JP2006289227A - Magnetic treatment apparatus - Google Patents

Magnetic treatment apparatus Download PDF

Info

Publication number
JP2006289227A
JP2006289227A JP2005111698A JP2005111698A JP2006289227A JP 2006289227 A JP2006289227 A JP 2006289227A JP 2005111698 A JP2005111698 A JP 2005111698A JP 2005111698 A JP2005111698 A JP 2005111698A JP 2006289227 A JP2006289227 A JP 2006289227A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
generating means
field generating
processing fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005111698A
Other languages
Japanese (ja)
Inventor
Shinichi Kondo
信一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005111698A priority Critical patent/JP2006289227A/en
Priority to CNB2006100076824A priority patent/CN100352771C/en
Priority to DE200610008288 priority patent/DE102006008288A1/en
Priority to TW095111735A priority patent/TW200642966A/en
Publication of JP2006289227A publication Critical patent/JP2006289227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic treatment apparatus which can satisfactorily exert magnetic action onto fluid such as water flowing in a conduit. <P>SOLUTION: The magnetic treatment apparatus is equipped with a conduit 2 in which the fluid to be treated is made to flow and a magnetic field generating means 11 for generating a magnetic field acting on the fluid to be treated in the conduit. The conduit 2 is spirally wound to form a cylindrical coil section 2C and the magnetic field generating means 11 is freely rotatably provided inside the coil section. The magnetic field generating means 11 is constituted of a plurality of permanent magnets 12A and magnet holders 13 for fixing respective permanent magnets 12A. The magnet holder 13 has a core section 13A arranged at a central part of the coil section 2C and the permanent magnet 12A is provided around the core section. The magnetic field generating means 11 is rotated by an adjustable-speed motor 5 and its rotation direction is reverse to a whirling direction of the fluid to be treated in the coil section 2C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として水や油といった液体を処理対象とする磁気処理装置に係わり、特に水をはじめとする処理流体に対して磁気処理を効率的に行えるようにした磁気処理装置に関する。   The present invention relates to a magnetic processing apparatus that mainly treats a liquid such as water or oil, and more particularly to a magnetic processing apparatus that can efficiently perform magnetic processing on a processing fluid such as water.

従来、水道管内におけるスケールの付着、水道管の腐食やこれによる赤水の発生、並びに河川・湖沼における藻の発生を防止することなどを目的として、永久磁石により作られる磁界中に水を通し、係る磁界の作用によって水を改質しようとする装置が提案されている。   Conventionally, water is passed through a magnetic field created by permanent magnets for the purpose of preventing scale adhesion in water pipes, corrosion of water pipes and generation of red water due to this, and generation of algae in rivers and lakes. An apparatus for modifying water by the action of a magnetic field has been proposed.

その種の装置として、外部ケース内に、通水用パイプを挟んで対向配置される複数個の永久磁石を設けたものが知られる(例えば、特許文献1)。   As such an apparatus, an apparatus in which a plurality of permanent magnets arranged opposite to each other with a water passage pipe interposed therebetween is known (for example, Patent Document 1).

又、給水管を挟む一対のハウジング内にヨークを取り付けると共に、そのヨークの内側に永久磁石を取り付け、その永久磁石が給水管を挟んで互いに異なる磁極を対向させるようにした脱着式水処理装置が知られる(例えば、特許文献2)。   A detachable water treatment apparatus is provided in which a yoke is mounted in a pair of housings sandwiching a water supply pipe, a permanent magnet is mounted inside the yoke, and the permanent magnets face different magnetic poles across the water supply pipe. Known (for example, Patent Document 2).

更に、導管の外周に複数の永久磁石を並べ、それらを鋼体のバンドにより固定して成る装置が知られる(例えば、特許文献3)。   Furthermore, an apparatus is known in which a plurality of permanent magnets are arranged on the outer periphery of a conduit and fixed by a steel band (for example, Patent Document 3).

特開平4−122543号公報JP-A-4-122543

特開平11−169861号公報Japanese Patent Laid-Open No. 11-169861 実用新案登録第3074925号公報Utility Model Registration No. 3074925

然しながら、特許文献1〜3のいずれも、円形断面を有する管の外周部に永久磁石を設け、その永久磁石が管を挟んで対向するようにした構造であるから、管内を流れる水が永久磁石による磁界に曝される時間が極めて短く、このため管内の流水に対して磁界を効率よく作用せしめることができず、磁界の作用による水の改質が良好に行われないという欠点がある。   However, since all of Patent Documents 1 to 3 have a structure in which a permanent magnet is provided on the outer periphery of a tube having a circular cross section, and the permanent magnet is opposed to the tube, the water flowing in the tube is a permanent magnet. The exposure time to the magnetic field due to the magnetic field is extremely short, so that the magnetic field cannot be efficiently applied to the flowing water in the pipe, and there is a disadvantage that the water is not well modified by the action of the magnetic field.

尚、管の全長に亘って永久磁石を装置し、磁界の発生区間を長くすれば、それだけ水が磁界に曝される時間を長くすることができるものの、これには多くの永久磁石を必要としてコスト高になるという問題がある。   If a permanent magnet is installed over the entire length of the tube and the magnetic field generation section is lengthened, the time during which water is exposed to the magnetic field can be lengthened, but this requires many permanent magnets. There is a problem of high costs.

又、水道管などは金属、それも鉄を主とする磁性体から形成されることが一般的であるが、この場合には係る管が磁気遮蔽物として作用するため、永久磁石による磁界を管内の水に対して良好に作用させることはできない。   In general, water pipes and the like are made of metal, which is also made of a magnetic material mainly composed of iron. In this case, since the pipe acts as a magnetic shield, a magnetic field generated by a permanent magnet is generated in the pipe. It cannot act well on water.

本発明は以上のような事情に鑑みて成されたものであり、その目的は管内に流される水その他の流体に対して磁気作用を良好に及ぼし得る装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an apparatus capable of satisfactorily exerting a magnetic action on water and other fluids flowing in a pipe.

本発明は上記目的を達成するため、内部に処理流体が流される管路と、該管路内の処理流体に作用せしめる磁界を発生する磁界発生手段とを備えた磁気処理装置において、前記管路はこれを螺旋状に巻いて成る筒形のコイル部を有し、前記磁界発生手段は前記コイル部の一端部から他端部に亘ってその内側に設けられることを特徴とする。   In order to achieve the above object, the present invention provides a magnetic processing apparatus comprising: a pipe through which a processing fluid flows; and a magnetic field generating means for generating a magnetic field that acts on the processing fluid in the pipe. Has a cylindrical coil part formed by spirally winding the coil part, and the magnetic field generating means is provided on the inner side from one end part to the other end part of the coil part.

又、上記のような磁気処理装置において、磁界発生手段は、複数の永久磁石と、その各永久磁石を固定する磁石保持具とから構成され、その磁石保持具はコイル部の中心部分に配されるコア部を有して各永久磁石が前記コア部の周囲に設けられることを特徴とする。   In the magnetic processing apparatus as described above, the magnetic field generating means is composed of a plurality of permanent magnets and a magnet holder for fixing each permanent magnet, and the magnet holder is arranged at the central portion of the coil portion. Each permanent magnet is provided around the core portion.

更に、磁界発生手段を回転させる磁界回転手段を有することを特徴とし、しかも磁界回転手段による磁界発生手段の回転方向がコイル部における処理流体の旋回方向とは逆方向とされることを特徴とする。又、コイル部が非導電体から成ることを特徴とする。   Further, the magnetic field generating means is provided for rotating the magnetic field generating means, and the rotating direction of the magnetic field generating means by the magnetic field rotating means is opposite to the turning direction of the processing fluid in the coil section. . The coil portion is made of a non-conductive material.

加えて、管路内を流れる処理流体の流量を検知するための流量センサと、該流量センサの出力信号に基づいて磁界発生手段の回転動作制御を行う制御手段とを備えた事を特徴とする。   In addition, a flow rate sensor for detecting the flow rate of the processing fluid flowing in the pipe line and a control unit for controlling the rotation operation of the magnetic field generation unit based on the output signal of the flow rate sensor are provided. .

又、コイル部を通過した処理流体の磁化度を検知するための磁化度センサと、該磁化度センサの出力信号に基づいて磁界発生手段の回転動作制御を行う制御手段とを備えたことを特徴とする。   And a magnetism sensor for detecting the magnetization degree of the processing fluid that has passed through the coil section, and a control means for controlling the rotation operation of the magnetic field generating means based on an output signal of the magnetism sensor. And

本発明に係る磁気処理装置によれば、内部に処理流体が流される管路を螺旋状に巻いて筒形のコイル部を形成し、その内側に磁界発生手段を設けていることから、磁界発生手段による磁界に対して処理流体が曝される時間が長くなり、このため処理流体の改質を良好に行うことができる。   According to the magnetic processing apparatus of the present invention, the pipe line through which the processing fluid flows is spirally wound to form the cylindrical coil portion, and the magnetic field generating means is provided on the inside thereof. The time during which the processing fluid is exposed to the magnetic field generated by the means becomes longer, and therefore the processing fluid can be satisfactorily modified.

又、磁界発生手段が、複数の永久磁石と、その各永久磁石を固定する磁石保持具とから構成され、その磁石保持具はコイル部の中心部分に配されるコア部を有して該コア部の周囲に永久磁石が設けられることから、小型の磁石でもコイル部の内周面に近接させてコイル部を形成する管路内の処理流体に対して強力な磁界を作用せしめることができる。   The magnetic field generating means is composed of a plurality of permanent magnets and a magnet holder for fixing each permanent magnet, and the magnet holder has a core portion arranged at the central portion of the coil portion. Since the permanent magnet is provided around the part, even a small magnet can be applied to the processing fluid in the pipe line forming the coil part in proximity to the inner peripheral surface of the coil part.

特に、磁界回転手段により磁界発生手段が回転される構成としていることから、コイル部の内側(内周部)に回転する磁界(回転磁界)を発生させ、これをコイル部よって螺旋状の流れ(旋回流)とされる処理流体に対して効率よく作用せしめることができ、しかも磁界回転手段による磁界発生手段の回転方向がコイル部における処理流体の旋回方向とは逆方向とされることから、処理流体に対して磁界をより効率的に作用せしめることが可能となる。   In particular, since the magnetic field generating means is rotated by the magnetic field rotating means, a rotating magnetic field (rotating magnetic field) is generated on the inner side (inner peripheral part) of the coil part, and this is converted into a spiral flow ( The rotating direction of the magnetic field generating means by the magnetic field rotating means is opposite to the rotating direction of the processing fluid in the coil section. It becomes possible to make a magnetic field act on a fluid more efficiently.

又、コイル部が非導電体から成ることにより、磁界発生手段による磁界が遮蔽されることなく処理流体に作用し、しかも磁界発生手段の回転による渦電流がコイル部に発生しないのでコイル部の加熱を防止することができる。   Further, since the coil portion is made of a non-conductive material, the magnetic field generated by the magnetic field generating means acts on the processing fluid without being shielded, and no eddy current is generated in the coil portion due to the rotation of the magnetic field generating means. Can be prevented.

更に、管路内を流れる処理流体の流量を検知するための流量センサと、該流量センサの出力信号に基づいて磁界発生手段の回転動作制御を行う制御手段とを備えることから、処理流体の流通が停止しているときに磁界発生手段を停止させてランニングコストの低減を図ったり、処理流体の流量に比例して磁界発生手段の回転数を上げることによってコイル部を通過する処理流体に一様な磁気処理を施したりすることができる。   Further, since the flow sensor includes a flow sensor for detecting the flow rate of the processing fluid flowing in the pipe line and a control unit that controls the rotation operation of the magnetic field generation unit based on the output signal of the flow sensor, the flow of the processing fluid is provided. The magnetic field generating means is stopped when the motor is stopped to reduce the running cost, or by increasing the rotation speed of the magnetic field generating means in proportion to the flow rate of the processing fluid, the processing fluid that passes through the coil portion is uniform. Magnetic treatment can be performed.

又、コイル部を通過した処理流体の磁化度を検知するための磁化度センサと、該磁化度センサの出力信号に基づいて磁界発生手段の回転動作制御を行う制御手段とを備えることから、コイル部を通過した処理流体の磁化度の大きさに比例して磁界発生手段の回転数を上げるようなフィードバック制御を行って処理流体に一様な磁気処理を施すことができる。   In addition, since the magnetism degree sensor for detecting the magnetization degree of the processing fluid that has passed through the coil section and the control means for controlling the rotation operation of the magnetic field generation means based on the output signal of the magnetism degree sensor, the coil It is possible to perform uniform magnetic processing on the processing fluid by performing feedback control that increases the rotation speed of the magnetic field generating means in proportion to the degree of magnetization of the processing fluid that has passed through the section.

以下、図面に基づいて本発明を詳しく説明する。図1は本発明に係る磁気処理装置を示した側面図、図2は同装置の内部構造を示した正面概略図である。図1および図2において、1は底部にキャスタを設けた可搬式のフレームであり、そのフレーム1内には内部に処理流体が流される管路2(導管)が配設される。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a side view showing a magnetic processing apparatus according to the present invention, and FIG. 2 is a schematic front view showing the internal structure of the apparatus. In FIG. 1 and FIG. 2, reference numeral 1 denotes a portable frame provided with a caster at the bottom, and a pipe 2 (conduit) through which a processing fluid flows is disposed in the frame 1.

管路2は、非導電性の塩化ビニールなどから成る合成樹脂管であり、その両端は流入口2Aおよび流出口2Bとしてフレーム1に固定される。そして、管路の一端流入口2Aには処理流体を供給する図示せぬ供給管が接続されると共に、管路の他端流出口2Bには図示せぬ排出管が接続され、その排出管を通じて処理済の流体を所要箇所まで導き得るようにしてある。   The pipe line 2 is a synthetic resin pipe made of non-conductive vinyl chloride or the like, and both ends thereof are fixed to the frame 1 as an inflow port 2A and an outflow port 2B. A supply pipe (not shown) for supplying a processing fluid is connected to the one end inlet 2A of the pipe, and a discharge pipe (not shown) is connected to the other end outlet 2B of the pipe. The treated fluid can be guided to a required location.

又、管路2は流入口2Aと流出口2Bとの間でこれを螺旋状に巻いて成る筒形のコイル部2Cを形成する。尚、管路2はコイル部2Cを形成する部分のみ非導電体としてもよいし、管路2の全体をコイル部2Cとして螺旋状に巻くようにしてもよい。一方、係るコイル部2Cの内側には後述する磁界発生手段が設けられ、これによる磁界がコイル部2Cを形成する管路内の処理流体に作用するようにしてある。特に、本例ではコイル部2Cの内側にその一端部から他端部に亘って磁界発生手段が回転自在に設けられ、その回転によりコイル部2Cの内側で回転磁界が形成されるようにしてある。   Further, the pipe line 2 forms a cylindrical coil portion 2C formed by spirally winding the inlet 2A and the outlet 2B. It should be noted that the pipe line 2 may be a non-conductive material only in the part forming the coil part 2C, or the entire pipe line 2 may be spirally wound as the coil part 2C. On the other hand, a magnetic field generating means, which will be described later, is provided inside the coil part 2C, and the magnetic field generated thereby acts on the processing fluid in the pipe line forming the coil part 2C. In particular, in this example, a magnetic field generating means is rotatably provided from one end portion to the other end portion inside the coil portion 2C, and a rotating magnetic field is formed inside the coil portion 2C by the rotation. .

図2において、3は磁界発生手段の回転中心を成す回転軸であり、この回転軸3はフレーム1に取り付けた軸受ユニット4により両端部を支持されている。そして、本例によれば、フレーム1に取り付けた可変速モータ5の駆動軸に回転軸4の一端を連結して磁界発生手段を回転させるための磁界回転手段を構成している。   In FIG. 2, reference numeral 3 denotes a rotating shaft that forms the rotation center of the magnetic field generating means, and the rotating shaft 3 is supported at both ends by a bearing unit 4 attached to the frame 1. And according to this example, one end of the rotating shaft 4 is connected to the drive shaft of the variable speed motor 5 attached to the frame 1 to constitute the magnetic field rotating means for rotating the magnetic field generating means.

6は、管路2内を流れる処理流体の流量を検知するべく流入口2Aの近傍で管路2に取り付けた流量センサ、7はコイル部2Cを通過した処理流体の磁化度を検知するべく流出口2Bの近傍で管路2に取り付けた磁化度センサである。流量センサ6としては電磁流量計やカルマン渦流量計などが用いられ、磁化度センサ7には磁気の強さに応じた電圧を発生するホール素子やホールIC、又は酸化還元電位計(ORPセンサ)などが用いられる。   6 is a flow sensor attached to the pipe 2 in the vicinity of the inlet 2A to detect the flow rate of the processing fluid flowing in the pipe 2, and 7 is a flow sensor to detect the degree of magnetization of the processing fluid that has passed through the coil portion 2C. It is a magnetism sensor attached to the pipe line 2 in the vicinity of the outlet 2B. An electromagnetic flow meter, a Karman vortex flow meter, or the like is used as the flow sensor 6, and a Hall element or Hall IC that generates a voltage according to the strength of magnetism, or an oxidation-reduction potentiometer (ORP sensor) is used as the magnetization degree sensor 7. Etc. are used.

ここで、処理流体の磁化度が変化すると、これに応じて酸化還元電位も変化するのであり、このため処理流体の酸化還元電位の大きさから磁化度を定量的に表すことができる。   Here, when the degree of magnetization of the processing fluid changes, the oxidation-reduction potential also changes accordingly. Therefore, the degree of magnetization can be expressed quantitatively from the magnitude of the oxidation-reduction potential of the processing fluid.

尚、図1において、8は装置の主電源スイッチ、9は液晶パネルなどから成る表示部であり、その表示部9には、流量センサ6により検知された処理流体の流量、磁化度センサ7により検知された処理流体の磁化度、並びに可変速モータ5の回転数といった装置の運転状態が表示されるようになっている。   In FIG. 1, reference numeral 8 denotes a main power switch of the apparatus, and 9 denotes a display unit including a liquid crystal panel. The display unit 9 includes a flow rate of the processing fluid detected by the flow rate sensor 6 and a magnetization degree sensor 7. The operating state of the apparatus such as the detected degree of magnetization of the processing fluid and the rotational speed of the variable speed motor 5 is displayed.

又、図2において、10は流量センサと磁化度センサの出力信号に基づいて磁界発生手段の回転動作制御を行う制御手段(コントローラ)である。特に、本例では、流量センサ6の出力信号が「0」又は設定値以下の場合、制御手段11から可変速モータ5に停止信号を発信して磁界発生手段を停止させ、流量センサ6の出力信号が「0」より大きいか又は設定値以上の場合、制御手段11から可変速モータ5に駆動信号を発信して磁界発生手段を所定の回転数範囲内で回転駆動させるというオンオフ制御を行うよう構成される。   In FIG. 2, reference numeral 10 denotes control means (controller) for controlling the rotation operation of the magnetic field generating means based on the output signals of the flow rate sensor and the magnetization degree sensor. In particular, in this example, when the output signal of the flow sensor 6 is “0” or less than the set value, a stop signal is transmitted from the control means 11 to the variable speed motor 5 to stop the magnetic field generating means, and the output of the flow sensor 6 When the signal is greater than “0” or greater than the set value, on / off control is performed such that a drive signal is transmitted from the control means 11 to the variable speed motor 5 to drive the magnetic field generating means to rotate within a predetermined rotational speed range. Composed.

又、制御手段10は、磁化度センサ7の出力信号の大きさによって可変速モータ5の回転数を増減し、これによって磁界発生手段の回転速度を変化させるという制御を行うようになっている。尚、磁化度センサ7を省略し、流量センサ6による出力信号(処理流体の流量)の大きさによって可変速モータ5の増減速を行うようにしてもよい。   Further, the control means 10 performs control to increase or decrease the rotational speed of the variable speed motor 5 according to the magnitude of the output signal of the magnetization degree sensor 7, thereby changing the rotational speed of the magnetic field generating means. Note that the magnetism sensor 7 may be omitted, and the variable speed motor 5 may be increased or decreased depending on the magnitude of the output signal (flow rate of the processing fluid) from the flow sensor 6.

次に、磁界発生手段の構造を説明する。図3および図4において、11は上述の磁界発生手段であり、これは複数の永久磁石12A,12Bと、その各永久磁石12A,12Bを固定する磁石保持具13とで構成される。磁石保持具13は、コイル部2Cの中心部分に配されるコア部13Aと、各永久磁石12A,12Bの間に配される磁性板13Bから成り、永久磁石12A,12Bがコア部13Aの周囲に設けられるようになっている。   Next, the structure of the magnetic field generating means will be described. 3 and 4, reference numeral 11 denotes the above-described magnetic field generating means, which is composed of a plurality of permanent magnets 12A and 12B and a magnet holder 13 that fixes the permanent magnets 12A and 12B. The magnet holder 13 includes a core portion 13A disposed in the central portion of the coil portion 2C and a magnetic plate 13B disposed between the permanent magnets 12A and 12B. The permanent magnets 12A and 12B are arranged around the core portion 13A. It is to be provided in.

コア部13Aは、横断面正八角形の柱状を成して全長がコイル部2Cの全長と略等しく設定されるヨークで、その中心部には回転軸14が貫通状態で固着されている。そして、本例によれば、図3のようにコア部13Aの外周面に矩形の断面を有する偶数個(本例において8つ)の永久磁石12Aが吸着されると共に、それら永久磁石12Aの間にそれぞれ磁性板13Bを介して三角形の断面を有する永久磁石12Bが嵌め込まれる構成としてある。   The core portion 13A is a yoke having a columnar shape with a regular octagonal cross section and having an overall length set to be substantially equal to the entire length of the coil portion 2C, and a rotating shaft 14 is fixed to the central portion in a penetrating state. And according to this example, as shown in FIG. 3, an even number (eight in this example) of permanent magnets 12A having a rectangular cross section are adsorbed on the outer peripheral surface of the core portion 13A, and between these permanent magnets 12A. The permanent magnet 12B having a triangular cross-section is inserted into each via a magnetic plate 13B.

永久磁石12A,12Bには、フェライト磁石や金属磁石を用いることができるが、磁力の点から金属磁石、それもネオジム磁石が好適に用いられる。このうち、矩形の永久磁石12Aは、一方の磁極をコア部13Aの外周面に吸着させて他方の磁極がコイル部2Cの内周面に対向する状態に配されると共に、周方向で隣り合うもの同士の磁極が反対向きとされる。すなわち、矩形の永久磁石12Aは、周方向でN極とS極が交互にあらわれるよう三角形の永久磁石12Bを挟んで隣り合うもの同士のN極とS極の向きが相反する状態に配される。   As the permanent magnets 12A and 12B, ferrite magnets and metal magnets can be used. However, metal magnets and neodymium magnets are preferably used from the viewpoint of magnetic force. Among these, the rectangular permanent magnet 12A is arranged in such a manner that one magnetic pole is attracted to the outer peripheral surface of the core portion 13A and the other magnetic pole faces the inner peripheral surface of the coil portion 2C, and is adjacent in the circumferential direction. The magnetic poles between the objects are opposite to each other. That is, the rectangular permanent magnets 12A are arranged in a state in which the directions of the N poles and the S poles adjacent to each other with the triangular permanent magnets 12B interposed therebetween are opposite to each other so that the N poles and the S poles appear alternately in the circumferential direction. .

尚、永久磁石12Aは、コア部13Aの長さ方向に延びる棒状のものでもよいが、好ましくは図4のように長さの短い永久磁石12Aにして、それらをコア部13Aの長さ方向に沿って直列状に配列すると共に、その配列方向においても隣り合うもの同士で磁極を反対向きとすることがよい。   The permanent magnet 12A may be in the form of a rod extending in the length direction of the core portion 13A, but is preferably a short permanent magnet 12A as shown in FIG. 4 and extending them in the length direction of the core portion 13A. It is preferable that the magnetic poles are arranged in series along the same direction, and the magnetic poles are opposite to each other in the arrangement direction.

一方、三角形の永久磁石12Bは、磁性板13Bの間に挟まれる両面が磁極とされるもので、これはコア部13Aに対する永久磁石12Aの固定力を上げる楔としての役割を果たす。尚、三角形の永久磁石12Bは必ずしも必要でなく、コア部13Aに強力に吸着する矩形の永久磁石12Aを用いて三角形の永久磁石12Bを省略することもできる。   On the other hand, the triangular permanent magnet 12B has both surfaces sandwiched between the magnetic plates 13B as magnetic poles, and serves as a wedge that increases the fixing force of the permanent magnet 12A to the core portion 13A. The triangular permanent magnet 12B is not always necessary, and the triangular permanent magnet 12B can be omitted by using the rectangular permanent magnet 12A that is strongly attracted to the core portion 13A.

ここで、以上のような磁界発生手段11によれば、図5のようにコイル部2Cの内側からその外方に向かって放射状に広がる凸状の磁力線で表されるような磁界を発生し、これを、コイル部2Cを形成する管路2内の処理流体に良好に作用せしめることができる。又、磁界発生手段11の回転により、コイル部2Cを形成する管路2内の処理流体に対して交番状に作用する回転磁界を発生させ、処理流体に対してより効果的に磁力線を浴びせられるようになる。   Here, according to the magnetic field generating means 11 as described above, a magnetic field represented by convex magnetic field lines radially extending from the inside of the coil portion 2C toward the outside as shown in FIG. This can be favorably applied to the processing fluid in the pipe line 2 forming the coil portion 2C. Further, the rotation of the magnetic field generating means 11 generates a rotating magnetic field that acts alternately on the processing fluid in the pipe line 2 forming the coil portion 2C, so that the processing fluid can be more effectively exposed to the magnetic field lines. It becomes like this.

特に、磁界発生手段11の回転方向と、コイル部2Cにおける螺旋状の管路2に沿って流れる処理流体の旋回方向とは互いに逆向きとされる。つまり、図3において、処理流体の旋回方向が右回り(時計回り)であるとき、磁界発生手段11の回転方向は同一方向からみて左回り(反時計回り)とされる。これによれば、処理流体が磁界と鎖交する回数が増し、処理流体に対する磁気的処理がより効果的に行われるようになる。   In particular, the rotation direction of the magnetic field generating means 11 and the swirl direction of the processing fluid flowing along the spiral pipe line 2 in the coil portion 2C are opposite to each other. That is, in FIG. 3, when the swirling direction of the processing fluid is clockwise (clockwise), the rotation direction of the magnetic field generating unit 11 is counterclockwise (counterclockwise) when viewed from the same direction. According to this, the number of times that the processing fluid interlinks with the magnetic field increases, and the magnetic processing on the processing fluid is more effectively performed.

因みに、コイル部2Cの内側で回転磁界を発生させても、コイル部2Cが非導電体であることから渦電流による加熱を防止することができる。又、図3および図4において、15はコイル部2Cを形成するべく管路2を巻付けた円筒形の巻胴であり、その両端には鍔15Aが形成され、その鍔15Aがフレームの側板1A(図1参照)に締結されることによりコイル部2Cが定位置に固定されるようになっている。係る巻胴15も渦電流加熱を防止するべく合成樹脂などから成る非導電体とされるが、コイル部2Cに形状固定できる硬質管を用いて巻胴15を省略することができる。   Incidentally, even if a rotating magnetic field is generated inside the coil portion 2C, heating due to eddy current can be prevented because the coil portion 2C is a non-conductor. In FIGS. 3 and 4, reference numeral 15 denotes a cylindrical winding cylinder around which the pipe line 2 is wound to form the coil portion 2C, and flanges 15A are formed at both ends thereof, and the flanges 15A are the side plates of the frame. By being fastened to 1A (see FIG. 1), the coil portion 2C is fixed in place. Although the winding drum 15 is also a non-conductive material made of synthetic resin or the like to prevent eddy current heating, the winding drum 15 can be omitted by using a hard tube whose shape can be fixed to the coil portion 2C.

更に、図3から明らかなように、コイル部2Cおよび巻胴15は円筒形とされるが、これを角筒形としてもよい。要するに、コイル部2Cはその内側に磁界発生手段11を収容できるような内径を有していればよい。但し、コイル部2Cを形成する管路2の長さを大きくする上で、係る管路2は図4のように間をあけずに密に巻くことが好ましい。   Further, as is apparent from FIG. 3, the coil portion 2C and the winding drum 15 are formed in a cylindrical shape, but may be a rectangular tube shape. In short, the coil portion 2C only needs to have an inner diameter that can accommodate the magnetic field generating means 11 inside thereof. However, in order to increase the length of the pipe line 2 forming the coil portion 2C, it is preferable that the pipe line 2 is tightly wound without a gap as shown in FIG.

次に、制御手段の構成例を説明する。図6のように、係る制御手段10は中央処理装置16、記憶装置17、入力装置18、並びにインターフェースユニット19などから構成されるもので、インターフェースユニット19には表示部9、流量センサ6、磁化度センサ7、モータドライバ20が接続され、モータドライバ20には磁界回転手段を構成する可変速モータ5が接続される。   Next, a configuration example of the control unit will be described. As shown in FIG. 6, the control means 10 includes a central processing unit 16, a storage device 17, an input device 18, an interface unit 19, and the like. The interface unit 19 includes a display unit 9, a flow rate sensor 6, and a magnetization. A degree sensor 7 and a motor driver 20 are connected, and a variable speed motor 5 constituting magnetic field rotating means is connected to the motor driver 20.

中央処理装置16(CPU)は、制御プログラムを実行して装置全体を制御するもので、これに必要なプログラムやデータは記憶装置17に格納される。   The central processing unit 16 (CPU) controls the entire apparatus by executing a control program, and programs and data necessary for this are stored in the storage device 17.

記憶装置17は、制御プログラムなどを格納したROM、及び流量センサと磁化度センサにより検知された処理流体の流量および磁化度などのデータを格納するRAMを有し、そのRAMには目標とする処理流体の磁化度(目標磁化度)などを入力装置18から設定入力できるようになっている。   The storage device 17 includes a ROM that stores a control program and the like, and a RAM that stores data such as the flow rate and the degree of magnetization of the processing fluid detected by the flow rate sensor and the magnetization degree sensor. The fluid magnetization degree (target magnetization degree) and the like can be set and input from the input device 18.

そして、中央処理装置16は、記憶装置17に格納された流量データ(実測流量)、磁化度データ(実測磁化度)、及び目標磁化度から所定の演算、判定処理を実行し、その結果に基づく制御信号をインターフェースユニット19を介してモータドライバ20に伝送し、これによって可変速モータ5の停止、駆動、並びに変速を行う。   The central processing unit 16 executes predetermined calculation and determination processing from the flow rate data (measured flow rate), the magnetization degree data (measured magnetization degree), and the target magnetization degree stored in the storage device 17, and based on the results. A control signal is transmitted to the motor driver 20 via the interface unit 19, thereby stopping, driving, and shifting the variable speed motor 5.

次に、図7は処理流体の磁化処理に係るフローチャートを示す。図7から明らかなように、本装置の使用に際しては、先ず主電源スイッチを入れ、制御手段に対して目標磁化度J0の設定入力を行う。尚、その設定入力は必要に応じて行われるもので、目標磁化度J0に変更なき場合は省略される。   Next, FIG. 7 shows a flowchart relating to the magnetization process of the processing fluid. As is apparent from FIG. 7, when using this apparatus, first, the main power switch is turned on, and the setting of the target magnetization J0 is input to the control means. The setting input is performed as necessary, and is omitted when the target magnetization degree J0 is not changed.

ここに、制御手段は、流量センサの出力信号を処理流体の実測流量Qとして取得すると共に、磁化度センサの出力信号を処理流体の実測磁化度J1として取得する。   Here, the control means acquires the output signal of the flow sensor as the measured flow rate Q of the processing fluid, and acquires the output signal of the magnetization degree sensor as the measured magnetization degree J1 of the processing fluid.

そして、管路内に処理流体が流されてQ>0となったとき、制御手段から可変速モータに駆動電流が流され、これにより磁界発生手段が所定の回転数で回転駆動される。尚、本装置を既設の水道管に介在させた場合、蛇口を捻れば処理流体としての水道水が管路内を流通してQ>0となり、貯水池の貯水をポンプにより管路内に導入する場合にはポンプの起動によりQ>0となる。但し、管路内で処理流体の流れが発生しない場合でも、流量センサから微弱な信号が出力されて可変速モータが駆動してしまう虞があるので、実際には上記の「Q>0」なる条件式を例えば「Q>1」としたり、流量センサから出力される一定レベル以下の信号をカットしたりする。   When the processing fluid is caused to flow through the pipe and Q> 0, a driving current is supplied from the control means to the variable speed motor, thereby rotating the magnetic field generating means at a predetermined rotational speed. In addition, when this apparatus is interposed in an existing water pipe, if the faucet is twisted, tap water as a processing fluid flows in the pipe line and Q> 0, and the reservoir water is introduced into the pipe line by a pump. In this case, Q> 0 when the pump is started. However, even when the flow of the processing fluid does not occur in the pipe line, a weak signal may be output from the flow rate sensor and the variable speed motor may be driven. For example, the conditional expression is “Q> 1”, or a signal below a certain level output from the flow sensor is cut.

次に、管路内に処理流体が流されている状態において、制御手段では目標磁化度J0と実測磁化度J1との比較を行い、J0>J1のとき可変速モータを増速する一方、J0<J1のとき可変速モータを減速し、これによって磁界発生手段を実測磁化度J1の大きさに応じた速度で回転させる。尚、目標磁化度J0と実測磁化度J1との比較は所定の時間間隔で行われると共に、可変速モータの増減速はJ0とJ1の乖離の大きさに応じて段階的に行われ、可変速モータが定格回転数には達したときには、その状態がJ0<J1となるまで保持される。   Next, in a state where the processing fluid is flowing in the pipe line, the control means compares the target magnetization J0 with the measured magnetization J1, and when J0> J1, the variable speed motor is increased while J0 is increased. <When J1, the variable speed motor is decelerated, thereby rotating the magnetic field generating means at a speed corresponding to the magnitude of the actually measured degree of magnetization J1. Note that the comparison between the target magnetization J0 and the measured magnetization J1 is performed at predetermined time intervals, and the acceleration / deceleration of the variable speed motor is performed stepwise in accordance with the magnitude of the difference between J0 and J1. When the motor reaches the rated rotational speed, the state is maintained until J0 <J1.

次に、図8により磁界発生手段の変更例について説明する。尚、上記例と変更なき部分には同一符号を付して詳細な説明を省略する。図8から明らかなように、本例ではコア部23Aが矩形の横断面を有する柱状体とされる。このコア部23Aもコイル部2Cの中心部分に配されるヨークで、その中心には回転軸14が貫通状態で固着される。そして、そのコア部23Aの外周面に4つの凸条23Bを設けて磁石保持具23を構成している。その各凸条23Bはコア部23Aと一体化される羽状の磁性体で、それぞれコア部23Aから放射状に突出される。   Next, a modified example of the magnetic field generating means will be described with reference to FIG. Parts that are the same as those in the above example are given the same reference numerals, and detailed description thereof is omitted. As is apparent from FIG. 8, in this example, the core portion 23A is a columnar body having a rectangular cross section. The core portion 23A is also a yoke disposed in the central portion of the coil portion 2C, and the rotary shaft 14 is fixed in a penetrating manner at the center. And the four holders 23B are provided in the outer peripheral surface of the core part 23A, and the magnet holder 23 is comprised. Each of the ridges 23B is a wing-like magnetic body integrated with the core portion 23A, and protrudes radially from the core portion 23A.

一方、コア部23Aの周囲には偶数個(本例において8つ)の永久磁石12が設けられ、その各永久磁石12は2つ一組として凸条23Bの両面に吸着されている。特に、各組の永久磁石12は凸条23Bを挟んで同極が対向されており、しかも近隣の組(本例において直交する2組)同士で露出する磁極が相違される。つまり、一組の永久磁石12,12がN極同士を向かい合わせて凸条に吸着されているとき、その近隣となる組の永久磁石12,12はS極同士を向かい合わせて凸条23Bに吸着される。尚、本例においても、長さの短い永久磁石12にして、それらをコア部23Aの長さ方向に沿って直列状に配列すると共に、その配列方向において隣り合うもの同士で磁極を反対向きとすることがよい。   On the other hand, an even number (eight in this example) of permanent magnets 12 are provided around the core portion 23A, and each of the permanent magnets 12 is attracted to both surfaces of the ridge 23B as a set. In particular, the permanent magnets 12 of each set are opposed to each other with the same pole across the ridge 23B, and the exposed magnetic poles are different between neighboring sets (two sets orthogonal to each other in this example). That is, when a pair of permanent magnets 12 and 12 are attracted to the ridges with the N poles facing each other, the pair of permanent magnets 12 and 12 in the vicinity thereof faces the ridges 23B with the S poles facing each other. Adsorbed. Also in this example, the permanent magnets 12 having a short length are arranged in series along the length direction of the core portion 23A, and the magnetic poles are opposite to each other in the arrangement direction. It is good to do.

そして、本例に係る磁界発生手段21でも、図9のようにコイル部2Cの内側からその外方に向かって放射状に広がる凸状の磁力線で表されるような磁界を発生し、これを、コイル部2Cを形成する管路2内の処理流体に良好に作用せしめることができる。又、磁界発生手段21の回転により、コイル部2Cを形成する管路2内の処理流体に対して交番状に作用する回転磁界を発生させ、処理流体に対してより効果的に磁力線を浴びせられるようになる。   And also in the magnetic field generating means 21 according to the present example, as shown in FIG. 9, a magnetic field represented by convex magnetic field lines radially spreading from the inside of the coil portion 2C toward the outside thereof is generated. The processing fluid in the pipe line 2 forming the coil part 2C can be satisfactorily acted on. Further, the rotation of the magnetic field generating means 21 generates a rotating magnetic field that acts alternately on the processing fluid in the pipe line 2 that forms the coil portion 2C, so that the processing fluid can be more effectively exposed to the lines of magnetic force. It becomes like this.

以上、本発明について説明したが、係る装置は水その他の液体のみならず、空気その他の気体に対しても磁化的処理を施すことができる。又、磁界発生手段11,21を回転させる構造が最良であるが、これをコイル部2Cの内側に固定状態で収容する構成としてもよい。更に、磁界発生手段として回転磁界を発生する三相巻線構造の電磁石を用いたり、電気的に回転磁界を発生しない電磁石を回転させる構造としてもよい。又、永久磁石を用いるものでも、上記例のような構造とすることに限らず、例えば円柱状のコア部の外周に、周方向に着磁したリング状の永久磁石を筒状に並べて固着するようにしてもよい。   Although the present invention has been described above, such an apparatus can perform not only water and other liquids but also air and other gases as a magnetizing treatment. Further, the structure in which the magnetic field generating means 11 and 21 are rotated is the best, but this may be configured to be housed in a fixed state inside the coil portion 2C. Furthermore, a three-phase winding electromagnet that generates a rotating magnetic field may be used as the magnetic field generating means, or an electromagnet that does not electrically generate a rotating magnetic field may be rotated. Even if a permanent magnet is used, it is not limited to the structure as in the above example. For example, a ring-shaped permanent magnet magnetized in the circumferential direction is fixed in a cylindrical shape on the outer periphery of a cylindrical core portion. You may do it.

本発明に係る磁気処理装置の側面図Side view of magnetic processing apparatus according to the present invention 同装置の内部構造を示す正面概略図Schematic front view showing the internal structure of the device コイル部の内側を示す側面図Side view showing the inside of the coil 図3のX−X断面図XX sectional view of FIG. 磁界発生手段による磁界の発生状態を示す説明図Explanatory drawing which shows the generation | occurrence | production state of the magnetic field by a magnetic field generation means 制御手段の構成例を示すブロック図Block diagram showing a configuration example of the control means 制御手段による制御例を示すフローチャートFlow chart showing control example by control means 磁界発生手段の変更例を示す図The figure which shows the example of a change of a magnetic field generation means 図8の磁界発生手段による磁界の発生状態を示す説明図Explanatory drawing which shows the generation | occurrence | production state of the magnetic field by the magnetic field generation means of FIG.

符号の説明Explanation of symbols

1 装置フレーム
2 管路
2C コイル部
5 可変速モータ
6 流量センサ
7 磁化度センサ
10 制御手段
11,21 磁界発生手段
12,12A,12B 永久磁石
13,23 磁石保持具
13A,23A コア部
14 回転軸
DESCRIPTION OF SYMBOLS 1 Apparatus frame 2 Pipe line 2C Coil part 5 Variable speed motor 6 Flow rate sensor 7 Magnetization degree sensor 10 Control means 11,21 Magnetic field generation means 12,12A, 12B Permanent magnet 13,23 Magnet holder 13A, 23A Core part 14 Rotating shaft

Claims (7)

内部に処理流体が流される管路と、該管路内の処理流体に作用せしめる磁界を発生する磁界発生手段とを備えた磁気処理装置において、前記管路はこれを螺旋状に巻いて成る筒形のコイル部を有し、前記磁界発生手段は前記コイル部の一端部から他端部に亘ってその内側に設けられることを特徴とする磁気処理装置。   A magnetic processing apparatus comprising: a pipe through which a processing fluid flows; and a magnetic field generating means for generating a magnetic field that acts on the processing fluid in the pipe, wherein the pipe is formed by winding the pipe in a spiral shape. A magnetic processing apparatus, wherein the magnetic field generating means is provided on an inner side from one end portion to the other end portion of the coil portion. 磁界発生手段は、複数の永久磁石と、その各永久磁石を固定する磁石保持具とから構成され、その磁石保持具はコイル部の中心部分に配されるコア部を有して各永久磁石が前記コア部の周囲に設けられることを特徴とする請求項1記載の磁気処理装置。   The magnetic field generating means is composed of a plurality of permanent magnets and a magnet holder for fixing each permanent magnet, and the magnet holder has a core portion arranged at the central portion of the coil portion, and each permanent magnet is The magnetic processing apparatus according to claim 1, wherein the magnetic processing apparatus is provided around the core portion. 磁界発生手段を回転させる磁界回転手段を有することを特徴とする請求項1、又は2記載の磁気処理装置。   The magnetic processing apparatus according to claim 1, further comprising a magnetic field rotating unit that rotates the magnetic field generating unit. 磁界回転手段による磁界発生手段の回転方向がコイル部における処理流体の旋回方向とは逆方向とされることを特徴とする請求項3記載の磁気処理装置。   4. The magnetic processing apparatus according to claim 3, wherein the rotating direction of the magnetic field generating means by the magnetic field rotating means is opposite to the turning direction of the processing fluid in the coil section. コイル部が非導電体から成ることを特徴とする請求項3、又は4記載の磁気処理装置。   5. The magnetic processing apparatus according to claim 3, wherein the coil portion is made of a non-conductor. 管路内を流れる処理流体の流量を検知するための流量センサと、該流量センサの出力信号に基づいて磁界発生手段の回転動作制御を行う制御手段とを備えた請求項3、又は4記載の磁気処理装置。   The flow rate sensor for detecting the flow volume of the processing fluid which flows in the inside of a pipe line, and the control means which performs rotation operation control of a magnetic field generation means based on the output signal of this flow rate sensor, The claim 3 or 4 provided Magnetic processing equipment. コイル部を通過した処理流体の磁化度を検知するための磁化度センサと、該磁化度センサの出力信号に基づいて磁界発生手段の回転動作制御を行う制御手段とを備えた請求項3、又は4記載の磁気処理装置。
The magnetism degree sensor for detecting the magnetization degree of the processing fluid which passed the coil part, and the control means which performs rotation operation control of a magnetic field generation means based on the output signal of this magnetization degree sensor, or 4. The magnetic processing apparatus according to 4.
JP2005111698A 2005-04-08 2005-04-08 Magnetic treatment apparatus Pending JP2006289227A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005111698A JP2006289227A (en) 2005-04-08 2005-04-08 Magnetic treatment apparatus
CNB2006100076824A CN100352771C (en) 2005-04-08 2006-02-17 Magnet processing apparatus
DE200610008288 DE102006008288A1 (en) 2005-04-08 2006-02-22 Assembly to apply magnetic treatment to a liquid e.g. water has a helical water pipe around a rotating magnetic core
TW095111735A TW200642966A (en) 2005-04-08 2006-04-03 Magnetizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111698A JP2006289227A (en) 2005-04-08 2005-04-08 Magnetic treatment apparatus

Publications (1)

Publication Number Publication Date
JP2006289227A true JP2006289227A (en) 2006-10-26

Family

ID=37026469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111698A Pending JP2006289227A (en) 2005-04-08 2005-04-08 Magnetic treatment apparatus

Country Status (4)

Country Link
JP (1) JP2006289227A (en)
CN (1) CN100352771C (en)
DE (1) DE102006008288A1 (en)
TW (1) TW200642966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776066A (en) * 2019-10-24 2020-02-11 华新绿源(内蒙古)环保产业发展有限公司 System and method for desalting saline electrolyte solution by using rotating magnetic field and ion exchange membrane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390889B2 (en) * 2009-03-06 2014-01-15 信一 近藤 Method for heating liquid in metal container and apparatus therefor
TWI416024B (en) * 2010-03-11 2013-11-21 Kukel Internat Group Ltd Magnetic health water faucet
CN107393381B (en) * 2017-07-25 2019-11-26 重庆科技学院 A kind of application method of adjustable steady magnetic field experimental provision
CN107274767B (en) * 2017-07-25 2019-12-17 重庆科技学院 adjustable steady magnetic field experimental apparatus
CN108128879B (en) * 2017-12-08 2021-06-08 广州昭合环保科技有限公司 Oxidizing gas synergistic system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286587A (en) * 1986-06-03 1987-12-12 Toshiba Eng & Constr Co Ltd Apparatus for making magnetized water
JP3817576B2 (en) * 1996-08-30 2006-09-06 利彦 矢山 Liquid activation treatment method
TWM241425U (en) * 2003-11-07 2004-08-21 Jian-Gu Hung Magnetic wave device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776066A (en) * 2019-10-24 2020-02-11 华新绿源(内蒙古)环保产业发展有限公司 System and method for desalting saline electrolyte solution by using rotating magnetic field and ion exchange membrane
CN110776066B (en) * 2019-10-24 2022-10-11 华新绿源(内蒙古)环保产业发展有限公司 System and method for desalting saline electrolyte solution by using rotating magnetic field and ion exchange membrane

Also Published As

Publication number Publication date
CN100352771C (en) 2007-12-05
TW200642966A (en) 2006-12-16
DE102006008288A1 (en) 2006-10-12
CN1843957A (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP2006289227A (en) Magnetic treatment apparatus
KR100632798B1 (en) A device for treatment of magnetizer
JP2008149255A (en) Method and device for activating magnetic body-containing liquid
JP2007021424A (en) Liquid treatment device
KR20090081981A (en) Magnetization pump using for RPM of impeller
JP2004351374A (en) Activated water treatment system
JP2008061384A (en) Generator for faucet
JP2008054427A (en) Generator for faucet
JP2008050851A (en) Generator for water faucet
JP3933516B2 (en) Liquid magnetizer for use in flow path
JPH1133556A (en) Stirring type apparatus for magnetically treated water
JP5878810B2 (en) Hydroelectric generator
JPH11239793A (en) Magnetically treated water apparatus and treatment of magnetically treated water
JP2007209968A (en) Magnetic treatment for spiral movement flow
JP2006000823A (en) Water treatment apparatus
CN109622502B (en) Straight pipe section electromagnetic ultrasonic descaling and antiscaling device and method
TWM550300U (en) Liquid magnetization device
KR20050025110A (en) Magnetized equipment
RU197602U1 (en) PHYSICAL AND CHEMICAL REACTOR WITH VORTEX LAYER
JPH1147751A (en) Apparatus for activating water molecule
JP2005230737A (en) Apparatus for treating liquid magnetically
CN202808456U (en) Tap water pressure energy magnetizer
JPH1133555A (en) Magnetic water treatment apparatus
UA31753U (en) Device for liquid magnetization
TWI667204B (en) Magnetized fluid generation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Effective date: 20080221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722