JP2006265035A - Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film - Google Patents

Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film Download PDF

Info

Publication number
JP2006265035A
JP2006265035A JP2005085282A JP2005085282A JP2006265035A JP 2006265035 A JP2006265035 A JP 2006265035A JP 2005085282 A JP2005085282 A JP 2005085282A JP 2005085282 A JP2005085282 A JP 2005085282A JP 2006265035 A JP2006265035 A JP 2006265035A
Authority
JP
Japan
Prior art keywords
thin film
swnt
carbon nanotube
photoelectric conversion
containing thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085282A
Other languages
Japanese (ja)
Inventor
Kazaoui Said
サイ カザウイ
Shinji Minami
信次 南
Yeji Kim
エジ キム
Nalini Balakrishnan
ナリニ バラクリシュナン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005085282A priority Critical patent/JP2006265035A/en
Publication of JP2006265035A publication Critical patent/JP2006265035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film in which carbon nanotubes exist in a mutually separated state and exists in a state in which photoelectric conversion function and electroluminescence function which separated single-wall carbon nanotubes (SWNT) have originally can be exhibited to the fullest. <P>SOLUTION: The thin film is a carbon nanotube-containing thin film in which a plurality of single-wall carbon nanotubes are dispersed in a mutually separated state in a soluble polyphenylene vinylene substitution product or a copolymer of such products, or a carbon nanotube-containing thin film in which a plurality of single-wall carbon nanotubes are dispersed in a mutually separated state in a soluble polythiophene substitution product. A method for manufacturing the carbon nanotube-containing thin film is also provided which comprises centrifuging a mixed liquid containing the soluble polyphenylene vinylene substitution product or a copolymer of such products or the soluble polythiophene substitution product and carbon nanotubes, and casting the resulting supernatant liquid on a substrate to form a film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、単層カーボンナノチューブ(便宜上、単に「SWNT」と表現して説明する。)が1本ずつ分離された状態でマトリックス高分子中に分散された構造を有するカーボンナノチューブ含有薄膜、同薄膜の製造方法、同薄膜を備えた光電変換材料及び光電変換素子並びに電界発光材料及び電界発光素子及び該薄膜からなる光電変換素子・電界発光素子に関するものである。   The present invention relates to a carbon nanotube-containing thin film having a structure in which single-walled carbon nanotubes (for convenience, expressed simply as “SWNT”) are dispersed one by one in a matrix polymer, and the same thin film And a photoelectric conversion material and a photoelectric conversion element provided with the thin film, an electroluminescent material and an electroluminescent element, and a photoelectric conversion element / electroluminescent element comprising the thin film.

単層カーボンナノチューブ(SWNT)は、様々な新機能を発揮しうる新素材として大きな注目を集め世界中で活発な研究開発が行われている。今後、産業上の様々な用途に有効に使用するためには、SWNTを均質な薄膜に成形することが必須の課題である。また、SWNTの光・電子機能を活用する場合に、チューブを一本ずつに分離することが重要であることを示す研究結果が最近報告された(例えば、非特許文献1参照)。   Single-walled carbon nanotubes (SWNT) have attracted a great deal of attention as a new material that can exhibit various new functions, and are actively researched and developed all over the world. In the future, in order to effectively use in various industrial applications, it is an essential task to form SWNTs into a homogeneous thin film. In addition, research results have recently been reported that show that it is important to separate tubes one by one when utilizing the optical and electronic functions of SWNTs (see, for example, Non-Patent Document 1).

すなわち、チューブが束になっていると、チューブ間相互作用によって電子物性が大きく変化し、SWNTが本来有している性質・機能を十分に発揮することができない。一方、界面活性剤を用いてチューブを一本ずつに分離すると、SWNT本来の特性が観測されるようになる。
すなわち、SWNT/界面活性剤分散水溶液においては、束になったチューブの場合に比べて光吸収スペクトルのピークが著しく鋭くなると同時に、バンド間光学遷移による発光が観測されるようになる。
吸収ピークが鋭くなるのは、チューブ間相互作用による電子状態の広がりが無くなったためであり、発光が観測されるのは、チューブ間相互作用による熱的な励起失活が無くなったためである。
In other words, when the tubes are bundled, the electronic physical properties are greatly changed by the interaction between the tubes, and the properties and functions inherent to SWNT cannot be fully exhibited. On the other hand, when the tubes are separated one by one using the surfactant, the original characteristics of SWNT are observed.
That is, in the SWNT / surfactant-dispersed aqueous solution, the peak of the light absorption spectrum is remarkably sharper than that of the bundled tube, and at the same time, light emission due to the interband optical transition is observed.
The absorption peak becomes sharp because the electronic state is no longer spread due to the interaction between tubes, and the emission is observed because the thermal excitation deactivation due to the interaction between tubes is lost.

このように、今後、SWNTの産業技術への利用を促進するためには、一本ずつに分離されたチューブ(以下、分離SWNTと称する)を均質な薄膜に成形する技術を開発することが極めて重要となっている。
従来、このようなSWNT含有薄膜としては、界面活性剤によって分散したSWNTをポリビニルピロリドン・ポリビニルアルコールと複合化した薄膜が報告されている(例えば、非特許文献2参照)。
Thus, in order to promote the utilization of SWNTs to industrial technology in the future, it is extremely important to develop a technique for forming tubes separated into individual pieces (hereinafter referred to as separated SWNTs) into a homogeneous thin film. It is important.
Conventionally, as such a SWNT-containing thin film, a thin film in which SWNT dispersed by a surfactant is combined with polyvinylpyrrolidone / polyvinyl alcohol has been reported (for example, see Non-Patent Document 2).

しかし、この方法では、薄膜形成過程においてチューブの凝集が起こり、得られるSWNTは直径30nm程度の束となってしまう(分離SWNT自身の直径は1nm程度)。また、吸収スペクトルのピークもブロードであり、発光が観測されるかどうかに関しては記述がなく、また、その光学顕微鏡写真は、この薄膜がかなり不均質なものであることを示している。
すなわち、このような薄膜では、SWNTが本来有している光・電子特性・機能を十分に生かすことができないことは明らかである。
However, in this method, aggregation of the tube occurs in the thin film formation process, and the obtained SWNT becomes a bundle having a diameter of about 30 nm (the separation SWNT itself has a diameter of about 1 nm). Also, the peak of the absorption spectrum is broad, there is no description as to whether luminescence is observed, and the optical micrograph shows that this thin film is quite inhomogeneous.
That is, it is clear that such a thin film cannot fully utilize the optical, electronic characteristics and functions inherent in SWNT.

本発明者等は、一本ずつに分散したSWNTを含有する薄膜として、マトリックス高分子としてゼラチンやセルロース誘導体を用いたものを提案した(特許文献1、2参照)。
このものは、SWNTは直接これらの高分子と混合するか、もしくは、界面活性剤で分散した上で高分子と混合することにより、均質なSWNT含有薄膜を得ることができ、また、一本ずつに分離したSWNTの特徴である近赤外域の発光ピークを観測することができる。
しかしながら、その後の本発明者等の検討によれば、これらの方法では、マトリックス高分子が電気的に絶縁体であるため、薄膜に十分な量の電流を流すことが困難であり、従って、これまでのところ、これらの薄膜を用いて、光を電流・電圧に変換する光電変換素子、若しくは電流を光に変換する電界発光素子を作製することは困難であった。
The present inventors have proposed a thin film containing SWNTs dispersed one by one using gelatin or a cellulose derivative as a matrix polymer (see Patent Documents 1 and 2).
This can be obtained by mixing SWNTs directly with these polymers, or by dispersing them with a surfactant and then mixing them with the polymer, so that a uniform SWNT-containing thin film can be obtained one by one. The emission peak in the near-infrared region, which is a characteristic of SWNT separated into two, can be observed.
However, according to subsequent studies by the present inventors, in these methods, since the matrix polymer is an electrically insulating material, it is difficult to pass a sufficient amount of current through the thin film. Up to now, it has been difficult to produce a photoelectric conversion element that converts light into current / voltage or an electroluminescence element that converts current into light using these thin films.

光電変換や電界発光は、半導体としての性質を持つSWNT(以下、半導体SWNTとも言う)に期待されている重要な光・電子機能である。特に、半導体SWNTの光吸収・発光波長域が、光通信技術などにとって重要な近赤外域(800−2000nm)にあることから、半導体SWNTを用いた光電変換素子及び電界発光素子は産業上極めて有用なものと期待される。   Photoelectric conversion and electroluminescence are important optical / electronic functions expected for SWNTs having semiconductor properties (hereinafter also referred to as semiconductor SWNTs). In particular, since the light absorption / emission wavelength region of the semiconductor SWNT is in the near infrared region (800-2000 nm) that is important for optical communication technology, the photoelectric conversion element and the electroluminescence element using the semiconductor SWNT are extremely useful industrially. It is expected.

半導体SWNTがこれらの光電変換機能・電界発光機能を有することは、実験的に証明されている(非特許文献3、4)。
しかしながら、これらの報告においては、溶媒中で分散したSWNTをシリコン酸化膜の上に滴下・乾燥した後、走査型電子顕微鏡を用いて、極めて多数のランダムに分布しているSWNTの中から、実験目的に適合した孤立SWNTを一本だけ選定し、しかる後に、電子線リソグラフィーを用いて当該箇所に金属電極を付けることによって、当該孤立SWNTの、光電変換特性、電界発光特性を測定している。
It has been experimentally proved that the semiconductor SWNT has these photoelectric conversion function and electroluminescence function (Non-Patent Documents 3 and 4).
However, in these reports, SWNTs dispersed in a solvent are dropped and dried on a silicon oxide film, and then an experiment is conducted using a scanning electron microscope from a very large number of randomly distributed SWNTs. Only one isolated SWNT suitable for the purpose is selected, and then a metal electrode is attached to the location using electron beam lithography, thereby measuring the photoelectric conversion characteristics and electroluminescence characteristics of the isolated SWNT.

このような方法では、一つの素子を作るために多大の時間や労力を費やす必要があり、また、素子特性の再現性・信頼性を制御することや量産技術を開発することが困難であり、産業上有利に使用できるものではなかった。
一本ずつに分離したSWNTを均質な薄膜状に成形し、更に、その薄膜に十分な量の電流を流すことができるようになれば、光伝導機能・光起電力機能などの光電変換機能や、電界発光機能を発揮させることが可能となり、その産業的利用価値は極めて大きいが、まだそのような要請に応える薄膜が開発されていないのが現状である。
Band gap fluorescence from individual single-walled carbonnanotubes, Science, vol. 297, pp 593-596 (2002)2002年7月26日 Poly(vinylalcohol)/SWNT Composite Film, Nano Letters, vol. 3, pp 1285-1288 (2003) 2003年9月 Photoconductivity of Single Carbon Nanotubes, Nano Letters, vol. 3, pp 1067-1071 (2003) 2003年8月 Electrically induced optical emission from a carbonnanotube FET, Science, vol.300, pp 783-786 (2003) 2003年5月2日 特願2004−058033 特願2004−377140
In such a method, it is necessary to spend a great deal of time and labor to make one element, and it is difficult to control the reproducibility and reliability of element characteristics and to develop mass production technology. It could not be used industrially advantageously.
If SWNTs that are separated one by one are formed into a uniform thin film and a sufficient amount of current can flow through the thin film, photoelectric conversion functions such as photoconductivity and photovoltaic functions However, the electroluminescence function can be exhibited and its industrial utility value is extremely large, but a thin film that meets such a demand has not been developed yet.
Band gap fluorescence from individual single-walled carbonnanotubes, Science, vol. 297, pp 593-596 (2002) July 26, 2002 Poly (vinylalcohol) / SWNT Composite Film, Nano Letters, vol. 3, pp 1285-1288 (2003) September 2003 Photoconductivity of Single Carbon Nanotubes, Nano Letters, vol. 3, pp 1067-1071 (2003) Aug 2003 Electrically induced optical emission from a carbonnanotube FET, Science, vol.300, pp 783-786 (2003) May 2, 2003 Japanese Patent Application No. 2004-058033 Japanese Patent Application No. 2004-377140

本発明は、単層カーボンナノチューブが相互に分離された状態で存在し、半導体単層カーボンナノチューブが本来有している光電変換機能や電界発光機能を十分に発揮させることが可能なカーボンナノチューブ含有薄膜、同薄膜の製造方法、同薄膜を備えた光電変換材料及び光電変換素子並びに電界発光材料及び電界発光素子を提供することを目的とする。   The present invention is a carbon nanotube-containing thin film in which single-walled carbon nanotubes are present in a state where they are separated from each other, and can fully exhibit the photoelectric conversion function and electroluminescence function inherent in semiconductor single-walled carbon nanotubes An object of the present invention is to provide a method for producing the thin film, a photoelectric conversion material and a photoelectric conversion element provided with the thin film, an electroluminescent material, and an electroluminescent element.

この出願によれば、以下の発明が提供される。
(1)可溶性のポリフェニレンビニレン置換体又はこれらの共重合体に複数の単層カーボンナノチューブが相互に分離した状態で分散していることを特徴とするカーボンナノチューブ含有薄膜。
(2)可溶性のポリチオフェン置換体に複数の単層カーボンナノチューブが相互に分離した状態で分散していることを特徴とするカーボンナノチューブ含有薄膜。
According to this application, the following invention is provided.
(1) A carbon nanotube-containing thin film characterized in that a plurality of single-walled carbon nanotubes are dispersed in a soluble polyphenylene vinylene substituted product or a copolymer thereof in a state of being separated from each other.
(2) A carbon nanotube-containing thin film characterized in that a plurality of single-walled carbon nanotubes are dispersed in a soluble polythiophene substitution product in a state of being separated from each other.

また、次の発明を提供することができる。
(3)可溶性のポリフェニレンビニレン置換体若しくはこれらの共重合体又は可溶性のポリチオフェン置換体とカーボンナノチューブを含有する混合液を遠心分離し、得られた上澄み液から製造することを特徴とするカーボンナノチューブ含有薄膜の製造方法。
(4)複数の単層カーボンナノチューブが相互に分離した状態で分散している混合液から製造することを特徴とする上記(3)記載のカーボンナノチューブ含有薄膜の製造方法。
Moreover, the following invention can be provided.
(3) Soluble polyphenylene vinylene substituted product or a copolymer thereof, or a mixed solution containing a soluble polythiophene substituted product and a carbon nanotube is centrifuged, and the carbon nanotube-containing product is produced from the obtained supernatant Thin film manufacturing method.
(4) The method for producing a carbon nanotube-containing thin film according to (3), wherein the carbon nanotube-containing thin film is produced from a mixed solution in which a plurality of single-walled carbon nanotubes are dispersed in a mutually separated state.

さらにこの出願は、次の発明を提供することができる。
(5)前記(1)又は(2)に記載のカーボンナノチューブ含有薄膜を備えていることを特徴とする光電変換材料及び光電変換素子。
(6)上記(1)又は(2)に記載のカーボンナノチューブ含有薄膜を備えていることを特徴とする電界発光材料及び電界発光素子。
Furthermore, this application can provide the following invention.
(5) A photoelectric conversion material and a photoelectric conversion element comprising the carbon nanotube-containing thin film according to (1) or (2).
(6) An electroluminescent material and an electroluminescent element comprising the carbon nanotube-containing thin film according to (1) or (2).

本発明のカーボンナノチューブ含有薄膜は、単層カーボンナノチューブが相互に分離された状態で存在することが可能であり、半導体単層カーボンナノチューブが本来有している光電変換機能や電界発光機能を十分に発揮させることができるという優れた効果を有する。   The carbon nanotube-containing thin film of the present invention can exist in a state where single-walled carbon nanotubes are separated from each other, and has sufficient photoelectric conversion function and electroluminescence function originally possessed by semiconductor single-walled carbon nanotubes. It has an excellent effect that it can be exhibited.

本発明で用いるSWNTは、特に制約されず、従来公知のものを用いることができる。SWNTの直径や長さに特に制約はないが、直径0.4〜2.0nm、長さ0.1〜1μm程度のものを用いることが好ましい。
本発明で用いる可溶性のポリフェニレンビニレン置換体若しくはそれらの共重合体又は可溶性のポリチオフェン置換体は、特に制限がなく従来公知のものを用いることができ、その分子量は40000〜250000程度のものを使用するのが良い。
The SWNT used in the present invention is not particularly limited, and a conventionally known SWNT can be used. There is no particular restriction on the diameter and length of SWNT, but it is preferable to use a SWNT having a diameter of about 0.4 to 2.0 nm and a length of about 0.1 to 1 μm.
The soluble polyphenylene vinylene substituted product or a copolymer thereof or the soluble polythiophene substituted product used in the present invention is not particularly limited, and a conventionally known one can be used, and a molecular weight of about 40000 to 250,000 is used. Is good.

可溶化したポリパラフェニレンビニレン置換体若しくはそれらの共重合体としては例えば、ポリ(2-メトキシ-5-(2'-エチルヘキシルオキシ)-1,4-フェニレンビニレン)(MEHPPV)、ポリ[2-メトキシ-5-(3',7'-ジメチルオクチルオキシ)-1,4-フェニレンビニレン]、ポリ[2,5-bis(3',7'-ジメチルオクチルオキシ)-1,4-フェニレンビニレン]、ポリ[2,5-bisオクチルオキシ)-1,4-フェニレンビニレン]、ポリ[2-[2',5'-bis(2"-エチルヘキシルオキシ)フェニル]-1,4-フェニレンビニレン]、ポリ[(m-フェニレンビニレン)-co-(2,5-ジオクトキシ-p-フェニレンビニレン)]などが好ましく使用される。   Examples of solubilized polyparaphenylene vinylene substituted products or copolymers thereof include poly (2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylene vinylene) (MEHPPV), poly [2- Methoxy-5- (3 ', 7'-dimethyloctyloxy) -1,4-phenylenevinylene], poly [2,5-bis (3', 7'-dimethyloctyloxy) -1,4-phenylenevinylene] Poly [2,5-bisoctyloxy) -1,4-phenylenevinylene], poly [2- [2 ', 5'-bis (2 "-ethylhexyloxy) phenyl] -1,4-phenylenevinylene], Poly [(m-phenylene vinylene) -co- (2,5-dioctoxy-p-phenylene vinylene)] and the like are preferably used.

可溶性のポリチオフェン置換体としては、ポリ-(3-ヘキシルチオフェン)、ポリ-(3-オクチルチオフェン) (P3OT)、ポリ-(3-デシルチオフェン)、ポリ-(3-ドデシルチオフェン)などが好ましく使用される。
本発明のSWNT含有薄膜は、可溶性のポリフェニレンビニレン置換体、若しくはそれらの共重合体、又は可溶性のポリチオフェン置換体からなる薄膜中に、複数のSWNTが凝集することなく相互に分離した状態で分散させた構造を有する。
このSWNT含有薄膜において、その厚さは0.01〜10μm、好ましくは0.05〜1μmである。また、そのSWNTの分散濃度(割合)は、0.01〜3重量%である。但し、これらの数値は、好ましい範囲を示すものであって、この数値範囲外でも必要に応じて採用できることは当然である。
As the substituted polythiophene, poly- (3-hexylthiophene), poly- (3-octylthiophene) (P3OT), poly- (3-decylthiophene), poly- (3-dodecylthiophene), etc. are preferably used Is done.
The SWNT-containing thin film of the present invention is dispersed in a thin film composed of a soluble polyphenylene vinylene substitution product, a copolymer thereof, or a soluble polythiophene substitution product in a state where a plurality of SWNTs are separated from each other without aggregation. Has a structure.
The SWNT-containing thin film has a thickness of 0.01 to 10 μm, preferably 0.05 to 1 μm. Further, the dispersion concentration (ratio) of the SWNT is 0.01 to 3% by weight. However, these numerical values show a preferable range, and it is natural that the numerical values can be adopted as needed even outside this numerical range.

本発明のSWNT含有薄膜を好ましく製造するには、先ず、市販のSWNTとポリマーとの混合溶液を作る。溶媒としては、トルエンやクロロホルムなどが好ましく用いられる。この場合、SWNTの濃度は0.005〜1重量%、好ましくは0.01〜0.2重量%であり、ポリマーの濃度は0.005〜1重量%、好ましくは0.01〜0.2重量%である。この場合、SWNTの分散には、超音波処理などの分散促進手段を併用することができる。
このようにして得た分散液を遠心分離して、微細SWNTを含む上澄液を回収し、この上澄液をSWNT分散液として用いるのがよい。この場合の遠心分離において、その回転数は2000〜20000rpm、好ましくは6000〜12000rpm、遠心分離時間は1〜5分である。
これらの製造条件も好ましい範囲を示すものであり、必要に応じて変えられるものであることを知るべきである。
In order to preferably produce the SWNT-containing thin film of the present invention, first, a commercially available mixed solution of SWNT and polymer is prepared. As the solvent, toluene, chloroform or the like is preferably used. In this case, the concentration of SWNT is 0.005 to 1% by weight, preferably 0.01 to 0.2% by weight, and the concentration of polymer is 0.005 to 1% by weight, preferably 0.01 to 0.2%. % By weight. In this case, dispersion promoting means such as ultrasonic treatment can be used in combination for dispersion of SWNTs.
The dispersion thus obtained is centrifuged to recover the supernatant containing fine SWNTs, and this supernatant is preferably used as the SWNT dispersion. In the centrifugation in this case, the rotation speed is 2000 to 20000 rpm, preferably 6000 to 12000 rpm, and the centrifugation time is 1 to 5 minutes.
It should be noted that these production conditions also indicate a preferable range and can be changed as necessary.

以上のようにして作製したSWNT・ポリマー混合液を、基板上にキャスト成膜することにより本発明のSWNT含有薄膜が得られる。なお、成膜法は前記キャスト成膜法に限られず、ディップコート法、スピンコート法など種々の成膜法を用いることができる。
このようにして得たSWNT薄膜は、可溶性のポリフェニレンビニレン置換体、若しくはそれらの共重合体あるいは可溶性のポリチオフェン置換体の有するという優れた分散作用によって、SWNTを、液中で相互に分離した状態を保持したまま含有するものである。
すなわち、膜中に分散したSWNTは、凝集を生じることなく、相互に分離した状態で存在する。
The SWNT-containing thin film of the present invention can be obtained by casting the SWNT / polymer mixture prepared as described above on a substrate. The film forming method is not limited to the cast film forming method, and various film forming methods such as a dip coating method and a spin coating method can be used.
The SWNT thin film thus obtained has a state in which SWNTs are separated from each other in a liquid by an excellent dispersion action of having a soluble polyphenylene vinylene substitution product, a copolymer thereof or a soluble polythiophene substitution product. It is contained while being held.
That is, SWNTs dispersed in the film exist in a state of being separated from each other without causing aggregation.

相互に分離した状態にあることは、本薄膜に662nmのレーザー光を照射すると、近赤外域に、分離したSWNTに特有の鋭い発光ピークが観測されることにより確認することができる。また、得られた薄膜の光吸収スペクトルを測定することにより、薄膜中におけるSWNTの分散濃度は、0.01〜3重量%と見積もられた。
光電変換素子・電界発光素子を作製する場合には、ITO膜の上にSWNT・ポリマー混合液をキャストしてSWNT含有薄膜を作製する。
この場合、ITO上にあらかじめポリ(3,4-オキシエチレンオキシチオフェン)/ポリ(スチレンサルフォネート)(PEDOTと略)をコートしておくことにより、ホール輸送やホール注入を促進することができる。
次に、SWNT含有薄膜の上に、アルミニウム電極若しくは銀電極を真空蒸着することによって、光電変換素子・電界発光素子を完成する。
The fact that the thin films are separated from each other can be confirmed by observing a sharp emission peak peculiar to the separated SWNTs in the near infrared region when the thin film is irradiated with a laser beam of 662 nm. Further, by measuring the light absorption spectrum of the obtained thin film, the dispersion concentration of SWNT in the thin film was estimated to be 0.01 to 3% by weight.
When producing a photoelectric conversion element / electroluminescence device, a SWNT-polymer mixed solution is cast on the ITO film to produce a SWNT-containing thin film.
In this case, hole transport and hole injection can be promoted by previously coating ITO with poly (3,4-oxyethyleneoxythiophene) / poly (styrene sulfonate) (abbreviated as PEDOT). .
Next, an aluminum electrode or a silver electrode is vacuum-deposited on the SWNT-containing thin film to complete a photoelectric conversion element / electroluminescence element.

このようにして得た素子に近赤外域の光を照射したところ光電流が観測された。光電流の波長依存性を測定したところ、半導体SWNTの近赤外吸収スペクトルに良く一致する光電流スペクトルが観測された。
このことから、本素子においては、半導体SWNTが吸収した光が電流に変換されていることが判明し、分離SWNTが本来有している光電変換機能が有効に発現していることが証明される。
また、本素子に、電圧を印加したところ、近赤外域に発光の生ずることが観測された。その発光スペクトルを測定したところ、分離SWNTの近赤外吸収スペクトルや分離SWNTにレーザー光を照射して得られる発光スペクトルとほぼ同じ波長位置に、発光ピークが出現することが判明した。このことから、本素子においては、分離SWNTが本来有している電界発光機能が有効に発現していることが証明される。
When the device thus obtained was irradiated with light in the near infrared region, a photocurrent was observed. When the wavelength dependence of the photocurrent was measured, a photocurrent spectrum that closely matched the near-infrared absorption spectrum of the semiconductor SWNT was observed.
From this, it is found that in this element, the light absorbed by the semiconductor SWNT is converted into a current, and it is proved that the photoelectric conversion function originally possessed by the separation SWNT is effectively expressed. .
When a voltage was applied to the device, it was observed that light emission occurred in the near infrared region. When the emission spectrum was measured, it was found that an emission peak appeared at substantially the same wavelength position as the near-infrared absorption spectrum of the separated SWNT and the emission spectrum obtained by irradiating the separated SWNT with laser light. This proves that the electroluminescence function inherent in the separation SWNT is effectively expressed in this element.

このように、本発明に係る単層カーボンナノチューブ含有薄膜は、SWNTが相互に分離した状態で薄膜を形成しており、かつ、マトリックス材料として可溶性のポリフェニレンビニレン置換体若しくはそれらの共重合体又は可溶性のポリチオフェン置換体のような導電性高分子を利用することにより、半導体SWNTが本来有している光電変換機能および電界発光機能を十分に発現させることができることから、近赤外光電変換素子、及び近赤外電界発光素子として有利に用いることができる。   As described above, the single-walled carbon nanotube-containing thin film according to the present invention forms a thin film in a state where SWNTs are separated from each other, and is a polyphenylene vinylene substituted substance or a copolymer thereof soluble or soluble as a matrix material. By using a conductive polymer such as a polythiophene-substituted product, the photoelectric conversion function and the electroluminescence function inherent in the semiconductor SWNT can be sufficiently expressed. It can be advantageously used as a near-infrared electroluminescent device.

次に、本発明を実施例に基づいて、さらに詳述する。なお、以下の説明は、本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に全て含まれるものである。   Next, the present invention will be described in more detail based on examples. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, all modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

(実施例1)
SWNT10mg、ポリ(2-メトキシ-5-(2-エチル-ヘキシル)-1,4-パラ-フェニレンビニレン)(MEHPPV)13mgをトルエン20ml中で混合し、混合液を超音波処理によって分散した後、6000−12000rpmの回転数で遠心分離した。
遠心分離後の上澄み液の吸収スペクトルや発光スペクトルを測定し、前記非特許文献1(Science, 297, 593-596 (2002))のデータを参照することにより、この上澄み液の中に分離SWNTが含まれていることを確認した。
この分散水溶液をガラス基板上にキャストし、室温に放置して乾燥させることによりSWNT含有薄膜を得た。得られた薄膜は、光学的に均質なものであることを目視確認した。
Example 1
10 mg of SWNT and 13 mg of poly (2-methoxy-5- (2-ethyl-hexyl) -1,4-para-phenylenevinylene) (MEHPPV) were mixed in 20 ml of toluene, and the mixture was dispersed by sonication. Centrifugation was performed at a rotational speed of 6000-12000 rpm.
By measuring the absorption spectrum and emission spectrum of the supernatant after centrifugation and referring to the data of Non-Patent Document 1 (Science, 297, 593-596 (2002)), the separated SWNTs are contained in the supernatant. Confirmed that it was included.
This dispersed aqueous solution was cast on a glass substrate and allowed to dry at room temperature to obtain a SWNT-containing thin film. The obtained thin film was visually confirmed to be optically homogeneous.

図1aにこのキャスト薄膜の光吸収スペクトルを示す。900−1500nmの近赤外域に一連の鋭い吸収ピークが観測され、文献(Science, 297, 593-596 (2002))と比較することにより、本薄膜中においては、SWNTが相互に分離された状態で存在していることが判明した。
更に、この薄膜に662nmのレーザー光を照射したところ、図1bに示すような発光スペクトルが観測された。このような発光は、凝集したSWNTからは観測されないものであり、本薄膜中においては、SWNTが相互に分離された状態で存在していること、また、半導体SWNTの発光機能が良好に保たれていることが証明される。
FIG. 1a shows the light absorption spectrum of this cast thin film. A series of sharp absorption peaks are observed in the near infrared region of 900-1500 nm, and SWNTs are separated from each other in this thin film by comparing with literature (Science, 297, 593-596 (2002)). Was found to exist.
Furthermore, when this thin film was irradiated with 662 nm laser light, an emission spectrum as shown in FIG. 1b was observed. Such light emission is not observed from the agglomerated SWNTs. In this thin film, the SWNTs are separated from each other, and the light emission function of the semiconductor SWNTs is kept good. It is proved that.

(実施例2)
SWNT10mg、ポリ-(3-オクチルチオフェン)(P3OT)13mgをトルエン20ml中で混合し、混合液を超音波処理によって分散した後、6000−12000rpmの回転数で遠心分離した。遠心分離後の上澄み液の吸収スペクトルや発光スペクトルを測定し、文献(Science, 297, 593-596 (2002))のデータを参照することにより、この上澄み液の中に分離SWNTが含まれていることを確認した。
この分散水溶液をガラス基板上にキャストし、室温に放置して乾燥させることによりSWNT含有薄膜を得た。得られた薄膜は、光学的に均質なものであることを目視確認した。
図2にこのキャスト薄膜の光吸収スペクトルを示す。900−1500nmの近赤外域に一連の鋭い吸収ピークが観測され、文献(Science, 297, 593-596 (2002))と比較することにより、本薄膜中においては、SWNTが相互に分離された状態で存在していることが判明した。
(Example 2)
10 mg of SWNT and 13 mg of poly- (3-octylthiophene) (P3OT) were mixed in 20 ml of toluene, and the mixture was dispersed by sonication, and then centrifuged at a rotational speed of 6000 to 12000 rpm. By measuring the absorption spectrum and emission spectrum of the supernatant after centrifugation and referring to the data in the literature (Science, 297, 593-596 (2002)), the separated SWNT is contained in this supernatant. It was confirmed.
This dispersed aqueous solution was cast on a glass substrate and allowed to dry at room temperature to obtain a SWNT-containing thin film. The obtained thin film was visually confirmed to be optically homogeneous.
FIG. 2 shows the light absorption spectrum of this cast thin film. A series of sharp absorption peaks are observed in the near infrared region of 900-1500 nm, and SWNTs are separated from each other in this thin film by comparing with literature (Science, 297, 593-596 (2002)). Was found to exist.

(実施例3)
ITOコート石英基板上にPEDOTをスピンコートし、窒素雰囲気中110℃で30分間アニール処理を行った。この上に、実施例1で作製したSWNT−MEHPPV混合分散系をキャスト製膜した。膜厚は500−1000nm程度であった。その上に、アルミニウム電極を真空蒸着することにより、ITO/PEDOT/SWNT−MEHPPV/Alなる構造を持つ素子を作製した。
ITO側に−2Vの電圧をかけた状態で、半導体SWNTが光吸収を有する近赤外光を照射したところ光電流の発生するのが観測された。その光電流スペクトルを測定したところ、図3aに示すように、半導体SWNTの吸収スペクトル(図3b)とほぼ同じ波長位置に光電流のピークの出現することが判明した。これは、半導体SWNTが吸収した光が電流に変換されたことを示しており、半導体SWNTの有する光電変換機能を有効に発現できたことを証明している。
(Example 3)
PEDOT was spin-coated on an ITO-coated quartz substrate and annealed at 110 ° C. for 30 minutes in a nitrogen atmosphere. On top of this, the SWNT-MEHPPV mixed dispersion produced in Example 1 was cast into a film. The film thickness was about 500-1000 nm. An element having a structure of ITO / PEDOT / SWNT-MEHPPV / Al was produced thereon by vacuum-depositing an aluminum electrode.
When a voltage of −2 V was applied to the ITO side and the semiconductor SWNT was irradiated with near infrared light having light absorption, it was observed that photocurrent was generated. When the photocurrent spectrum was measured, it was found that a photocurrent peak appeared at substantially the same wavelength position as the absorption spectrum of the semiconductor SWNT (FIG. 3b), as shown in FIG. 3a. This indicates that the light absorbed by the semiconductor SWNT has been converted into an electric current, and proves that the photoelectric conversion function of the semiconductor SWNT can be effectively expressed.

(実施例4)
ITOコート石英基板上にPEDOTをスピンコートし、窒素雰囲気中110℃で30分間アニール処理を行った。この上に、実施例2で作製したSWNT−P3OT混合分散系をキャスト製膜した。
膜厚は500−1000nm程度であった。その上に、アルミニウム電極を真空蒸着することにより、ITO/PEDOT/SWNT−P3OT/Alなる構造を持つ素子を作製した。
ITO側に−2Vの電圧をかけた状態で、半導体SWNTが光吸収を有する近赤外光を照射したところ光電流の発生するのが観測された。
その光電流スペクトルを測定したところ、図4aに示すように、半導体SWNTの吸収スペクトル(図4b)とほぼ同じ波長位置に光電流のピークの出現することが判明した。これは、半導体SWNTが吸収した光が電流に変換されたことを示しており、半導体SWNTの有する光電変換機能が有効に発現できたことを証明している。
Example 4
PEDOT was spin-coated on an ITO-coated quartz substrate and annealed at 110 ° C. for 30 minutes in a nitrogen atmosphere. On top of this, the SWNT-P3OT mixed dispersion prepared in Example 2 was cast into a film.
The film thickness was about 500-1000 nm. An element having a structure of ITO / PEDOT / SWNT-P3OT / Al was produced by vacuum-depositing an aluminum electrode thereon.
When a voltage of −2 V was applied to the ITO side and the semiconductor SWNT was irradiated with near infrared light having light absorption, it was observed that photocurrent was generated.
When the photocurrent spectrum was measured, it was found that a photocurrent peak appeared at substantially the same wavelength position as the absorption spectrum of the semiconductor SWNT (FIG. 4b), as shown in FIG. 4a. This indicates that the light absorbed by the semiconductor SWNT is converted into a current, and proves that the photoelectric conversion function of the semiconductor SWNT can be effectively expressed.

(実施例5)
実施例3と同様にして作製したITO/PEDOT/SWNT−MEHPPV/Alなる構造を持つ素子のITO側に16Vの電圧を印加したところ、発光の発生するのが観測された。
その発光スペクトルを測定したところ、図5aに示すように、分離SWNTの近赤外吸収スペクトル(図5b)や分離SWNTにレーザー光を照射して得られる発光(PL)スペクトル(図5c)とほぼ同じ波長位置に、発光ピークが出現することが判明した。
このことから、本素子においては、半導体SWNTが本来有している電界発光機能が有効に発現していることが証明される。
(Example 5)
When a voltage of 16 V was applied to the ITO side of the element having the structure of ITO / PEDOT / SWNT-MEHPPV / Al produced in the same manner as in Example 3, it was observed that light emission occurred.
When the emission spectrum was measured, as shown in FIG. 5a, the near-infrared absorption spectrum (FIG. 5b) of the separated SWNT and the emission (PL) spectrum (FIG. 5c) obtained by irradiating the separated SWNT with laser light were almost the same. It was found that an emission peak appears at the same wavelength position.
From this, it is proved that the electroluminescence function originally possessed by the semiconductor SWNT is effectively developed in this element.

本発明のカーボンナノチューブ含有薄膜は、半導体単層カーボンナノチューブが本来有している光電変換機能や電界発光機能を十分に発揮させることができることから、近赤外波長域に応答感度を有する光電変換素子及び近赤外域に発光波長を有する電界発光素子として極めて有用である。   The carbon nanotube-containing thin film of the present invention can sufficiently exhibit the photoelectric conversion function and the electroluminescence function originally possessed by the semiconductor single-walled carbon nanotube, so that it has a response sensitivity in the near-infrared wavelength region. In addition, it is extremely useful as an electroluminescent device having an emission wavelength in the near infrared region.

実施例1で得たSWNT含有薄膜の吸収スペクトル(a)と発光(PL)スペクトル(b)(励起波長:662nm)を示す図である。It is a figure which shows the absorption spectrum (a) and light emission (PL) spectrum (b) (excitation wavelength: 662 nm) of the SWNT containing thin film obtained in Example 1. FIG. 実施例2で得たSWNT含有薄膜の吸収スペクトルを示す図である。6 is a graph showing an absorption spectrum of a SWNT-containing thin film obtained in Example 2. FIG. 実施例3で得たSWNT−MEHPPV薄膜素子の光電流スペクトル(a)と光吸収スペクトル(b)を示す図である。It is a figure which shows the photocurrent spectrum (a) and light absorption spectrum (b) of the SWNT-MEHPPV thin film element obtained in Example 3. 実施例4で得たSWNT−P3OT薄膜素子の光電流スペクトル(a)と光吸収スペクトル(b)を示す図である。It is a figure which shows the photocurrent spectrum (a) and light absorption spectrum (b) of the SWNT-P3OT thin film element obtained in Example 4. 実施例5で得たSWNT−MEHPPV薄膜素子の電界発光スペクトル(a)、吸収スペクトル(b)、発光(PL)スペクトル(c)(励起波長:735nm)を示す図である。It is a figure which shows the electroluminescence spectrum (a) of the SWNT-MEHPPV thin film element obtained in Example 5, the absorption spectrum (b), and the emission (PL) spectrum (c) (excitation wavelength: 735 nm).

Claims (6)

可溶性のポリフェニレンビニレン置換体又はこれらの共重合体に複数の単層カーボンナノチューブが相互に分離した状態で分散していることを特徴とするカーボンナノチューブ含有薄膜。   A carbon nanotube-containing thin film, wherein a plurality of single-walled carbon nanotubes are dispersed in a soluble polyphenylene vinylene substituted product or a copolymer thereof in a state of being separated from each other. 可溶性のポリチオフェン置換体に複数の単層カーボンナノチューブが相互に分離した状態で分散していることを特徴とするカーボンナノチューブ含有薄膜。   A thin film containing carbon nanotubes, characterized in that a plurality of single-walled carbon nanotubes are dispersed in a soluble polythiophene substitution product in a state of being separated from each other. 可溶性のポリフェニレンビニレン置換体若しくはこれらの共重合体又は可溶性のポリチオフェン置換体とカーボンナノチューブを含有する混合液を遠心分離し、得られた上澄み液から製造することを特徴とするカーボンナノチューブ含有薄膜の製造方法。   Production of carbon nanotube-containing thin film characterized by producing a soluble polyphenylene vinylene substituted product or a copolymer thereof, or a mixed solution containing a soluble polythiophene substituted product and carbon nanotube, by centrifugation, and producing the resulting supernatant. Method. 複数の単層カーボンナノチューブが相互に分離した状態で分散している混合液から製造することを特徴とする請求項3記載のカーボンナノチューブ含有薄膜の製造方法。   4. The method for producing a carbon nanotube-containing thin film according to claim 3, wherein the carbon nanotube-containing thin film is produced from a mixed solution in which a plurality of single-walled carbon nanotubes are dispersed in a mutually separated state. 請求項1又は2に記載のカーボンナノチューブ含有薄膜を備えていることを特徴とする光電変換材料及び光電変換素子。   A photoelectric conversion material and a photoelectric conversion element comprising the carbon nanotube-containing thin film according to claim 1. 請求項1又は2に記載のカーボンナノチューブ含有薄膜を備えていることを特徴とする電界発光材料及び電界発光素子。
An electroluminescent material and an electroluminescent element comprising the carbon nanotube-containing thin film according to claim 1.
JP2005085282A 2005-03-24 2005-03-24 Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film Pending JP2006265035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085282A JP2006265035A (en) 2005-03-24 2005-03-24 Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085282A JP2006265035A (en) 2005-03-24 2005-03-24 Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film

Publications (1)

Publication Number Publication Date
JP2006265035A true JP2006265035A (en) 2006-10-05

Family

ID=37201381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085282A Pending JP2006265035A (en) 2005-03-24 2005-03-24 Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film

Country Status (1)

Country Link
JP (1) JP2006265035A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076998A (en) * 2005-08-19 2007-03-29 Toray Ind Inc Carbon nanotube dispersion liquid and method for producing the same
JP2009088507A (en) * 2007-09-27 2009-04-23 Commissariat A L'energie Atomique Hybrid matrix for thin-layer transistor
JP2009283303A (en) * 2008-05-22 2009-12-03 Keio Gijuku Carbon nanotube light-emitting element and method of manufacturing the same
JP2012102209A (en) * 2010-11-09 2012-05-31 National Institute Of Advanced Industrial Science & Technology Dispersion of carbon nanotube and manufacturing method thereof
JP2012119657A (en) * 2010-11-09 2012-06-21 National Institute Of Advanced Industrial & Technology Photothermal power generation element and photothermal power generation method using the same
US8465647B2 (en) 2009-12-11 2013-06-18 International Business Machines Corporation Isolation of single-walled carbon nanotubes from double and multi-walled carbon nanotubes
JP2014503445A (en) * 2010-11-01 2014-02-13 サムスン エレクトロニクス カンパニー リミテッド Method for selectively separating semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by the method
JP2016026983A (en) * 2014-06-30 2016-02-18 昭和電工株式会社 Carbon nanotube dispersion liquid comprising conductive polymer, carbon material and method for producing the dispersion liquid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172598A (en) * 2000-12-08 2002-06-18 Fuji Xerox Co Ltd Carbon nano tube device and its manufacturing method, and refining method of carbon nano tube
JP2003285299A (en) * 2002-03-27 2003-10-07 Sony Corp Functional material or functional element and method of manufacturing the same
JP2004323258A (en) * 2003-04-22 2004-11-18 Toray Ind Inc Method of purifying carbon nanotube
JP2004339301A (en) * 2003-05-14 2004-12-02 Toray Ind Inc Anisotropic polymer composite membrane
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide
JP2005285344A (en) * 2004-03-26 2005-10-13 Univ Shinshu Electron emission source using carbon nanotubes and polymer, and its manufacturing method
JP2006027961A (en) * 2004-07-16 2006-02-02 Univ Of Tokyo Carbon nanotube dispersion film and light emitting body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172598A (en) * 2000-12-08 2002-06-18 Fuji Xerox Co Ltd Carbon nano tube device and its manufacturing method, and refining method of carbon nano tube
JP2003285299A (en) * 2002-03-27 2003-10-07 Sony Corp Functional material or functional element and method of manufacturing the same
JP2004323258A (en) * 2003-04-22 2004-11-18 Toray Ind Inc Method of purifying carbon nanotube
JP2004339301A (en) * 2003-05-14 2004-12-02 Toray Ind Inc Anisotropic polymer composite membrane
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide
JP2005285344A (en) * 2004-03-26 2005-10-13 Univ Shinshu Electron emission source using carbon nanotubes and polymer, and its manufacturing method
JP2006027961A (en) * 2004-07-16 2006-02-02 Univ Of Tokyo Carbon nanotube dispersion film and light emitting body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076998A (en) * 2005-08-19 2007-03-29 Toray Ind Inc Carbon nanotube dispersion liquid and method for producing the same
JP2009088507A (en) * 2007-09-27 2009-04-23 Commissariat A L'energie Atomique Hybrid matrix for thin-layer transistor
JP2009283303A (en) * 2008-05-22 2009-12-03 Keio Gijuku Carbon nanotube light-emitting element and method of manufacturing the same
US8465647B2 (en) 2009-12-11 2013-06-18 International Business Machines Corporation Isolation of single-walled carbon nanotubes from double and multi-walled carbon nanotubes
US9409102B2 (en) 2009-12-11 2016-08-09 Globalfoundries Inc. Isolation of single-walled carbon nanotubes from double and multi-walled carbon nanotubes
JP2014503445A (en) * 2010-11-01 2014-02-13 サムスン エレクトロニクス カンパニー リミテッド Method for selectively separating semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by the method
US9502152B2 (en) 2010-11-01 2016-11-22 Samsung Electronics Co., Ltd. Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
US10355216B2 (en) 2010-11-01 2019-07-16 Samsung Electronics Co., Ltd. Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
JP2012102209A (en) * 2010-11-09 2012-05-31 National Institute Of Advanced Industrial Science & Technology Dispersion of carbon nanotube and manufacturing method thereof
JP2012119657A (en) * 2010-11-09 2012-06-21 National Institute Of Advanced Industrial & Technology Photothermal power generation element and photothermal power generation method using the same
JP2016026983A (en) * 2014-06-30 2016-02-18 昭和電工株式会社 Carbon nanotube dispersion liquid comprising conductive polymer, carbon material and method for producing the dispersion liquid

Similar Documents

Publication Publication Date Title
Bekyarova et al. Electronic properties of single-walled carbon nanotube networks
Liu et al. Electrical conductance tuning and bistable switching in poly (N-vinylcarbazole)− carbon nanotube composite films
Star et al. Preparation and properties of polymer‐wrapped single‐walled carbon nanotubes
Wang et al. Metallic single-walled carbon nanotubes for conductive nanocomposites
JP2006265035A (en) Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film
Zhang et al. Surfactant‐directed polypyrrole/CNT nanocables: Synthesis, characterization, and enhanced electrical properties
Li et al. Tailored single-walled carbon nanotube− CdS nanoparticle hybrids for tunable optoelectronic devices
Wudl Fullerene materials
AbdulAlmohsin et al. Graphene-enriched P3HT and porphyrin-modified ZnO nanowire arrays for hybrid solar cell applications
Kim et al. Preparation of PPV nanotubes and nanorods and carbonized products derived therefrom
Stranks et al. Novel Carbon Nanotube‐Conjugated Polymer Nanohybrids Produced By Multiple Polymer Processing
Xie et al. Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto) electronics
US8216491B2 (en) Thin film production
Barbero et al. Functional Single‐Walled Carbon Nanotubes and Nanoengineered Networks for Organic‐and Perovskite‐Solar‐Cell Applications
Long et al. Synthesis and characterization of polymeric graphene quantum dots based nanocomposites for humidity sensing
JP5723784B2 (en) Method for controlling the crystalline nanofiber content of organic layers used in organic electronic devices
Hamdast et al. Butterfly nanostructures via regioregularly grafted multi‐walled carbon nanotubes and poly (3‐hexylthiophene) to improve photovoltaic characteristics
JPWO2005082775A1 (en) Carbon nanotube-containing thin film
Guchhait et al. Hybrid Core− Shell Nanoparticles: Photoinduced Electron-Transfer for Charge Separation and Solar Cell Applications
Chang et al. Influence of solvent on the dispersion of single-walled carbon nanotubes in polymer matrix and the photovoltaic performance
Sung et al. Ultrathin electronic composite sheets of metallic/semiconducting carbon nanotubes embedded in conjugated block copolymers
Wakahara et al. Preparation of composite films of a conjugated polymer and C60NWs and their photovoltaic application
Sa'aya et al. Optical and Morphological Studies of Multiwalled Carbon Nanotube-incorporated Poly (3-hexylthiophene-2, 5-diyl) Nanocomposites.
Lee et al. Conjugated polymer-functionalized carbon nanotubes enhance the photovoltaic properties of polymer solar cells
Nguyen Facile preparation, characterization of flexible organic solar cells using P3HT-MWCNTs composite photoactive layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426