JP2006242240A - Energy absorbing device - Google Patents

Energy absorbing device Download PDF

Info

Publication number
JP2006242240A
JP2006242240A JP2005056946A JP2005056946A JP2006242240A JP 2006242240 A JP2006242240 A JP 2006242240A JP 2005056946 A JP2005056946 A JP 2005056946A JP 2005056946 A JP2005056946 A JP 2005056946A JP 2006242240 A JP2006242240 A JP 2006242240A
Authority
JP
Japan
Prior art keywords
energy
absorber
energy absorber
absorbing device
hollow portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005056946A
Other languages
Japanese (ja)
Inventor
Eisuke Kashiwagi
栄介 柏木
Naoyuki Yamaguchi
直之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005056946A priority Critical patent/JP2006242240A/en
Publication of JP2006242240A publication Critical patent/JP2006242240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy absorbing device for reducing vibration energy transmitted to a building or a civil structure in earthquake, having stable energy absorbing performance and high repeating durability and being easy and inexpensive to manufacture. <P>SOLUTION: The energy absorbing device comprises a hollow portion h provided vertically passing through a laminate 3 which consists of a plurality of hard plates 1 such as steel plates and a plurality of elastic bodies 2 such as rubbers alternately laminated in the vertical direction, and an energy absorber 4 stored in the hollow portion h for absorbing vibration energy of earthquake or the like. The energy absorber 4 is formed of an elasto-plastic material having greater yielding force than bearing pressure which occurs between the energy absorber 4 and the inner face of the hollow portion h and/or between the energy absorber 4 and a mounting plate 6 of the energy absorbing device when absorbing the vibration energy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば地震発生時に建築物や土木構造物もしくは精密機器等に伝達される振動エネルギーを減少させるためのエネルギー吸収装置に関する。更に詳しくは、鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体中に、地震等の振動エネルギーを吸収するエネルギー吸収体を設けたエネルギー吸収装置に関するものである。   The present invention relates to an energy absorbing device for reducing vibration energy transmitted to a building, a civil engineering structure, a precision instrument, or the like when an earthquake occurs. More specifically, the present invention relates to an energy absorbing device in which an energy absorber that absorbs vibration energy such as earthquake is provided in a laminate in which a plurality of hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction. Is.

従来たとえば地震発生時に建築物や土木構造物等に伝達される振動エネルギーを減少させるエネルギー吸収装置として下記特許文献1,2が提案されている。図8はその一例を示すもので、本例のエネルギー吸収装置Aは、鋼板等の硬質板1とゴム等の弾性体2とを上下方向に交互に複数積層してなる積層体3を上下一対の基板5・5間に配置し、その両基板5・5および積層体3の中心部に形成した上下方向に貫通する中空部(貫通穴)h内に地震等の振動エネルギーを吸収する鉛等の弾塑性体よりなるエネルギー吸収体4を収容配置した構成である。   Conventionally, for example, the following Patent Documents 1 and 2 have been proposed as energy absorbers that reduce vibration energy transmitted to buildings, civil engineering structures, and the like when an earthquake occurs. FIG. 8 shows an example, and the energy absorbing device A of the present example includes a pair of upper and lower laminates 3 in which a plurality of hard plates 1 such as steel plates and elastic bodies 2 such as rubber are alternately laminated in the vertical direction. Lead that absorbs vibration energy such as earthquakes in a hollow portion (through hole) h that is arranged between the substrates 5 and 5 and is formed in the center portion of both the substrates 5 and 5 and the laminated body 3 in the vertical direction. It is the structure which accommodated and arrange | positioned the energy absorber 4 which consists of these elastic-plastic bodies.

上記積層体3およびエネルギー吸収体4の上下両端部には、図8に示すようにそれぞれ基板5を介して取付板6が一体的に取付けられ、その取付板6を不図示のボルト等で建築物や土木構造物等に取付ける構成である。具体的には、例えば図9に示すようなビル等の建築物にあっては、その建築物等の上部構造体Bと、その土台等の下部構造体Cとの間に、また図10に示すような橋梁等の土木構造物にあっては、橋桁等の上部構造体Bと橋脚等の下部構造体Cとの間に、それぞれ上記のエネルギー吸収装置Aを1つ若しくは複数個配置し、その各エネルギー吸収装置Aの上下の取付板6に形成した上記取付孔6aにボルト等を挿通して上記各構造体B、Cに取付けるものである。   As shown in FIG. 8, mounting plates 6 are integrally attached to both the upper and lower ends of the laminate 3 and the energy absorber 4 via a substrate 5, respectively, and the mounting plates 6 are constructed with bolts or the like (not shown). It is a structure to be attached to an object or a civil engineering structure. Specifically, for example, in a building such as a building as shown in FIG. 9, between the upper structure B such as the building and the lower structure C such as the base, and in FIG. In a civil structure such as a bridge as shown, one or a plurality of the energy absorbing devices A are arranged between an upper structure B such as a bridge girder and a lower structure C such as a pier, A bolt or the like is inserted into the mounting hole 6a formed in the upper and lower mounting plates 6 of each energy absorbing device A and is mounted on the structures B and C.

上記のようにして上下の構造体B,C間に配置したエネルギー吸収装置Aは、建築物等を安定に支持しながら地震発生時には水平方向に変形して地震エネルギーを減少させるもので、従来のいわゆる免震アイソレータと免震ダンパーとの両方の機能を併せ持った働きをする。その結果、上記アイソレータとダンパーとを各々別々に配置した場合に比べて、設置スペースを削減できると共に、施工性も向上するという利点がある。   The energy absorbing device A arranged between the upper and lower structures B and C as described above is designed to reduce seismic energy by deforming in the horizontal direction when an earthquake occurs while stably supporting a building or the like. It functions as both a seismic isolation isolator and a seismic isolation damper. As a result, the installation space can be reduced and the workability can be improved as compared with the case where the isolator and the damper are separately arranged.

ところで、前記特許文献1においては、前述のようなエネルギー吸収装置を製造する際に、弾塑性体よりなるエネルギー吸収体に、その剪断降伏応力と同等もしくはそれ以上の静水圧を印加するが提案されている。また特許文献2においては前述のようなエネルギー吸収装置を製造する際に、弾塑性体よりなるエネルギー吸収体4の体積に対し、中空部h内の体積を1.0より大きく、1.05より小さくすることで、エネルギー吸収体4と中空部hとの滑りを抑制することが提案されている。   By the way, in the said patent document 1, when manufacturing the above energy absorption apparatuses, applying the hydrostatic pressure equivalent to or more than the shear yield stress to the energy absorber which consists of an elastic-plastic body is proposed. ing. Moreover, in patent document 2, when manufacturing the above energy absorption apparatus, the volume in the hollow part h is larger than 1.0 with respect to the volume of the energy absorber 4 which consists of an elastic-plastic body from 1.05. It has been proposed to reduce slippage between the energy absorber 4 and the hollow portion h by reducing the size.

これらは例えば前記の積層体3に形成した中空部h内にエネルギー吸収体4を収容配置する際に、その中空部hの内面にエネルギー吸収体4を密着させ、それらの間に隙間ができないようにするためであるが、エネルギー吸収体4が理想通りに塑性変形せずにエネルギー吸収能力や繰返し耐久性に悪影響を及ぼすという不具合がある。また弾塑性体の降伏点と同等以上の印加を行うことにより、弾塑性体と積層ゴムとの面圧は高く、双方間の抵抗力が大きくなる。その結果、弾塑性体が提供力に負けてしまい、弾塑性体がささくれたり、最悪の場合にはヒビが入って割れてしまったりするおそれがある。   For example, when the energy absorber 4 is accommodated in the hollow portion h formed in the laminate 3, the energy absorber 4 is brought into close contact with the inner surface of the hollow portion h so that there is no gap between them. However, there is a problem that the energy absorber 4 does not plastically deform as ideally and adversely affects the energy absorption capacity and the repeated durability. Moreover, by applying an application equal to or greater than the yield point of the elastoplastic body, the surface pressure between the elastoplastic body and the laminated rubber is high, and the resistance force between the two becomes large. As a result, the elastoplastic body may lose its providing power, and the elastoplastic body may be rolled up or cracked in the worst case.

そのメカニズムを図11によって説明すると、上記エネルギー吸収装置は製造時にエネルギー吸収体4に印加した静水圧によって、当初図11(a)のようにエネルギー吸収体4の外周面が、積層体3の中空部hの内面に食い込むようにして密着した状態にある。その状態で、地震等による振動で例えば同図(b)のように上側の基板5が図で右方に相対的にずれるような行き変形が生じると、それに合わせて内部のエネルギー吸収体4も図のように塑性変形する。すると、そのエネルギー吸収体4は全体的に引き伸ばされるように変位して、その径、特に中央部の径は同図(c)のように細るように変形する。   The mechanism will be described with reference to FIG. 11. In the energy absorbing device, the outer peripheral surface of the energy absorber 4 is initially hollow in the laminate 3 as shown in FIG. 11A due to the hydrostatic pressure applied to the energy absorber 4 at the time of manufacture. It is in a state of being in close contact with the inner surface of the portion h. In this state, when the upper substrate 5 is deformed so that the upper substrate 5 is relatively displaced to the right in the figure as a result of vibration due to an earthquake or the like, the internal energy absorber 4 is also moved accordingly. Plastic deformation as shown. Then, the energy absorber 4 is displaced so as to be stretched as a whole, and its diameter, particularly the diameter of the central portion, is deformed so as to be thin as shown in FIG.

次に、上記図11(c)の状態から上側の基板5が図で左方の元の位置に戻る方向に変形(戻り変形)すると、エネルギー吸収体4は、その上下両端部に位置する基板5により圧縮を受けながら、径が膨らむような変形をする。特に、基板5に近いエネルギー吸収体4の両端部ではより多くの圧縮力を受けて、より多く膨張する。一方、エネルギー吸収体4の上下方向中央部付近では基板からの圧縮がさほど伝わらないので径の膨出変化は少ない。   Next, when the upper substrate 5 is deformed (returned deformed) from the state of FIG. 11C in the direction returning to the original position on the left side in the drawing, the energy absorbers 4 are positioned at both upper and lower ends. While undergoing compression by 5, the deformation is performed such that the diameter swells. In particular, both ends of the energy absorber 4 close to the substrate 5 receive more compressive force and expand more. On the other hand, since the compression from the substrate is not transmitted so much in the vicinity of the central portion of the energy absorber 4 in the vertical direction, there is little change in the diameter.

上記のようにしてエネルギー吸収装置が、地震等による振動で水平方向に動く度にエネルギー吸収体4の上下両端部付近と中央部付近とでは異なった変形、流動を起こすことになる。その結果、図11(d)のようにエネルギー吸収体4の中央部付近と両端部付近においてエネルギー吸収体4の結晶質の不規則化、不均質化が起こり、その境目付近での剪断破壊によるささくれやヒビ割れ、中央部と両端部での径変化の違いによるエネルギー吸収体4と中空部の内面からの剥がれ、或いはエネルギー吸収体4の隅部で隙間が発生する。その結果、エネルギー吸収性能が不安定になったり、繰返し耐久性が低下する等の不具合がある。   As described above, whenever the energy absorbing device moves in the horizontal direction due to vibration caused by an earthquake or the like, different deformation and flow occur near the upper and lower ends and near the center of the energy absorber 4. As a result, as shown in FIG. 11 (d), the crystal of the energy absorber 4 becomes irregular and non-homogeneous in the vicinity of the center and both ends of the energy absorber 4, and is caused by shear fracture near the boundary. Separation from the inner surfaces of the energy absorber 4 and the hollow portion due to the difference in diameter change between the center portion and both ends, or a gap occurs at the corner of the energy absorber 4. As a result, there are problems such as unstable energy absorption performance and reduced durability.

特許第3360828号公報Japanese Patent No. 3360828 特開平11−29986号公報JP-A-11-29986

本発明は上記の問題点に鑑みて提案されたもので、エネルギー吸収性能が安定していて繰返し耐久性も高く、しかも容易・安価に製造することのできるエネルギー吸収装置を提供することを目的とする。   The present invention has been proposed in view of the above problems, and an object thereof is to provide an energy absorption device that has stable energy absorption performance, high repetition durability, and that can be easily and inexpensively manufactured. To do.

上記の目的を達成するために本発明によるエネルギー吸収装置は、以下の構成にしたものである。すなわち、鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、振動エネルギー吸収時に上記エネルギー吸収体と上記中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に生じる面圧力よりも大きい降伏点を有する弾塑性材料により上記エネルギー吸収体を形成したことを特徴とする。   In order to achieve the above object, an energy absorbing device according to the present invention has the following configuration. That is, a hollow part that penetrates in the vertical direction is provided in a laminated body in which a hard plate such as a steel plate and an elastic body such as rubber are alternately laminated in the vertical direction, and vibration energy such as earthquake is absorbed in the hollow part. In the energy absorbing device that houses and arranges the energy absorber to be absorbed, a surface generated between the energy absorber and the inner surface of the hollow portion and / or between the energy absorber and the mounting plate of the energy absorber when absorbing vibration energy The energy absorber is formed of an elastic-plastic material having a yield point larger than the pressure.

なお、上記のようなエネルギー吸収装置において、エネルギー吸収体と中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に生じる面圧力よりも大きい降伏点を有する弾塑性材料により上記エネルギー吸収体を形成する代わりに若しくは形成した上で、エネルギー吸収体と中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に減摩材または弾性スペーサを介在させてもよい。   In the energy absorbing device as described above, it has a yield point larger than the surface pressure generated between the energy absorber and the inner surface of the hollow portion and / or between the energy absorber and the mounting plate of the energy absorber. Instead of or after forming the energy absorber with an elastoplastic material, the friction is reduced between the energy absorber and the inner surface of the hollow part and / or between the energy absorber and the mounting plate of the energy absorber. A material or an elastic spacer may be interposed.

上記のように、振動エネルギー吸収時に、エネルギー吸収体と中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に生じる面圧力よりも大きい降伏点を有する弾塑性材料により上記エネルギー吸収体を形成したことによって、上記の面圧力でエネルギー吸収体の変位や変形が阻害されることなく、地震等による振動を良好に吸収することが可能となる。なお上記エネルギー吸収体と中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に減摩材または弾性スペーサを介在させた場合にも上記とほぼ同様の効果が得られる。さらに上記のような極めて簡単な構成により、エネルギー吸収性能およびその安定性ならびに繰返し耐久性も高いエネルギー吸収装置を容易・安価に製造できるものである。   As described above, at the time of vibration energy absorption, an elastic member having a yield point larger than a surface pressure generated between the energy absorber and the inner surface of the hollow part and / or between the energy absorber and the mounting plate of the energy absorber. By forming the energy absorber from a plastic material, it is possible to satisfactorily absorb vibration due to an earthquake or the like without the displacement and deformation of the energy absorber being hindered by the surface pressure. The same effect as described above can be obtained when an antifriction material or an elastic spacer is interposed between the energy absorber and the inner surface of the hollow portion and / or between the energy absorber and the mounting plate of the energy absorber. Is obtained. Furthermore, the energy absorption device having high energy absorption performance and stability and high repetition durability can be easily and inexpensively manufactured by the extremely simple configuration as described above.

以下、本発明を図に示す実施形態に基づいて具体的に説明する。図1は本発明によるエネルギー吸収装置の一実施形態を示す斜視図、図2はその縦断面図であり、前記従来例と同様の機能を有する部材には同一の符号を付して説明する。   Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings. FIG. 1 is a perspective view showing an embodiment of an energy absorbing device according to the present invention, and FIG. 2 is a longitudinal sectional view thereof. Members having the same functions as those in the conventional example will be described with the same reference numerals.

本実施形態のエネルギー吸収装置Aは、前記従来例と同様に鋼板等の硬質板1とゴム等の弾性体2とを上下方向に交互に複数積層して接着剤等で一体化してなる積層体3を上下一対の基板5・5間に配置し、その両基板5・5および積層体3の中心部に形成した上下方向に貫通する中空部(貫通穴)h内に地震等の振動エネルギーを吸収する錫等の弾塑性体よりなるエネルギー吸収体4を収容配置した構成である。   The energy absorbing device A of the present embodiment is a laminated body in which a hard plate 1 such as a steel plate and an elastic body 2 such as rubber are alternately laminated in the vertical direction and integrated with an adhesive or the like as in the conventional example. 3 is arranged between a pair of upper and lower substrates 5 and 5, and vibration energy such as an earthquake is placed in a hollow portion (through hole) h penetrating in the vertical direction formed in the central portion of both the substrates 5 and 5 and the laminate 3. It is the structure which accommodated and arrange | positioned the energy absorber 4 which consists of elastic-plastic bodies, such as a tin to absorb.

そして、本発明は、振動エネルギー吸収時に上記エネルギー吸収体4と上記積層体3の中空部hの内面との間および/または上記エネルギー吸収体4と後述するエネルギー吸収装置の取付板(取付板面)6との間に生じる面圧力よりも降伏力が大きい弾塑性材料により上記のエネルギー吸収体4を形成したもので、その弾塑性材料として本実施形態においては錫を用いて上記エネルギー吸収体4を形成したものである。なお、錫以外には例えばビスマス、アルミニウム、銅、アンチモン、鉛、銀、亜鉛、鉄、インジウム等を用いることができる。   Further, the present invention can provide a mounting plate (mounting plate surface) between the energy absorber 4 and the inner surface of the hollow portion h of the laminated body 3 and / or the energy absorber 4 and an energy absorbing device described later when absorbing vibration energy. ) The energy absorber 4 is formed of an elastic-plastic material having a yield force larger than the surface pressure generated between the energy absorber 6 and the energy absorber 4 using tin as the elastic-plastic material in the present embodiment. Is formed. In addition to tin, for example, bismuth, aluminum, copper, antimony, lead, silver, zinc, iron, indium and the like can be used.

また硬質板1として本実施形態においては炭素鋼板を用いたが、ステンレス鋼板や他の金属板もしくは硬質の合成樹脂板等を用いることもできる。また弾性体2として本実施形態においては天然ゴムを用いたが、合成ゴムや軟質の合成樹脂等でもよい。なお、図2の縦断面図において、硬質板1と弾性体2およびエネルギー吸収体4の断面を表すハッチング(斜線)は煩雑を避けるため省略した。後述する他の縦断面図や説明図等についても同様である。   Moreover, although the carbon steel plate was used in this embodiment as the hard plate 1, a stainless steel plate, another metal plate, a hard synthetic resin plate, etc. can also be used. In the present embodiment, natural rubber is used as the elastic body 2, but synthetic rubber, soft synthetic resin, or the like may be used. In the longitudinal cross-sectional view of FIG. 2, hatching (hatched lines) representing the cross sections of the hard plate 1, the elastic body 2, and the energy absorber 4 is omitted to avoid complication. The same applies to other longitudinal sectional views and explanatory views to be described later.

上記のように構成された積層体3およびエネルギー吸収体4の上下両端部には、前記従来例と同様に基板5を介して取付板6がボルト7等で一体的に取付けられ、その取付板6に取付孔6aが形成されている。そして、前記図9および図10の従来例と同様に建築物や構築物等の上部構造体Bと、その土台等の下部構造体Cとの間に、上記のエネルギー吸収装置Aを1つ若しくは複数個配置して、その各エネルギー吸収装置Aに設けた上記取付孔6aにボルト8等を挿通して上記各構造体B、Cに取付けるものである。   A mounting plate 6 is integrally attached to the upper and lower ends of the laminate 3 and the energy absorber 4 configured as described above with bolts 7 or the like via the substrate 5 as in the conventional example. An attachment hole 6 a is formed in 6. 9 and 10, one or a plurality of the energy absorbing devices A are provided between the upper structure B such as a building or a structure and the lower structure C such as a base thereof. The bolts 8 and the like are inserted into the mounting holes 6a provided in the energy absorbing devices A and attached to the structures B and C.

上記のようにして上下の構造体B、C間に配置されるエネルギー吸収装置Aのエネルギー吸収体4として錫等を用いることによって、振動エネルギー吸収時にエネルギー吸収体4と積層体3の中空部hの内面との間に生じる面圧力よりもエネルギー吸収体4の降伏力が大きくなるようにしたから、エネルギー吸収体4が中空部hの内面の影響、例えば積層体3との摩擦あるいは食い込みに負けて不規則な変形を起こすことなく、良好に変形して効率よく振動を吸収することができる。   By using tin or the like as the energy absorber 4 of the energy absorber A disposed between the upper and lower structures B and C as described above, the hollow portion h of the energy absorber 4 and the laminate 3 is absorbed during vibration energy absorption. Since the yield force of the energy absorber 4 is larger than the surface pressure generated between the inner surface of the material and the inner surface of the material, the energy absorber 4 loses the influence of the inner surface of the hollow portion h, for example, friction or biting with the laminate 3. Therefore, without causing irregular deformation, vibration can be efficiently absorbed with good deformation.

図3は上記実施形態のエネルギー吸収装置を用いて地震等の振動を吸収する際の概略構成を示すもので、当初同図(a)のように積層体3の中空部h内に収容配置したエネルギー吸収体4は、その外周面が上記中空部hの内面にほぼ丁度密着した状態にある。その状態で、地震等による振動で例えば同図(b)のように上側の基板5が図で右方に相対的にずれるような行き変形が生じると、それに合わせて内部のエネルギー吸収体4も図のように塑性変形する。そのとき、エネルギー吸収体4と中空部hの内面との間に生じる面圧力よりもエネルギー吸収体4の降伏力の方が大きいので、上記エネルギー吸収体4は殆ど自由に変形もしくは変位するため前記従来のようにエネルギー吸収体4の上下方向中央部の径が細ることはない。   FIG. 3 shows a schematic configuration when absorbing vibrations such as earthquakes using the energy absorbing device of the above embodiment, and it is initially accommodated in the hollow portion h of the laminate 3 as shown in FIG. The energy absorber 4 is in a state where its outer peripheral surface is almost in close contact with the inner surface of the hollow portion h. In this state, when the upper substrate 5 is deformed so that the upper substrate 5 is relatively displaced to the right in the figure as a result of vibration due to an earthquake or the like, the internal energy absorber 4 is also moved accordingly. Plastic deformation as shown. At this time, since the yield force of the energy absorber 4 is greater than the surface pressure generated between the energy absorber 4 and the inner surface of the hollow portion h, the energy absorber 4 is deformed or displaced almost freely. The diameter of the central portion in the vertical direction of the energy absorber 4 is not reduced as in the prior art.

次に、上記図3(b)の状態から同図(c)のように上側の基板5が図で左方の元の位置に戻る方向に変形(戻り変形)する際に、エネルギー吸収体4に、その上下両端部に位置する基板5からの圧縮力が作用した場合にも中空部hの内面との間に生じる面圧力でエネルギー吸収体4の動きが規制されることなく該エネルギー吸収体4にはその長手方向全長にわたって上記の圧縮力が作用するので前記のように両端部のみの径が膨らむようなことはない。また前記従来のように上記両端部の隅部のエネルギー吸収体4の行き場がなくなったり複雑に回転するような流動をすることもない。   Next, when the upper substrate 5 is deformed from the state of FIG. 3B in the direction of returning to the original position on the left side (return deformation) as shown in FIG. In addition, even when a compressive force is applied from the substrate 5 located at both upper and lower ends, the energy absorber 4 is not restricted by the surface pressure generated between the inner surface of the hollow portion h and the energy absorber 4 is restricted. Since the above-mentioned compressive force acts on the entire length in the longitudinal direction, the diameter of only the both end portions does not swell as described above. Further, unlike the prior art, there is no flow of energy absorbers 4 at the corners of the both end portions, or the flow of rotating in a complicated manner.

従って、本発明による上記実施形態のエネルギー吸収装置は、地震等による振動で水平方向に動く度にエネルギー吸収体4の上下両端部付近と中央部付近とで前記従来のように異なった変形や流動を起こすことなく、エネルギー吸収体4全体が片寄りなく変形し、これを繰り返しても図3(d)のように当初の状態が維持される。従って前記従来のようなエネルギー吸収体4の結晶質の不規則化や不均質化、およびそれによるヒビ割れや剥がれ若しくは隙間の発生等が起こることなく、しかも繰返し振動にも強く、長期間安定に振動吸収性能を維持することができるものである。   Therefore, the energy absorbing device of the above-described embodiment according to the present invention has different deformation and flow in the vicinity of the upper and lower end portions and the central portion of the energy absorber 4 each time it moves in the horizontal direction due to vibration caused by an earthquake or the like. The entire energy absorber 4 is deformed without any deviation, and even if this is repeated, the initial state is maintained as shown in FIG. Therefore, there is no occurrence of irregularity or inhomogeneity of the crystalline structure of the energy absorber 4 as in the prior art, and cracking, peeling, or generation of gaps, and the like. The vibration absorbing performance can be maintained.

上記実施形態は、前記のような課題を解決するために、振動エネルギー吸収時にエネルギー吸収体4と積層体3の中空部hの内面との間に生じる面圧力よりも降伏力が大きい弾塑性材料によりエネルギー吸収体4を形成したが、そのような構成とする代わりに若しくは上記のような構成とした上で、上記エネルギー吸収体4と上記中空部hの内面との間および/または上記エネルギー吸収体4とエネルギー吸収装置の取付板6との間に減摩材または弾性スペーサを介在させてもよい。   In the above embodiment, in order to solve the above-described problem, an elastic-plastic material having a yield force larger than the surface pressure generated between the energy absorber 4 and the inner surface of the hollow portion h of the laminate 3 when absorbing vibration energy. The energy absorber 4 is formed by the above, but instead of such a configuration or the above configuration, the energy absorber 4 and the inner surface of the hollow portion h and / or the energy absorption. An antifriction material or an elastic spacer may be interposed between the body 4 and the mounting plate 6 of the energy absorbing device.

図4はその一例を示すもので、上記のエネルギー吸収体4と中空部hの内面との間に減摩材10を介在させたものであるが、上記エネルギー吸収体4と取付板6との間および上記両方の間に介在させてもよい。その減摩材10としては、例えばテフロン(登録商標)、モリブデン等の固体又は粉体状の潤滑剤、又はグリース、オイル等の液状潤滑剤、若しくは上記の固体や粉体状の潤滑剤と液状潤滑剤の両方を併用することもできる。   FIG. 4 shows an example of this. The antifriction material 10 is interposed between the energy absorber 4 and the inner surface of the hollow portion h. It may be interposed between and between the above. The antifriction material 10 is, for example, a solid or powdery lubricant such as Teflon (registered trademark) or molybdenum, or a liquid lubricant such as grease or oil, or the above-described solid or powdery lubricant and liquid. Both lubricants can be used in combination.

上記のようにエネルギー吸収体4と中空部hの内面との間および/または上記エネルギー吸収体4と取付板6との間に減摩材10を介在させると、振動エネルギー吸収時にエネルギー吸収体4と積層体3の間および/または上記エネルギー吸収体4と取付板6との間に発生する面圧力を可及的に低減することが可能となり、前記の実施形態と同様に、エネルギー吸収体4は、積層体3の中空部内面および/または取付板6との面圧力に影響されることなく変形できるため、繰返し振動にも強く且つ安定したエネルギー吸収能力を継続することができるものである。   When the antifriction material 10 is interposed between the energy absorber 4 and the inner surface of the hollow portion h and / or between the energy absorber 4 and the mounting plate 6 as described above, the energy absorber 4 is absorbed during vibration energy absorption. It is possible to reduce as much as possible the surface pressure generated between the laminated body 3 and / or between the energy absorber 4 and the mounting plate 6, and the energy absorber 4 as in the above embodiment. Since it can be deformed without being affected by the inner surface of the hollow portion of the laminate 3 and / or the surface pressure with the mounting plate 6, it can withstand repeated vibrations and maintain a stable energy absorption capability.

なお、図には省略したが、上記減摩材10の代わりにゴム等よりなる弾性スペーサを、上記エネルギー吸収体4と中空部hの内面との間および/または上記エネルギー吸収体4と取付板6との間に介在させてもよい。その弾性スペーサとしては例えば厚さ1mm以上のシート状または筒状もしくは所望形状の軟質ゴムを用いるのが望ましい。又その弾性スペーサは、例えばエネルギー吸収体4の外周面に予め巻いてから上記中空部h内に挿入すると、容易に装填することができる。   Although not shown in the drawing, an elastic spacer made of rubber or the like is used instead of the antifriction material 10 between the energy absorber 4 and the inner surface of the hollow portion h and / or the energy absorber 4 and the mounting plate. 6 may be interposed. As the elastic spacer, for example, it is desirable to use a soft rubber having a sheet shape of 1 mm or more, a cylindrical shape, or a desired shape. The elastic spacer can be easily loaded by, for example, winding it around the outer peripheral surface of the energy absorber 4 and inserting it into the hollow portion h.

上記のようにエネルギー吸収体4と積層体3の中空部hの内面との間にゴム等よりなる弾性スペーサを介在させると、その弾性によって振動エネルギー吸収時に、上記中空部hの内面に対するエネルギー吸収体4の変位が許容され、前記各実施形態と同様に、エネルギー吸収体4は積層体3の中空部h内面の影響を殆ど受けずに変形できるため、繰返し振動にも強く且つ安定したエネルギー吸収能力を継続することができる。   When an elastic spacer made of rubber or the like is interposed between the energy absorber 4 and the inner surface of the hollow portion h of the laminate 3 as described above, energy absorption to the inner surface of the hollow portion h is caused by the elasticity when absorbing vibration energy. Displacement of the body 4 is allowed, and the energy absorber 4 can be deformed almost without being affected by the inner surface of the hollow portion h of the laminate 3 as in the above-described embodiments. Ability can continue.

次に、本発明の具体的な実施例として前記図1および図2に示すようなエネルギー吸収装置を実際に作製して加振試験を行った。その結果を図5〜図7に示す。なお本実施例で作製したエネルギー吸収装置の各部の寸法および材質は以下の通りである。先ず、図1および図2における積層体3の高さは、上下の基板5を含めて250mm、外径はφ500mmであり、コアとなるエネルギー吸収体4の高さは250mm、外径はφ100mmで、エネルギー吸収体4の材質としては純度99%の錫に0.3%のビスマスを加えた合金で降伏点が20MPaのものを使用した。一方、上記実施例に対する比較例として、コアの材料に99%の純錫で降伏点が15MPaのものを用いた以外は上記実施例と同様のエネルギー吸収装置を用いた。   Next, as a specific example of the present invention, an energy absorbing device as shown in FIG. 1 and FIG. 2 was actually fabricated and subjected to a vibration test. The results are shown in FIGS. In addition, the dimension and material of each part of the energy absorber produced in the present Example are as follows. First, the height of the laminated body 3 in FIG. 1 and FIG. 2 is 250 mm including the upper and lower substrates 5, the outer diameter is φ500 mm, the height of the energy absorber 4 serving as the core is 250 mm, and the outer diameter is φ100 mm. As the material of the energy absorber 4, an alloy obtained by adding 0.3% bismuth to 99% purity tin and having a yield point of 20 MPa was used. On the other hand, as a comparative example for the above example, an energy absorbing device similar to that of the above example was used except that the core material was 99% pure tin and the yield point was 15 MPa.

上記加振試験は面圧を上記実施例と比較例の降伏点の間の数値である18MPaに設定し、試験変形速度5mm/s、変形量(弾性体2の総厚さ寸法に対する水平方向変位量)は250%変形(水平変位量約310mm)として実施した。図5は上記実施例および比較例における1サイクル目の変位履歴曲線を示すもので、この時点では実施例および比較例ともに履歴ループ形状にはあまり差が無い。しかしながら、上記と同じ加振条件で10サイクル目の履歴を取った図6では比較例の方が履歴ループ内面積であるエネルギー吸収量が実施例に比べて落ちてきていることが分かる。また図7は最初のエネルギー吸収量を1.0として、サイクル毎のエネルギー吸収量の低下率を測定したもので、これによると、実施例は比較例に対して10サイクル目の低下率が0.1程度少なく、繰返しに耐久性に優れることがわかる。以上の結果から、面圧よりも降伏点の高い金属をコアに使用することで耐久性の高い、つまりは繰返しでもエネルギー吸収量が変化しない、エネルギー吸収装置を得ることができるものである。   In the vibration test, the surface pressure is set to 18 MPa, which is a numerical value between the yield points of the above example and the comparative example, the test deformation speed is 5 mm / s, the deformation amount (the horizontal displacement with respect to the total thickness of the elastic body 2). Amount) was carried out as a 250% deformation (horizontal displacement of about 310 mm). FIG. 5 shows a displacement history curve of the first cycle in the above-described example and comparative example. At this point, there is not much difference in the history loop shape in both the example and the comparative example. However, in FIG. 6 in which the history of the 10th cycle is taken under the same excitation condition as described above, it can be seen that the energy absorption amount, which is the area in the history loop, is lower in the comparative example than in the example. FIG. 7 shows the measurement of the rate of decrease of the energy absorption amount for each cycle with the initial energy absorption amount being 1.0. According to this, the example shows that the rate of decrease at the 10th cycle is 0 compared to the comparative example. It can be seen that it is excellent in durability repeatedly by about 1 less. From the above results, by using a metal having a higher yield point than the surface pressure for the core, it is possible to obtain an energy absorbing device having high durability, that is, an energy absorption amount that does not change even when repeated.

以上のように本発明によるエネルギー吸収装置は、振動エネルギー吸収時に、エネルギー吸収体と積層体の中空部内面との間に生じる面圧力でエネルギー吸収体の変位や変形が阻害されることなく、地震等による振動を良好に吸収することが可能となるもので、極めて簡単な構成により、エネルギー吸収性能およびその安定性ならびに繰返し耐久性も高いエネルギー吸収装置を容易・安価に製造できる。その結果、上記のようなエネルギー吸収装置の設計および選択の自由度が増し産業上の利用可能性を増大させることができる。   As described above, the energy absorbing device according to the present invention is capable of preventing the displacement and deformation of the energy absorber from being disturbed by the surface pressure generated between the energy absorber and the inner surface of the hollow portion of the laminate when absorbing vibration energy. Therefore, it is possible to easily and inexpensively manufacture an energy absorbing device having a high energy absorption performance and its stability and high durability. As a result, the degree of freedom in designing and selecting the energy absorbing device as described above can be increased, and industrial applicability can be increased.

本発明によるエネルギー吸収装置の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the energy absorption apparatus by this invention. 上記実施形態のエネルギー吸収装置の縦断面図。The longitudinal cross-sectional view of the energy absorber of the said embodiment. 上記エネルギー吸収装置の動作状態を示す概略構成説明図。Schematic structure explanatory drawing which shows the operation state of the said energy absorption apparatus. 本発明によるエネルギー吸収装置の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the energy absorption apparatus by this invention. 本発明に基づく実施例および比較例の変位履歴曲線図。The displacement history curve figure of the Example based on this invention, and a comparative example. 本発明に基づく実施例および比較例の変位履歴曲線図。The displacement history curve figure of the Example based on this invention, and a comparative example. 本発明に基づく実施例および比較例のエネルギー吸収量変化測定図。The energy absorption amount change measurement figure of the Example based on this invention, and a comparative example. 従来のエネルギー吸収装置の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional energy absorption apparatus. 上記従来のエネルギー吸収装置を建築物に施工した例の説明図。Explanatory drawing of the example which constructed the said conventional energy absorption apparatus in the building. 上記従来のエネルギー吸収装置を土木構築物に施工した例の説明図。Explanatory drawing of the example which constructed the said conventional energy absorption apparatus to the civil engineering structure. 上記従来のエネルギー吸収装置の動作状態を示す概略構成説明図。Schematic structure explanatory drawing which shows the operation state of the said conventional energy absorption apparatus.

符号の説明Explanation of symbols

1 硬質板
2 弾性体
3 積層体
4 エネルギー吸収体
5 基板
6 取付板
7、8 ボルト
A エネルギー吸収装置
B 上部構造体
C 下部構造体
h 中空部
DESCRIPTION OF SYMBOLS 1 Hard board 2 Elastic body 3 Laminated body 4 Energy absorber 5 Board | substrate 6 Mounting plate 7, 8 Bolt A Energy absorber B Upper structure C Lower structure h Hollow part

Claims (6)

鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、
振動エネルギー吸収時に上記エネルギー吸収体と上記中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に生じる面圧力よりも大きい降伏点を有する弾塑性材料により上記エネルギー吸収体を形成したことを特徴とするエネルギー吸収装置。
Energy that absorbs vibration energy such as earthquakes in a hollow part that penetrates in the vertical direction in a laminated body in which multiple hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction In the energy absorption device that houses and arranges the absorber,
The elastic-plastic material having a yield point larger than the surface pressure generated between the energy absorber and the inner surface of the hollow portion and / or between the energy absorber and the mounting plate of the energy absorber when absorbing vibration energy. An energy absorption device characterized by forming an energy absorber.
鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、
上記エネルギー吸収体と上記中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に減摩材を介在させたことを特徴とするエネルギー吸収装置。
Energy that absorbs vibration energy such as earthquakes in a hollow part that penetrates in the vertical direction in a laminated body in which multiple hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction In the energy absorption device that houses and arranges the absorber,
An energy absorbing device comprising an antifriction material interposed between the energy absorber and the inner surface of the hollow portion and / or between the energy absorber and a mounting plate of the energy absorbing device.
上記減摩材として、テフロン、モリブデン等の固体又は粉体状の潤滑剤、又はグリース、オイル等の液状潤滑剤、若しくは上記の固体や粉体状の潤滑剤と液状潤滑剤の両方を併用することを特徴とする請求項2に記載のエネルギー吸収装置。   As the antifriction material, a solid or powdery lubricant such as Teflon or molybdenum, or a liquid lubricant such as grease or oil, or both of the above solid or powdery lubricant and liquid lubricant are used in combination. The energy absorbing device according to claim 2. 鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、
上記エネルギー吸収体と上記中空部内面との間および/または上記エネルギー吸収体と上記エネルギー吸収装置の取付板との間に弾性スペーサを介在させたことを特徴とするエネルギー吸収装置。
Energy that absorbs vibration energy such as earthquakes in a hollow part that penetrates in the vertical direction in a laminated body in which multiple hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction In the energy absorption device that houses and arranges the absorber,
An energy absorbing device, wherein an elastic spacer is interposed between the energy absorber and the inner surface of the hollow portion and / or between the energy absorber and a mounting plate of the energy absorbing device.
上記の弾性スペーサとして厚さ1mm以上の軟質ゴムを用いた請求項4に記載のエネルギー吸収装置。   The energy absorption device according to claim 4, wherein a soft rubber having a thickness of 1 mm or more is used as the elastic spacer. 上記の弾塑性材料として錫または錫合金を用いて上記エネルギー吸収体を形成してなる請求項1〜5のいずれかに記載のエネルギー吸収装置。   The energy absorption device according to any one of claims 1 to 5, wherein the energy absorber is formed using tin or a tin alloy as the elastic-plastic material.
JP2005056946A 2005-03-02 2005-03-02 Energy absorbing device Pending JP2006242240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056946A JP2006242240A (en) 2005-03-02 2005-03-02 Energy absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056946A JP2006242240A (en) 2005-03-02 2005-03-02 Energy absorbing device

Publications (1)

Publication Number Publication Date
JP2006242240A true JP2006242240A (en) 2006-09-14

Family

ID=37048866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056946A Pending JP2006242240A (en) 2005-03-02 2005-03-02 Energy absorbing device

Country Status (1)

Country Link
JP (1) JP2006242240A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987811B1 (en) 2008-02-19 2010-10-13 (주)협성엔지니어링 Hybrid rubber bearing using lead and tin
CN102767237A (en) * 2012-07-04 2012-11-07 北京工业大学 Fiber and polytetrafluoroethylene plate rubber combined shock insulation support
CN103469897A (en) * 2013-09-30 2013-12-25 衡水震泰隔震器材有限公司 Frictional damping shock-insulating rubber supporting base
JP2015132303A (en) * 2014-01-10 2015-07-23 住友金属鉱山シポレックス株式会社 Lead-plug incorporated laminate rubber type base insulation bearing
CN106592806A (en) * 2017-01-09 2017-04-26 北京鸿基瑞安减震科技有限公司 High-damping metal shearing hysteresis energy dissipater
WO2018016402A1 (en) * 2016-07-20 2018-01-25 オイレス工業株式会社 Earthquake-proof support device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987811B1 (en) 2008-02-19 2010-10-13 (주)협성엔지니어링 Hybrid rubber bearing using lead and tin
CN102767237A (en) * 2012-07-04 2012-11-07 北京工业大学 Fiber and polytetrafluoroethylene plate rubber combined shock insulation support
CN103469897A (en) * 2013-09-30 2013-12-25 衡水震泰隔震器材有限公司 Frictional damping shock-insulating rubber supporting base
CN103469897B (en) * 2013-09-30 2015-07-08 衡水震泰隔震器材有限公司 Frictional damping shock-insulating rubber supporting base
JP2015132303A (en) * 2014-01-10 2015-07-23 住友金属鉱山シポレックス株式会社 Lead-plug incorporated laminate rubber type base insulation bearing
WO2018016402A1 (en) * 2016-07-20 2018-01-25 オイレス工業株式会社 Earthquake-proof support device
JP2018013172A (en) * 2016-07-20 2018-01-25 オイレス工業株式会社 Base isolation support device
CN106592806A (en) * 2017-01-09 2017-04-26 北京鸿基瑞安减震科技有限公司 High-damping metal shearing hysteresis energy dissipater
CN106592806B (en) * 2017-01-09 2022-08-16 北京鸿基瑞安减震科技有限公司 High-damping metal shearing hysteresis energy dissipater

Similar Documents

Publication Publication Date Title
JP2017014749A (en) Sliding mechanism of bridge seismic resistance device
Kelly et al. Fiber-reinforced elastomeric bearings for vibration isolation
JP2019035493A (en) Slide bearing device
CN214994679U (en) Anti-seismic device
RU101514U1 (en) RUBBER-METAL SUPPORT
JP5638762B2 (en) Building
JP2006242240A (en) Energy absorbing device
JP2016080051A (en) Base isolation support device
Peng et al. Shaking table test of seismic isolated structures with sliding hydromagnetic bearings
JP2013002192A (en) Tension type base-isolation bearing device
CN108798168B (en) Metal-viscous-viscoelastic composite damper and damping wall
JP2006242239A (en) Energy absorbing device
JP5845130B2 (en) Laminated rubber bearing
JP2006275212A (en) Energy absorbing device
JP2006275215A (en) Vibrational energy absorbing device and its manufacturing method
JP6780632B2 (en) Composite damper
JP4997354B1 (en) Fixing member for shear force transmission with fixing maintenance function
JP5305756B2 (en) Damping wall using corrugated steel
JPS62228729A (en) Vibration energy absorbing device
JP2009002359A (en) Energy absorbing device
JP2018091035A (en) Attachment structure of building oil damper
JPS62220734A (en) Vibrational energy absorbing device
JP2008038950A (en) Energy absorbing device
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP2007332643A (en) Base isolated building

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070404

A621 Written request for application examination

Effective date: 20070718

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090626

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Effective date: 20090716

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090727

A02 Decision of refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A02