JP2006234417A - Magnetic particle dispersant, and particles for diagnostic agent - Google Patents

Magnetic particle dispersant, and particles for diagnostic agent Download PDF

Info

Publication number
JP2006234417A
JP2006234417A JP2005045791A JP2005045791A JP2006234417A JP 2006234417 A JP2006234417 A JP 2006234417A JP 2005045791 A JP2005045791 A JP 2005045791A JP 2005045791 A JP2005045791 A JP 2005045791A JP 2006234417 A JP2006234417 A JP 2006234417A
Authority
JP
Japan
Prior art keywords
magnetic
particles
particle size
particle
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005045791A
Other languages
Japanese (ja)
Other versions
JP4404208B2 (en
Inventor
Koji Tamori
功二 田守
Ichiro Ozaki
一郎 尾崎
Tomohiro Kamitsubara
朋広 上津原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2005045791A priority Critical patent/JP4404208B2/en
Publication of JP2006234417A publication Critical patent/JP2006234417A/en
Application granted granted Critical
Publication of JP4404208B2 publication Critical patent/JP4404208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic particle dispersant capable of making size reduction in the average particle size that is compatible with magnetic separability. <P>SOLUTION: This magnetic particle dispersant is a dispersant for a magnetic particle having 0.01-10μm of number-averaged particle size d, a volume ratio of the particles having 2d or larger of particle size is 2-70%, a volume ratio of the particles having larger than 0.5d to smaller than 2d of particle size is 28-98%, and the volume ratio of the particles having 0.5d or smaller is 2% or lower, from among the magnetic particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、平均粒径を小さくすることと優れた磁気分離性とを両立できる磁性粒子分散体および診断薬用粒子に関するものである。本発明の磁性粒子分散体は、生化学分野、塗料、紙、電子写真、化粧品、医薬品、農薬、食品、触媒など広い分野で利用できるものであり、特に高い感度と優れた磁気分離性とを両立できるため、診断薬用粒子として有用である。   The present invention relates to a magnetic particle dispersion and a diagnostic drug particle capable of achieving both a reduction in average particle size and excellent magnetic separation properties. The magnetic particle dispersion of the present invention can be used in a wide range of fields such as biochemistry, paints, paper, electrophotography, cosmetics, pharmaceuticals, agricultural chemicals, foods, and catalysts, and has particularly high sensitivity and excellent magnetic separation properties. Since they can be compatible, they are useful as diagnostic particles.

近年、平均粒径の小さな磁性粒子は、その単位重量当たりの表面積が大きいため、抗原と抗体との免疫反応やDNA同士またはDNAとRNAとのハイブリダイゼーションにおいて、優れた反応場を提供できることから、特に診断薬や医薬品研究用などへの応用が活発になっている。しかしながら、従来、粒径の小さな磁性粒子は、磁気分離性に劣るという欠点を有していた。   In recent years, since magnetic particles with a small average particle size have a large surface area per unit weight, they can provide an excellent reaction field in an immune reaction between an antigen and an antibody or in a hybridization between DNA or DNA and RNA. In particular, it is actively applied to diagnostics and pharmaceutical research. However, conventionally, magnetic particles having a small particle diameter have a drawback of poor magnetic separation.

本発明は、平均粒径を小さくすることと優れた磁気分離性とを両立できる磁性粒子分散体を提供することを目的とするものである。   An object of this invention is to provide the magnetic particle dispersion which can make an average particle size small and outstanding magnetic separation property.

本特許出願の発明者は、数平均粒径dが0.01〜10μmである磁気粒子の分散体であって、前記磁気粒子のうち、粒径が2d以上の粒子の体積分率と、粒径が0.5dより大きく2dより小さい粒子の体積分率と、粒径が0.5d以下の粒子の体積分率とがそれぞれ所定の割合であることにより、平均粒径を小さくすることができ、かつ、優れた磁気分離性を得ることができることを見出し、本発明を想到するに至った。   The inventor of the present patent application is a dispersion of magnetic particles having a number average particle size d of 0.01 to 10 μm, and among the magnetic particles, the volume fraction of particles having a particle size of 2d or more, The average particle size can be reduced because the volume fraction of particles larger than 0.5d and smaller than 2d and the volume fraction of particles smaller than 0.5d are each a predetermined ratio. In addition, the inventors have found that excellent magnetic separation can be obtained and have come up with the present invention.

本発明の磁性粒子分散体は、数平均粒径dが0.01〜10μmである磁気粒子の分散体であって、前記磁気粒子のうち、粒径が2d以上の粒子の体積分率が2〜70%であり、かつ、粒径が0.5dより大きく2dより小さい粒子の体積分率が28〜98%であり、かつ、粒径が0.5d以下の粒子の体積分率が2%以下である。   The magnetic particle dispersion of the present invention is a dispersion of magnetic particles having a number average particle diameter d of 0.01 to 10 μm, and among the magnetic particles, a volume fraction of particles having a particle diameter of 2d or more is 2. The volume fraction of particles having a particle size of 0.5 to less than 2d is 28 to 98%, and the volume fraction of particles having a particle size of 0.5d or less is 2%. It is as follows.

ここで、上記本発明の磁性粒子分散体において、前記磁性粒子は、一次粒径50nm以下の磁性体微粒子と、非磁性の有機物とを含むことができる。   Here, in the magnetic particle dispersion of the present invention, the magnetic particles may include magnetic fine particles having a primary particle size of 50 nm or less and nonmagnetic organic substances.

本発明の診断薬用粒子は、上記本発明の磁性粒子分散体を用いる。   The magnetic particle dispersion of the present invention is used for the diagnostic drug particle of the present invention.

本発明の磁性粒子分散体によれば、数平均粒径dが0.01〜10μmである磁気粒子の分散体であって、前記磁気粒子のうち、粒径が2d以上の粒子の体積分率が2〜70%であり、かつ、粒径が0.5dより大きく2dより小さい粒子の体積分率が28〜98%であり、かつ、粒径が0.5d以下の粒子の体積分率が2%以下であることにより、平均粒径が小さいため単位重量当たりの表面積が大きく、かつ、磁気分離性に優れている。   According to the magnetic particle dispersion of the present invention, a magnetic particle dispersion having a number average particle diameter d of 0.01 to 10 μm, and the volume fraction of particles having a particle diameter of 2d or more among the magnetic particles. Is 2 to 70%, the volume fraction of particles having a particle size larger than 0.5d and smaller than 2d is 28 to 98%, and the volume fraction of particles having a particle size of 0.5d or less is By being 2% or less, the average particle size is small, so the surface area per unit weight is large and the magnetic separation property is excellent.

本発明の磁性粒子分散体は、診断薬用担体などの生化学用担体、塗料、紙、電子材料、電子写真、化粧品、医薬品、農薬、食品、触媒など広い分野で利用できるものである。応用例としては医療用診断薬用途、特に自動測定器対応粒子に応用が可能である。   The magnetic particle dispersion of the present invention can be used in a wide variety of fields such as biochemical carriers such as diagnostic agents, paints, paper, electronic materials, electrophotography, cosmetics, pharmaceuticals, agricultural chemicals, foods, and catalysts. As an application example, the present invention can be applied to medical diagnostic agents, particularly to particles for automatic measuring instruments.

以下、本発明の磁性粒子分散体について詳細に説明する。   Hereinafter, the magnetic particle dispersion of the present invention will be described in detail.

1.磁性粒子分散体
本発明の磁性粒子分散体は、以下に説明する磁性粒子の分散体である。本発明の磁性粒子分散体においては、水系媒体中に磁性粒子が分散している。ここで、水系媒体としては特に限定されないが、例えば、水、水系溶剤を含む水が挙げられる。水系溶剤としては、例えば、アルコール類(例えば、エタノール、アルキレングリコール、モノアルキルエーテルなど)が挙げられる。本発明の磁性粒子分散体に磁力を付与することにより、磁性粒子を凝集させることができる。
1. Magnetic Particle Dispersion The magnetic particle dispersion of the present invention is a magnetic particle dispersion described below. In the magnetic particle dispersion of the present invention, magnetic particles are dispersed in an aqueous medium. Here, the aqueous medium is not particularly limited, and examples thereof include water and water containing an aqueous solvent. Examples of the aqueous solvent include alcohols (for example, ethanol, alkylene glycol, monoalkyl ether, etc.). By applying a magnetic force to the magnetic particle dispersion of the present invention, the magnetic particles can be aggregated.

本発明の磁性粒子分散体は、平均粒径が小さいために単位重量当たりの表面積が大きく、かつ磁気分離性に優れた磁性粒子の分散体である。   The magnetic particle dispersion of the present invention is a dispersion of magnetic particles having a large surface area per unit weight due to a small average particle diameter and excellent magnetic separation.

1.1.磁性粒子
1.1.1.磁性粒子の物性
本発明の磁性粒子分散体中の磁性粒子の数平均粒径dは、0.01μm〜10μmであり、好ましくは0.1μm〜5μm、最も好ましくは0.5μm〜3μmである。数平均粒径が0.01μm未満であると磁気分離性に劣ることがあり、一方、10μmを超えると単位重量あたりの表面積が小さくなる結果、診断薬用粒子として感度が劣ることがある。なお、本発明において、磁性粒子の数平均粒径は公知の方法にて測定が可能である。例えば、電子顕微鏡写真から磁性粒子の大きさを測定することにより、磁性粒子の数平均粒径を得ることができる。また、磁性粒子が非球状の場合、長径と短径の平均値を1粒子の粒径として数平均粒径を算出する。
1.1. Magnetic particles 1.1.1. Physical Properties of Magnetic Particles The number average particle diameter d of the magnetic particles in the magnetic particle dispersion of the present invention is 0.01 μm to 10 μm, preferably 0.1 μm to 5 μm, and most preferably 0.5 μm to 3 μm. When the number average particle size is less than 0.01 μm, the magnetic separation property may be inferior. On the other hand, when the number average particle size is more than 10 μm, the surface area per unit weight may be reduced, resulting in inferior sensitivity as diagnostic agent particles. In the present invention, the number average particle diameter of the magnetic particles can be measured by a known method. For example, the number average particle diameter of the magnetic particles can be obtained by measuring the size of the magnetic particles from an electron micrograph. Further, when the magnetic particles are non-spherical, the number average particle diameter is calculated with the average value of the major axis and the minor axis as the particle diameter of one particle.

本発明の磁性粒子分散体中の磁性粒子においては、粒径が2d以上の粒子の体積分率が2〜70%であり、好ましくは5〜60%、最も好ましくは10〜50%である。粒径が2d以上の粒子の体積分率が2%未満であると磁気分離性に劣ることがあり、一方、70%を超えると診断薬用粒子として感度に劣ることがある。   In the magnetic particles in the magnetic particle dispersion of the present invention, the volume fraction of particles having a particle size of 2d or more is 2 to 70%, preferably 5 to 60%, and most preferably 10 to 50%. When the volume fraction of particles having a particle size of 2d or more is less than 2%, the magnetic separation property may be inferior. On the other hand, when the volume fraction exceeds 70%, the sensitivity as a diagnostic agent particle may be inferior.

本発明の磁性粒子分散体中の磁性粒子は、粒径が0.5dより大きく2dより小さい粒子の体積分率が28〜98%であり、好ましくは39〜95%、最も好ましくは50〜90%である。粒径が0.5dより大きく2dより小さい粒子の体積分率が28%未満であると診断薬用粒子として感度に劣ることがあり、一方、98%を超えると磁気分離性に劣ることがある。   The magnetic particles in the magnetic particle dispersion of the present invention have a particle volume fraction of 28-98%, preferably 39-95%, most preferably 50-90, with a particle size of more than 0.5d and less than 2d. %. When the volume fraction of particles having a particle size larger than 0.5d and smaller than 2d is less than 28%, the sensitivity as a diagnostic agent particle may be inferior, while when it exceeds 98%, the magnetic separation property may be inferior.

また、本発明の磁性粒子分散体中の磁性粒子においては、粒径が0.5d以下の粒子の体積分率が2%以下であり、1%以下であることが好ましく、0.5%以下であることがさらに好ましい。粒径が0.5d以下の粒子の体積分率が2%を超えると磁気分離性に劣ることがある。   In the magnetic particles in the magnetic particle dispersion of the present invention, the volume fraction of particles having a particle size of 0.5 d or less is 2% or less, preferably 1% or less, preferably 0.5% or less. More preferably. When the volume fraction of particles having a particle size of 0.5 d or less exceeds 2%, the magnetic separation property may be inferior.

ここで、本発明の磁性粒子分散体に含まれる粒径が所定の範囲にある磁性粒子の体積分率は公知の方法により算出することができる。例えば、電子顕微鏡写真から得られる個々の磁性粒子の大きさから個々の磁性粒子の体積を計算し、粒径が所定の範囲にある磁性粒子の体積を積算し、本発明の磁性粒子分散体に含まれる全磁性粒子の総体積で除することにより、粒径が所定の範囲にある磁性粒子の体積分率を得ることができる。   Here, the volume fraction of the magnetic particles having a particle size contained in the magnetic particle dispersion of the present invention in a predetermined range can be calculated by a known method. For example, the volume of each magnetic particle is calculated from the size of each magnetic particle obtained from an electron micrograph, the volume of magnetic particles having a particle size within a predetermined range is integrated, and the magnetic particle dispersion of the present invention is added. By dividing by the total volume of all the contained magnetic particles, the volume fraction of magnetic particles having a particle size in a predetermined range can be obtained.

本発明の磁性粒子分散体が磁気分離される様子を顕微鏡で観察すると、粒径が大きい磁性粒子と粒径が小さい磁性粒子とが混合して糸状に繋がって糸状集合体を構成しているのが確認できる。本発明の磁性粒子分散体によれば、この糸状集合体中において、磁気分離時間の短い粒径の大きな磁性粒子が糸状集合体の移動速度を速めていると考えられる。このため、本発明の磁気粒子分散体は磁気分離性に優れている。   When the magnetic particle dispersion of the present invention is magnetically separated and observed with a microscope, magnetic particles having a large particle diameter and magnetic particles having a small particle diameter are mixed together to form a thread-like aggregate. Can be confirmed. According to the magnetic particle dispersion of the present invention, it is considered that the magnetic particles having a large particle size with a short magnetic separation time increase the moving speed of the filamentous aggregate in the filamentous aggregate. For this reason, the magnetic particle dispersion of the present invention is excellent in magnetic separation.

また、本発明の磁性粒子分散体は、磁性粒子の数平均粒径dが0.01〜10μmであり、前記磁気粒子のうち、粒径が2d以上の粒子の体積分率が2〜70%であり、かつ、粒径が0.5dより大きく2dより小さい粒子の体積分率が28〜98%であり、かつ、粒径が0.5d以下の粒子の体積分率が2%以下である平均粒径を小さくすることができるため、単位重量当たりの表面積が大きくすることができる。よって、本発明の磁性粒子分散体によれば、平均粒径を小さくすることと優れた磁気分離性とを両立することができる。   In the magnetic particle dispersion of the present invention, the number average particle diameter d of the magnetic particles is 0.01 to 10 μm, and among the magnetic particles, the volume fraction of particles having a particle diameter of 2d or more is 2 to 70%. And the volume fraction of particles having a particle size larger than 0.5d and smaller than 2d is 28 to 98%, and the volume fraction of particles having a particle size of 0.5d or less is 2% or less. Since the average particle size can be reduced, the surface area per unit weight can be increased. Therefore, according to the magnetic particle dispersion of the present invention, it is possible to achieve both a reduction in average particle size and excellent magnetic separation properties.

1.1.2.磁性粒子の製造
本発明の磁気粒子分散体を得るには、例えば、数平均粒径dの磁性粒子と数平均粒径2d以上の磁性粒子とを別々に製造してから混合してもよいし、あるいは、一連の製造工程で数平均粒径の異なる2種以上の磁性粒子を生成させてもよい。
1.1.2. Production of magnetic particles In order to obtain the magnetic particle dispersion of the present invention, for example, magnetic particles having a number average particle diameter d and magnetic particles having a number average particle diameter of 2d or more may be separately produced and then mixed. Or you may produce | generate two or more types of magnetic particles from which a number average particle diameter differs in a series of manufacturing processes.

1.1.3.磁性粒子の内部組成および内部構造
1.1.3a.磁性粒子の内部組成
本発明の磁気粒子分散体中の磁性粒子の組成は、一次粒径(単一粒子の粒径)50nm以下の磁性体微粒子と、非磁性の有機物とを含むことが好ましく、一次粒径30nm以下の磁性体微粒子と、非磁性の有機物とからなることがより好ましい。本発明の磁気粒子分散体中の磁性粒子の内部組成として、一次粒径が50nmを超える磁性体微粒子が含まれると、磁気分離後の再分散性に劣る場合がある。
1.1.3. Internal composition and internal structure of magnetic particles 1.1.3a. The internal composition of the magnetic particles The composition of the magnetic particles in the magnetic particle dispersion of the present invention preferably includes magnetic fine particles having a primary particle size (single particle size) of 50 nm or less and a nonmagnetic organic substance. More preferably, it consists of magnetic fine particles having a primary particle size of 30 nm or less and a nonmagnetic organic substance. If the magnetic particles in the magnetic particle dispersion of the present invention contain magnetic fine particles having a primary particle size exceeding 50 nm, the redispersibility after magnetic separation may be inferior.

一次粒径50nm以下の磁性体微粒子の組成としては、特に制限はないが、酸化鉄系の物質が代表的であり、MFe(M=Co、Ni、Mg、Cu、Li0.5Fe0.5等)で表現されるフェライト、Feで表現されるマグネタイト、あるいはγFeが挙げられる。特に、飽和磁化が強く、かつ残留磁化が少ない磁気材料としてγFe、Feが好ましい。このような一次粒径50nm以下の磁性体微粒子は、磁性流体として工業的に入手することができる。 The composition of the magnetic fine particles having a primary particle size of 50 nm or less is not particularly limited, but iron oxide-based substances are typical, and MFe 2 O 4 (M = Co, Ni, Mg, Cu, Li 0.5 Fe 0.5 or the like), magnetite represented by Fe 3 O 4 , or γFe 2 O 3 . In particular, γFe 2 O 3 and Fe 3 O 4 are preferable as magnetic materials having strong saturation magnetization and low residual magnetization. Such magnetic fine particles having a primary particle size of 50 nm or less can be industrially obtained as a magnetic fluid.

非磁性の有機物としては、好ましくはポリマー(高分子化合物)であり、その内容は、特開平9−208788号公報、特開昭61−93603号公報、特開2004−205481号公報などで開示されている。いずれの製法においても、粒子表層はポリマーでコートされていることが好ましい。   The non-magnetic organic substance is preferably a polymer (polymer compound), and the contents thereof are disclosed in JP-A-9-208788, JP-A-61-93603, JP-A-2004-205481, and the like. ing. In any production method, the particle surface layer is preferably coated with a polymer.

非磁性の有機物として使用可能なポリマーは、特に、ビニル系ポリマーが好ましく、その製造に使用するビニル系モノマーとしては、スチレン,α−メチルスチレン,ハロゲン化スチレン,ジビニルベンゼンなどの芳香族ビニル単量体、酢酸ビニル,プロピオン酸ビニルなどのビニルエステル類、アクリロニトリルなどの不飽和ニトリル、メチルアクリレート,エチルアクリレート,エチルメタクリレート,ブチルアクリレート,ブチルメタクリレート,2−エチルヘキシルアクリレート,2−エチルヘキシルメタクリレート,ラウリルアクリレート,ラウリルメタクリレート,エチレングリコールジアクリレート,エチレングリコールジメタクリレート,シクロヘキシルアクリレート,シクロヘキシルメタクリレートなどのエチレン性不飽和カルボン酸アルキルエステルなどを例示することができる。上記ビニル系ポリマーは単独重合体であっても、あるいは上記ビニル系モノマーから選ばれた2種以上のモノマーからなる共重合体であってもよい。   The polymer that can be used as the non-magnetic organic substance is particularly preferably a vinyl polymer, and the vinyl monomer used for the production thereof is an aromatic vinyl monomer such as styrene, α-methylstyrene, halogenated styrene, or divinylbenzene. , Vinyl esters such as vinyl acetate and vinyl propionate, unsaturated nitriles such as acrylonitrile, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, lauryl Ethylene unsaturated compounds such as methacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, etc. The like can be exemplified carboxylic acid alkyl ester. The vinyl polymer may be a homopolymer or a copolymer composed of two or more monomers selected from the vinyl monomers.

また、上記ビニル系モノマーとブタジエン、イソプレンなどの共役ジオレフィン、アクリル酸、メタクリル酸、イタコン酸、無類マレイン酸、クロトン酸などのモノまたはジカルボン酸化合物、アクリルアミド、メタクリルアミド、グリシジルアクリレート、グリシジルメタクリレート、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−イソプロピルアクリルアミド、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、グリセロールモノアクリレート、グリセロールモノメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、連鎖数2〜40のポリエチレングリコールまたはポリプロピレングリコールを側鎖とする(メタ)アクリレート、ジアリルフタレート、アリルアクリレート、アリルメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、スチレンスルホン酸およびそのナトリウム塩、2−アクリルアミド−2−メチルプロパンスルホン酸およびそのナトリウム塩、イソプレンスルホン酸およびそのナトリウム塩などの共重合可能なモノマーとの共重合体も使用することができる。   In addition, vinyl monomers and conjugated diolefins such as butadiene and isoprene, mono- or dicarboxylic acid compounds such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and crotonic acid, acrylamide, methacrylamide, glycidyl acrylate, glycidyl methacrylate, N-methylolacrylamide, N-methylolmethacrylamide, N-isopropylacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, glycerol monoacrylate, glycerol monomethacrylate, ethylene glycol Diacrylate, ethylene glycol dimethacrylate, polyethylene glycol having 2 to 40 chains, or (Meth) acrylate having polypropylene glycol as a side chain, diallyl phthalate, allyl acrylate, allyl methacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, styrenesulfonic acid and its sodium salt, 2-acrylamido-2-methylpropanesulfone Copolymers with copolymerizable monomers such as acid and its sodium salt, isoprene sulfonic acid and its sodium salt can also be used.

非磁性の有機物として使用可能なポリマーは、主原料としての共重合性モノマーと、副原料である重合開始剤、乳化剤、分散剤、界面活性剤、電解質、架橋剤、分子量調節剤などが必要に応じて添加され液体中で重合を行うことにより形成される。このようにポリマーを重合によって形成することにより、当該ポリマーの表面に所望の官能基を導入することができるなど、表面加工性にすぐれる。   Polymers that can be used as non-magnetic organic substances require a copolymerizable monomer as the main raw material and a polymerization initiator, emulsifier, dispersant, surfactant, electrolyte, cross-linking agent, molecular weight regulator, etc. as auxiliary raw materials. It is formed by performing polymerization in a liquid added accordingly. By forming the polymer by polymerization in this way, it is possible to introduce a desired functional group onto the surface of the polymer, and the surface processability is excellent.

重合開始剤としては、水への溶解性の観点から分類すると、油溶性重合開始剤が好ましい。水溶性の重合開始剤を用いると複合粒子表面での重合でなく、磁性体被覆粒子を含まない疎水性重合重合モノマーのみが重合した新粒子が多量に生じる傾向がある。油溶性重合開始剤としては、ベンゾイルペルオキシド、ラウロイルペルオキシド、ターシャリーブチルペルオキシ2−エチルヘキサネート、3,5,5−トリメチルヘキサノイルペルオキシド、アゾビスイソブチロニトリル等の過酸化化合物またはアゾ化合物などを挙げることができる。水溶性開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩、過酸化水素、2,2−アゾビス(2−アミノプロパン)鉱酸塩、アゾビスシアノ吉草酸およびそのアルカリ金属塩およびアンモニウム塩等があげられ、また、過硫酸塩、過酸化水素塩と重亜硫酸ナトリウム、チオ硫酸ナトリウム、塩化第一鉄等を組み合わせたレドックス開始剤もあげられ、中でも過硫酸塩が好適に用いられる。これらの重合開始剤のモノマー全体に対する割合は0.01〜8重量%の範囲が好適に用いられる。   The polymerization initiator is preferably an oil-soluble polymerization initiator from the viewpoint of solubility in water. When a water-soluble polymerization initiator is used, there is a tendency that not only polymerization on the surface of the composite particles, but a large amount of new particles in which only a hydrophobic polymerization monomer not containing magnetic material-coated particles is polymerized are generated. Examples of oil-soluble polymerization initiators include benzoyl peroxide, lauroyl peroxide, tertiary butyl peroxy 2-ethylhexanate, 3,5,5-trimethylhexanoyl peroxide, azobisisobutyronitrile and other peroxide compounds or azo compounds. Can be mentioned. Examples of the water-soluble initiator include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, hydrogen peroxide, 2,2-azobis (2-aminopropane) mineral acid salt, azobiscyanovaleric acid and alkali metal salts thereof. And ammonium salts, and redox initiators that combine persulfate, hydrogen peroxide salt with sodium bisulfite, sodium thiosulfate, ferrous chloride, etc. It is done. The ratio of these polymerization initiators to the whole monomer is preferably in the range of 0.01 to 8% by weight.

非磁性の有機物としては、他に、上記磁性体微粒子の表面処理剤として使用されるシランカップリング剤や界面活性剤も好ましく、具体的には、工業的に入手できる表面処理された磁性流体を乾燥し、所望の粒径に粉砕、分球することで、磁性粒子と非磁性の有機物(シランカップリング剤や界面活性剤)とが複合化した磁性粒子を得ることができる。   As the non-magnetic organic substance, a silane coupling agent and a surfactant used as a surface treatment agent for the magnetic fine particles are also preferable. Specifically, an industrially available surface-treated magnetic fluid is used. By drying, pulverizing and sphering to a desired particle size, magnetic particles in which magnetic particles and non-magnetic organic substances (silane coupling agent or surfactant) are combined can be obtained.

シランカップリング剤や界面活性剤を用いて磁性体微粒子を表面処理することにより、磁性体微粒子の表面を疎水化することができる。これにより、薬品耐性、特にアルカリ耐性に優れ、診断薬として使用中に磁性体微粒子が磁性粒子から剥離することにより生じる磁気性能の低下や、脱離した磁性体微粒子が診断薬反応液中に浮遊することにより生じる汚染物の混入を効果的に防止することができる。なお、本発明においては、疎水化された磁性体微粒子が、たとえばトルエンに良好に分散することができる場合に、十分に疎水化されているということができる。   By subjecting the magnetic fine particles to a surface treatment using a silane coupling agent or a surfactant, the surface of the magnetic fine particles can be hydrophobized. As a result, it is excellent in chemical resistance, especially alkali resistance, and the magnetic performance is lowered when the magnetic fine particles are peeled off from the magnetic particles during use as a diagnostic agent, and the detached magnetic fine particles float in the diagnostic reagent reaction solution. This makes it possible to effectively prevent contamination from occurring. In the present invention, it can be said that the hydrophobized magnetic fine particles are sufficiently hydrophobized when they can be satisfactorily dispersed in, for example, toluene.

シランカップリング剤に代表されるシラン化合物としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドオキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、ドデシルトリメトキシシラン、ヘキシルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、ドデシルトリクロロシラン、ヘキシルトリクロロシラン、メチルトリクロロシラン、フェニルトリクロロシランなどがある。   Examples of silane compounds represented by silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycid. Oxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, dodecyltrimethoxy Silane, hexyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, dodecyltrichlorosilane, hexyltrichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, etc. There is.

これらのシラン化合物を磁性体微粒子に結合させる方法としては、例えば、磁性体微粒子およびシラン化合物を水などの無機媒質またはアルコール、エーテル、ケトン、エステルなどの有機媒質中で混合し、撹拌しながら加熱した後、磁性体微粒子をデカンテーションなどにより分離して減圧乾燥により無機媒質または有機媒質を除去する手段を挙げることができる。また、磁性体微粒子およびシラン化合物を直接混合し加熱させて両者を結合させてもよい。これらの手段において、加熱温度は通常30〜100℃であり、加熱温度は0.5〜2時間程度である。また、シラン化合物の使用量は、磁性体微粒子の表面積によって適宜定められているが、通常磁性体微粒子100重量部に対して1〜50重量部、好ましくは2〜30重量部である。   As a method for bonding these silane compounds to magnetic fine particles, for example, the magnetic fine particles and the silane compound are mixed in an inorganic medium such as water or an organic medium such as alcohol, ether, ketone, ester, and heated with stirring. Then, a means for separating the magnetic fine particles by decantation or the like and removing the inorganic medium or the organic medium by drying under reduced pressure can be mentioned. Alternatively, the magnetic fine particles and the silane compound may be directly mixed and heated to bond both. In these means, the heating temperature is usually 30 to 100 ° C., and the heating temperature is about 0.5 to 2 hours. The amount of the silane compound used is appropriately determined depending on the surface area of the magnetic fine particles, but is usually 1 to 50 parts by weight, preferably 2 to 30 parts by weight with respect to 100 parts by weight of the magnetic fine particles.

界面活性剤としては、通常使用されているアニオン性界面活性剤またはノニオン性界面活性剤等を単独もしくは組み合わせて用いることができる。例えば、アニオン性界面活性剤としては、長鎖(C8−24)飽和炭化水素カルボン酸(塩)、長鎖(C8−24)不飽和炭化水素カルボン酸(塩)、高級アルコール硫酸エステルのアルカリ金属塩、アルキルベンゼンスルホン酸のアルカリ金属塩、コハク酸ジアルキルエステルスルホン酸のアルカリ金属塩、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩、ポリオキシエチレンアルキル(またはアルキルフェニル)エーテルの硫酸エステル塩、ポリオキシエチレンアルキル(またはアルキルフェニル)エーテルのリン酸エステル塩、ナフタレンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。   As the surfactant, a commonly used anionic surfactant or nonionic surfactant can be used alone or in combination. For example, as an anionic surfactant, long chain (C8-24) saturated hydrocarbon carboxylic acid (salt), long chain (C8-24) unsaturated hydrocarbon carboxylic acid (salt), higher alcohol sulfate alkali metal Salt, alkali metal salt of alkylbenzene sulfonic acid, alkali metal salt of succinic acid dialkyl ester sulfonic acid, alkali metal salt of alkyl diphenyl ether disulfonic acid, polyoxyethylene alkyl (or alkylphenyl) ether sulfate ester salt, polyoxyethylene alkyl ( Alternatively, phosphoric acid ester salts of alkylphenyl) ethers, formalin condensates of sodium naphthalene sulfonate, and the like.

また、ノニオン性界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどを挙げることができる。   Examples of nonionic surfactants include polyoxyethylene alkyl ether and polyoxyethylene alkylphenyl ether.

非磁性の有機物として使用可能なポリマーの形成におけるモノマーの重合系への添加方法はとくに制限されず、一括方式、分割方式あるいは連続添加方式のいずれであっても良い。重合温度は重合開始剤によって異なるが、通常10〜90℃、好ましくは30〜85℃であり、重合に要する時間は通常1〜30時間程度である。また、前記ポリマーの形成後、エチレン性不飽和カルボン酸アルキルエステルのアルカリ加水分解、ビニルエステルのアルカリけん化などの方法により官能基を改変することも可能である。   The method for adding the monomer to the polymerization system in the formation of a polymer that can be used as a non-magnetic organic substance is not particularly limited, and may be any of a batch method, a divided method, or a continuous addition method. The polymerization temperature varies depending on the polymerization initiator, but is usually 10 to 90 ° C, preferably 30 to 85 ° C, and the time required for the polymerization is usually about 1 to 30 hours. In addition, after the formation of the polymer, the functional group can be modified by a method such as alkali hydrolysis of ethylenically unsaturated carboxylic acid alkyl ester or alkali saponification of vinyl ester.

1.1.3b.磁性粒子の内部構造および製造
内部組成が不均質である磁気粒子の内部構造は特に限定されないが、例えば、磁性体微粒子が非磁性の有機物の連続相中に分散している構造、磁性体微粒子の2次凝集体をコアとし、非磁性の有機物をシェルとする構造、ならびに非磁性の有機物をコアとし、磁性体微粒子の2次凝集体をシェルとする構造などが挙げられる。すなわち、本発明の磁気粒子分散体を構成する磁気粒子は、磁気粒子中の全部または一部に磁性体微粒子が分散して存在することができる。
1.1.3b. Internal structure and production of magnetic particles The internal structure of magnetic particles having an inhomogeneous internal composition is not particularly limited. For example, a structure in which magnetic fine particles are dispersed in a continuous phase of a nonmagnetic organic substance, Examples include a structure in which the secondary aggregate is a core and a non-magnetic organic substance is a shell, and a structure in which a non-magnetic organic substance is a core and the secondary aggregate of magnetic fine particles is a shell. That is, in the magnetic particles constituting the magnetic particle dispersion of the present invention, magnetic fine particles can be dispersed in all or part of the magnetic particles.

磁性体微粒子が非磁性の有機物の連続相中に分散している構造を有する磁性粒子の好ましい製造方法としては、例えば、特開平9−208788号公報で開示された方法が挙げられる。   As a preferable method for producing magnetic particles having a structure in which magnetic fine particles are dispersed in a continuous phase of a nonmagnetic organic substance, for example, the method disclosed in JP-A-9-208788 can be mentioned.

非磁性の有機物をコアとし、磁性体微粒子の2次凝集体をシェルとする構造を有する磁性粒子の好ましい製造方法としては、例えば、特開昭61−93603号公報や特開2004−205481号公報で開示された方法が挙げられる。より具体的には、例えば、まず、非磁性の有機物からなるコア(母粒子)と磁性体微粒子とを混合することにより、コアの表面に磁性体微粒子を物理的に吸着させる。なお、本発明において物理的吸着法とは、化学反応を伴わない吸着法を指す。   As a preferred method for producing magnetic particles having a structure in which a nonmagnetic organic substance is used as a core and a secondary aggregate of magnetic fine particles is used as a shell, for example, Japanese Patent Application Laid-Open Nos. 61-93603 and 2004-205481 are disclosed. And the method disclosed in the above. More specifically, for example, first, a magnetic particle is physically adsorbed on the surface of the core by mixing a core (mother particle) made of a nonmagnetic organic substance and a magnetic particle. In the present invention, the physical adsorption method refers to an adsorption method that does not involve a chemical reaction.

母粒子の表面に磁性体微粒子を吸着させるには、物理的に強い力を外部から加えることにより複合化を実現させる方法も有効である。例えば乳鉢、自動乳鉢、ボールミル、ブレード加圧式粉体圧縮法、メカノフュージョン法のようなメカノケミカル効果を利用するもの、あるいはジェットミル、ハイブリダイザーなど高速気流中衝撃法を利用するものが挙げられる。   In order to adsorb the magnetic fine particles on the surface of the mother particle, a method of realizing the composite by applying a physically strong force from the outside is also effective. For example, a mortar, an automatic mortar, a ball mill, a blade pressurizing powder compression method, a mechanochemical effect such as a mechanofusion method, or a jet mill, a hybridizer, or the like using a high-speed air current impact method.

母粒子の表面に磁性体微粒子を効率よくかつ強固に吸着させるには、例えば、攪拌翼付き容器中で攪拌翼の周速度が好ましくは15m/秒以上、より好ましくは30m/秒以上、さらに好ましくは40〜150m/秒で攪拌することにより、母粒子と磁性体微粒子とを混合することが挙げられる。撹拌翼の周速度が15m/秒より低いと、母粒子の表面に磁性体微粒子からなる層を形成するのに十分なエネルギーを得ることができないことがある。なお、撹拌翼の周速度の上限については、特に制限はないが、使用する装置、エネルギー効率などの点から自ずと決定される。   In order to efficiently and strongly adsorb the magnetic fine particles on the surface of the base particle, for example, the peripheral speed of the stirring blade is preferably 15 m / second or more, more preferably 30 m / second or more, more preferably in a vessel with a stirring blade. Can be mixed with mother particles and magnetic fine particles by stirring at 40 to 150 m / sec. When the peripheral speed of the stirring blade is lower than 15 m / sec, it may not be possible to obtain sufficient energy to form a layer made of magnetic fine particles on the surface of the mother particle. In addition, although there is no restriction | limiting in particular about the upper limit of the circumferential speed of a stirring blade, It determines automatically from points, such as an apparatus to be used and energy efficiency.

磁性粒子の内部組成が一次粒径50nm以下の磁性体微粒子と非磁性の有機物とからなり、数平均粒径dが0.01〜10μmであり、磁性粒子のうち、粒径が2d以上の粒子の体積分率が2〜70%であり、かつ、粒径が0.5dより大きく2dより小さい粒子の体積分率が28〜98%であり、かつ、粒径が0.5d以下の粒子の体積分率が2%以下である磁性粒子分散体は、数平均粒径が2倍以上異なる2種以上の磁性粒子を上述の方法により別々に製造してから混合する手法によっても得ることができる。   The magnetic particles are composed of magnetic fine particles having a primary particle diameter of 50 nm or less and a non-magnetic organic substance, the number average particle diameter d is 0.01 to 10 μm, and among the magnetic particles, the particle diameter is 2d or more. Particles having a volume fraction of 2 to 70%, a volume fraction of particles larger than 0.5d and smaller than 2d is 28 to 98%, and particles having a particle size of 0.5d or less. A magnetic particle dispersion having a volume fraction of 2% or less can also be obtained by a method in which two or more types of magnetic particles having a number average particle size of two or more different are produced separately by the above-mentioned method and then mixed. .

別の手法として、一連の製造工程によって、数平均粒径が2倍以上異なる2種以上の磁性粒子を生成させてもよく、例えば、特開2004−205481号公報で開示された物理的に強い力を外部から加えることにより、磁性体微粒子とポリマー母粒子を複合化する手法、特に、ジェットミル、ハイブリダイザーなど高速気流中衝撃法を利用する手法によって、磁性体微粒子とポリマー母粒子とが複合化した磁性粒子とともに、副生成物として、2d以上の粒径を有する磁性粒子の2次凝集体を得ることができる。   As another method, two or more kinds of magnetic particles having a number average particle size that is two or more times different may be generated by a series of manufacturing steps, for example, physically strong disclosed in JP-A-2004-205481 By applying force from the outside, the magnetic fine particles and the polymer mother particles are combined by a method that combines the magnetic fine particles and the polymer mother particles, especially by using a high-speed air impact method such as a jet mill or a hybridizer. A secondary aggregate of magnetic particles having a particle size of 2d or more can be obtained as a by-product together with the magnetic particles.

また、例えば、得られた磁気粒子分散体を所定時間静置させた後、デカンテーションで上層を取り出すことにより、粒径がより小さな磁気粒子分散体を得ることができる。あるいは、例えば、分散剤を含む水溶液中に、得られた磁気粒子分散体を分散させ、所定時間静置させた後沈殿層を取り出すことにより、粒径がより大きな磁気粒子分散体を得ることができる。上記方法により得られた、粒径がより小さな磁気粒子分散体と、粒径がより大きな磁気粒子分散体とを所定の割合で混合することにより、本発明の磁気粒子分散体を得ることができる。   Further, for example, after the obtained magnetic particle dispersion is allowed to stand for a predetermined time, the upper layer is taken out by decantation, whereby a magnetic particle dispersion having a smaller particle diameter can be obtained. Alternatively, for example, a magnetic particle dispersion having a larger particle size can be obtained by dispersing the obtained magnetic particle dispersion in an aqueous solution containing a dispersing agent, allowing to stand for a predetermined time, and then removing the precipitated layer. it can. The magnetic particle dispersion of the present invention can be obtained by mixing the magnetic particle dispersion having a smaller particle diameter obtained by the above method and the magnetic particle dispersion having a larger particle diameter at a predetermined ratio. .

1.2.用途
本発明の磁気粒子分散体の主たる用途の一つは、診断薬用粒子である。当該用途では、平均粒径が小さく、かつ磁気分離時間が短いことが求められる。本発明の磁気粒子分散体は、このような要求に適合するので診断薬用粒子に好適である。
1.2. Applications One of the main applications of the magnetic particle dispersion of the present invention is diagnostic particles. In this application, it is required that the average particle size is small and the magnetic separation time is short. Since the magnetic particle dispersion of the present invention meets such requirements, it is suitable for diagnostic particles.

診断薬用粒子として、例えば、本発明の磁気粒子分散体にタンパク質等の抗原あるいは抗体を結合して、測定対象である抗体あるいは抗原との抗原抗体反応に基づく受身凝集反応による溶液の濁度変化を利用した定量・定性検出用途,本発明の磁気粒子分散体に抗体を結合して、抗原であるウイルス・細菌・細胞・ホルモン・ダイオキシン類等の化学物質などを前記抗体に結合させて回収・濃縮する用途,本発明の磁気粒子分散体にDNAなどの核酸アナログを結合して、ハイブリダイゼーションを利用して該核酸アナログに核酸を結合させて回収・検出したり、核酸に結合するタンパク質や色素等の化学物質を前記核酸アナログに結合させて回収・検出したりする用途,本発明の磁気粒子分散体にアビジンまたはビオチンを結合し、前記アビジンまたはビオチンにビオチンあるいはアビジンを有する分子を結合させて回収して検出する用途,本発明の磁気粒子分散体に抗体や抗原を結合し、比色法や化学発光を利用した酵素免疫測定法用の担体として本発明の磁気粒子分散体を使用する用途などがあげられる。従来、96穴プレート等を担体として用いていた診断項目であれば、本発明の磁気粒子分散体を用いることによって、磁性を利用した自動分析機に置き換えて使用できる。診断の対象となる物質としては、生体由来のタンパク質、黄体形成ホルモン、甲状腺刺激ホルモン等のホルモン、各種ガン細胞や、前立腺特異マーカー、膀胱ガンマーカー等のガンのマーカーとなるタンパク質、B型肝炎ウイルス、C型肝炎ウイルス、単純ヘルペスウイルスなどのウイルス、淋菌、MRSA等の細菌、カンジダ、クリプトコックス等の真菌、トキソプラズマ等の原虫・寄生虫、あるいはそれらウイルス・細菌・真菌・原虫・寄生虫などの構成要素であるタンパク質や核酸、ダイオキシン類等の環境汚染物質、抗生物質や抗てんかん剤など医薬品等の化学物質などがあげられる。   As particles for diagnostic drugs, for example, an antigen such as protein or an antibody is bound to the magnetic particle dispersion of the present invention, and the turbidity change of the solution due to passive agglutination reaction based on the antibody or antigen-antibody reaction with the antigen is measured. Quantitative and qualitative detection applications used, antibody is bound to the magnetic particle dispersion of the present invention, and antigens such as viruses, bacteria, cells, hormones, dioxins, etc. are bound to the antibody to collect and concentrate Use, binding a nucleic acid analog such as DNA to the magnetic particle dispersion of the present invention, and using nucleic acid to bind the nucleic acid analog to the nucleic acid analog for recovery and detection, or a protein or dye that binds to the nucleic acid, etc. The chemical substance is bound to the nucleic acid analog for recovery / detection, avidin or biotin is bound to the magnetic particle dispersion of the present invention, For detection by binding biotin or avidin molecules to gin or biotin, and for detecting immunosorbents by binding antibodies or antigens to the magnetic particle dispersion of the present invention and using colorimetry or chemiluminescence Examples of the use of the magnetic particle dispersion of the present invention as the carrier of the present invention. Conventionally, any diagnostic item that uses a 96-well plate or the like as a carrier can be replaced with an automatic analyzer using magnetism by using the magnetic particle dispersion of the present invention. Substances to be diagnosed include biological proteins, hormones such as luteinizing hormone, thyroid stimulating hormone, various cancer cells, proteins that serve as cancer markers such as prostate-specific markers and bladder cancer markers, and hepatitis B virus Viruses such as hepatitis C virus and herpes simplex virus, bacteria such as Neisseria gonorrhoeae and MRSA, fungi such as Candida and cryptocox, protozoa and parasites such as Toxoplasma, or viruses, bacteria, fungi, protozoa and parasites Examples of such components include environmental pollutants such as proteins, nucleic acids, and dioxins, and chemical substances such as pharmaceuticals such as antibiotics and antiepileptics.

なお、本発明の磁気粒子分散体は上記用途に限定されるわけではなく、例えば、塗料、紙、電子材料、電子写真、化粧品、医薬品、農薬、食品、触媒などの各分野で使用可能である。   In addition, the magnetic particle dispersion of the present invention is not limited to the above-mentioned use, and can be used in various fields such as paints, paper, electronic materials, electrophotography, cosmetics, pharmaceuticals, agricultural chemicals, foods, and catalysts. .

2.実施例
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって制限されるものではない。なお、下記実施例および比較例で得られた磁性粒子分散体中の磁性粒子の粒径および磁気分離時間は以下の方法により測定された。
2. Examples Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the particle size and magnetic separation time of the magnetic particles in the magnetic particle dispersions obtained in the following Examples and Comparative Examples were measured by the following methods.

2.1.測定方法
2.1.1.粒径の測定
透過型電子顕微鏡(日本電子(株)製100SX)を用いて、測定対象の磁気粒子分散体を撮影し、前記磁気粒子分散体を構成する300個の磁気粒子の粒径を定規で計測し、その平均を求めて数平均粒径dとした。また、300個の磁気粒子のうち、粒径が2d以上である磁気粒子と、粒径が0.5dより大きく2dより小さい磁気粒子と、粒径が2d以下である磁気粒子との3群に分け、各群の磁性粒子の積算体積を計算し、各群の磁性粒子の積算体積をそれぞれ全磁気粒子の体積で除して、各群の磁性粒子の体積分率を求めた。
2.1. Measuring method 2.1.1. Measurement of particle diameter Using a transmission electron microscope (100SX manufactured by JEOL Ltd.), the magnetic particle dispersion to be measured is photographed, and the particle diameter of 300 magnetic particles constituting the magnetic particle dispersion is determined by a ruler. And the average was obtained as the number average particle diameter d. Further, among 300 magnetic particles, there are three groups of magnetic particles having a particle size of 2d or more, magnetic particles having a particle size of more than 0.5d and less than 2d, and magnetic particles having a particle size of 2d or less. The total volume of the magnetic particles in each group was calculated, and the total volume of the magnetic particles in each group was divided by the volume of all the magnetic particles to determine the volume fraction of the magnetic particles in each group.

2.1.2.磁気分離時間の評価
得られた磁気粒子分散体を水で希釈して、磁気粒子分散体を0.01重量%含む試験液を調製した。この試験液をよく分散させて光路長1cmの角型光学セルに入れ、分光光度計(日本分光(株)製,V−550型)にセットし、このセルホルダー横に表面磁力密度2900ガウスのネオジム磁石を置いた時刻を0として、550nmにおける吸光度が初期の50%に減衰するまでの時間を測定し、この時間を磁気分離時間とした。
2.1.2. Evaluation of magnetic separation time The obtained magnetic particle dispersion was diluted with water to prepare a test solution containing 0.01% by weight of the magnetic particle dispersion. This test solution is well dispersed and placed in a square optical cell having an optical path length of 1 cm, set in a spectrophotometer (manufactured by JASCO Corporation, model V-550), and a surface magnetic density of 2900 gauss is placed beside this cell holder The time until the absorbance at 550 nm was attenuated to the initial 50% was measured with the time when the neodymium magnet was placed as 0, and this time was defined as the magnetic separation time.

2.2.比較例1
特開平07−238105号公報記載の重合方法を参考にして、スチレン/ジビニルベンゼン=80/20共重合体(平均粒径1.5μm)を重合し、遠心分離により3回水洗した。この含水スラリー100gを60℃の乾燥機で24時間乾燥して、ポリマー母粒子の粉体を得た。
2.2. Comparative Example 1
With reference to the polymerization method described in JP-A-07-238105, a styrene / divinylbenzene = 80/20 copolymer (average particle size 1.5 μm) was polymerized and washed with water three times by centrifugation. 100 g of this hydrous slurry was dried with a dryer at 60 ° C. for 24 hours to obtain polymer mother particle powder.

平均粒径が20nmの磁性体微粒子の分散体である油性磁性流体(商品名:「EXPシリーズ」,(株)フェローテック製)にアセトンを加えて粒子を析出沈殿させた後、これを乾燥することにより、疎水化処理された表面を有するフェライト系の磁性体微粒子粉体を得た。なお、この磁性体微粒子粉体は、シランカップリング剤および界面活性剤により疎水化処理された表面を有する。   Acetone is added to an oily magnetic fluid (trade name: “EXP series”, manufactured by Ferrotec Co., Ltd.), which is a dispersion of magnetic fine particles having an average particle diameter of 20 nm, and the particles are precipitated and dried. As a result, a ferrite-based magnetic fine particle powder having a hydrophobized surface was obtained. The magnetic fine particle powder has a surface that has been hydrophobized with a silane coupling agent and a surfactant.

ポリマー母粒子の粉体15gと、上記疎水化処理された磁性体微粒子粉体15gとをミキサーでよく混合し、この混合物をハイブリダイゼーションシステムNHS−O型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)で5分間処理して、30gの磁性体被覆分子を得た。次いで、得られた磁性体被覆粒子30gと、分散剤としてノニオン性乳化剤(商品名:「エマルゲン150」,花王(株)製)0.5%およびアニオン性乳化剤(商品名:「エマール0」,花王(株)製)0.5%を含む水溶液750gとを1Lセパラブルフラスコに投入し、充分に分散させた。別の容器にノニオン性乳化剤(商品名:「エマルゲン150」,花王(株)製)0.5%およびアニオン性乳化剤(商品名:「エマール0」,花王(株)製)0.5%を含む水溶液150gを入れ、これにモノマーとしてシクロヘキシルメタクリレート15g、メタクリル酸4g、重合開始剤としてターシャリーブチルペルオキシ2−エチルヘキサネート(商品名:「パーブチルO」,日本油脂(株)製)0.5gを添加、混合して、モノマー乳化物を作製した。前記セパラブルフラスコ中の反応液を、イカリ型撹拌羽を用いて200rpmで撹拌し、Nガスでパージしながら60℃に昇温した後、前記モノマー乳化物を2時間かけて前記セパラブルフラスコに連続添加した。連続添加終了後、80℃で2時間攪拌を続けて反応を完結させた。次いで、得られた重合体全量を磁気精製し、引き続き、固形分濃度5%に調製した分散体を25℃で18時間静置した後、デカンテーションで上層を取り出し、比較例1の磁気粒子分散体20gを得た。比較例1にて製造された磁気粒子分散体中の磁気粒子の数平均粒径dは2.1μmであり、かつ、磁気分離時間は20秒であった。また、本比較例にて製造された磁気粒子分散体には、4.2μm(2d)以上の粒径を有する磁気粒子が体積分率で0.0%含まれており、1.05μm(0.5d)より大きく4.2μm(2d)より小さい粒径を有する磁気粒子が体積分率で99.9%含まれており、かつ、1.05μm(0.5d)以下の粒径を有する磁気粒子が体積分率で0.1%含まれていた。 15 g of polymer mother particle powder and 15 g of the above-mentioned hydrophobized magnetic fine particle powder are mixed well with a mixer, and this mixture is used with a hybridization system NHS-O type (manufactured by Nara Machinery Co., Ltd.). Then, it was treated at a peripheral speed of 100 m / sec (16200 rpm) of the blade (stirring blade) for 5 minutes to obtain 30 g of a magnetic material-coated molecule. Next, 30 g of the obtained magnetic material-coated particles, a nonionic emulsifier (trade name: “Emulgen 150”, manufactured by Kao Corporation) 0.5% and an anionic emulsifier (trade name: “Emar 0”), as a dispersant, 750 g of an aqueous solution containing 0.5% (manufactured by Kao Corporation) was put into a 1 L separable flask and sufficiently dispersed. In a separate container, nonionic emulsifier (trade name: “Emulgen 150”, manufactured by Kao Corporation) 0.5% and anionic emulsifier (trade name: “Emar 0”, manufactured by Kao Corporation) 0.5% A 150 g aqueous solution containing 15 g of cyclohexyl methacrylate and 4 g of methacrylic acid as a monomer, and tertiary butyl peroxy 2-ethylhexanate as a polymerization initiator (trade name: “Perbutyl O”, manufactured by NOF Corporation) 0.5 g Were added and mixed to prepare a monomer emulsion. The reaction liquid in the separable flask was stirred at 200 rpm using a squid stirring blade and heated to 60 ° C. while purging with N 2 gas, and then the monomer emulsion was added to the separable flask over 2 hours. Was added continuously. After completion of the continuous addition, stirring was continued at 80 ° C. for 2 hours to complete the reaction. Next, the total amount of the obtained polymer was magnetically purified. Subsequently, the dispersion prepared to a solid content concentration of 5% was allowed to stand at 25 ° C. for 18 hours, and then the upper layer was taken out by decantation. The body 20g was obtained. The number average particle diameter d of the magnetic particles in the magnetic particle dispersion produced in Comparative Example 1 was 2.1 μm, and the magnetic separation time was 20 seconds. In addition, the magnetic particle dispersion produced in this comparative example contains 0.0% by volume of magnetic particles having a particle size of 4.2 μm (2d) or more, and is 1.05 μm (0 Magnetic particles having a particle size of 99.9% in terms of volume fraction and having a particle size of 1.05 μm (0.5 d) or less and having a particle size larger than .5d) and smaller than 4.2 μm (2d) The particles contained 0.1% by volume.

2.3.実施例1
比較例1の製造工程中に得られた疎水化処理された磁性体微粒子粉体15gを、ハイブリダイゼーションシステムNHS−O型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)で5分間処理して、磁性体微粒子粉体粉砕物を得た。次いで、得られた磁性体微粒子粉体粉砕物のうち10gと、分散剤としてノニオン性乳化剤(商品名:「エマルゲン120」,花王(株)製)を0.5%含む水溶液200gとをビーカーに投入し、充分に分散させ、磁気精製、さらに25℃で2時間静置した後、デカンテーションで沈殿層1gを取り出した。これを電子顕微鏡で観察したところ、平均粒径6μmの磁性粒子の2次凝集体であった。また、磁気分離時間は5秒であった。
2.3. Example 1
Using a hybridization system NHS-O type (manufactured by Nara Machinery Co., Ltd.), 15 g of the hydrophobized magnetic fine particle powder obtained during the manufacturing process of Comparative Example 1 was used. Was processed for 5 minutes at a peripheral speed of 100 m / sec (16200 rpm) to obtain a pulverized product of magnetic fine particles. Next, 10 g of the obtained magnetic fine particle powder pulverized product and 200 g of an aqueous solution containing 0.5% nonionic emulsifier (trade name: “Emulgen 120”, manufactured by Kao Corporation) as a dispersing agent in a beaker. The resulting mixture was sufficiently dispersed, magnetically purified, and further allowed to stand at 25 ° C. for 2 hours. Then, 1 g of a precipitate layer was taken out by decantation. When this was observed with an electron microscope, it was a secondary aggregate of magnetic particles having an average particle diameter of 6 μm. The magnetic separation time was 5 seconds.

この磁性粒子の2次凝集体1gと比較例1で得られた磁気粒子分散体3g(固形分)とを混合し、本実施例に係る新たな磁気粒子分散体4gを得た。本実施例にて製造された磁気粒子分散体中の磁性粒子の数平均粒径dは2.1μmであり、磁気分離時間は16秒であった。また、本実施例にて製造された磁気粒子分散体には、4.2μm(2d)以上の粒径を有する磁気粒子が体積分率で24.3%含まれており、1.05μm(0.5d)より大きく4.2μm(2d)より小さい粒径を有する磁気粒子が体積分率で75.7%含まれており、かつ、1.05μm(0.5d)以下の粒径を有する磁気粒子が体積分率で0.1%含まれていた。   1 g of the secondary aggregate of magnetic particles and 3 g (solid content) of the magnetic particle dispersion obtained in Comparative Example 1 were mixed to obtain a new magnetic particle dispersion 4 g according to this example. The number average particle diameter d of the magnetic particles in the magnetic particle dispersion produced in this example was 2.1 μm, and the magnetic separation time was 16 seconds. In addition, the magnetic particle dispersion produced in this example contains 24.3% by volume of magnetic particles having a particle size of 4.2 μm (2d) or more, and is 1.05 μm (0 Magnetic particles having a particle size of 75.7% in terms of volume fraction and having a particle size of 1.05 μm (0.5 d) or less and having a particle size larger than .5d) and smaller than 4.2 μm (2d) The particles contained 0.1% by volume.

以上により、本実施例にて製造された磁気粒子分散体は、平均粒径が十分小さく、かつ、優れた磁気分離性を有することが確認された。   From the above, it was confirmed that the magnetic particle dispersion produced in this example had a sufficiently small average particle size and excellent magnetic separation properties.

2.4.実施例2
実施例1で、平均粒径6μmの磁性粒子の2次凝集体1gと比較例1で得られた磁気粒子分散体0.3g(固形分)とを混合し、本実施例に係る新たな磁気粒子分散体1.3gを得た。本実施例にて製造された磁気粒子分散体中の磁性粒子の数平均粒径dは2.3μmであり、磁気分離時間は10秒であった。また、本実施例にて製造された磁気粒子分散体には、4.6μm(2d)以上の粒径を有する磁気粒子が体積分率で62.9%含まれており、1.15μm(0.5d)より大きく4.6μm(2d)より小さい粒径を有する磁気粒子が体積分率で37.0%含まれており、かつ、1.15μm(0.5d)以下の粒径を有する磁気粒子が体積分率で0.1%含まれていた。本実施例の磁気粒子分散体は実施例1の磁気粒子分散体と比較して、静置による沈降が早かった。
2.4. Example 2
In Example 1, 1 g of secondary aggregates of magnetic particles having an average particle diameter of 6 μm were mixed with 0.3 g (solid content) of the magnetic particle dispersion obtained in Comparative Example 1, and a new magnetic material according to this example was obtained. 1.3 g of a particle dispersion was obtained. The number average particle diameter d of the magnetic particles in the magnetic particle dispersion produced in this example was 2.3 μm, and the magnetic separation time was 10 seconds. In addition, the magnetic particle dispersion produced in this example contains 62.9% of the magnetic particles having a particle size of 4.6 μm (2d) or more in the volume fraction of 1.15 μm (0 Magnetic particles having a particle size of 37.0% in terms of volume fraction and having a particle size of 1.15 μm (0.5 d) or less and having a particle size larger than .5d) and smaller than 4.6 μm (2d) The particles contained 0.1% by volume. Compared with the magnetic particle dispersion of Example 1, the magnetic particle dispersion of this example had a faster sedimentation due to standing.

2.5.比較例2
比較例1の製造工程中に得られた疎水化処理された磁性体微粒子粉体15gを、ハイブリダイゼーションシステムNHS−O型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)で5分間処理して、磁性体微粒子粉体粉砕物を得た。次いで、得られた磁性体微粒子粉体粉砕物のうち10gと、分散剤としてノニオン性乳化剤(商品名:「エマルゲン120」,花王(株)製)を0.5%含む水溶液200gとをビーカーに投入し、充分に分散させた。これを電子顕微鏡で観察したところ、主として平均粒径0.8μmの磁性粒子凝集体と少量の平均粒径6μmの磁性粒子凝集体との混合物であった。また、磁気分離時間は180秒であった。
2.5. Comparative Example 2
Using a hybridization system NHS-O type (manufactured by Nara Machinery Co., Ltd.), 15 g of the hydrophobized magnetic fine particle powder obtained during the manufacturing process of Comparative Example 1 was used. Was processed for 5 minutes at a peripheral speed of 100 m / sec (16200 rpm) to obtain a pulverized product of magnetic fine particles. Next, 10 g of the obtained magnetic fine particle powder pulverized product and 200 g of an aqueous solution containing 0.5% nonionic emulsifier (trade name: “Emulgen 120”, manufactured by Kao Corporation) as a dispersing agent in a beaker. Was added and dispersed sufficiently. When this was observed with an electron microscope, it was mainly a mixture of magnetic particle aggregates having an average particle diameter of 0.8 μm and a small amount of magnetic particle aggregates having an average particle diameter of 6 μm. The magnetic separation time was 180 seconds.

この磁性粒子の1gと比較例1で得られた磁気粒子分散体5g(固形分)とを混合し、本実施例に係る新たな磁気粒子分散体6gを得た。本実施例にて製造された磁気粒子分散体中の磁性粒子の数平均粒径dは1.3μmであり、磁気分離時間は120秒であった。また、本実施例にて製造された磁気粒子分散体には、2.6μm(2d)以上の粒径を有する磁気粒子が体積分率で17.5%含まれており、0.65μm(0.5d)より大きく2.6μm(2d)より小さい粒径を有する磁気粒子が体積分率で76.2%含まれており、かつ、0.65μm(0.5d)以下の粒径を有する磁気粒子が体積分率で6.3%含まれていた。   1 g of the magnetic particles and 5 g (solid content) of the magnetic particle dispersion obtained in Comparative Example 1 were mixed to obtain a new magnetic particle dispersion 6 g according to this example. The number average particle diameter d of the magnetic particles in the magnetic particle dispersion produced in this example was 1.3 μm, and the magnetic separation time was 120 seconds. In addition, the magnetic particle dispersion produced in this example contains 17.5% of the magnetic particles having a particle size of 2.6 μm (2d) or more in terms of volume fraction of 0.65 μm (0 Magnetic particles having a particle size of 76.2% in terms of volume fraction and having a particle size of 0.65 μm (0.5 d) or less and having a particle size larger than 0.5 d) and smaller than 2.6 μm (2 d) The particles contained 6.3% by volume fraction.

Claims (3)

数平均粒径dが0.01〜10μmである磁気粒子の分散体であって、
前記磁気粒子のうち、粒径が2d以上の粒子の体積分率が2〜70%であり、かつ、粒径が0.5dより大きく2dより小さい粒子の体積分率が28〜98%であり、かつ、粒径が0.5d以下の粒子の体積分率が2%以下である、磁性粒子分散体。
A dispersion of magnetic particles having a number average particle diameter d of 0.01 to 10 μm,
Among the magnetic particles, the volume fraction of particles having a particle size of 2d or more is 2 to 70%, and the volume fraction of particles having a particle size larger than 0.5d and smaller than 2d is 28 to 98%. A magnetic particle dispersion in which the volume fraction of particles having a particle size of 0.5 d or less is 2% or less.
請求項1において、
前記磁性粒子は、一次粒径50nm以下の磁性体微粒子と、非磁性の有機物とを含む、磁性粒子分散体。
In claim 1,
The magnetic particle dispersion is a magnetic particle dispersion comprising magnetic fine particles having a primary particle diameter of 50 nm or less and a nonmagnetic organic substance.
請求項1ないし2のいずれかに記載の磁気粒子分散体を用いた診断薬用粒子。 A diagnostic drug particle using the magnetic particle dispersion according to claim 1.
JP2005045791A 2005-02-22 2005-02-22 Magnetic particle dispersion and diagnostic particle Active JP4404208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045791A JP4404208B2 (en) 2005-02-22 2005-02-22 Magnetic particle dispersion and diagnostic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045791A JP4404208B2 (en) 2005-02-22 2005-02-22 Magnetic particle dispersion and diagnostic particle

Publications (2)

Publication Number Publication Date
JP2006234417A true JP2006234417A (en) 2006-09-07
JP4404208B2 JP4404208B2 (en) 2010-01-27

Family

ID=37042258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045791A Active JP4404208B2 (en) 2005-02-22 2005-02-22 Magnetic particle dispersion and diagnostic particle

Country Status (1)

Country Link
JP (1) JP4404208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186356A (en) * 2008-02-07 2009-08-20 Hitachi High-Technologies Corp Analytical method using magnetic particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333657A (en) * 1989-06-30 1991-02-13 Nippon Telegr & Teleph Corp <Ntt> Magnetic marker for immunoassay coated with molecular aggregate
JPH1048213A (en) * 1996-08-07 1998-02-20 Mitsubishi Chem Corp Novel macromolecular carrier and production thereof
JP2004163421A (en) * 2002-10-21 2004-06-10 Sekisui Chem Co Ltd Magnetic substance-including particle and its production method, and immunoassay particle using magnetic substance-including particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333657A (en) * 1989-06-30 1991-02-13 Nippon Telegr & Teleph Corp <Ntt> Magnetic marker for immunoassay coated with molecular aggregate
JPH1048213A (en) * 1996-08-07 1998-02-20 Mitsubishi Chem Corp Novel macromolecular carrier and production thereof
JP2004163421A (en) * 2002-10-21 2004-06-10 Sekisui Chem Co Ltd Magnetic substance-including particle and its production method, and immunoassay particle using magnetic substance-including particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186356A (en) * 2008-02-07 2009-08-20 Hitachi High-Technologies Corp Analytical method using magnetic particle

Also Published As

Publication number Publication date
JP4404208B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP3738847B2 (en) Method for producing diagnostic particles
JP4947288B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
US5814687A (en) Magnetic polymer particle and process for manufacturing the same
JP2008032411A (en) Magnetic particle, its manufacturing method and probe bonded particle
JP2005532799A5 (en)
JP2006307126A (en) Magnetic particle with porous surface and method for producing the same, and carrier for biochemical use
EP1707963B1 (en) Magnetic particles having porous surfaces, method of producing the same, carrier for biochemical use, and biotin-bonding particles
US6797782B2 (en) Process for producing particles for diagnostic reagent
Pimpha et al. Preparation of anti-CD4 monoclonal antibody-conjugated magnetic poly (glycidyl methacrylate) particles and their application on CD4+ lymphocyte separation
JP5428166B2 (en) Aggregation and dispersion method of magnetic particles and separation, detection method and detection kit using the same
JP2008081574A (en) Magnetic particle and method for producing the same, and probe-bound particle
FR2735778A1 (en) NEW LATEX OF CALIBRATED MONODISPERS MAGNETISABLE MICROSPHERES, PROCESS FOR PREPARATION AND USE OF THE LATEX IN CHEMISTRY OR BIOLOGY
JPH08176212A (en) Method of surface-modifying magnetic particle
JPH1087711A (en) Production of magnetic polymer particle
JP4548598B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JP4273315B2 (en) Immunoassay particles and immunoassay
US7282540B2 (en) Process for producing particles for diagnostic reagent
JP4404208B2 (en) Magnetic particle dispersion and diagnostic particle
JP2006131771A (en) Polymer-coated magnetic bead and method for producing the same
JP2007224213A (en) Organic polymer particle and method for producing the same and probe-binding particle
CN104558353A (en) Method for preparing magnetic polymer microspheres by multiple emulsion method
JP4513463B2 (en) Magnetic particles and method for producing the same
JP4614064B2 (en) Method for producing magnetic particles and biochemical carrier
JP4639696B2 (en) Magnetic composite particles and method for producing the same
JP2006266719A (en) Particle for diagnostics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250