JP2006315960A - Tricyclodecanediol di(meth)acrylate and method for producing the same - Google Patents

Tricyclodecanediol di(meth)acrylate and method for producing the same Download PDF

Info

Publication number
JP2006315960A
JP2006315960A JP2005137252A JP2005137252A JP2006315960A JP 2006315960 A JP2006315960 A JP 2006315960A JP 2005137252 A JP2005137252 A JP 2005137252A JP 2005137252 A JP2005137252 A JP 2005137252A JP 2006315960 A JP2006315960 A JP 2006315960A
Authority
JP
Japan
Prior art keywords
meth
tricyclodecanediol
acrylic acid
acrylate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005137252A
Other languages
Japanese (ja)
Inventor
Junichi Kamei
淳一 亀井
Katsunori Hayashi
克則 林
Akihiro Kobayashi
明洋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005137252A priority Critical patent/JP2006315960A/en
Publication of JP2006315960A publication Critical patent/JP2006315960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain tricyclodecanediol di(meth)acrylate that has excellent curability, water resistance, flexibility and alkali resistance and is produced by reacting tricyclodecanediol with (meth)acrylic acid or a (meth)acrylic acid ester in the presence of a catalyst and to provide a method for producing the same. <P>SOLUTION: The tricyclodecanediol di(meth)acrylate is represented by general formula (I) (R<SP>1</SP>is a hydrogen atom or a methyl group). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱、紫外線照射、電子線照射等により容易に重合しうる新規なトリシクロデカンジオールジ(メタ)アクリレート及びその製造方法に関する。   The present invention relates to a novel tricyclodecanediol di (meth) acrylate that can be easily polymerized by heat, ultraviolet irradiation, electron beam irradiation, and the like, and a method for producing the same.

紫外線硬化型または電子線硬化型樹脂には、硬化性成分として種々の(メタ)アクリル酸エステルが使用されている。これらの光硬化性樹脂組成物を利用した用途として、従来からプラスチック、紙、木、無機質素材等における塗料、インキ、接着剤として用いられている。最近では、半導体、液晶に代表される電子材料分野や光ファイバー、光学レンズ等に代表されるオプトエレクトロニクス分野、さらには医療分野等に拡大してきている。   Various (meth) acrylic acid esters are used as the curable component in the ultraviolet curable resin or the electron beam curable resin. Conventionally, these photocurable resin compositions have been used as paints, inks and adhesives in plastics, paper, wood, inorganic materials, and the like. Recently, the field has expanded to the field of electronic materials typified by semiconductors and liquid crystals, the field of optoelectronics typified by optical fibers and optical lenses, and the field of medicine.

そのような中で、特にジシクロペンタジエン誘導体のような脂環式骨格を有する(メタ)アクリル酸エステルは、優れた硬化性、耐水性、可とう性、耐アルカリ性を有することで知られている。さらに、優れた硬化性を示すジシクロペンタジエンのジ(メタ)アクリル酸誘導体としては、現在までのところトリシクロデカンジメチロールジ(メタ)アクリレートのみが知られている(特許文献1及び特許文献2参照)。しかし,トリシクロデカンジメチロールジ(メタ)アクリレートでは、必ずしも十分な硬化性、耐水性等を得られるとは言えない。   Among these, (meth) acrylic acid esters having an alicyclic skeleton such as dicyclopentadiene derivatives are known for having excellent curability, water resistance, flexibility and alkali resistance. . Furthermore, as a di (meth) acrylic acid derivative of dicyclopentadiene exhibiting excellent curability, only tricyclodecane dimethylol di (meth) acrylate is known so far (Patent Document 1 and Patent Document 2). reference). However, tricyclodecane dimethylol di (meth) acrylate does not always provide sufficient curability and water resistance.

特開平8−211130号公報JP-A-8-211130 特開2002−265886号公報JP 2002-265886 A

本発明は、上記の問題を解決し得る新規なトリシクロデカンジオールジ(メタ)アクリレートとその製造方法を提供するものである。   The present invention provides a novel tricyclodecanediol di (meth) acrylate that can solve the above problems and a method for producing the same.

本発明は、[1] 一般式(I)で表されるトリシクロデカンジオールジ(メタ)アクリレートに関する。   The present invention relates to [1] tricyclodecanediol di (meth) acrylate represented by the general formula (I).

Figure 2006315960
(一般式(I)中、Rは水素原子,又はメチル基を示す。)
また、本発明は、[2] 下式(II)で表されるトリシクロデカンジオールと一般式(III)で表される(メタ)アクリル酸又は(メタ)アクリル酸エステルとを触媒存在下で反応させることを特徴とする上記[1]に記載の一般式(I)のトリシクロデカンジオールジ(メタ)アクリレートの製造方法に関する。
Figure 2006315960
(In general formula (I), R 1 represents a hydrogen atom or a methyl group.)
The present invention also provides [2] tricyclodecanediol represented by the following formula (II) and (meth) acrylic acid or (meth) acrylic ester represented by the general formula (III) in the presence of a catalyst. The present invention relates to a method for producing a tricyclodecanediol di (meth) acrylate of the general formula (I) according to the above [1], characterized by reacting.

Figure 2006315960
(一般式(III)中、Rは水素原子又はメチル基、Rは炭素原子数1〜5のアルキル基を示す。)
また、本発明は、[3] 式(II)で表されるトリシクロデカンジオールと(メタ)アクリル酸とを触媒存在下で反応させることを特徴とする上記[2]に記載のトリシクロデカンジオールジ(メタ)アクリレートの製造方法に関する。
本発明では、トリシクロデカンジオールを原料として用い、エステル交換法、脱水エステル化法のいずれかの方法により一般式(I)で表されるトリシクロデカンジオールジ(メタ)アクリレートを製造することができる。
エステル交換法及び脱水エステル化法では、重合禁止剤及び触媒存在下、式(II)で表されるアルコールと一般式(III)で表される(メタ)アクリル酸エステル又は(メタ)アクリル酸とを反応させる。
Figure 2006315960
(In general formula (III), R 2 represents a hydrogen atom or a methyl group, and R 3 represents an alkyl group having 1 to 5 carbon atoms.)
[3] The tricyclodecane according to [2], wherein the tricyclodecanediol represented by the formula (II) and (meth) acrylic acid are reacted in the presence of a catalyst. The present invention relates to a method for producing diol di (meth) acrylate.
In the present invention, tricyclodecanediol di (meth) acrylate represented by the general formula (I) can be produced by using either a transesterification method or a dehydration esterification method using tricyclodecanediol as a raw material. it can.
In the transesterification method and dehydration esterification method, in the presence of a polymerization inhibitor and a catalyst, an alcohol represented by the formula (II) and a (meth) acrylic acid ester or (meth) acrylic acid represented by the general formula (III) React.

本発明のトリシクロデカンジオールジ(メタ)アクリレートは、優れた硬化性、耐水性、可とう性、耐アルカリ性を有し、トリシクロデカンジオールと(メタ)アクリル酸又は(メタ)アクリル酸エステルとを触媒存在下で反応させて製造することができる。本発明のトリシクロデカンジオールジ(メタ)アクリレートは、塗料・コーティング材料及び土木建築材料だけでなく、半導体・液晶に用いられる電子材料、また、光ファイバー、光学レンズ等に代表されるオプトエレクトロニクス材料、さらには医療材料として使用することができる。   The tricyclodecanediol di (meth) acrylate of the present invention has excellent curability, water resistance, flexibility and alkali resistance, and tricyclodecanediol and (meth) acrylic acid or (meth) acrylic acid ester Can be produced in the presence of a catalyst. The tricyclodecanediol di (meth) acrylate of the present invention is not only a paint / coating material and civil engineering / building material, but also an electronic material used for semiconductors / liquid crystals, an optoelectronic material represented by an optical fiber, an optical lens, etc. Furthermore, it can be used as a medical material.

本発明のトリシクロデカンジオールジ(メタ)アクリレート及びその製造方法の実施の形態について詳細に説明する。   Embodiments of the tricyclodecanediol di (meth) acrylate and the production method thereof of the present invention will be described in detail.

本発明のトリシクロデカンジオールジ(メタ)アクリレートは、エステル交換法により式(II)で表されるトリシクロデカンジオールと一般式(III)で表される(メタ)アクリル酸エステルをエステル化反応させて製造することができる。反応に際しては、一般式(III)で表される(メタ)アクリル酸エステルを、式(II)で表されるトリシクロデカンジオールに対して過剰に使用することが、反応を短時間に終わらせるため及び反応転化率を向上させるために好ましい。また、一般式(III)で表される(メタ)アクリル酸エステルとして、アクリル酸及びメタクリル酸のメチル、エチル、プロピル、ブチルエステル等が用いられる。このうち、メタクリル酸エステルの場合は、メチルエステルが好ましく、アクリル酸エステルの場合は、メチル、エチル、ブチルエステルの中から適宜選ばれる。   The tricyclodecanediol di (meth) acrylate of the present invention is an esterification reaction of tricyclodecanediol represented by the formula (II) and (meth) acrylic acid ester represented by the general formula (III) by a transesterification method. Can be manufactured. In the reaction, the (meth) acrylic acid ester represented by the general formula (III) is used excessively with respect to the tricyclodecanediol represented by the formula (II) to complete the reaction in a short time. Therefore, it is preferable for improving the reaction conversion rate. In addition, as the (meth) acrylic acid ester represented by the general formula (III), methyl, ethyl, propyl, butyl ester or the like of acrylic acid and methacrylic acid is used. Among these, in the case of methacrylic acid ester, methyl ester is preferable, and in the case of acrylic acid ester, it is appropriately selected from methyl, ethyl and butyl esters.

エステル交換法においては、トリシクロデカンジオール1モルに対して、(メタ)アクリル酸エステルを3〜15モルの範囲で使用することでき、好ましくは3〜12モル、より好ましくは4〜8モルの範囲で使用することができる。トリシクロデカンジオール1モルに対して、(メタ)アクリル酸エステルの使用量が3モル未満であると反応が遅くなり、未反応のトリシクロデカンジオールが残りやすい傾向がある。一方、(メタ)アクリル酸エステルの使用量が15モルを超えると生産性が悪くなり、反応終了後に過剰の(メタ)アクリル酸エステルを回収する工程に長時間を要する傾向がある。   In the transesterification method, (meth) acrylic acid ester can be used in the range of 3 to 15 mol, preferably 3 to 12 mol, more preferably 4 to 8 mol, per 1 mol of tricyclodecanediol. Can be used in a range. When the amount of (meth) acrylic acid ester used is less than 3 moles relative to 1 mole of tricyclodecanediol, the reaction becomes slow and unreacted tricyclodecanediol tends to remain. On the other hand, when the amount of the (meth) acrylic acid ester used exceeds 15 mol, the productivity tends to be poor, and it takes a long time to recover the excess (meth) acrylic acid ester after the reaction.

このエステル交換反応に使用される触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸化物、リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウム−t−ブトキシド等のアルカリ金属アルコキシド、リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミド、及びオルトチタン酸テトラメチル、オルトチタン酸テトラエチル、オルトチタン酸テトラプロピル、オルトチタン酸テトライソプロピル、オルトチタン酸テトラブチル等のオルトチタン酸アルキルがあげられる。これらの中でも、触媒の取り扱いの容易さからアルカリ金属アミドまたはチタン酸アルキル(炭素原子数1〜4のアルキル)が好ましい。   Catalysts used in this transesterification include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate, lithium methoxide, Alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium tert-butoxide, alkali metal amides such as lithium amide, sodium amide, potassium amide, and tetramethyl orthotitanate, tetraethyl orthotitanate, tetrapropyl orthotitanate And alkyl orthotitanate such as tetraisopropyl orthotitanate and tetrabutyl orthotitanate. Among these, alkali metal amide or alkyl titanate (alkyl having 1 to 4 carbon atoms) is preferable because of easy handling of the catalyst.

また、本発明のトリシクロデカンジオールジ(メタ)アクリレートは、脱水エステル化法により式(II)で表されるトリシクロデカンジオールと一般式(III)で表される(メタ)アクリル酸をエステル化反応させて製造することができる。
このとき、トリシクロデカンジオール1モルに対して(メタ)アクリル酸を1〜3モルの範囲内で使用することが好ましく、1.2〜2モルの範囲内がより好ましい。アクリル酸が1モル未満であると反応が遅くなり、未反応のトリシクロデカンジオールが残る傾向にある。一方、(メタ)アクリル酸が3モルを超えると、生産性が悪くなる傾向にある。
Further, the tricyclodecanediol di (meth) acrylate of the present invention is obtained by esterifying tricyclodecanediol represented by the formula (II) and (meth) acrylic acid represented by the general formula (III) by a dehydration esterification method. It can be produced by a reaction.
At this time, it is preferable to use (meth) acrylic acid within a range of 1 to 3 mol, and more preferably within a range of 1.2 to 2 mol, relative to 1 mol of tricyclodecanediol. If the acrylic acid is less than 1 mole, the reaction is slow and unreacted tricyclodecanediol tends to remain. On the other hand, when (meth) acrylic acid exceeds 3 mol, the productivity tends to deteriorate.

脱水エステル化反応に使用される触媒としては、硫酸、ベンゼンスルホン酸、メタンスルホン酸、パラトルエンスルホン酸、イオン交換樹脂などの酸性触媒が使用できるが、合成時に副生成物がほとんど生じない点でパラトルエンスルホン酸が好ましい。   As the catalyst used in the dehydration esterification reaction, an acidic catalyst such as sulfuric acid, benzenesulfonic acid, methanesulfonic acid, paratoluenesulfonic acid, ion exchange resin, etc. can be used, but by-products are hardly generated during synthesis. Paratoluenesulfonic acid is preferred.

本発明における触媒の使用量は、(メタ)アクリル酸エステルまたは(メタ)アクリル酸とトリシクロデカンジオール(トリシクロデカノール)の合計量に対して0.01〜10重量%の範囲であることが好ましく、0.1〜5.0重量%の範囲であることがより好ましい。触媒の使用量が(メタ)アクリル酸エステルまたは(メタ)アクリル酸とトリシクロデカンジオール(トリシクロデカノール)の合計量に対して0.01重量%未満であると反応の進行が遅くなる傾向があり、5.0重量%を超えても特に効果がない傾向がある。エステル交換反応において、特にオルトチタン酸テトラアルキル類を触媒として使用する場合には、反応系中の水分が多いと触媒活性が失われやすいので、予め触媒を加える前に反応混合物を加熱還流して系内の水分を少なくしておくか、反応中に水分混入を防ぐことが好ましい。   The amount of the catalyst used in the present invention is in the range of 0.01 to 10% by weight with respect to the total amount of (meth) acrylic acid ester or (meth) acrylic acid and tricyclodecanediol (tricyclodecanol). Is preferable, and the range of 0.1 to 5.0% by weight is more preferable. When the amount of the catalyst used is less than 0.01% by weight based on the total amount of (meth) acrylic acid ester or (meth) acrylic acid and tricyclodecanediol (tricyclodecanol), the progress of the reaction tends to be slow Even if it exceeds 5.0% by weight, there is a tendency not to be particularly effective. In the transesterification reaction, especially when tetraalkyl orthotitanate is used as a catalyst, the catalytic activity tends to be lost if there is a lot of water in the reaction system, so the reaction mixture is heated to reflux before adding the catalyst beforehand. It is preferable to reduce the moisture in the system or prevent moisture from entering during the reaction.

本発明の脱水エステル化反応では、有機溶剤としてベンゼン、トルエン、キシレンを単独または二種以上を組み合わせて用いることができ、取り扱いの点からトルエン単独が好ましい。また、エステル交換反応においても、不活性溶媒を適宜使用することができる。例えば、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、オクタン、イソオクタン、シクロヘキサン等の炭化水素類やジオキサン等のエーテル類などが挙げられる。   In the dehydration esterification reaction of the present invention, benzene, toluene and xylene can be used alone or in combination of two or more as the organic solvent, and toluene alone is preferred from the viewpoint of handling. Also in the transesterification reaction, an inert solvent can be appropriately used. Examples thereof include hydrocarbons such as benzene, toluene, xylene, hexane, heptane, octane, isooctane and cyclohexane, and ethers such as dioxane.

本発明の反応系においては、重合禁止剤を添加することが望ましい。重合禁止剤としては、ヒドロキノン、ヒドロキノンモノメチルエーテル、t−ブチルカテコール、t−ブチルヒドロキンン、2,4−ジメチル−6−t−ブチルフェノール、2,6−t−ブチル−p−クレゾール、パラベンゾキノン、2,5−ジフェニルパラベンゾキノン、フェノチアジン、ジフェニルアミン等が使用される。製品の貯蔵時及び使用時に着色の少ない重合禁止剤として、ヒドロキノンモノメチルエーテルが好ましい。   In the reaction system of the present invention, it is desirable to add a polymerization inhibitor. As the polymerization inhibitor, hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, t-butylhydroquinone, 2,4-dimethyl-6-t-butylphenol, 2,6-t-butyl-p-cresol, parabenzoquinone, 2,5-diphenylparabenzoquinone, phenothiazine, diphenylamine and the like are used. Hydroquinone monomethyl ether is preferred as a polymerization inhibitor that is less colored during storage and use of the product.

本発明における重合禁止剤の使用量は、トリシクロデカンジオールに対して5〜2000ppmが好ましく、10〜500ppmがより好ましい。重合禁止剤の使用量がトリシクロデカンジオールに対して5ppm未満であると重合禁止の添加効果が十分でない傾向があり、また、2000ppmを超えると製品(トリシクロデカンジオールジ(メタ)アクリレート)をポリマ化する際に、ポリマ化を阻害する傾向がある。   The amount of the polymerization inhibitor used in the present invention is preferably 5 to 2000 ppm, more preferably 10 to 500 ppm, based on tricyclodecanediol. If the amount of the polymerization inhibitor used is less than 5 ppm relative to tricyclodecanediol, the addition effect of polymerization inhibition tends to be insufficient, and if it exceeds 2000 ppm, the product (tricyclodecanediol di (meth) acrylate) When polymerizing, there is a tendency to inhibit polymerization.

本発明においては、反応液の重合防止のために、分子状酸素を吹き込んで反応させることが望ましい。分子状酸素としては、希釈された状態で使用することが好ましく、好適なものとして空気が用いられる。また、分子状酸素の吹き込みは、原料の(メタ)アクリル酸エステルまたは(メタ)アクリル酸が蒸発して蒸気として存在したり、上部の釜壁等に凝縮した(メタ)アクリル酸エステルまたは(メタ)アクリル酸の重合を防止するためにも好ましい。分子状酸素の使用量としては、反応器の形状や攪拌動力によっても影響を受けるが、トリシクロデカンジオール1モルに対して5〜500ml/分(空気の場合、25〜2500ml/分)の速度で吹き込むことが好ましい。   In the present invention, in order to prevent polymerization of the reaction solution, it is desirable to react by blowing molecular oxygen. The molecular oxygen is preferably used in a diluted state, and air is preferably used. In addition, the blowing of molecular oxygen is caused by the vaporization of (meth) acrylic acid ester or (meth) acrylic acid as a raw material or the presence of vapor or condensation of (meth) acrylic acid ester or (metha ) Also preferred for preventing polymerization of acrylic acid. The amount of molecular oxygen used is affected by the shape of the reactor and the stirring power, but the rate is 5 to 500 ml / min (25 to 2500 ml / min in the case of air) with respect to 1 mol of tricyclodecanediol. It is preferable to blow in.

反応は、常圧又は減圧下60〜130℃で行うことが好ましい。反応の形態としては、トリシクロデカンジオールと(メタ)アクリル酸を反応させる脱水エステル化、もしくはトリシクロデカンジオールと(メタ)アクリル酸エステルを反応させるエステル交換法等の当業者間で一般的に知られている方法を採用できる。脱水エステル化法では、原料アルコールの転化率を高めるために副生する水を共沸溶媒と共に除去する必要がある。この点で、油水分離装置を用いることが好ましい。また、エステル交換法では、原料アルコールの転化率を高めるため、副生する低級アルコールを系外に留去する必要がある。この点で、精留塔の付いた回分式反応槽を使用することが好ましい。   The reaction is preferably performed at 60 to 130 ° C. under normal pressure or reduced pressure. As a form of reaction, it is common among those skilled in the art such as dehydration esterification in which tricyclodecanediol and (meth) acrylic acid are reacted, or transesterification method in which tricyclodecanediol and (meth) acrylic acid ester are reacted. Known methods can be employed. In the dehydration esterification method, it is necessary to remove by-product water together with the azeotropic solvent in order to increase the conversion rate of the raw alcohol. In this respect, it is preferable to use an oil-water separator. Moreover, in the transesterification method, in order to increase the conversion rate of raw material alcohol, it is necessary to distill off the by-produced lower alcohol out of the system. In this respect, it is preferable to use a batch reactor equipped with a rectification column.

エステル交換法において、得られる製品の色相改善等のために反応終了後の反応液をアルカリ処理することもできる。アルカリ処理に使用するアルカリとしては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩等の塩基性化合物を固形のまま使用する方法と、水溶液として使用する方法とがある。また、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシドを固形又はアルコール溶液として使用することもできる。さらには、リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミドを使用することもできる。また、酸化マグネシウム、シリカマグネシア、塩基性イオン交換樹脂等の固形アルカリも使用することができる。   In the transesterification method, the reaction solution after completion of the reaction can be subjected to alkali treatment in order to improve the hue of the product obtained. As the alkali used for the alkali treatment, basic compounds such as alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate are solid. There are a method of using it as it is and a method of using it as an aqueous solution. Alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium t-butoxide and the like can also be used as a solid or alcohol solution. Furthermore, alkali metal amides such as lithium amide, sodium amide, and potassium amide can also be used. Moreover, solid alkalis, such as magnesium oxide, a silica magnesia, a basic ion exchange resin, can also be used.

本発明の脱水エステル化法では、反応終了後の反応液から未反応のアクリル酸、触媒、不純物、着色成分等を除去するために中和洗浄される。中和洗浄は公知の方法を採用することができるが、本発明の化合物は特に中和時のエステル分解(ケン化)が起こりやすい。そこで、アルカリ水溶液で中和を行う前に、水又は中性塩水溶液で洗浄を行うことが好ましい。   In the dehydration esterification method of the present invention, neutralization washing is performed to remove unreacted acrylic acid, catalyst, impurities, coloring components and the like from the reaction solution after completion of the reaction. Although neutralization washing can employ a known method, the compound of the present invention is particularly susceptible to ester decomposition (saponification) during neutralization. Therefore, it is preferable to perform washing with water or a neutral salt aqueous solution before neutralization with the alkaline aqueous solution.

脱水エステル化法において、中和の前に行う水洗には、食塩、硫安等の水溶液又は水が用いられ、この中で食塩水がより好ましい。中和の前に行う水洗に用いられる水溶液又は水の量は反応が終了した反応液に対して2〜30重量%で行うことが好ましく、5〜15重量%がより好ましい。さらに、この洗浄用の水溶液の濃度は0〜30重量%で行うことが好ましく、15〜20重量%がより好ましい。   In the dehydration esterification method, an aqueous solution such as sodium chloride or ammonium sulfate or water is used for washing with water before neutralization, and among these, saline is more preferable. The amount of the aqueous solution or water used for the water washing performed before the neutralization is preferably 2 to 30% by weight, more preferably 5 to 15% by weight with respect to the reaction solution after the reaction. Furthermore, the concentration of the aqueous solution for washing is preferably 0 to 30% by weight, and more preferably 15 to 20% by weight.

脱水エステル化法における中和には例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム等のアルカリ性の水溶液が用いられる。中和に用いられるアルカリ性物質はエステル化反応が終了した反応液の中和当量の1.01〜1.5倍として中和を行うことが好ましい。アルカリ性物質が、1.01倍未満であると中和が不十分である傾向があり、1.5倍を超えると廃水が増え、エステル分解(ケン化)が起こる傾向がある。ここで用いるアルカリ水溶液の濃度は1重量%以上で行うことが好ましく、5〜15重量%がより好ましい。   For neutralization in the dehydration esterification method, for example, an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate or the like is used. The alkaline substance used for neutralization is preferably neutralized by 1.01 to 1.5 times the neutralization equivalent of the reaction liquid in which the esterification reaction has been completed. If the alkaline substance is less than 1.01 times, neutralization tends to be insufficient, and if it exceeds 1.5 times, waste water increases and ester decomposition (saponification) tends to occur. The concentration of the alkaline aqueous solution used here is preferably 1% by weight or more, and more preferably 5 to 15% by weight.

上記生成物の中和後、さらに反応液を水洗する。水洗の量はpHで管理し、pH8以下とすることが好ましい。pHの管理を怠ると、アクリル酸、触媒、不純物、着色成分等が完全に除去できないことがある。   After neutralization of the product, the reaction solution is further washed with water. The amount of water washing is controlled by pH and is preferably pH 8 or less. If the pH is neglected, acrylic acid, catalyst, impurities, coloring components, etc. may not be completely removed.

本発明のトリシクロデカンジオールジ(メタ)アクリレートは、放射線又は熱的手段による硬化性成分として有用である。放射線硬化は、イオン化または電子線のような微粒子照射、または紫外線放射のような化学線により行う。化学線により硬化する場合は、各種の光増感剤または光重合開始剤を包含させて行われる。また、熱硬化は一般的な方法により行われる。   The tricyclodecanediol di (meth) acrylate of the present invention is useful as a curable component by radiation or thermal means. Radiation curing is performed by fine particle irradiation such as ionization or electron beam, or actinic radiation such as ultraviolet radiation. When curing by actinic radiation, it is carried out by including various photosensitizers or photopolymerization initiators. Moreover, thermosetting is performed by a general method.

本発明のトリシクロデカンジオールジ(メタ)アクリレートは、単独又は他の単量体、例えば、脂肪族又は芳香族アクリレートや不飽和基含有樹脂、不飽和ポリエステル、ポリエステルアクリレート、エポキシアクリレート、ウレタンアクリレートなどの樹脂と組み合わせて使用することができる。   The tricyclodecanediol di (meth) acrylate of the present invention is used alone or in other monomers, such as aliphatic or aromatic acrylates, unsaturated group-containing resins, unsaturated polyesters, polyester acrylates, epoxy acrylates, urethane acrylates, etc. It can be used in combination with other resins.

本発明のトリシクロデカンジオールジ(メタ)アクリレートは、塗料・コーティング材料及び土木建築材料だけでなく、半導体・液晶に用いられる電子材料、また光ファイバー、光学レンズ等に代表されるオプトエレクトロニクス材料、さらには医療材料として使用できる。   The tricyclodecanediol di (meth) acrylate of the present invention is not only a paint / coating material and civil engineering / building material, but also an electronic material used in semiconductors / liquid crystals, an optoelectronic material typified by an optical fiber, an optical lens, etc. Can be used as medical material.

次に実施例を挙げて具体的に説明するが、本発明はこれらにより制限されるものではない。   EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

<実施例1>
攪拌機、温度計、空気導入管、及び精留塔(15段)を取り付けた1リットルフラスコに、式(II)で表されるトリシクロデカンジオール350g(2.08モル)、一般式(III)で表される(メタ)アクリル酸又は(メタ)アクリル酸エステルとしてメタクリル酸メチル850g(8.50モル)、重合禁止剤としてヒドロキノンモノメチルエーテル0.13gを仕込み、常圧下、乾燥空気を100ml/分の速度で吹き込みながら加熱還流し、系内の水分を除去した。次に、触媒としてオルトチタン酸イソプロピル(チタンテトライソプロポキシド)3.5gを加え、エステル交換反応を行った。始めは反応混合物を加熱還流し、精留塔塔頂温度はメタクリル酸メチルの沸点である100℃であったが、反応の進行と共に、メタノールとメタクリル酸メチルの共沸混合物の沸点に近づいたので、塔頂温度が65℃になるように還流比を調節してメタノールをメタクリル酸メチルの共沸物として留去しながら反応を行った。触媒を加えて3時間程経過した頃から塔頂温度が上昇し始め約90℃まで上昇したので、それに合わせて還流比を徐々に大きくし、最終的には還流比を15にして反応を続けた。反応開始後5時間目の反応液をガスクロマトグラフィ分析したところ、原料であるトリシクロデカンジオールは検出されず、トリシクロデカンジオールモノメタクリレートが6%(面積%)、目的生成物であるトリシクロデカンジオールジメタクリレートが94%(面積%)となったので反応を終了した。反応液を75℃まで冷却し、17重量%食塩水120gを加えて触媒を加水分解し不溶化した。30分静置後、デカンテーションにより有機層を1リットルのナス型フラスコにとり、ロータリーエバポレーターを用いて過剰なメタクリル酸メチルを減圧下留去して吸引ろ過によりナスフラスコ内液をろ過したところ、淡黄色透明のトリシクロデカンジオールジメタクリレートを得た。この時、収量は595g(収率94%)であった。
これをNMRとフーリエ変換赤外線(FT−IR)を用いて分析した結果、下記のスペクトルが得られた。
NMR(60MHz):1.69−2.54 (12H, m),4.69−5.14 (2H, m),5.61 (2H, m),6.18 (4H, m)
IR(film): 2962, 1724, 1406, 1296, 1275, 1198, 1049, 984, 812 cm−2
<Example 1>
In a 1 liter flask equipped with a stirrer, a thermometer, an air inlet tube, and a rectifying column (15 stages), 350 g (2.08 mol) of tricyclodecanediol represented by the formula (II), a general formula (III) As a (meth) acrylic acid or (meth) acrylic acid ester represented by the formula, methacrylic acid methyl 850 g (8.50 mol) was charged as a polymerization inhibitor, hydroquinone monomethyl ether 0.13 g. The mixture was heated to reflux while blowing at a rate of 5 to remove water in the system. Next, 3.5 g of isopropyl orthotitanate (titanium tetraisopropoxide) was added as a catalyst to conduct a transesterification reaction. At first, the reaction mixture was heated to reflux, and the top temperature of the rectifying column was 100 ° C., the boiling point of methyl methacrylate, but as the reaction progressed, it approached the boiling point of the azeotrope of methanol and methyl methacrylate. The reaction was carried out while distilling off methanol as an azeotrope of methyl methacrylate by adjusting the reflux ratio so that the tower top temperature was 65 ° C. Since about 3 hours have passed since the catalyst was added, the tower top temperature started to rise to about 90 ° C, and the reflux ratio was gradually increased accordingly. Finally, the reaction was continued at a reflux ratio of 15. It was. A gas chromatographic analysis of the reaction solution at 5 hours after the start of the reaction revealed that the raw material tricyclodecanediol was not detected, tricyclodecanediol monomethacrylate was 6% (area%), and the target product tricyclodecane. Since the diol dimethacrylate was 94% (area%), the reaction was terminated. The reaction solution was cooled to 75 ° C., and 120 g of 17% by weight saline was added to hydrolyze and insolubilize the catalyst. After standing for 30 minutes, the organic layer was taken into a 1 liter eggplant-shaped flask by decantation, excess methyl methacrylate was distilled off under reduced pressure using a rotary evaporator, and the solution in the eggplant flask was filtered by suction filtration. A yellow transparent tricyclodecanediol dimethacrylate was obtained. At this time, the yield was 595 g (yield 94%).
As a result of analyzing this using NMR and Fourier transform infrared (FT-IR), the following spectrum was obtained.
NMR (60 MHz): 1.69-2.54 (12H, m), 4.69-5.14 (2H, m), 5.61 (2H, m), 6.18 (4H, m)
IR (film): 2962, 1724, 1406, 1296, 1275, 1198, 1049, 984, 812 cm −2

<実施例2>
攪拌機、温度計、空気導入管、Dean−Starkトラップ及び冷却管を取り付けた1リットルフラスコにトリシクロデカンジオール350g(2.08モル)、アクリル酸195g(2.70モル)、トルエン400g、パラトルエンスルホン酸35g及びヒドロキノンモノメチルエーテル0.17gを仕込んだ。系内の圧力を70.6KPaに調節し、乾燥空気を100ml/分の導入量で吹き込みながら昇温した。反応とともに生成する水を除去しながら反応温度を90℃に保つように圧力を調整した。5時間後、反応理論量の水が流出したため、ガスクロマトグラフィ分析を行ったところ、原料であるトリシクロデカンジオールは検出されず、トリシクロデカンジオールモノアクリレートが6%(面積%)、目的生成物であるトリシクロデカンジオールジアクリレートが94%(面積%)となったので反応を終了した。反応液を冷却し、40℃以下になったところで17重量%食塩水を100g仕込み300rpmで攪拌した。次いで有機層を分液ロートに移し、25重量%水酸化ナトリウム水溶液50g、17重量%食塩水70gを仕込み、中和水洗を行った。このとき、水層のpHは10であったので、水層抜出後、有機層をさらに17重量%食塩水200gで洗浄して水層のpHを7〜8とした。水層抜出後、有機層を1リットルのナス型フラスコにとり、ロータリーエバポレーターを用いてトルエンを減圧下留去して吸引ろ過によりナスフラスコ内液をろ過したところ、淡黄色透明のトリシクロデカンジオールジアクリレートを得た。この時、収量は512g(収率89%)であった。
これをNMRとフーリエ変換赤外線(FT−IR)を用いて分析した結果、下記のスペクトルが得られた。
NMR(60MHz):1.69−2.58 (18H, m),4.73−5.15 (2H, m), 5.40 (2H, s),5.91 (2H, s)
IR(film): 2960, 1716, 1637, 1452, 1327, 1298, 1167, 874, 816 cm−1
<Example 2>
350 g (2.08 mol) of tricyclodecanediol, 195 g (2.70 mol) of acrylic acid, 400 g of toluene, 400 g of paratoluene in a 1 liter flask equipped with a stirrer, thermometer, air introduction tube, Dean-Stark trap and condenser tube 35 g of sulfonic acid and 0.17 g of hydroquinone monomethyl ether were charged. The pressure in the system was adjusted to 70.6 KPa, and the temperature was raised while blowing dry air at an introduction rate of 100 ml / min. The pressure was adjusted so as to keep the reaction temperature at 90 ° C. while removing water generated along with the reaction. After 5 hours, since a theoretical amount of water flowed out, gas chromatography analysis was performed. As a result, the starting material tricyclodecanediol was not detected, and tricyclodecanediol monoacrylate was 6% (area%). Since the tricyclodecanediol diacrylate was 94% (area%), the reaction was terminated. The reaction solution was cooled, and when it became 40 ° C. or lower, 100 g of 17 wt% saline was charged and stirred at 300 rpm. Next, the organic layer was transferred to a separatory funnel and charged with 50 g of a 25 wt% aqueous sodium hydroxide solution and 70 g of 17 wt% saline solution and washed with neutralized water. At this time, since the pH of the aqueous layer was 10, after extracting the aqueous layer, the organic layer was further washed with 200 g of 17 wt% saline to adjust the pH of the aqueous layer to 7-8. After extracting the aqueous layer, the organic layer was placed in a 1 liter eggplant-shaped flask, toluene was distilled off under reduced pressure using a rotary evaporator, and the solution in the eggplant flask was filtered by suction filtration. As a result, a pale yellow transparent tricyclodecanediol was obtained. Diacrylate was obtained. At this time, the yield was 512 g (89% yield).
As a result of analyzing this using NMR and Fourier transform infrared (FT-IR), the following spectrum was obtained.
NMR (60 MHz): 1.69-2.58 (18H, m), 4.73-5.15 (2H, m), 5.40 (2H, s), 5.91 (2H, s)
IR (film): 2960, 1716, 1637, 1452, 1327, 1298, 1167, 874, 816 cm −1

実施例1で製造されたトリシクロデカンジオールジメタクリレートのフーリエ変換赤外線(FT−IR)スペクトルである。2 is a Fourier transform infrared (FT-IR) spectrum of tricyclodecanediol dimethacrylate produced in Example 1. 実施例1で製造されたトリシクロデカンジオールジメタクリレートの核磁気共鳴スペクトル(NMR)である。2 is a nuclear magnetic resonance spectrum (NMR) of tricyclodecanediol dimethacrylate produced in Example 1. 実施例2で製造されたトリシクロデカンジオールジアクリレートのフーリエ変換赤外線(FT−IR)スペクトルである。4 is a Fourier transform infrared (FT-IR) spectrum of tricyclodecanediol diacrylate produced in Example 2. 実施例2で製造されたトリシクロデカンジオールジアクリレートの核磁気共鳴スペクトル(NMR)である。2 is a nuclear magnetic resonance spectrum (NMR) of tricyclodecanediol diacrylate produced in Example 2.

Claims (3)

一般式(I)で表されるトリシクロデカンジオールジ(メタ)アクリレート。
Figure 2006315960
(一般式(I)中、Rは水素原子,又はメチル基を示す。)
Tricyclodecanediol di (meth) acrylate represented by the general formula (I).
Figure 2006315960
(In general formula (I), R 1 represents a hydrogen atom or a methyl group.)
下式(II)で表されるトリシクロデカンジオールと一般式(III)で表される(メタ)アクリル酸又は(メタ)アクリル酸エステルとを触媒存在下で反応させることを特徴とする請求項1に記載の一般式(I)のトリシクロデカンジオールジ(メタ)アクリレートの製造方法。
Figure 2006315960
(一般式(III)中、Rは水素原子又はメチル基、Rは炭素原子数1〜5のアルキル基を示す。)
The tricyclodecanediol represented by the following formula (II) is reacted with (meth) acrylic acid or (meth) acrylic acid ester represented by the general formula (III) in the presence of a catalyst. A process for producing tricyclodecanediol di (meth) acrylate of the general formula (I) according to 1.
Figure 2006315960
(In general formula (III), R 2 represents a hydrogen atom or a methyl group, and R 3 represents an alkyl group having 1 to 5 carbon atoms.)
式(II)で表されるトリシクロデカンジオールと(メタ)アクリル酸とを触媒存在下で反応させることを特徴とする請求項2に記載のトリシクロデカンジオールジ(メタ)アクリレートの製造方法。


The method for producing tricyclodecanediol di (meth) acrylate according to claim 2, wherein the tricyclodecanediol represented by the formula (II) is reacted with (meth) acrylic acid in the presence of a catalyst.


JP2005137252A 2005-05-10 2005-05-10 Tricyclodecanediol di(meth)acrylate and method for producing the same Pending JP2006315960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137252A JP2006315960A (en) 2005-05-10 2005-05-10 Tricyclodecanediol di(meth)acrylate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137252A JP2006315960A (en) 2005-05-10 2005-05-10 Tricyclodecanediol di(meth)acrylate and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006315960A true JP2006315960A (en) 2006-11-24

Family

ID=37536947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137252A Pending JP2006315960A (en) 2005-05-10 2005-05-10 Tricyclodecanediol di(meth)acrylate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006315960A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132565A (en) * 2008-12-02 2010-06-17 Hitachi Chem Co Ltd Method for producing (meth)acrylic ester
WO2011027618A1 (en) * 2009-09-03 2011-03-10 日立化成工業株式会社 Tricyclodecane monomethanol monocarboxylic acid and derivatives thereof
WO2011048851A1 (en) 2009-10-22 2011-04-28 日立化成工業株式会社 Method for manufacturing a tricyclodecane mono-methanol monocarboxylic acid derivative
US8300329B2 (en) 2008-03-31 2012-10-30 Konica Minolta Opto, Inc. Optical element assembly and method of manufacturing optical unit
WO2014203786A1 (en) * 2013-06-21 2014-12-24 株式会社ダイセル Polyfunctional (meth)acrylate, and method for producing same
JP2015121929A (en) * 2013-12-24 2015-07-02 日立化成株式会社 Method for manufacturing touch panel substrate with cured film, photosensitive resin composition and photosensitive element used for the method, and touch panel
JP2018511576A (en) * 2015-02-26 2018-04-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing isosorbide di (meth) acrylate
CN108101787A (en) * 2017-12-01 2018-06-01 阜阳欣奕华材料科技有限公司 A kind of polymerizable compound and preparation method thereof, display device
US10040967B2 (en) 2015-11-06 2018-08-07 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive element, cured product and touch panel
CN112624905A (en) * 2020-12-07 2021-04-09 广东新华粤石化集团股份公司 Preparation method of novel tricyclodecanediol, product and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115205A (en) * 1988-10-24 1990-04-27 Tosoh Corp Resin composition for optical material
JPH02296875A (en) * 1989-05-11 1990-12-07 Kansai Paint Co Ltd Composition for forming ultraviolet-curing coating film having hiding power
JPH07181875A (en) * 1993-12-24 1995-07-21 Toyo Ink Mfg Co Ltd Hologram recording material, hologram recording medium and production of hologram using the same
JPH09265188A (en) * 1996-03-28 1997-10-07 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using the same
JP2001039926A (en) * 1999-07-28 2001-02-13 Nissan Chem Ind Ltd Alicyclic di(meth)acrylate and its production
JP2004302061A (en) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp Liquid crystal display device and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115205A (en) * 1988-10-24 1990-04-27 Tosoh Corp Resin composition for optical material
JPH02296875A (en) * 1989-05-11 1990-12-07 Kansai Paint Co Ltd Composition for forming ultraviolet-curing coating film having hiding power
JPH07181875A (en) * 1993-12-24 1995-07-21 Toyo Ink Mfg Co Ltd Hologram recording material, hologram recording medium and production of hologram using the same
JPH09265188A (en) * 1996-03-28 1997-10-07 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using the same
JP2001039926A (en) * 1999-07-28 2001-02-13 Nissan Chem Ind Ltd Alicyclic di(meth)acrylate and its production
JP2004302061A (en) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp Liquid crystal display device and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300329B2 (en) 2008-03-31 2012-10-30 Konica Minolta Opto, Inc. Optical element assembly and method of manufacturing optical unit
JP2010132565A (en) * 2008-12-02 2010-06-17 Hitachi Chem Co Ltd Method for producing (meth)acrylic ester
JP5536784B2 (en) * 2009-09-03 2014-07-02 日立化成株式会社 Tricyclodecane monomethanol monocarboxylic acid and its derivatives
WO2011027618A1 (en) * 2009-09-03 2011-03-10 日立化成工業株式会社 Tricyclodecane monomethanol monocarboxylic acid and derivatives thereof
CN102482191A (en) * 2009-09-03 2012-05-30 日立化成工业株式会社 Tricyclodecane monomethanol monocarboxylic acid and derivatives thereof
US8653301B2 (en) 2009-09-03 2014-02-18 Hitachi Chemical Company, Ltd. Tricyclodecane monomethanol monocarboxylic acid and derivatives thereof
CN102482191B (en) * 2009-09-03 2014-03-19 日立化成株式会社 Tricyclodecane monomethanol monocarboxylic acid and derivatives thereof
JP5586030B2 (en) * 2009-10-22 2014-09-10 日立化成株式会社 Method for producing tricyclodecane monomethanol monocarboxylic acid derivative
WO2011048851A1 (en) 2009-10-22 2011-04-28 日立化成工業株式会社 Method for manufacturing a tricyclodecane mono-methanol monocarboxylic acid derivative
WO2014203786A1 (en) * 2013-06-21 2014-12-24 株式会社ダイセル Polyfunctional (meth)acrylate, and method for producing same
KR20160023685A (en) 2013-06-21 2016-03-03 주식회사 다이셀 Polyfunctional (meth)acrylate, and method for producing same
JP2015121929A (en) * 2013-12-24 2015-07-02 日立化成株式会社 Method for manufacturing touch panel substrate with cured film, photosensitive resin composition and photosensitive element used for the method, and touch panel
JP2018511576A (en) * 2015-02-26 2018-04-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing isosorbide di (meth) acrylate
US10040967B2 (en) 2015-11-06 2018-08-07 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive element, cured product and touch panel
US10717893B2 (en) 2015-11-06 2020-07-21 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive element, cured product and touch panel
CN108101787A (en) * 2017-12-01 2018-06-01 阜阳欣奕华材料科技有限公司 A kind of polymerizable compound and preparation method thereof, display device
CN112624905A (en) * 2020-12-07 2021-04-09 广东新华粤石化集团股份公司 Preparation method of novel tricyclodecanediol, product and application thereof
CN112624905B (en) * 2020-12-07 2023-05-30 广东希必达新材料科技有限公司 Preparation method of novel tricyclodecanediol, product and application thereof

Similar Documents

Publication Publication Date Title
EP0646567B1 (en) Organotin catalyzed transesterification
CN107621752A (en) One specific admixture type photosensitive resin and preparation method thereof
JP2007145857A (en) Method for esterifying (meth)acrylic acid with alkanol
JP2006315960A (en) Tricyclodecanediol di(meth)acrylate and method for producing the same
JP3830595B2 (en) Esterification of (meth) acrylic acid
JP2546124B2 (en) Method for producing polyfunctional (meth) acrylate
JP2004059435A (en) Method for producing dioxolane compound
JP2012236805A (en) Method for producing (meth)acrylic ester
JP2011251941A (en) Method for producing hydroxyalkyl (meth)acrylate
JPH0629277B2 (en) Acrylate compound and method for producing the same
JP3051191B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2797000B2 (en) Method for producing (meth) acrylate compound
WO2010064514A1 (en) Method for producing hydroxyalkyl(meth)acrylic acid ester
JP4826026B2 (en) Production method of (meth) acrylic acid ester
JPH10182555A (en) Production of alpha,beta-unsaturated carboxylic omega-hydroxy-ester
JP2000302749A (en) (meth)acrylic polyoxyethylene-modified bisphenol s ester, its production and photosensitive resin composition
JP4225707B2 (en) Method for producing (meth) acrylic acid piperidyl ester derivatives
JP2005132790A (en) Method for producing 2-methyl-2-hydroxy-1-propyl (meth)acrylate
JP3583843B2 (en) Unsaturated carboxylic diester of bicyclohexyl-4,4&#39;-diol
JP2010132565A (en) Method for producing (meth)acrylic ester
WO2013168586A1 (en) Method for producing alkanediol monoglycidyl ether (meth)acrylate
JP3312806B2 (en) Method for producing tetrahydrobenzyl (meth) acrylate
JP3028141B2 (en) (Meth) acrylate compound and method for producing the same
JP3397660B2 (en) Method for producing piperidyl (meth) acrylate derivative with low coloring
JPH0797351A (en) Novel (meth)acrylate compound and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111006