および保護している。該底面カバー20bの構成部材である樹脂材料を劣化させる太陽放射エネルギー9に含まれる短波長領域の紫外線や可視光線9aは、太陽電池モジュール20内部の太陽電池セル21の構成部材であるシリコン部材を透過しないため、該太陽電池モジュール20の筐体底面の樹脂部材により構成された該底面カバー20bの劣化が軽減される。
In the embodiment according to the present invention, as shown in FIG. 5 (a), the
また、太陽熱温水装置11の集熱部11b上面に当接して該太陽電池モジュール20を載置することにより、該太陽電池モジュール20の底面カバー20bが太陽熱温水装置11内部の集熱管を保護する天面カバーの機能をも兼ねることが出来、従来の太陽熱温水装置30が必要としていたガラス部材による天面カバー30aを排除することが出来、省資材によるコスト低減および装置の軽量化を実現することが可能となる。
Further, by placing the
9: 太陽放射線
9a: 可視光線
9b: 赤外線
11: 太陽熱温水装置
11a: 集熱管
11b: 集熱部
11d: 貯湯部
11e: 給水管
11f: 給湯管
20: 太陽電池モジュール
20a: 天面カバー
20b: 底面カバー
21: 太陽電池セル
21a: 透明電極
21b: 透明電極
21c: n型シリコン
21d: p型シリコン
21e: pn接合部
22: 外部負荷
30: 太陽熱温水装置
30a: 天面カバー
30b: 集熱部
31: 太陽電池モジュール
9:
Claims (4)
The solar power generation device and solar water heater according to claim 3, wherein the bottom surface of the casing of the solar cell module constituting the solar power generation device is made of a transparent resin member. Hot water device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005142702A JP2006317128A (en) | 2005-05-16 | 2005-05-16 | Photovoltaic power generator and solar heat hot-water unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005142702A JP2006317128A (en) | 2005-05-16 | 2005-05-16 | Photovoltaic power generator and solar heat hot-water unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006317128A true JP2006317128A (en) | 2006-11-24 |
Family
ID=37537956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005142702A Pending JP2006317128A (en) | 2005-05-16 | 2005-05-16 | Photovoltaic power generator and solar heat hot-water unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006317128A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075584A1 (en) * | 2006-12-20 | 2008-06-26 | Electric Power Development Co., Ltd. | Photovoltaic generation heat collecting unit |
JP2010043836A (en) * | 2008-07-15 | 2010-02-25 | Kurita Water Ind Ltd | Solar energy collecting method and device |
JP2010260039A (en) * | 2009-05-08 | 2010-11-18 | Yukichi Horioka | Anhydrous human waste treatment method and anhydrous treatment toilet system of human waste |
JP2011023602A (en) * | 2009-07-16 | 2011-02-03 | Ohbayashi Corp | Solar battery module, and construction method |
JP2011023601A (en) * | 2009-07-16 | 2011-02-03 | Ohbayashi Corp | Solar battery unit, and construction method |
JP2011023600A (en) * | 2009-07-16 | 2011-02-03 | Ohbayashi Corp | Solar battery unit, and construction method |
US20110126885A1 (en) * | 2008-07-30 | 2011-06-02 | Solaris Synergy Ltd. | Photovoltaic solar power generation system |
JP2013002709A (en) * | 2011-06-15 | 2013-01-07 | Tajima Oyo Kako Kk | Solar system |
JP2014520501A (en) * | 2011-05-31 | 2014-08-21 | パワー・パネル・インコーポレイテッド | Photovoltaic panel for power panel |
JP2014189993A (en) * | 2013-03-26 | 2014-10-06 | Panahome Corp | Roof structure |
-
2005
- 2005-05-16 JP JP2005142702A patent/JP2006317128A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008151490A (en) * | 2006-12-20 | 2008-07-03 | Electric Power Dev Co Ltd | Photovoltaic power generation heat collection unit |
WO2008075584A1 (en) * | 2006-12-20 | 2008-06-26 | Electric Power Development Co., Ltd. | Photovoltaic generation heat collecting unit |
JP2010043836A (en) * | 2008-07-15 | 2010-02-25 | Kurita Water Ind Ltd | Solar energy collecting method and device |
US20110126885A1 (en) * | 2008-07-30 | 2011-06-02 | Solaris Synergy Ltd. | Photovoltaic solar power generation system |
US8283555B2 (en) * | 2008-07-30 | 2012-10-09 | Solaris Synergy Ltd. | Photovoltaic solar power generation system with sealed evaporative cooling |
JP2010260039A (en) * | 2009-05-08 | 2010-11-18 | Yukichi Horioka | Anhydrous human waste treatment method and anhydrous treatment toilet system of human waste |
JP4693916B2 (en) * | 2009-05-08 | 2011-06-01 | 佑吉 堀岡 | Anhydrous manure treatment method and anhydrous manure treatment toilet system |
JP2011023600A (en) * | 2009-07-16 | 2011-02-03 | Ohbayashi Corp | Solar battery unit, and construction method |
JP2011023601A (en) * | 2009-07-16 | 2011-02-03 | Ohbayashi Corp | Solar battery unit, and construction method |
JP2011023602A (en) * | 2009-07-16 | 2011-02-03 | Ohbayashi Corp | Solar battery module, and construction method |
JP2014520501A (en) * | 2011-05-31 | 2014-08-21 | パワー・パネル・インコーポレイテッド | Photovoltaic panel for power panel |
JP2013002709A (en) * | 2011-06-15 | 2013-01-07 | Tajima Oyo Kako Kk | Solar system |
JP2014189993A (en) * | 2013-03-26 | 2014-10-06 | Panahome Corp | Roof structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006317128A (en) | Photovoltaic power generator and solar heat hot-water unit | |
ES2346358T3 (en) | PHOTOVOLTAIC PLANT. | |
KR101979659B1 (en) | Building Integrated Photovoltaic and Thermal system | |
US20040055631A1 (en) | Hybrid solar energy collector | |
Vivar et al. | Initial field performance of a hybrid CPV‐T microconcentrator system | |
Gupta et al. | Experimental study of combined transparent solar panel and large Fresnel lens concentrator based hybrid PV/thermal sunlight harvesting system | |
JP2013136999A (en) | Solar light and heat hybrid power generation system | |
JP2009218383A (en) | Solar energy utilization device | |
US20110192440A1 (en) | Compact parabolic solar concentrators and cooling and heat extraction system | |
WO2011072708A1 (en) | Solar power generator module | |
JP3818651B2 (en) | Solar power system | |
KR101723602B1 (en) | Movable solar heat blower for leisure with the solar heat collection portion | |
WO2019186161A1 (en) | Hybrid photovoltaic-thermal collector | |
KR101278718B1 (en) | Hybrid type solar energy using system | |
KR101009688B1 (en) | Hybrid module for solar energy | |
KR101145925B1 (en) | Photovoltaic thermal combined module | |
JP2004317117A (en) | Solar heat collector with solar power generation function | |
TWI614909B (en) | Lightweight solar cell module | |
JP2014228179A (en) | Sunlight cogeneration device, sunlight cogeneration system | |
Escarra et al. | A hybrid CPV/T system featuring transmissive, spectrum-splitting concentrator photovoltaics | |
KR20120056648A (en) | Electro-generation system with function for heating of water using solar cell and thermo-electric device | |
Teja et al. | Experimental Investigation on Hybrid Photovoltaic and Thermal Solar Collector System | |
Yazawa et al. | Material optimization for concentrated solar photovoltaic and thermal co-generation | |
Tripanagnostopoulos | Hybrid photovoltaic/thermal collectors | |
JPS595807B2 (en) | Hybrid solar collector |