JP2006299108A - Ice crystal growth suppressing agent and its application - Google Patents
Ice crystal growth suppressing agent and its application Download PDFInfo
- Publication number
- JP2006299108A JP2006299108A JP2005123711A JP2005123711A JP2006299108A JP 2006299108 A JP2006299108 A JP 2006299108A JP 2005123711 A JP2005123711 A JP 2005123711A JP 2005123711 A JP2005123711 A JP 2005123711A JP 2006299108 A JP2006299108 A JP 2006299108A
- Authority
- JP
- Japan
- Prior art keywords
- ice
- crystal growth
- ice crystal
- polymer
- antifreeze
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Freezing, Cooling And Drying Of Foods (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Abstract
Description
本発明は合成物質に関するものであり、より詳細には不凍タンパク質が有するような不凍活性を示す物質に関するものである。 The present invention relates to a synthetic substance, and more particularly to a substance exhibiting antifreeze activity as possessed by antifreeze proteins.
不凍タンパク質の不凍活性は、非特許文献1にその概略が説明されている。すなわち不凍タンパク質(Anti−Freeze Protein;AFPと称される場合もある)は、極地に生息する魚、昆虫、植物などに含まれる特殊なタンパク質である。例えば通常の魚類の体液は、−0.8℃前後で凍結するのに対して、AFPを体内に有する魚類の体液は−2℃以下まで下がっても凍結しないという特徴がある。海水は−1.9℃程度で凍ってしまうため、AFPを体内に有する魚類は体液が凍ることなく生息が可能となる。 The outline of the antifreeze activity of antifreeze protein is described in Non-Patent Document 1. In other words, antifreeze protein (sometimes referred to as Anti-Freeze Protein; AFP) is a special protein contained in fish, insects, plants, etc. that inhabit polar regions. For example, a normal body fluid of fish freezes at around −0.8 ° C., whereas a body fluid of fish having AFP in the body does not freeze even when it falls below −2 ° C. Since seawater freezes at about −1.9 ° C., fish that have AFP in their bodies can live without freezing body fluids.
凝固点の降下は、一般には、凝固点降下温度が溶質のモル濃度と正比例するモル凝固点降下則によって説明されることが多い。しかしAFPのモル濃度と凝固点降下温度とは正比例しない。すなわちAFPは、モル凝固点降下則とは異なる作用で体液の凍結を防止しており、生体内で成長した氷結晶の成長面に特異的に吸着し、氷結晶の成長を阻害することによって体液の凍結を防止している。 Freezing point depression is often explained by the molar freezing point depression law, where the freezing point depression temperature is directly proportional to the molar concentration of the solute. However, the molar concentration of AFP and the freezing point depression temperature are not directly proportional. In other words, AFP prevents the freezing of bodily fluids by an action different from the freezing point freezing point law. It specifically adsorbs to the growth surface of ice crystals grown in the living body and inhibits the growth of ice crystals by inhibiting the growth of ice crystals. Freezing is prevented.
氷結晶の成長について図1、図2−a、図2−bを参照しながらより具体的に説明すると、以下の通りである。図1はAFPが存在しない場合の氷晶の成長を示す概念図であり、図2−a及び図2−bはAFPが存在する場合の氷晶の成長の一例を示す概念図である。図1に示すように、一般に氷の最小核が形成されると、この最小核はa軸方向及びc軸方向の両方に成長する。ただしa軸方向の成長速度はc軸方向の成長速度より約100倍程度速いため、円盤状の氷の核(氷晶)1が形成される。これに対して図2−aに示すように、AFPが存在する場合、氷の最小核ができるとただちにa軸方向の面(プリズム面)に接着又は吸着し、a軸方向の氷の成長を抑止するため、六方晶状の氷晶2が形成されることとなる。そしてこの六方晶状の氷晶2は図2−bに示すように、c軸方向に小さな六方柱を積み重ねるようにして成長し、バイピラミッド型氷晶3となる。なおAFPはc軸方向の成長を抑止する場合もあり、このときは六方晶状のまま(図2−a参照)となる。いずれにせよAFPが存在すると、氷晶が通常(扁平円盤型)とは異なる形態となる。
The growth of ice crystals will be described in more detail with reference to FIGS. 1, 2-a, and 2-b. FIG. 1 is a conceptual diagram showing the growth of ice crystals in the absence of AFP, and FIGS. 2-a and 2-b are conceptual diagrams showing an example of the growth of ice crystals in the presence of AFP. As shown in FIG. 1, generally, when a minimum nucleus of ice is formed, the minimum nucleus grows in both the a-axis direction and the c-axis direction. However, since the growth rate in the a-axis direction is about 100 times faster than the growth rate in the c-axis direction, a disk-shaped ice nucleus (ice crystal) 1 is formed. On the other hand, as shown in FIG. 2A, in the presence of AFP, as soon as the smallest ice nuclei are formed, they immediately adhere or adsorb to the surface in the a-axis direction (prism surface), and ice growth in the a-axis direction occurs. In order to suppress it,
AFPが有する不凍活性は、前述したような氷晶形態の変化で特徴づけられるだけでなく、以下のような点でも特徴づけられる。すなわちc軸方向などの結晶成長が抑制されているため、氷晶同士の合一も抑制される。従って氷結晶の粗大化が抑制されることも不凍活性の一つといえる。 The antifreeze activity of AFP is not only characterized by the change in ice crystal morphology as described above, but also by the following points. That is, since crystal growth in the c-axis direction and the like is suppressed, coalescence of ice crystals is also suppressed. Therefore, suppression of the coarsening of ice crystals is one of the antifreeze activities.
さらに熱ヒステリシスを示すことも不凍活性の一つである。すなわちAFPが溶解した水溶液を過冷却して一度完全に凍結させ、系の温度を徐々に上昇させると融解する。この融解温度(融点)よりも僅かに温度を下げて長時間放置すると、通常であるならば凍結が始まる(すなわち融点と凝固点とは一致する)が、AFPが存在していると凍結は始まらず、さらに温度を下げることによって初めて凍結が始まる。前記融解温度(融点)と、再度の凍結温度(凝固点)との差は熱ヒステリシスと称されており、この熱ヒステリシスがあることも不凍活性の認定要件の一つをなす。 In addition, one of antifreeze activities is to show thermal hysteresis. That is, the aqueous solution in which AFP is dissolved is supercooled and completely frozen once, and then melts when the temperature of the system is gradually raised. If the temperature is slightly lower than this melting temperature (melting point) and left for a long period of time, freezing starts if normal (ie, the melting point and the freezing point coincide), but if AFP is present, freezing does not start. Freezing begins only when the temperature is further lowered. The difference between the melting temperature (melting point) and the freezing temperature (freezing point) again is called thermal hysteresis, and the presence of this thermal hysteresis is one of the requirements for certification of antifreeze activity.
すなわち不凍活性とは、1)氷晶形態が変化する(非扁平円盤形となる)こと、2)氷晶の合一が抑制されること、3)熱ヒステリシスがあることを意味する。なお1)氷晶形態が変化すること、及び2)氷晶の合一が抑制されることは、いずれも氷晶の成長が抑制されることが原因となっており同一視することができるため、本明細書では1)氷晶形態が変化し(非扁平円盤形となり)、2)熱ヒステリシスがあれば、不凍活性があるとする。 That is, the antifreeze activity means that 1) the ice crystal form changes (becomes a non-flat disk shape), 2) the coalescence of ice crystals is suppressed, and 3) there is thermal hysteresis. Note that 1) the change in ice crystal morphology and 2) the suppression of ice crystal coalescence are both caused by the suppression of ice crystal growth and can be identified. In this specification, it is assumed that 1) the ice crystal form changes (becomes a non-flat disk shape), and 2) there is antifreezing activity if there is thermal hysteresis.
このような不凍活性を有するAFPは、種々の応用開発が研究されている。例えば冷凍食品の品質やきめ(テクスチャー)改善用途(特許文献1〜14など)、生体組織及び体液の耐凍性改善用途(特許文献15〜17など)、氷蓄熱システム用途(特許文献18など)などの開発が活発である。上記AFP以外にも特願2003−362427号においてポリアクリルアミドの水溶液が氷晶形態を変化させ、かつ熱ヒステリシスを有するとの開示がある。 Various application developments have been studied for AFP having such antifreeze activity. For example, frozen food quality and texture (texture) improvement application (Patent Documents 1 to 14 etc.), biological tissue and body fluid freezing resistance improvement application (Patent Documents 15 to 17 etc.), ice heat storage system application (Patent Document 18 etc.) The development of is active. In addition to the above AFP, Japanese Patent Application No. 2003-362427 discloses that an aqueous solution of polyacrylamide changes the ice crystal morphology and has thermal hysteresis.
しかし、不凍タンパク質は極めて高価であり、今のところ100万円/gもする。さらには熱によって変性しやすく、また生体に適用する場合には抗原抗体反応を引き起こす虞もある。 However, antifreeze proteins are extremely expensive and currently cost 1 million yen / g. Furthermore, it is easily denatured by heat and may cause an antigen-antibody reaction when applied to a living body.
なお特許文献19にはポリビニルアルコールを利用した冷熱輸送方法が開示されており、実施例の欄にはポリビニルアルコールを用いると粒状氷結晶が再結晶しないことが示されている。しかし不凍活性の重要な要件である熱ヒステリシスに関してどのような挙動を示すかについては、全く示されていない。 Patent Document 19 discloses a method for transporting cold heat using polyvinyl alcohol. In the column of Examples, it is shown that granular ice crystals are not recrystallized when polyvinyl alcohol is used. However, there is no indication as to how it behaves with respect to thermal hysteresis, an important requirement for antifreeze activity.
本発明は上記の様な事情に着目してなされたものであって、その目的は、不凍タンパク質の不凍活性を利用した種々の用途開発を、不凍タンパク質を使用することなく達成する点にある。 The present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is to achieve various application developments utilizing the antifreeze activity of the antifreeze protein without using the antifreeze protein. It is in.
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、タンパク質系以外にも不凍活性を有する重合体(例えばポリアクリル酸のアンモニウム塩)が存在することを見つけ、当該物質は濃度10mg/mlの水溶液が非扁平円盤型の氷晶を析出させこと、及び濃度10mg/mlの水溶液が0.020℃以上の熱ヒステリシスを示すことを明らかにし、本発明を完成した。この重合体は不凍タンパク質(AFP)に代えて種々の用途に使用できる。 As a result of intensive studies to solve the above problems, the present inventors have found that a polymer having antifreeze activity (for example, an ammonium salt of polyacrylic acid) exists in addition to the protein system. Clarified that an aqueous solution having a concentration of 10 mg / ml causes precipitation of non-flat disc-shaped ice crystals, and that an aqueous solution having a concentration of 10 mg / ml exhibits a thermal hysteresis of 0.020 ° C. or higher, thereby completing the present invention. This polymer can be used in various applications in place of antifreeze protein (AFP).
すなわち本発明に係る氷結晶成長抑制剤は、濃度10mg/mlの水溶液が非扁平円盤型の氷晶を析出させる非タンパク質系重合体を含んでなる。この氷結晶成長抑制剤は、氷蓄熱システムの熱媒体に添加することができ、また冷凍食品に添加することができる。 That is, the ice crystal growth inhibitor according to the present invention comprises a non-protein polymer in which an aqueous solution having a concentration of 10 mg / ml precipitates non-flat disk-type ice crystals. This ice crystal growth inhibitor can be added to the heat medium of the ice heat storage system and can be added to frozen foods.
また本発明に係る氷結晶成長開始温度低下剤は、濃度10mg/mlの水溶液が0.020℃以上の熱ヒステリシスを示す非タンパク質系重合体を含んでなる。この氷結晶成長開始温度低下剤は、氷付着を防止するために付着箇所に散布又は塗布することができる。また凍結又は霜害を防止するために地面又は農作物に散布又は塗布することができる。 The ice crystal growth initiation temperature lowering agent according to the present invention comprises a non-protein polymer in which an aqueous solution having a concentration of 10 mg / ml exhibits a thermal hysteresis of 0.020 ° C. or higher. This ice crystal growth start temperature lowering agent can be sprayed or applied to the adhesion site in order to prevent the adhesion of ice. It can also be sprayed or applied to the ground or crops to prevent freezing or frost damage.
本発明に係る水の凝固コントロール剤は、濃度10mg/mlの水溶液が、0.020℃以上の熱ヒステリシスを示し、かつ非扁平円盤型の氷晶を析出させる非タンパク質系重合体を含んでなる。この水の凝固コントロール剤は、氷点下での生体組織の損傷又は体液の凍結を防止するために生体組織又は体液に注入することができる。 The water coagulation control agent according to the present invention comprises a non-protein polymer in which an aqueous solution having a concentration of 10 mg / ml exhibits a thermal hysteresis of 0.020 ° C. or higher and precipitates non-flat disk-shaped ice crystals. . This water coagulation control agent can be injected into a living tissue or body fluid in order to prevent damage to the living tissue or freezing of the body fluid below freezing.
上記非タンパク質系重合体は、例えば、炭素鎖を主鎖とする高分子である。 The non-protein polymer is a polymer having a carbon chain as a main chain, for example.
本発明の非タンパク質系重合体は、濃度10mg/mlの水溶液が非扁平円盤型の氷晶を析出させ、また0.020℃以上の熱ヒステリシスを示すため、不凍タンパク質を使用しなくても、不凍活性を利用した種々の用途に利用できる。 In the non-protein polymer of the present invention, an aqueous solution having a concentration of 10 mg / ml precipitates non-flat disk-type ice crystals and exhibits a thermal hysteresis of 0.020 ° C. or higher. It can be used for various applications utilizing antifreeze activity.
本発明は、不凍活性を示す非タンパク質系重合体に係るものである。当該重合体は、濃度10mg/mlの水溶液としたとき、氷晶形態が変化し(非扁平円盤形となり)、かつ熱ヒステリシスを示す。 The present invention relates to a non-protein polymer exhibiting antifreeze activity. When the polymer is an aqueous solution having a concentration of 10 mg / ml, the ice crystal form changes (becomes a non-flat disk shape) and exhibits thermal hysteresis.
前記氷晶形態の変化とは、より詳細に説明すると、本発明の非タンパク質系重合体を濃度10mg/mlの水溶液として冷却していったとき、図1に示すような扁平円盤状の氷晶1とはならないことを意味する。例えば、図2−aに示すような六方晶状(扁平六角柱状)の氷晶2や、図2−bに示すようなバイピラミッド形の氷晶3となる。このように氷晶形態が変化するのは、所定方向[例えば、a軸方向(プリズム面と直交する方向)、又は前記a軸方向とc軸方向(基底面と直交する方向)の両方向]の結晶の成長が抑制されているためである。
More specifically, the change in the ice crystal form is a flat disk-shaped ice crystal as shown in FIG. 1 when the non-protein polymer of the present invention is cooled as an aqueous solution having a concentration of 10 mg / ml. It means that it is not 1. For example, a hexagonal (flat hexagonal columnar)
また前記熱ヒステリシスは、以下のように定義される温度である。すなわち対象物質を濃度10mg/mlの水溶液とし、当該水溶液を過冷却して一度完全に凍結させ、系の温度を徐々に上昇させて氷を溶かしていき、僅かに氷の結晶が残った段階で(例えば、視野0.1mm×0.1mm当たり、大きさ約0.08〜0.1mmの結晶が1個だけ残った段階で)再び徐々に冷却(例えば、冷却速度1℃/分程度)していき、再び氷晶を成長させる。前記僅かに氷の結晶が残った温度(融点)と、氷晶の再成長が観察され始める温度(凝固点)とを測定し、これらの温度差(融点−凝固点)を求める。前記温度差(融点−凝固点)は必然的に誤差を含むが、前記温度差が0.020℃以上あるとき、誤差を考慮しても熱ヒステリシスがあるといえる。従って本発明の非タンパク質系重合体とは、前記温度差(融点−凝固点)が0.020℃以上である物質である。 The thermal hysteresis is a temperature defined as follows. That is, the target substance is an aqueous solution having a concentration of 10 mg / ml, and the aqueous solution is supercooled and completely frozen once. The temperature of the system is gradually increased to melt the ice, and a slight amount of ice crystals remains. (For example, at the stage where only one crystal having a size of about 0.08 to 0.1 mm per 0.1 mm × 0.1 mm is left), gradually cool again (for example, a cooling rate of about 1 ° C./min). Continue to grow ice crystals again. The temperature at which the ice crystals slightly remain (melting point) and the temperature at which ice crystal regrowth begins to be observed (freezing point) are measured, and the temperature difference (melting point-freezing point) is determined. The temperature difference (melting point−freezing point) inevitably includes an error, but when the temperature difference is 0.020 ° C. or more, it can be said that there is thermal hysteresis even when the error is taken into account. Therefore, the non-protein polymer of the present invention is a substance having a temperature difference (melting point−freezing point) of 0.020 ° C. or higher.
上記の熱ヒステリシスの値は大きいほど氷との相互作用が大きいと考えられるので、好ましくは10mg/mlの水溶液を用いて測定した際の値が0.030℃以上である。 It is considered that the larger the value of the thermal hysteresis is, the larger the interaction with ice is. Therefore, the value when measured using a 10 mg / ml aqueous solution is preferably 0.030 ° C. or higher.
本発明の非タンパク質系重合体は、例えば、炭素鎖を主鎖とする高分子である。該高分子は、例えば以下に示すような単量体を単独重合もしくは2種以上の単量体を共重合することによって得られる。 The non-protein polymer of the present invention is, for example, a polymer having a carbon chain as a main chain. The polymer can be obtained, for example, by homopolymerizing monomers as shown below or copolymerizing two or more monomers.
アクリル酸、メタクリル酸等のような不飽和カルボン酸類;アクリル酸メチル等のような不飽和カルボン酸エステル類;アクリルアミド等の不飽和アミド類;アクリル酸アンモニウム等の不飽和カルボキシルアンモニウム塩類;[2−(アクリロイロキシ)エチル]アンモニウムクロライドのような不飽和4級アンモニウム塩類;メチルビニルエーテルやエチルビニルエーテル等のビニルエーテル類;酢酸ビニルのようなビニルエステル類;N−ビニルピロリドンのようなN−ビニル化合物;アリルアルコール、メタリルアルコールのような不飽和アルコール類;アリルアミンのような不飽和アミン類;2−アクリルアミド−2−メチルプロパンスルホン酸のような不飽和スルホン酸類。 Unsaturated carboxylic acids such as acrylic acid and methacrylic acid; unsaturated carboxylic acid esters such as methyl acrylate; unsaturated amides such as acrylamide; unsaturated carboxylic ammonium salts such as ammonium acrylate; [2- Unsaturated quaternary ammonium salts such as (acryloyloxy) ethyl] ammonium chloride; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl esters such as vinyl acetate; N-vinyl compounds such as N-vinyl pyrrolidone; Unsaturated alcohols such as methallyl alcohol; unsaturated amines such as allylamine; unsaturated sulfonic acids such as 2-acrylamido-2-methylpropanesulfonic acid.
また上記高分子を得るための重合方法に関しては特に制限はないが、ラジカル重合が好ましい。 The polymerization method for obtaining the polymer is not particularly limited, but radical polymerization is preferred.
上記のような不凍活性(氷晶形態を変化させる性質、及び熱ヒステリシスを示す性質)を有する炭素鎖を主鎖とする高分子は、側鎖に窒素原子を含有する官能基を有する。該官能基の例として、アミノ基又はアンモニウム基等が挙げられる。アミノ基としては、活性水素が残った1級アミノ基、2級アミノ基や3級アミノ基;活性水素がアルキル基によって置換されたアルキルアミノ基;活性水素がアルカノール基によって置換されたアルカノールアミノ基などが例として挙げられる。またアンモニウム基としては、トリメチルアンモニウムクロライド、トリエチルアンモニウムクロライド、トリエチルアンモニウムクロライドなどのアルキル基によって置換されたアンモニウム基;トリヒドロキシルエチルアンモニウムクロライドなどのアルカノール基によって置換されたアンモニウム基;−CO2 −NR1R2R3H+(R1、R2、R3は水素、アルキル基またはヒドロキシル基で一部置換されたアルキル基を表す)で表されるようなカルボキシルアンモニウム基などが挙げられる。好適なアミノ基/アンモニウム基としては、−CO2 −NH4 +が挙げられる。またそのようなアミノ基及び/又はアンモニウム基を含有する重合体の好適な例としては、ポリアクリル酸アンモニウムなどが挙げられる。 A polymer having a carbon chain as a main chain having the antifreeze activity (the property of changing the ice crystal form and the property of thermal hysteresis) has a functional group containing a nitrogen atom in the side chain. Examples of the functional group include an amino group and an ammonium group. The amino group includes a primary amino group in which active hydrogen remains, a secondary amino group or a tertiary amino group; an alkylamino group in which active hydrogen is substituted by an alkyl group; an alkanolamino group in which active hydrogen is substituted by an alkanol group For example. As also ammonium group, trimethyl ammonium chloride, triethylammonium chloride, ammonium group substituted by an alkyl group such as triethyl ammonium chloride; ammonium group substituted by an alkanol group such as tri-hydroxylethyl ammonium chloride; -CO 2 - NR 1 Examples thereof include a carboxyammonium group represented by R 2 R 3 H + (wherein R 1 , R 2 and R 3 represent hydrogen, an alkyl group or an alkyl group partially substituted with a hydroxyl group). Suitable amino / ammonium groups, -CO 2 - include NH 4 +. Moreover, as a suitable example of the polymer containing such an amino group and / or an ammonium group, polyacrylic acid ammonium etc. are mentioned.
また本発明の重合体の分子量は特に制限がないが、好ましくは重量平均分子量で1,000〜1,000,000の範囲である。分子量が1,000より小さいと氷結晶へ吸着した際の被覆面積が小さいので氷結晶成長抑制剤としての効果が小さくなる恐れがあり、また逆に1,000,000より大きいと氷結晶を分散させる効果が小さくなり、むしろ凝集剤的に働く恐れがあるので好ましくない。更に好ましい範囲としては、3,000〜500,000である。 The molecular weight of the polymer of the present invention is not particularly limited, but is preferably in the range of 1,000 to 1,000,000 in terms of weight average molecular weight. If the molecular weight is less than 1,000, the coating area when adsorbed on ice crystals is small, so the effect as an ice crystal growth inhibitor may be reduced. Conversely, if the molecular weight exceeds 1,000,000, the ice crystals are dispersed. This is not preferable because the effect of reducing the concentration is rather small and there is a possibility of acting as an aggregating agent. A more preferable range is 3,000 to 500,000.
不凍活性を有する重合体は、当該不凍活性の内容に応じて種々の用途に使用できる。例えば氷晶形態を変化させる性質は、氷結晶成長抑制剤として利用できる。この場合、氷の成長を抑制することによって氷の合一化を抑制できる。前記氷結晶成長抑制剤は、例えば、氷蓄熱システムの熱媒体に添加してもよく、また冷凍食品(例えばアイスクリーム)に添加してもよい。
氷蓄熱システム用途に本発明の重合体を利用する方法の一例としては、重合体を添加した液体を冷却して氷スラリーを生成させ、該氷スラリーを配管及びポンプによって所定の場所に輸送することや同様にして得られた氷スラリーを貯蔵することで冷熱を保存することが挙げられる。氷蓄熱システム用途に使用すれば、熱媒体が氷を析出させる際に氷が合一化してシステムが運転不能となることを防止できる。なお氷そのものの量は実質的には変化しないため、システムの蓄熱能力が低下する虞はない。加えて比較的少量で効果があるので、多大な過冷却状態を引き起こさない。さらに本発明の重合体は化学的に安定なので、運転効率を保ったまま長期間の運転が可能である。
また、冷凍食品に添加すれば、食品中の氷が合一化して食感が低下するのを防止できる。
A polymer having antifreeze activity can be used for various purposes depending on the content of the antifreeze activity. For example, the property of changing the ice crystal morphology can be used as an ice crystal growth inhibitor. In this case, the coalescence of ice can be suppressed by suppressing the growth of ice. The ice crystal growth inhibitor may be added to, for example, a heat medium of an ice heat storage system, or may be added to a frozen food (for example, ice cream).
As an example of a method of using the polymer of the present invention for an ice heat storage system application, the liquid added with the polymer is cooled to generate an ice slurry, and the ice slurry is transported to a predetermined place by a pipe and a pump. Or storing the ice slurry obtained in the same manner to preserve the cold. If it is used for an ice heat storage system, it is possible to prevent the system from becoming inoperable due to ice coalescence when the heat medium deposits ice. In addition, since the quantity of ice itself does not change substantially, there is no possibility that the heat storage capacity of the system will decrease. In addition, since it is effective in a relatively small amount, it does not cause a great amount of supercooling. Furthermore, since the polymer of the present invention is chemically stable, it can be operated for a long time while maintaining the operation efficiency.
Moreover, if it adds to frozen food, it can prevent that the ice in a food is united and a food texture falls.
一方、本発明の重合体が有する、熱ヒステリシスを示す性質は、氷の成長開始温度低下剤として利用できる。氷結晶成長開始温度低下剤は、氷付着を防止するために付着箇所(例えば、飛行機などの翼や電線など)に散布又は塗布してもよく、凍結や霜害を防止するために地面(路面、土壌など)や農作物に散布又は塗布してもよい。本発明の重合体は、金属への腐食性が少なく、また少量添加で有効なために環境への負荷も小さいことが特徴である。 On the other hand, the property of the polymer of the present invention showing thermal hysteresis can be used as an ice growth start temperature lowering agent. The ice crystal growth start temperature lowering agent may be sprayed or applied to an adhesion site (for example, a wing or an electric wire of an airplane, etc.) to prevent ice adhesion, and the ground (road surface, It may be sprayed or applied to soil). The polymer of the present invention is characterized by low corrosiveness to metals, and since it is effective when added in a small amount, the load on the environment is small.
また氷の成長を抑制する性質と、熱ヒステリシスを示す性質の両方を利用する場合、本発明の重合体は、水の凝固コントロール剤として利用できる。当該水の凝固コントロール剤は、例えば、氷点下での生体組織の損傷又は体液の凍結を防止するために生体組織又は体液に注入することができる。具体的には、養殖魚の耐凍性改善、精子や臓器などの冷凍保存、冷凍手術などに利用できる。本発明の物質は非タンパク質系なので、例えば臓器保存用に用いたとしても抗原抗体反応を引き起こす虞がない。 Moreover, when utilizing both the property of suppressing the growth of ice and the property of exhibiting thermal hysteresis, the polymer of the present invention can be used as a water coagulation control agent. The water coagulation control agent can be injected into a living tissue or body fluid, for example, to prevent damage to the living tissue or freezing of the body fluid under freezing. Specifically, it can be used for improving the freezing resistance of farmed fish, frozen storage of sperm and organs, cryosurgery and the like. Since the substance of the present invention is a non-protein system, there is no possibility of causing an antigen-antibody reaction even when used for organ preservation, for example.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
なお以下の実験例では、下記の物質の不凍活性を調べた。
ポリアクリル酸:株式会社日本触媒製、商品名「アクアリックHL−415」、分子量:10,000
ポリアクリル酸ナトリウム:上記1)のポリアクリル酸を30%水酸化ナトリウム水溶液でpH7.0になるまで中和したもの。
ポリエチレンイミン:株式会社日本触媒製、商品名「エポミンSP−200」、分子量:10,000
ポリアクリル酸アンモニウム:上記1)のポリアクリル酸を28%アンモニア水(和光純薬工業株式会社製)でpH7.0になるまで中和したもの。
In the following experimental examples, the antifreeze activity of the following substances was examined.
Polyacrylic acid: manufactured by Nippon Shokubai Co., Ltd., trade name “AQUALIC HL-415”, molecular weight: 10,000
Sodium polyacrylate: neutralized polyacrylic acid of 1) above with a 30% aqueous sodium hydroxide solution to pH 7.0.
Polyethyleneimine: manufactured by Nippon Shokubai Co., Ltd., trade name “Epomin SP-200”, molecular weight: 10,000
Ammonium polyacrylate: A product obtained by neutralizing the polyacrylic acid of 1) above with 28% ammonia water (Wako Pure Chemical Industries, Ltd.) until pH 7.0.
実験例
上記各物質の水溶液(濃度10mg/ml)を調製した。この水溶液を温度制御付き凍結ステージ(リンカム社製、LK−600PM)にセットし、−30℃まで冷却して完全に凍結させた後、位相差顕微鏡(倍率100倍)で観察しながら約−1℃まで温度を上げていき(昇温速度100℃/分)、大きさ約0.08〜0.1mm程度の氷の単結晶が1つだけ残る状態にした。視野を0.1mm×0.1mmとし(すなわち画面上に該単結晶を拡大表示させ)、この状態からゆっくりと再冷却(冷却速度1℃/分)し、氷の結晶の成長を観察した。単結晶が1つだけ残ったときの温度(融点)と、氷の結晶の成長が観察されたときの温度(凝固点)の差(熱ヒステリシス)を求めた。また上記操作によって成長させた氷の形態も観察した。結果を表1及び図3〜図6の位相差顕微鏡写真に示す。図3はポリアクリル酸アンモニウム水溶液中の氷晶を、図4は剤を一切添加しない場合の氷晶を、図5はポリアクリル酸水溶液中の氷晶を、図6はポリアクリル酸ナトリウム水溶液中の氷晶を、図7はポリエチレンイミン水溶液中の氷晶を示す。
Experimental Example An aqueous solution (concentration: 10 mg / ml) of each of the above substances was prepared. This aqueous solution was set on a freezing stage with temperature control (LK-600PM, manufactured by Linkham Co.), cooled to -30 ° C. and completely frozen, and then observed with a phase contrast microscope (magnification 100 times), about −1. The temperature was raised to 0 ° C. (temperature increase rate 100 ° C./min), and only one ice single crystal having a size of about 0.08 to 0.1 mm remained. The field of view was set to 0.1 mm × 0.1 mm (that is, the single crystal was enlarged and displayed on the screen), and from this state, it was slowly recooled (cooling rate 1 ° C./min), and the growth of ice crystals was observed. The difference (thermal hysteresis) between the temperature at which only one single crystal remained (melting point) and the temperature at which ice crystal growth was observed (freezing point) was determined. The morphology of ice grown by the above operation was also observed. The results are shown in Table 1 and the phase contrast micrographs of FIGS. FIG. 3 shows ice crystals in an aqueous solution of ammonium polyacrylate, FIG. 4 shows ice crystals when no agent is added, FIG. 5 shows ice crystals in an aqueous solution of polyacrylic acid, and FIG. 6 shows an aqueous solution of sodium polyacrylate. FIG. 7 shows ice crystals in a polyethyleneimine aqueous solution.
表1及び図3〜図6から明らかなように、ポリアクリル酸アンモニウムは、酸型であるポリアクリル酸やポリアクリル酸ナトリウムと異なり、氷晶形態を変化させて、しかも熱ヒステリシスを示した。
また表1及び図7から、主鎖にアミノ基を有するポリエチレンイミンは氷晶形態を変化させることもなく、かつ熱ヒステリシスも小さいことが分かる。
図3では非扁平円盤形、図4〜図7では扁平円盤形であることが分かる。
As is clear from Table 1 and FIGS. 3 to 6, unlike polyacrylic acid and sodium polyacrylate, which are acid forms, ammonium polyacrylate changed the ice crystal form and exhibited thermal hysteresis.
Moreover, it can be seen from Table 1 and FIG. 7 that polyethyleneimine having an amino group in the main chain does not change the ice crystal form and has small thermal hysteresis.
It can be seen that FIG. 3 shows a non-flat disk shape and FIGS. 4 to 7 show a flat disk shape.
特願2003−362427号の実施例のデータによると、ポリアクリルアミドの熱ヒステリシスは0.021℃であり、本発明のポリアクリル酸アンモニウムの方が大きな熱ヒステリシスを有しているので、氷結晶成長抑制剤として優れていることが分かる。 According to the data of the example of Japanese Patent Application No. 2003-362427, the thermal hysteresis of polyacrylamide is 0.021 ° C., and the ammonium polyacrylate of the present invention has a larger thermal hysteresis. It turns out that it is excellent as an inhibitor.
1…扁平円盤状氷晶
2…六方晶状氷晶
3…バイピラミッド型氷晶
1 ... Flat disk-shaped
Claims (12)
の氷結晶成長開始温度低下剤。 The ice crystal growth start temperature lowering agent according to claim 8, wherein the ice crystal growth start temperature lowering agent is sprayed or applied to an adhesion site to prevent ice adhesion.
The water coagulation control agent according to claim 11, which is injected into a living tissue or body fluid in order to prevent damage to the living tissue or freezing of the body fluid under freezing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005123711A JP4868767B2 (en) | 2005-04-21 | 2005-04-21 | Ice crystal growth inhibitor and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005123711A JP4868767B2 (en) | 2005-04-21 | 2005-04-21 | Ice crystal growth inhibitor and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006299108A true JP2006299108A (en) | 2006-11-02 |
JP4868767B2 JP4868767B2 (en) | 2012-02-01 |
Family
ID=37467790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005123711A Expired - Fee Related JP4868767B2 (en) | 2005-04-21 | 2005-04-21 | Ice crystal growth inhibitor and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4868767B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167292A (en) * | 2008-01-16 | 2009-07-30 | National Institute Of Advanced Industrial & Technology | Ice crystal growth suppressing agent and method for suppressing ice crystal growth |
KR20210069368A (en) * | 2019-12-03 | 2021-06-11 | 고려대학교 산학협력단 | A composition for antifreeze comprising polydiacetylene |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125181A (en) * | 1979-03-22 | 1980-09-26 | Wako Pure Chem Ind Ltd | Antifreezing agent |
JPS55161877A (en) * | 1979-06-01 | 1980-12-16 | Wako Pure Chem Ind Ltd | Low freezing point composition |
JP2000337742A (en) * | 1999-05-25 | 2000-12-08 | Agency Of Ind Science & Technol | Method and device for transporting cold by utilizing polyvinyl alcohol |
JP2004161761A (en) * | 2002-10-25 | 2004-06-10 | Ikeda Shokken Kk | Antifreezing protein derived from microorganism |
-
2005
- 2005-04-21 JP JP2005123711A patent/JP4868767B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125181A (en) * | 1979-03-22 | 1980-09-26 | Wako Pure Chem Ind Ltd | Antifreezing agent |
JPS55161877A (en) * | 1979-06-01 | 1980-12-16 | Wako Pure Chem Ind Ltd | Low freezing point composition |
JP2000337742A (en) * | 1999-05-25 | 2000-12-08 | Agency Of Ind Science & Technol | Method and device for transporting cold by utilizing polyvinyl alcohol |
JP2004161761A (en) * | 2002-10-25 | 2004-06-10 | Ikeda Shokken Kk | Antifreezing protein derived from microorganism |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167292A (en) * | 2008-01-16 | 2009-07-30 | National Institute Of Advanced Industrial & Technology | Ice crystal growth suppressing agent and method for suppressing ice crystal growth |
KR20210069368A (en) * | 2019-12-03 | 2021-06-11 | 고려대학교 산학협력단 | A composition for antifreeze comprising polydiacetylene |
KR102316040B1 (en) | 2019-12-03 | 2021-10-21 | 고려대학교 산학협력단 | A composition for antifreeze comprising polydiacetylene |
Also Published As
Publication number | Publication date |
---|---|
JP4868767B2 (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015501140A (en) | Use of synthetic Janus particles to prevent or inhibit crystal growth | |
JP2008259456A (en) | Method for preserving fish and shellfish | |
EP1619945A2 (en) | Improved methods and solutions for storing donor organs | |
EP0246824B1 (en) | Biological cryoprotection | |
US20070042337A1 (en) | Isochoric method and device for reducing the probability of ice nucleation during preservation of biological matter at subzero centigrade temperatures | |
JP4868767B2 (en) | Ice crystal growth inhibitor and use thereof | |
US6616858B2 (en) | Prevention of ice nucleation by polyglycerol | |
Wowk | How cryoprotectants work | |
CA2303496C (en) | Method and apparatus for thermal transportation using polyvinyl alcohol | |
JP5360456B2 (en) | Ice crystal growth inhibitor and ice crystal growth inhibition method | |
US20080317704A1 (en) | Control of ice-crystal growth by non-proteinaceous substance | |
CN108271770A (en) | Application of the micron particles in cryopreservation | |
Mugnano et al. | Antifreeze glycoproteins promote intracellular freezing of rat cardiomyocytes at high subzero temperatures | |
Sharma et al. | Biophysics of cryopreservation | |
JPH0458516B2 (en) | ||
Pertaya et al. | Growth–melt asymmetry in ice crystals under the influence of spruce budworm antifreeze protein | |
US20210386055A1 (en) | Metal-organic Framework-Assisted Cryopreservation of Red Blood-Cells | |
Han et al. | Enhancement of cell and tissue destruction in cryosurgery by use of eutectic freezing | |
JP6948673B2 (en) | Antifreeze solution and ice slurry | |
JP2006296390A (en) | Freezing and storing liquid of fish fertilized egg and preparation method thereof | |
US10605510B2 (en) | Apparatus for generation of high albedo ice | |
JP2006296403A (en) | Frozen liquid of fertilized fish egg and preparation method thereof | |
Han et al. | Enhancement of Direct Cell Injury during Freezing AT-1 Tumor Tissues by use of Eutectic Crystallization | |
Bayer-Giraldi et al. | Antifreeze Proteins from a Sea Ice Diatom | |
Gu | Cryopreservation of plant materials in liquid nitrogen. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111108 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111115 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |