JP2006298949A - Resin composition for lactic acid-based resin and its utilization - Google Patents

Resin composition for lactic acid-based resin and its utilization Download PDF

Info

Publication number
JP2006298949A
JP2006298949A JP2005117791A JP2005117791A JP2006298949A JP 2006298949 A JP2006298949 A JP 2006298949A JP 2005117791 A JP2005117791 A JP 2005117791A JP 2005117791 A JP2005117791 A JP 2005117791A JP 2006298949 A JP2006298949 A JP 2006298949A
Authority
JP
Japan
Prior art keywords
lactic acid
resin
resin composition
general formula
acid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117791A
Other languages
Japanese (ja)
Inventor
Nobuyuki Uchida
信幸 内田
Junichi Yoshioka
淳一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2005117791A priority Critical patent/JP2006298949A/en
Publication of JP2006298949A publication Critical patent/JP2006298949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lactic acid-based resin molded article having good moldability, heat resistance and productivity. <P>SOLUTION: The resin composition for lactic acid-based resin comprises a lactic acid resin (A) and a compound represented by general formula (1): Q(-A-Z)<SB>n</SB>(wherein Q is a heterocyclic ring which may have a substituent or an aromatic polycyclic ring which may have a substituent or an anthraquinone which has a substituent; A is a direct bond or a 1-20C alkylene group, alkenylene group or arylene group which may be substituted with -O-, -SO<SB>2</SB>-, -CO-, -S-, -CONH- or -SO<SB>2</SB>NH-; Z is -SO<SB>3</SB>M or -COOM; M is an equivalent of mono-, bi- or trivalent cation; n is an integer of 1-4). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、乳酸系樹脂用樹脂組成物及び前記樹脂組成物を用いて得られる乳酸系樹脂成形品に関する。また、本発明は、乳酸系樹脂の結晶化を促進させる方法に関する。   The present invention relates to a resin composition for a lactic acid resin and a lactic acid resin molded product obtained using the resin composition. The present invention also relates to a method for promoting crystallization of a lactic acid resin.

熱可塑性樹脂は比較的安価で軽量、耐蝕性や加工性に優れていることから、今日では機械部品、精密部品、電気・電子機器部品、日用雑貨類、工業部品、繊維などその用途展開は多岐にわたっている。
近年、従来の熱可塑性樹脂の特徴に加え、微生物によって最終的に水と二酸化炭素に分解される微生物崩壊性の樹脂が広く市場に展開されてきている。微生物崩壊性樹脂は自然界に廃棄前は耐蝕性を有するが、廃棄後は自然界の微生物により最終的に水と二酸化炭素にまで分解される。よって微生物崩壊性樹脂は、従来の難分解性の高分子樹脂と比較して自然循環型の素材であり、環境負荷軽減の観点から今後益々の需要増加が見込まれている。
Thermoplastic resins are relatively inexpensive, lightweight, and have excellent corrosion resistance and processability. Today, their applications such as mechanical parts, precision parts, electrical / electronic equipment parts, daily goods, industrial parts, and textiles are being developed. There are a wide variety.
In recent years, in addition to the characteristics of conventional thermoplastic resins, microbial disintegrating resins that are finally decomposed into water and carbon dioxide by microorganisms have been widely deployed in the market. The microorganism-disintegrating resin has corrosion resistance before being discarded in nature, but after being discarded, it is finally decomposed into water and carbon dioxide by the microorganisms in nature. Therefore, the microbial degradable resin is a natural circulation type material as compared with the conventional hard-to-decompose polymer resin, and an increase in demand is expected in the future from the viewpoint of reducing the environmental load.

非石化資源を原料とした代表的な微生物崩壊性樹脂であるポリ乳酸は、優れた透明性や加工性でフィルムや繊維等でその用途を拡大している。また、ポリ乳酸は結晶性樹脂なので、結晶化度を上げることで耐熱性の向上を図ることができるが、結晶化速度が遅いため、例えば射出成形において成形金型を結晶化可能な温度に設定し、一定時間アニーリングすることによって結晶化させているが、このアニーリング時間が長いという問題があった。このためひとつの成形品において結晶化状態がばらついたり、結晶化可能な温度でアニーリングしても成形品が変形しやすかったり、生産コストの上昇等、乳酸系樹脂の普及を妨げる大きな要因となっている。   Polylactic acid, which is a typical microbial-disintegrating resin made from non-fossil resources, is expanding its application with films, fibers, etc. due to its excellent transparency and processability. In addition, since polylactic acid is a crystalline resin, heat resistance can be improved by increasing the degree of crystallization, but because the crystallization speed is slow, for example, in injection molding, the mold is set to a temperature at which it can be crystallized. However, although it is crystallized by annealing for a certain time, there is a problem that this annealing time is long. For this reason, the crystallized state varies in one molded product, and the molded product is easily deformed even when annealed at a temperature at which crystallization is possible. Yes.

特許文献1では結晶化剤として乳酸カルシウム等の乳酸塩や安息香酸塩が開示されているが、それだけでは結晶化が不十分のため、更にアニーリング工程が必要であった。   Patent Document 1 discloses lactate and benzoate such as calcium lactate as a crystallization agent, but the crystallization is insufficient by itself, so that an annealing step is further required.

特許文献2では、結晶化剤としてタルク、シリカ、乳酸カルシウム等を使用して射出成形を試みたが、結晶化速度が遅い上、成形品が脆いため、耐熱性や耐衝撃性が低かった。
特許文献3で結晶化剤としてポリグリコール酸及びその誘導体を使用しているが、特許文献2の記載と矛盾があり技術的内容を正確に判断できない。
In Patent Document 2, although talc, silica, calcium lactate and the like are used as a crystallization agent, injection molding is attempted. However, since the crystallization speed is slow and the molded product is brittle, heat resistance and impact resistance are low.
In Patent Document 3, polyglycolic acid and its derivatives are used as crystallization agents, but there is a contradiction with the description in Patent Document 2 and the technical contents cannot be judged accurately.

特許文献4には、植物系ワックスを混合溶融し、結晶化させながら成形する技術が開示されているが、結晶化しても成形品の脱型が容易ではなく生産効率が悪い上、成形品の剛性が低かった。   Patent Document 4 discloses a technique of mixing and melting a plant-based wax and crystallizing it. However, even if it is crystallized, it is not easy to remove the molded product and the production efficiency is low. The rigidity was low.

特表平6−504799号公報JP-T 6-504799 特開平8−193165号公報JP-A-8-193165 特開平4−220456号公報JP-A-4-220456 特開平11−106628号公報JP-A-11-106628

本発明の目的は、優れた成形性及び耐熱性を有する乳酸系樹脂成形品を提供することである。   An object of the present invention is to provide a lactic acid resin molded product having excellent moldability and heat resistance.

本発明者らは前記した課題を解決すべく鋭意研究を重ねた結果、本発明に到ったものである。
即ち、(1)乳酸系樹脂(A)と、一般式(1)で示される化合物とを含む乳酸系樹脂用樹脂組成物である。
一般式(1)

Figure 2006298949
(式中、Qは置換基を有していてもよい複素環、または置換基を有していてもよい芳香族多環、または置換基を有していてもよいアントラキノンを表し、Aは直接結合、または−O−、−SO−、−CO−、−S−、−CONH−、−SONH−で置換されても良い炭素数1〜20で構成された、アルキレン基、アルケニレン基、あるいはアリーレン基を表し、Zは−SOM、−COOMを表し、Mは1〜3価のカチオンの一当量を表し、nは1〜4の整数を表す。) The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above-mentioned problems.
That is, it is a resin composition for a lactic acid resin containing (1) a lactic acid resin (A) and a compound represented by the general formula (1).
General formula (1)
Figure 2006298949
(In the formula, Q represents an optionally substituted heterocyclic ring, an optionally substituted aromatic polycycle, or an optionally substituted anthraquinone, and A is directly An alkylene group or an alkenylene group having 1 to 20 carbon atoms which may be substituted with a bond or —O—, —SO 2 —, —CO—, —S—, —CONH—, —SO 2 NH— Or represents an arylene group, Z represents —SO 3 M or —COOM, M represents one equivalent of a 1 to 3 valent cation, and n represents an integer of 1 to 4.

(2)熱可塑性ポリエステル樹脂、澱粉、変性澱粉からなる群から1種以上選択される樹脂(B)と、一般式(1)で示される化合物とを含む乳酸系樹脂用樹脂組成物である。   (2) A resin composition for a lactic acid resin comprising a resin (B) selected from the group consisting of a thermoplastic polyester resin, starch, and modified starch, and a compound represented by the general formula (1).

(3)乳酸系樹脂(A)と、熱可塑性ポリエステル樹脂、澱粉、変性澱粉からなる群から1種以上選択される樹脂(B)と、一般式(1)で示される化合物とを含む乳酸系樹脂用樹脂組成物である。   (3) A lactic acid series comprising a lactic acid series resin (A), a resin (B) selected from the group consisting of a thermoplastic polyester resin, starch, and modified starch, and a compound represented by the general formula (1) It is a resin composition for resin.

(4)請求項1〜3いずれか記載の乳酸系樹脂組成物を用いて得られる成形品であって、一般式(1)で示される化合物が0.01〜50重量%である乳酸系樹脂成形品である。   (4) A molded product obtained by using the lactic acid resin composition according to any one of claims 1 to 3, wherein the compound represented by the general formula (1) is 0.01 to 50% by weight. It is a molded product.

(5)一般式(1)で示される化合物を用いる乳酸系樹脂の結晶化促進方法である。   (5) A method for promoting crystallization of a lactic acid resin using a compound represented by the general formula (1).

本発明の乳酸系樹脂用樹脂組成物は、乳酸系樹脂(A)と、一般式(1)で示される化合物とを含むので、成形品製造の際に乳酸系樹脂の結晶化が促進できる。   Since the resin composition for lactic acid-based resins of the present invention contains the lactic acid-based resin (A) and the compound represented by the general formula (1), crystallization of the lactic acid-based resin can be promoted during the production of a molded product.

本発明の乳酸系樹脂用樹脂組成物は、熱可塑性ポリエステル樹脂、澱粉、変性澱粉からなる群から1種以上選択される樹脂(B)と、一般式(1)で示される化合物とを含むので、成形品製造の際に乳酸系樹脂の結晶化が促進できる。   Since the resin composition for lactic acid-based resins of the present invention contains a resin (B) selected from the group consisting of thermoplastic polyester resin, starch and modified starch, and a compound represented by the general formula (1). The crystallization of the lactic acid resin can be promoted during the production of the molded product.

本発明の乳酸系樹脂用樹脂組成物は、乳酸系樹脂(A)と、熱可塑性ポリエステル樹脂、澱粉、変性澱粉からなる群から1種以上選択される樹脂(B)と、一般式(1)で示される化合物とを含むので、成形品製造の際に乳酸系樹脂の結晶化が促進できる。   The resin composition for a lactic acid resin of the present invention includes a lactic acid resin (A), a resin (B) selected from the group consisting of a thermoplastic polyester resin, starch, and modified starch, and a general formula (1). Therefore, the crystallization of the lactic acid resin can be promoted during the production of a molded product.

上記乳酸系樹脂用樹脂組成物を用いて得られる本発明の成形品は、一般式(1)で示される化合物が0.01〜50重量%なので、成形性及び耐熱性が良好である。   The molded product of the present invention obtained using the above resin composition for lactic acid resin has good moldability and heat resistance because the compound represented by the general formula (1) is 0.01 to 50% by weight.

本発明の乳酸系樹脂の結晶化促進方法は、一般式(1)で示される化合物を用いるので、乳酸系樹脂の成形加工工程が短縮でき生産性が優れると共に成形品の成形性及び耐熱性が良好である。   Since the method for promoting crystallization of a lactic acid resin of the present invention uses the compound represented by the general formula (1), the molding process of the lactic acid resin can be shortened, the productivity is excellent, and the moldability and heat resistance of the molded product are improved. It is good.

<乳酸系樹脂(A)>
本発明で用いられる乳酸系樹脂(A)は、ポリ乳酸ホモポリマーの他、ポリ乳酸コポリマーを含む。また、ポリ乳酸ホモポリマー及び/又はポリ乳酸コポリマーを主体とするブレンドポリマーであっても良い。
<Lactic acid resin (A)>
The lactic acid resin (A) used in the present invention includes a polylactic acid copolymer in addition to a polylactic acid homopolymer. Further, it may be a blend polymer mainly composed of a polylactic acid homopolymer and / or a polylactic acid copolymer.

乳酸系樹脂(A)の重量平均分子量(Mw)は、GPC分析によるポリスチレン換算で5万〜50万が好ましく、10万〜25万が更に好ましい。重量平均分子量が5万未満では実用上必要な物性が得られない場合があり、一方、重量平均分子量が50万を超えると、成形性不良になり易い場合がある。   The weight average molecular weight (Mw) of the lactic acid-based resin (A) is preferably 50,000 to 500,000, more preferably 100,000 to 250,000 in terms of polystyrene by GPC analysis. When the weight average molecular weight is less than 50,000, physical properties necessary for practical use may not be obtained. On the other hand, when the weight average molecular weight exceeds 500,000, moldability may be easily deteriorated.

また、乳酸系樹脂(A)におけるL−乳酸単位及びD−乳酸単位の構成モル比L/Dは、100/0〜0/100のいずれであっても良いが、高い融点を得るにはL−乳酸またはD−乳酸のいずれかの単位を75モル%以上、更に高い融点を得るにはL−乳酸またははD−乳酸のいずれかの単位を90モル%以上含むことが好ましい。   In addition, the constituent molar ratio L / D of the L-lactic acid unit and the D-lactic acid unit in the lactic acid-based resin (A) may be 100/0 to 0/100, but in order to obtain a high melting point, L -It is preferable to contain at least 75 mol% of units of lactic acid or D-lactic acid, and 90 mol% or more of either unit of L-lactic acid or D-lactic acid in order to obtain a higher melting point.

ポリ乳酸コポリマーは、乳酸モノマー又はラクチドと共重合可能な他の成分とが共重合されたものである。他の成分としては、2個以上のエステル結合形成性の官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等及びこれらの構成成分より成る各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等が挙げられる。   The polylactic acid copolymer is obtained by copolymerizing a lactic acid monomer or other component copolymerizable with lactide. Other components include dicarboxylic acids having two or more ester bond-forming functional groups, polyhydric alcohols, hydroxycarboxylic acids, lactones, etc., and various polyesters, polyethers, polycarbonates, and the like comprising these components. Can be mentioned.

ジカルボン酸の例としてコハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。   Examples of dicarboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid and the like.

多価アルコールの例としてビスフェノールにエチレンオキサイドを付加反応させたものなどの芳香族多価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、リメチロールプロパン、ネオペンチルグリコール等の脂肪族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のエーテルグリコール等が挙げられる。   Examples of polyhydric alcohols include aromatic polyhydric alcohols such as those obtained by addition reaction of bisphenol with ethylene oxide, ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sorbitan, limethylolpropane, neopentyl glycol And aliphatic glycols such as diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol.

ヒドロキシカルボン酸の例としてグリコール酸、ヒドロキシブチルカルボン酸、その他特開平6−184417号公報に記載されているもの等が挙げられる。   Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutylcarboxylic acid, and others described in JP-A-6-184417.

ラクトンとしてグリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−又はγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。   Examples of the lactone include glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, and δ-valerolactone.

本発明で用いられる乳酸系樹脂(A)は、従来公知の方法で合成されるものである。すなわち特開平7−33861号公報、特開昭59−96123号公報、高分子討論会予稿集第44巻、3198−3199頁に記載のような乳酸モノマーからの直接脱水縮合、又は乳酸環状二量体ラクチドの開環重合によって合成することができる。   The lactic acid resin (A) used in the present invention is synthesized by a conventionally known method. That is, direct dehydration condensation from a lactic acid monomer as described in JP-A-7-33861, JP-A-59-96123, Polymer Proceedings Proceedings Vol. 44, pages 3198-3199, or lactic acid cyclic dimer Can be synthesized by ring-opening polymerization of lactide.

直接脱水縮合を行う場合、L−乳酸、D−乳酸、DL−乳酸、又はこれらの混合物のいずれの乳酸を用いても良い。また、開環重合を行う場合においてもL−ラクチド、D−ラクチド、DL−ラクチド、meso−ラクチド、又はこれらの混合物いずれのラクチドを用いても良い。   When performing direct dehydration condensation, any lactic acid of L-lactic acid, D-lactic acid, DL-lactic acid, or a mixture thereof may be used. Moreover, when performing ring-opening polymerization, you may use the lactide of any of L-lactide, D-lactide, DL-lactide, meso-lactide, or these mixtures.

ラクチドの合成、精製及び重合操作は、例えば米国特許4057537号明細書、公開欧州特許出願第261572号明細書、Polymer Bulletin,14,491−495(1985)及びMakromol Chem, 187, 1611−1628 (1986)等の文献に様々に記載されている。   Lactide synthesis, purification and polymerization procedures are described, for example, in U.S. Pat. ) And the like.

この重合反応に用いる触媒は特に限定されるものではなく、公知の乳酸重合用触媒を用いることができる。例えば乳酸スズ、酒石酸スズ、ジカプリル酸スズ、ジラウリル酸スズ、ジパルミチン酸スズ、ジステアリン酸スズ、ジオレイン酸スズ、α−ナフトエ酸スズ、β−ナフトエ酸スズ、オクチル酸スズ等のスズ系化合物、粉末スズ、酸化スズ; 亜鉛末、ハロゲン化亜鉛、酸化亜鉛、有機亜鉛系化合物; テトラプロピルチタネート等のチタン系化合物; ジルコニウムイソプロポキシド等のジルコニウム系化合物; 三酸化アンチモン等のアンチモン系化合物; 酸化ビスマス(III) 等のビスマス系化合物; 酸化アルミニウム、アルミニウムイソプロポキシド等のアルミニウム系化合物等を挙げることができる。   The catalyst used for this polymerization reaction is not particularly limited, and a known catalyst for lactic acid polymerization can be used. For example, tin compounds such as tin lactate, tin tartrate, dicaprylate, dilaurate, dipalmitate, tin distearate, dioleate, tin α-naphthoate, tin β-naphthoate, tin octylate, powder Tin powder, zinc oxide, zinc oxide, organic zinc compounds; titanium compounds such as tetrapropyl titanate; zirconium compounds such as zirconium isopropoxide; antimony compounds such as antimony trioxide; bismuth oxide Bismuth compounds such as (III); Aluminum compounds such as aluminum oxide and aluminum isopropoxide.

これらの中でも、スズ又はスズ化合物からなる触媒が活性の点から特に好ましい。これらの触媒の使用量は、例えば開環重合を行う場合、ラクチドに対して0.001〜5重量%程度が好ましい。   Among these, a catalyst made of tin or a tin compound is particularly preferable from the viewpoint of activity. For example, when ring-opening polymerization is performed, the amount of these catalysts used is preferably about 0.001 to 5% by weight with respect to lactide.

重合反応は上記触媒の存在下、触媒種によって異なるが、通常100〜220℃の温度で行うことができる。また、特開平7−247345号公報に記載のような2段階重合を行うことも好ましい。   Although the polymerization reaction varies depending on the type of catalyst in the presence of the catalyst, it can usually be carried out at a temperature of 100 to 220 ° C. It is also preferable to carry out two-stage polymerization as described in JP-A-7-247345.

本発明において、乳酸系樹脂(A)は、乳酸系樹脂用樹脂組成物においては基材樹脂として、乳酸系樹脂成形品においては希釈樹脂として用いられる。   In the present invention, the lactic acid resin (A) is used as a base resin in a resin composition for a lactic acid resin, and as a diluted resin in a lactic acid resin molded article.

<樹脂(B)>
本発明における樹脂(B)は、熱可塑性ポリエステル樹脂、澱粉、変性澱粉からなる群から1種以上選択されたものである。
熱可塑性ポリエステル樹脂としては、脂肪族ポリエステル系樹脂の他、芳香族ポリエステル、微生物または植物より合成されたポリエステル樹脂等が挙げられる。
<Resin (B)>
The resin (B) in the present invention is one or more selected from the group consisting of thermoplastic polyester resin, starch, and modified starch.
Examples of the thermoplastic polyester resin include aliphatic polyester resins, aromatic polyesters, polyester resins synthesized from microorganisms or plants, and the like.

澱粉または変性澱粉としては、とうもろこし、米、芋、馬鈴薯、麦等から得られる澱粉、またはその澱粉に天然油脂等を共重合させたもの、あるいは澱粉を主成分としてラクトース、グルコース等の糖類、糖蜜、カゼイン等の微生物の摂取し好適な有機物質で修飾されたものが挙げられる。   As starch or modified starch, starch obtained from corn, rice, rice bran, potato, wheat, or the like, or a product obtained by copolymerizing starch with natural fats and oils, or sugars such as lactose or glucose, molasses mainly composed of starch And those modified with organic substances suitable for ingestion of microorganisms such as casein.

樹脂(B)の例として、具体的には市販された微生物崩壊性樹脂等が挙げられる。例えば昭和高分子社製や日本触媒社製のポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンサクシネートアジペート、ダイセル化学社製のポリカプロラクトン、モンサント社製のポリ(3−ヒドロキシ酪酸−CO−3−ヒドロキシ吉草酸)(P(3HB−3HV))やポリ(3−ヒドロキシ酪酸−CO−4−ヒドロキシ酪酸)(P(3HB−4HB))やポリ(3−ヒドロキシ酪酸−CO−3−ヒドロキシプロピオネート)(P(3HB−3HP))、三菱ガス化学社製のユーペック(ポリエステルポリカーボネート)、日本コーンポール社製変性澱粉樹脂等が挙げられる。   Specific examples of the resin (B) include commercially available microbial disintegrating resins. For example, polybutylene succinate, polyethylene succinate, polybutylene succinate adipate manufactured by Showa Polymer Co., Ltd. or Nippon Shokubai Co., Ltd., polycaprolactone manufactured by Daicel Chemical Industries, poly (3-hydroxybutyric acid-CO-3- Hydroxyvaleric acid (P (3HB-3HV)) and poly (3-hydroxybutyric acid-CO-4-hydroxybutyric acid) (P (3HB-4HB)) and poly (3-hydroxybutyric acid-CO-3-hydroxypropio) Nate) (P (3HB-3HP)), Upec (polyester polycarbonate) manufactured by Mitsubishi Gas Chemical Company, modified starch resin manufactured by Nippon Corn Pole, and the like.

<一般式(1)で示される化合物>
本発明においては、一般式(1)で示される化合物を乳酸系樹脂の結晶化剤として用いる。
一般式(1)

Figure 2006298949
(式中、Qは置換基を有していてもよい複素環、または置換基を有していてもよい芳香族多環、または置換基を有していてもよいアントラキノンを表し、Aは直接結合、または−O−、−SO−、−CO−、−S−、−CONH−、−SONH−で置換されても良い炭素数1〜20で構成された、アルキレン基、アルケニレン基、あるいはアリーレン基を表し、Zは−SOM、−COOMを表し、Mは1〜3価のカチオンの一当量を表し、nは1〜4の整数を表す。) <Compound represented by the general formula (1)>
In the present invention, the compound represented by the general formula (1) is used as a crystallization agent for a lactic acid resin.
General formula (1)
Figure 2006298949
(In the formula, Q represents an optionally substituted heterocyclic ring, an optionally substituted aromatic polycycle, or an optionally substituted anthraquinone, and A is directly An alkylene group or an alkenylene group having 1 to 20 carbon atoms which may be substituted with a bond or —O—, —SO 2 —, —CO—, —S—, —CONH—, —SO 2 NH— Or represents an arylene group, Z represents —SO 3 M or —COOM, M represents one equivalent of a 1 to 3 valent cation, and n represents an integer of 1 to 4.

Qとして表される化合物としては置換基を有していてもよい複素環、または置換基を有していてもよい芳香族多環、または置換基を有していてもよいアントラキノンを表す。
例えばナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、インドール、チアゾール、ベンズイミダゾール、キノリン、アクリドン、アントラキノン、フェノチアジン、キナゾリン、カルバゾール、ベンザンスロン、ペリレン等が挙げられる。
The compound represented by Q represents a heterocyclic ring which may have a substituent, an aromatic polycycle which may have a substituent, or an anthraquinone which may have a substituent.
Examples include naphthalene, anthracene, phenanthrene, pyrene, chrysene, indole, thiazole, benzimidazole, quinoline, acridone, anthraquinone, phenothiazine, quinazoline, carbazole, benzanthrone, and perylene.

Aは直接結合、または−O−、−SO−、−CO−、−S−、−CONH−、−SONH−で置換されても良い炭素数1〜20で構成された、アルキレン基、アルケニレン基、あるいはアリーレン基を表す。 A is a direct bond or an alkylene group composed of 1 to 20 carbon atoms which may be substituted with —O—, —SO 2 —, —CO—, —S—, —CONH— or —SO 2 NH—. Represents an alkenylene group or an arylene group.

Zは−SOM、−COOMを表し、Mは1〜3価のカチオンの一当量を表し、例えば水素原子、ナトリウム、カリウム、カルシウム、バリウム、マンガン、ニッケル、ストロンチウム等の金属あるいはジメチルアンモニウム、トリメチルアンモニウム、ジエチルアンモニウム、トリエチルアンモニウム、ヒドロキシエチルアンモニウム、ジヒドロキシエチルアンモニウム、2−エチルヘキシルアンモニウム、ピリジニウムピペリジニウム、ジメチルアミノプロピルアンモニウム、モルフォリニウム、ラウリルアンモニウム、ステアリルアンモニウム、オレイルアンモニウム、ヘキシルアンモニウム、1,2−ジメチルプロピルアンモニウム、ブチルアンモニウム、イソブチルアンモニウム、ブトキシプロピルアンモニウム、デシルオキシプロピルアンモニウム等が挙げられる。 Z represents —SO 3 M, —COOM, and M represents one equivalent of a monovalent to trivalent cation, such as a metal such as a hydrogen atom, sodium, potassium, calcium, barium, manganese, nickel, strontium, or dimethylammonium, Trimethylammonium, diethylammonium, triethylammonium, hydroxyethylammonium, dihydroxyethylammonium, 2-ethylhexylammonium, pyridiniumpiperidinium, dimethylaminopropylammonium, morpholinium, laurylammonium, stearylammonium, oleylammonium, hexylammonium, 1, 2-dimethylpropylammonium, butylammonium, isobutylammonium, butoxypropylammonium, decyloxy B pills and ammonium.

一般式(1)の具体的な化合物を表1に挙げた。これらの造塩物も用いることができる。結晶化促進剤は成形品における着色の自由が広がるので、無色または着色程度が低い方がより好ましい。例えば、表1に記載の化合物記号(a)のアルミニウム塩は薄いレモン色であり好ましく用いられる。   Specific compounds of the general formula (1) are listed in Table 1. These salt forms can also be used. The crystallization accelerator is more colorless or has a lower degree of coloring because the freedom of coloring in the molded product is widened. For example, the aluminum salt of the compound symbol (a) shown in Table 1 has a light lemon color and is preferably used.

Figure 2006298949
Figure 2006298949

<その他の成分>
本発明の乳酸系樹脂用樹脂組成物または乳酸系樹脂成形品には、必要に応じて着色剤、酸化防止剤、紫外線吸収剤、光安定剤、熱安定剤、難燃剤、架橋剤等の通常プラスチック加工の際に常用されている添加剤を加える事が出来る。また、使用し得る着色剤に特に制限はなく、例えばカーボンブラックアゾ、ジスアゾ、キナクリドン、アントラキノン、フラバントロン、ペリレン、ジオキサジン、縮合アゾ、アゾメチン、又はメチン系等の各種有機顔料等が挙げられる。
<Other ingredients>
The resin composition for a lactic acid resin or a lactic acid resin molded product of the present invention usually contains a colorant, an antioxidant, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a flame retardant, a crosslinking agent, etc. as necessary. Additives commonly used in plastic processing can be added. The colorant that can be used is not particularly limited, and examples thereof include carbon black azo, disazo, quinacridone, anthraquinone, flavantron, perylene, dioxazine, condensed azo, azomethine, and methine-based various organic pigments.

さらに本発明における乳酸系樹脂組成物には、必要に応じて、従来公知の可塑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、各種フィラー、帯電防止剤、離型剤、香料、滑剤、難燃剤、発泡剤、充填剤、抗菌・抗カビ剤、他の核形成剤等の各種添加剤が配合されていても良い。   Further, in the lactic acid resin composition in the present invention, conventionally known plasticizers, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, various fillers, antistatic agents are optionally added. Various additives such as mold release agents, fragrances, lubricants, flame retardants, foaming agents, fillers, antibacterial / antifungal agents, and other nucleating agents may be blended.

<乳酸系樹脂用樹脂組成物>
本発明の乳酸系樹脂用樹脂組成物における基材樹脂としては、前記した乳酸系樹脂(A)、樹脂(B)、または乳酸系樹脂(A)と樹脂(B)の組み合わせの3種類がある。更にこれらの樹脂以外の樹脂も必要に応じて添加することができる。
本発明の乳酸系樹脂用樹脂組成物は、上記の基材樹脂と、一般式(1)で示される化合物とを配合し、エクストルーダー、ニーダー、ロールミル、バンバリミキサー等の混練機を用いて得られる。
本発明の乳酸系樹脂用樹脂組成物は、成形品製造の際に希釈樹脂(乳酸系樹脂(A))と混合して成形されるいわゆるマスターバッチであってもよいし、また、そのままの組成で成形されるコンパウンドであってもよい。
乳酸系樹脂用樹脂組成物の形状は特に規定しないが、マスターバッチとして使用される場合は共に混合される希釈樹脂の形状と同一であれば加工時の分離発生防止などの点から好ましい。
<Resin composition for lactic acid resin>
The base resin in the resin composition for a lactic acid resin of the present invention includes the above-described three types of lactic acid resin (A), resin (B), or a combination of the lactic acid resin (A) and the resin (B). . Furthermore, resins other than these resins can be added as necessary.
The resin composition for a lactic acid-based resin of the present invention is obtained by blending the above base resin and the compound represented by the general formula (1) and using a kneader such as an extruder, kneader, roll mill, or Banbury mixer. It is done.
The resin composition for a lactic acid resin of the present invention may be a so-called masterbatch that is molded by mixing with a diluted resin (lactic acid resin (A)) during the production of a molded product, or may be a composition as it is. It may be a compound molded in
The shape of the resin composition for lactic acid-based resins is not particularly specified, but when used as a masterbatch, it is preferable from the standpoint of preventing separation during processing if it is the same as the shape of the diluted resin mixed together.

本発明の乳酸系樹脂用樹脂組成物における一般式(1)で示される化合物の含有量は、樹脂組成物や成形品の製造が容易である観点から50重量%以下が好ましい。より好ましくは30重量%以下であり、0.01〜10重量%の範囲が特に好ましい。   The content of the compound represented by the general formula (1) in the resin composition for a lactic acid resin of the present invention is preferably 50% by weight or less from the viewpoint of easy production of the resin composition and molded product. More preferably, it is 30 weight% or less, and the range of 0.01-10 weight% is especially preferable.

<乳酸系樹脂成形品>
本発明の乳酸系樹脂成形品は、乳酸系樹脂用樹脂組成物がマスターバッチの場合は、成形品製造の際に希釈樹脂として乳酸系樹脂(A)と混合して成形される。また、コンパウンドの場合はそのままの組成で成形される。
<Lactic acid resin molded products>
When the resin composition for lactic acid resin is a master batch, the lactic acid resin molded product of the present invention is molded by mixing with the lactic acid resin (A) as a dilution resin when the molded product is produced. In the case of a compound, it is molded with the composition as it is.

本発明の乳酸系樹脂成形品における一般式(1)で示される化合物の含有量は0.01〜50重量%である。この範囲であれば、乳酸系樹脂の結晶化を促進させることができる。0.01重量%未満では、結晶化ピーク温度や結晶化熱量は確認できるものの再現性があまりない上冷却時間も長くなり成形性が良好でない。より好ましくは0.01〜30重量%であり、0.01〜10重量%の範囲が特に好ましい。   The content of the compound represented by the general formula (1) in the lactic acid resin molded product of the present invention is 0.01 to 50% by weight. Within this range, crystallization of the lactic acid resin can be promoted. If it is less than 0.01% by weight, the crystallization peak temperature and the amount of crystallization heat can be confirmed, but the reproducibility is not so much and the cooling time becomes long, and the moldability is not good. More preferably, it is 0.01-30 weight%, and the range of 0.01-10 weight% is especially preferable.

一般に射出成形による乳酸系樹脂成形品は、成形品を成形するときに成形金型を結晶化可能な温度に設定し、一定時間アニーリングすることによって結晶化させている。樹脂が結晶化したか否かは、走査型示差熱量計(DSC)における発熱ピーク(結晶化ピーク)の有無により分かる。結晶化ピークや結晶化熱量が認められない場合は、結晶化が起こっていないと考えられる。
本発明においては、成形品の組成におけるDSCの結晶化ピーク温度が90〜130℃、更に100〜115℃が好ましい。
In general, a lactic acid-based resin molded product by injection molding is crystallized by setting a molding die to a temperature at which crystallization can be performed and molding it for a certain period of time. Whether or not the resin has crystallized can be determined by the presence or absence of an exothermic peak (crystallization peak) in a scanning differential calorimeter (DSC). When no crystallization peak or heat of crystallization is observed, it is considered that crystallization has not occurred.
In the present invention, the DSC crystallization peak temperature in the composition of the molded product is preferably 90 to 130 ° C, more preferably 100 to 115 ° C.

本発明における結晶化ピーク温度及び結晶化熱量は、走査型示差熱量計(Seiko Instruments Inc社製、DSC−6200)で測定した値である。更に詳しくは、3mgのペレットサンプルを30℃/分で20〜220℃まで昇温し、さらに1分間保持してサンプルを均質化した後、10℃/分の速度で50℃まで降温させ、その過程において結晶化ピーク温度及び結晶化熱量を測定した値である。   The crystallization peak temperature and crystallization heat amount in the present invention are values measured with a scanning differential calorimeter (DSC-6200, manufactured by Seiko Instruments Inc.). More specifically, a 3 mg pellet sample was heated to 20-220 ° C. at 30 ° C./min, held for 1 minute to homogenize the sample, and then cooled to 50 ° C. at a rate of 10 ° C./min. It is the value which measured the crystallization peak temperature and the crystallization heat quantity in the process.

成形品の成形方法は、一般のプラスチックと同様の射出成形、押し出し成形、中空成形、回転成形、粉末成形、真空成形、圧縮成形等、公知の方法が挙げられる。   Examples of the molding method of the molded product include known methods such as injection molding, extrusion molding, hollow molding, rotational molding, powder molding, vacuum molding, and compression molding similar to those for general plastics.

成形品の具体例としては機械部品、精密部品、電気・電子機器部品、日用雑貨類、工業部品、繊維、容器、キャップ、フィルム、テープ等が挙げられる。これらは積層構造を有していても良い。更に詳しくは自動車のダッシュボード、コンソール、ドア内張り、ピラー、開閉ハンドルノブ、フロアカーペット、シートカバー等の内装材、バンパー、ドア開閉ハンドルノブ、給油口フタ、フェンダー、ドアミラー、マッドガード等の外装品、弁当箱等が挙げられる。   Specific examples of the molded product include mechanical parts, precision parts, electrical / electronic equipment parts, daily goods, industrial parts, fibers, containers, caps, films, tapes, and the like. These may have a laminated structure. In more detail, interior materials such as automobile dashboards, consoles, door linings, pillars, opening / closing handle knobs, floor carpets, seat covers, bumpers, door opening / closing handle knobs, filler caps, fenders, door mirrors, mudguards, Examples include lunch boxes.

以下に実施例を挙げて本発明をさらに具体的に説明する一般式(2)で示される化合物が、本発明はこれらの実施例に限定されるものではない。実施例中「部」は「重量部」、「%」は「重量%」をいう。
実施例及び比較例における成形品の組成とDSCの値は表2及び表3、成形品の評価結果は表4に示した。
The compound represented by the general formula (2), which further specifically explains the present invention with reference to the following examples, is not intended to limit the present invention. In the examples, “parts” means “parts by weight” and “%” means “% by weight”.
The compositions and DSC values of the molded products in Examples and Comparative Examples are shown in Tables 2 and 3, and the evaluation results of the molded products are shown in Table 4.

[実施例1]
(乳酸系樹脂用樹脂組成物の製造)
乳酸系樹脂(三井化学社製 レイシアH−100)99%と、表1に記載の化合物記号(a)のアルミニウム塩1%を予めブレンドした後、押出機にて混練造粒し、ペレット状の乳酸系樹脂組成物を得た。

Figure 2006298949
[Example 1]
(Production of resin composition for lactic acid resin)
After pre-blending 99% of lactic acid resin (Laysia H-100, manufactured by Mitsui Chemicals) and 1% of the aluminum salt of the compound symbol (a) described in Table 1, the mixture was kneaded and granulated with an extruder, and pelletized. A lactic acid resin composition was obtained.
Figure 2006298949

(成形品の製造)
上記樹脂組成物を60℃の熱風乾燥機で12時間乾燥し、射出成形機(東芝機械社製 IS75E 成形温度=200℃、金型設定温度105℃、射出一次設定圧力=60%、冷却固化時間1分間)を用いて成形板(2×3mm角、厚さ2mm)を成形した。
(Manufacture of molded products)
The resin composition was dried for 12 hours with a hot air dryer at 60 ° C., and injection molding machine (IS75E manufactured by Toshiba Machine Co., Ltd., molding temperature = 200 ° C., mold set temperature 105 ° C., injection primary set pressure = 60%, cooling solidification time. A molded plate (2 × 3 mm square, 2 mm thickness) was molded using 1 minute).

(評価)
(1)成形品製造前の樹脂組成物(成形品と同じ組成のもの)における結晶化ピーク温度及び結晶化熱量の測定
成形品製造前の、60℃の熱風乾燥機で12時間乾燥した後の樹脂組成物について、結晶化ピーク温度及び結晶化熱量を、走査型示差熱量計(Seiko Instruments Inc社製、DSC−6200)で測定した。樹脂組成物3mgのサンプルを30℃/分で20〜220℃まで昇温し、さらに1分間保持してサンプルを均質化した後、10℃/分の速度で50℃まで降温させ、その過程において結晶化ピーク温度、結晶化熱量を測定した。
(Evaluation)
(1) Measurement of crystallization peak temperature and crystallization calorie in resin composition (same composition as molded product) before production of molded product After drying with a hot air dryer at 60 ° C. for 12 hours before production of molded product About the resin composition, the crystallization peak temperature and the crystallization calorie | heat amount were measured with the scanning differential calorimeter (The Seiko Instruments Inc company make, DSC-6200). A sample of 3 mg of the resin composition was heated to 20 to 220 ° C. at 30 ° C./min, held for 1 minute to homogenize the sample, and then cooled to 50 ° C. at a rate of 10 ° C./min. The crystallization peak temperature and crystallization heat quantity were measured.

(2)成形品における成形性
射出成形用金型からの成形品の脱型状態を目視評価した。
良好:脱型が容易。
不良:脱型しない、または脱型するが成形不良。
(2) Moldability in molded product The mold release state of the molded product from the injection mold was visually evaluated.
Good: Demolding is easy.
Defect: Does not demold, or demold, but molding failure.

(3)成形品の耐熱性
簡易的に以下の方法で行った。槽内温度85℃の熱風オーブン中に、2枚の成形板の2×3mm角の平滑面同士を重ねて1時間静置した後、2枚の成形板の接触面の付着状態を観察し評価した。
良好:2枚の成形板は付着していない(成形の際に充分結晶化された成形板は耐熱性が向上しているため接触面の溶着が少ない。)。
不良:2枚の成形板は付着している(成形の際に結晶化されていない、または充分でなかった成形板は耐熱性が向上せず接触面の溶着が著しい。)。
(3) Heat resistance of molded product This was simply carried out by the following method. In a hot air oven at 85 ° C. in the tank, the 2 × 3 mm square smooth surfaces of the two molded plates were placed on each other and allowed to stand for 1 hour, and then the adhesion state of the contact surfaces of the two molded plates was observed and evaluated. did.
Good: The two molded plates are not attached (the molded plate sufficiently crystallized at the time of molding has improved heat resistance, so that the contact surface is less welded).
Defective: Two molded plates are adhered (a molded plate that is not crystallized or insufficient during molding does not have improved heat resistance and has a significant contact surface weld).

[実施例2]
乳酸系樹脂(三井化学社製 レイシアH−100)90%と、表1に記載の化合物記号(a)のアルミニウム塩10%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Example 2]
90% of lactic acid resin (Laysia H-100 manufactured by Mitsui Chemicals) and 10% of the aluminum salt of the compound symbol (a) shown in Table 1 were previously blended, and then kneaded and granulated with an extruder, and pelletized. A resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[実施例3]
乳酸系樹脂(三井化学社製 レイシアH−100)99.99%と、表1に記載の化合物記号(a)のアルミニウム塩0.01%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Example 3]
A lactic acid resin (Laissia H-100, Mitsui Chemicals, Inc.) 99.99% and an aluminum salt 0.01% of the compound symbol (a) shown in Table 1 were previously blended and then kneaded and granulated with an extruder. A pellet-shaped resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[実施例4]
乳酸系樹脂(三井化学社製 レイシアH−100)50%と、表1に記載の化合物記号(a)のアルミニウム塩50%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Example 4]
50% lactic acid resin (Laysia H-100 manufactured by Mitsui Chemicals) and 50% aluminum salt of the compound symbol (a) shown in Table 1 were previously blended and then kneaded and granulated with an extruder, and pelletized. A resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[実施例5]
乳酸系樹脂(三井化学社製 レイシアH−100)99%と、実施例4の樹脂組成物(マスターバッチとして用いた。)1%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Example 5]
99% lactic acid resin (Laysia H-100 manufactured by Mitsui Chemicals) and 1% of the resin composition of Example 4 (used as a masterbatch) were blended in advance and then kneaded and granulated with an extruder, and then pelleted. A resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[実施例6]
熱可塑性ポリエステル樹脂(昭和高分子社製 ビオノーレ3001)50%と、表1に記載の化合物記号(a)のアルミニウム塩50%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物(マスターバッチ)を得た。
その後、このマスターバッチ1%と、乳酸系樹脂(三井化学社製 レイシアH−100)99%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Example 6]
After blending in advance 50% of a thermoplastic polyester resin (Bionore 3001 manufactured by Showa Polymer Co., Ltd.) and 50% of the aluminum salt of the compound symbol (a) shown in Table 1, the mixture is kneaded and granulated with an extruder, and pelletized A resin composition (master batch) was obtained.
Thereafter, 1% of the master batch and 99% of lactic acid resin (Lacia H-100 manufactured by Mitsui Chemicals) were blended in advance, and then kneaded and granulated with an extruder to obtain a pellet-shaped resin composition. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[比較例1]
乳酸系樹脂(三井化学社製 レイシアH−100)を60℃の熱風乾燥機で12時間乾燥した後、実施例1と同様に行い成形品を得、評価を行った。
[Comparative Example 1]
A lactic acid resin (Laissia H-100 manufactured by Mitsui Chemicals, Inc.) was dried with a hot air dryer at 60 ° C. for 12 hours, and then a molded product was obtained and evaluated in the same manner as in Example 1.

[比較例2]
乳酸系樹脂(三井化学社製 レイシアH−100)99%と、脂肪酸金属塩系造核材(シェルジャパン社製AL−PTBBA)1%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Comparative Example 2]
After pre-blending 99% of lactic acid resin (Laisia H-100 made by Mitsui Chemicals) and 1% fatty acid metal salt nucleating material (AL-PTBBA made by Shell Japan), knead and granulate with an extruder, A pellet-shaped resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[比較例3]
乳酸系樹脂(三井化学社製 レイシアH−100)99%と、モンタン酸ナトリウム塩造核材(クラリアントジャパン社製Licomont NaV 101)1%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Comparative Example 3]
After pre-blending 99% of lactic acid resin (Laysia H-100 made by Mitsui Chemicals) and 1% sodium montanate nucleating material (Licomont NaV 101 made by Clariant Japan), knead and granulate with an extruder, A pellet-shaped resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[比較例4]
乳酸系樹脂(三井化学社製 レイシアH−100)99%と、モンタン酸カルシウム塩造核材(クラリアントジャパン社製Licomon CaV 102)1%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Comparative Example 4]
After pre-blending 99% of lactic acid resin (Laisia H-100 made by Mitsui Chemicals) and 1% calcium montanate salt nucleating material (Licomon CaV 102 made by Clariant Japan), knead and granulate with an extruder, A pellet-shaped resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[比較例5]
乳酸系樹脂(三井化学社製 レイシアH−100)99%と、リン酸エステル金属塩系造核材(旭電化工業社製アデカスタブNA11)1%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Comparative Example 5]
After pre-blending 99% of lactic acid resin (Laysia H-100 made by Mitsui Chemicals) and 1% phosphate metal salt nucleating material (Adeka Stub NA11 made by Asahi Denka Kogyo Co., Ltd.), kneading and granulation with an extruder As a result, a pellet-shaped resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[比較例6]
乳酸系樹脂(三井化学社製 レイシアH−100)99%と、ソルビトール系造核材(新日本理化社製ゲルオールMD)1%を予めブレンドした後、押出機にて混練造粒し、ペレット状の樹脂組成物を得た。その後は実施例1と同様に行い成形品を得、評価を行った。
[Comparative Example 6]
After pre-blending 99% of lactic acid resin (Laysia H-100 made by Mitsui Chemicals) and 1% sorbitol nucleating material (Gerall MD made by Shin Nippon Chemical Co., Ltd.), kneaded and granulated with an extruder, and pelletized A resin composition was obtained. Thereafter, the molded product was obtained in the same manner as in Example 1 and evaluated.

[比較例7]
乳酸系樹脂(三井化学社製 レイシアH−100)を60℃の熱風乾燥機で12時間乾燥した後、金型設定温度を105℃から30℃に変更した以外は実施例1と同様に行い成形品を得、評価を行った。
[Comparative Example 7]
Lactic acid-based resin (Laysia H-100, manufactured by Mitsui Chemicals, Inc.) was dried in a hot air dryer at 60 ° C. for 12 hours, and then molded in the same manner as in Example 1 except that the mold setting temperature was changed from 105 ° C. to 30 ° C. The product was obtained and evaluated.

[比較例8]
乳酸系樹脂(三井化学社製 レイシアH−100)を60℃の熱風乾燥機で12時間乾燥した後、射出成形の際の冷却固化時間を5分間、10分間、30分間に変更した以外は実施例1と同様に行った。しかし、射出成形機シリンダ中に滞留している溶融樹脂が熱劣化していずれも成形できなくなった為、試験を中止した。特に冷却固化時間が長時間のものほど熱劣化度が激しかった。
[Comparative Example 8]
This was carried out except that lactic acid-based resin (Laysia H-100 manufactured by Mitsui Chemicals, Inc.) was dried with a hot air dryer at 60 ° C. for 12 hours, and then the cooling and solidifying time during injection molding was changed to 5 minutes, 10 minutes, and 30 minutes. Performed as in Example 1. However, the test was stopped because the molten resin staying in the cylinder of the injection molding machine could not be molded due to thermal deterioration. In particular, the longer the cooling and solidification time, the more severe the heat degradation.

Figure 2006298949
Figure 2006298949

Figure 2006298949
Figure 2006298949

Figure 2006298949
Figure 2006298949

本発明の乳酸系樹脂成形品は透明性、加工性、微生物崩壊性の他、耐熱性が必要とされる用途にも展開できる。
また、本発明の乳酸系樹脂の結晶化促進方法により、乳酸系樹脂成形品の生産工程が短縮できると共に良好な成形品が得られる。
The lactic acid-based resin molded product of the present invention can be used for applications that require heat resistance in addition to transparency, processability, and microbial disintegration.
In addition, the lactic acid resin crystallization promoting method of the present invention can shorten the production process of the lactic acid resin molded product and obtain a good molded product.

Claims (5)

乳酸系樹脂(A)と、一般式(1)で示される化合物とを含む乳酸系樹脂用樹脂組成物。
一般式(1)
Figure 2006298949
(式中、Qは置換基を有していてもよい複素環、または置換基を有していてもよい芳香族多環、または置換基を有していてもよいアントラキノンを表し、Aは直接結合、または−O−、−SO−、−CO−、−S−、−CONH−、−SONH−で置換されても良い炭素数1〜20で構成された、アルキレン基、アルケニレン基、あるいはアリーレン基を表し、Zは−SOM、−COOMを表し、Mは1〜3価のカチオンの一当量を表し、nは1〜4の整数を表す。)
A resin composition for a lactic acid resin comprising a lactic acid resin (A) and a compound represented by the general formula (1).
General formula (1)
Figure 2006298949
(In the formula, Q represents an optionally substituted heterocyclic ring, an optionally substituted aromatic polycycle, or an optionally substituted anthraquinone, and A is directly An alkylene group or an alkenylene group having 1 to 20 carbon atoms which may be substituted with a bond or —O—, —SO 2 —, —CO—, —S—, —CONH—, —SO 2 NH— Or represents an arylene group, Z represents —SO 3 M or —COOM, M represents one equivalent of a 1 to 3 valent cation, and n represents an integer of 1 to 4.
熱可塑性ポリエステル樹脂、澱粉、変性澱粉からなる群から1種以上選択される樹脂(B)と、一般式(1)で示される化合物とを含む乳酸系樹脂用樹脂組成物。   A resin composition for a lactic acid resin comprising a resin (B) selected from at least one selected from the group consisting of a thermoplastic polyester resin, starch, and modified starch, and a compound represented by the general formula (1). 乳酸系樹脂(A)と、熱可塑性ポリエステル樹脂、澱粉、変性澱粉からなる群から1種以上選択される樹脂(B)と、一般式(1)で示される化合物とを含む乳酸系樹脂用樹脂組成物。   A resin for lactic acid resin comprising a lactic acid resin (A), a resin (B) selected from the group consisting of thermoplastic polyester resin, starch and modified starch, and a compound represented by the general formula (1) Composition. 請求項1〜3いずれか記載の乳酸系樹脂組成物を用いて得られる成形品であって、一般式(1)で示される化合物が0.01〜50重量%である乳酸系樹脂成形品。   A molded article obtained by using the lactic acid resin composition according to any one of claims 1 to 3, wherein the compound represented by the general formula (1) is 0.01 to 50% by weight. 一般式(1)で示される化合物を用いる乳酸系樹脂の結晶化促進方法。
A method for promoting crystallization of a lactic acid resin using a compound represented by the general formula (1).
JP2005117791A 2005-04-15 2005-04-15 Resin composition for lactic acid-based resin and its utilization Pending JP2006298949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117791A JP2006298949A (en) 2005-04-15 2005-04-15 Resin composition for lactic acid-based resin and its utilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117791A JP2006298949A (en) 2005-04-15 2005-04-15 Resin composition for lactic acid-based resin and its utilization

Publications (1)

Publication Number Publication Date
JP2006298949A true JP2006298949A (en) 2006-11-02

Family

ID=37467415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117791A Pending JP2006298949A (en) 2005-04-15 2005-04-15 Resin composition for lactic acid-based resin and its utilization

Country Status (1)

Country Link
JP (1) JP2006298949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529375A (en) * 2013-08-29 2016-09-23 アーケマ・インコーポレイテッド Biodegradable polymer composition with improved impact resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198908A (en) * 1999-01-06 2000-07-18 Mitsui Chemicals Inc Method for molding resin
JP2000239498A (en) * 1999-02-17 2000-09-05 Nippon Shokubai Co Ltd Polyester resin composition
JP2005008712A (en) * 2003-06-17 2005-01-13 Toray Ind Inc Automobile part
JP2005023260A (en) * 2003-07-04 2005-01-27 Toray Ind Inc Electrical/electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198908A (en) * 1999-01-06 2000-07-18 Mitsui Chemicals Inc Method for molding resin
JP2000239498A (en) * 1999-02-17 2000-09-05 Nippon Shokubai Co Ltd Polyester resin composition
JP2005008712A (en) * 2003-06-17 2005-01-13 Toray Ind Inc Automobile part
JP2005023260A (en) * 2003-07-04 2005-01-27 Toray Ind Inc Electrical/electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529375A (en) * 2013-08-29 2016-09-23 アーケマ・インコーポレイテッド Biodegradable polymer composition with improved impact resistance

Similar Documents

Publication Publication Date Title
KR100643250B1 (en) Polylactic acid-based resin compositions, molded articles and process for producing the same
JP3960797B2 (en) Polylactic acid-based polymer composition, molded article and method for producing the same
JP5348137B2 (en) Polylactic acid stereocomplex, method for producing the same, and nucleating agent for polylactic acid resin
JP5291461B2 (en) Aliphatic polyester composition and method for producing the same
JPWO2005068554A1 (en) Aliphatic polyester resin composition, aliphatic polyester resin molded article, and method for producing aliphatic polyester resin molded article
KR101052990B1 (en) Resin composition and molded object formed using this resin composition
JP2006089643A (en) Resin composition and molded body thereof
JP2011080015A (en) Molded spectacles article, method for producing the same, and spectacles
JP2009067856A (en) Polylactic acid-based resin composition, its molding, and method for manufacturing molding
JP2006089587A (en) Resin composition for lactic acid-based resin and its utilization
JP2004143203A (en) Injection molded product
JP4374256B2 (en) Injection molded body
JP2008247956A (en) Polyester composition
JP2006083315A (en) Method for promoting crystallization of lactic acid-based resin and its utilization
JP3989406B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP3773501B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP2006298949A (en) Resin composition for lactic acid-based resin and its utilization
JP2004323791A (en) Injection molded product
JP2006143829A (en) Polylactic acid-based resin molding and method for producing the same
JP2010126643A (en) Impact-resistant polylactic acid resin composition
JP2007204656A (en) Resin composition
JP4186477B2 (en) Resin composition and molded article comprising the same
JP5341478B2 (en) Manufacturing method of polylactic acid resin molded product
JP2008007686A (en) Resin composition
JP3986469B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Effective date: 20100602

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A02