JP2006219453A - Metal-discrimination-type two-color fluorescent molecule containing quinoline ring as parent nucleus - Google Patents
Metal-discrimination-type two-color fluorescent molecule containing quinoline ring as parent nucleus Download PDFInfo
- Publication number
- JP2006219453A JP2006219453A JP2005036165A JP2005036165A JP2006219453A JP 2006219453 A JP2006219453 A JP 2006219453A JP 2005036165 A JP2005036165 A JP 2005036165A JP 2005036165 A JP2005036165 A JP 2005036165A JP 2006219453 A JP2006219453 A JP 2006219453A
- Authority
- JP
- Japan
- Prior art keywords
- group
- compound
- mmol
- atom
- metal ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BJTCJSIGXVDAMD-UHFFFAOYSA-N C(CC1)CN1c(cc1)cc(cc2)c1nc2-c1ccccn1 Chemical compound C(CC1)CN1c(cc1)cc(cc2)c1nc2-c1ccccn1 BJTCJSIGXVDAMD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Quinoline Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
本発明は、特定の金属を識別し、それら金属の添加により新たな蛍光を示す、いわゆる二波長性を示す新規蛍光分子およびその利用法に関する。 The present invention relates to a novel fluorescent molecule having a so-called dual wavelength property that identifies a specific metal and exhibits new fluorescence by addition of the metal, and a method of using the same.
アルカリ金属や遷移金属をはじめとする金属イオンの分析は、河川や海水などの工業及び生活環境分析、各種産業製品の組成分析、血液検査、さらに生体内での金属イオンの動態解析など、多様な分野において重要な技術のひとつである。金属イオンの分析方法としては、発光分光法、原子吸光法、電気化学的分析法、光学的分析法あるいはクロマトグラフによる分析法などがあり、それぞれ特徴があるが、この中で、小型で軽量な機器を用いる簡便な分析法としては、電気化学的分析法および光学的分析法が挙げられる。光学的分析法で最もよく利用されるのが、蛍光法である。蛍光法は、基本的に、金属イオンと錯体を形成することによって蛍光を発する物質(蛍光プローブ)を用いて、金属イオンの分析を行うものであり、感度の高いものや金属イオン選択性の高いものが求められている。 Analysis of metal ions, including alkali metals and transition metals, is diverse, including industrial and living environment analysis such as rivers and seawater, composition analysis of various industrial products, blood tests, and dynamic analysis of metal ions in vivo. One of the important technologies in the field. Methods for analyzing metal ions include emission spectroscopy, atomic absorption, electrochemical analysis, optical analysis, and chromatographic analysis, each of which has its own characteristics. Examples of a simple analysis method using an instrument include an electrochemical analysis method and an optical analysis method. The most frequently used optical analysis method is the fluorescence method. The fluorescence method basically analyzes a metal ion using a substance (fluorescence probe) that emits fluorescence by forming a complex with the metal ion, and has high sensitivity and high metal ion selectivity. Things are sought.
現在様々なキノリン系化合物が知られているが、特に、8−ヒドロキシキノリン系化合物は、金属イオンと安定な錯体を形成するため、これを利用した金属イオンの検出用試薬として広く用いられている。また8−ヒドロキシキノリン系化合物と金属イオンとの反応によって得られる金属錯体の多くは蛍光性を示すため、これを用いた蛍光性色素への用途が考えられている。しかしこれらの蛍光色素は未だ十分な特性を有しているとは言えない。例えば、トリス(8−キノライト)アルミニウム等の金属錯体は電界発光時に化学的に不安定となり、短時間の発光で劣化するなどの問題点があるのが現状である。 Currently, various quinoline compounds are known. In particular, 8-hydroxyquinoline compounds form a stable complex with metal ions, and thus are widely used as reagents for detecting metal ions using these compounds. . In addition, since many metal complexes obtained by the reaction of 8-hydroxyquinoline-based compounds and metal ions exhibit fluorescence, applications to fluorescent dyes using these are considered. However, it cannot be said that these fluorescent dyes still have sufficient characteristics. For example, metal complexes such as tris (8-quinolite) aluminum are currently chemically unstable during electroluminescence and have problems such as deterioration due to short-time emission.
そのような背景の中、生体関連物質の識別や生体内での金属の動態を可視化するための蛍光分子の研究が近年活発に行われている。これまでに知られている多くの蛍光分子は、金属イオンが結合することにより初めて蛍光を発するようになるものや、化合物自体蛍光を発し金属が結合することによりその蛍光強度が強くなるものであるが、特定の金属を識別し、金属の添加により新たな蛍光を示す性質(以下、二波長性という)を有する高感度の蛍光分子は、目的となる化合物の濃度を測定できるという利点が考えられ、注目されている。特に亜鉛イオンは生体内で重要な役割を担っていることが明らかとなってきているが、詳細な解明には亜鉛と選択的に結合し、その動態の測定が可能かつ二波長性を有し、感度が高い蛍光分子の開発が重要である。 In such a background, research on fluorescent molecules for identifying biologically relevant substances and visualizing the dynamics of metals in the living body has been actively conducted in recent years. Many fluorescent molecules known so far are those that emit fluorescence for the first time when a metal ion binds to them, or those that emit fluorescence when the compound itself fluoresces and its fluorescence intensity increases by binding to a metal. However, high-sensitivity fluorescent molecules that have the property of identifying a specific metal and exhibiting new fluorescence by the addition of the metal (hereinafter referred to as “dual wavelength”) have the advantage that the concentration of the target compound can be measured. ,Attention has been paid. In particular, it has become clear that zinc ions play an important role in vivo, but for detailed elucidation, they can selectively bind to zinc and measure its dynamics and have dual wavelength properties. It is important to develop fluorescent molecules with high sensitivity.
本発明者らは、キノリンカルボン酸を母核とし、その4位に酸素官能基、6位にジメチルアミノ基を導入した化合物の合成に成功し、それらの化合物について2003年薬学会において発表を行った(非特許文献1参照)。これらの化合物は、亜鉛イオンと共存させると、亜鉛イオンの濃度に依存して422nmの蛍光が減少し、503nmに新たな蛍光を発する二波長性を有している。しかし、これらの化合物は、トルエン等の非極性溶媒中でのみこのような二波長性を示すが極性溶媒中ではこのような挙動はほとんど示さない上、金属の配位能や選択性にも不十分な点があり、実際の利用においては問題点があった。また、同様の機能を有する化合物として、非特許文献2(J. Am. Chem. Soc.
2002, 124, 10650-10651)、非特許文献3(J. Am. Chem. Soc. 2003, 125, 11458-11459)、非特許文献4(J. Am. Chem. Soc.
2004, 126, 712-713)等に示されている化合物が報告されているが、亜鉛が配位する前後の波長のシフトが小さいこと、亜鉛以外の他の要因によりバックグラウンドが高くなることなど種々の問題点があった。そのため、さらに金属に対する配位能と選択性を向上させ、極性溶媒中でも感度よく二波長性を示すような、全く新たな蛍光分子の開発が切望されていた。
The present inventors have succeeded in synthesizing compounds in which a quinolinecarboxylic acid is used as a mother nucleus, an oxygen functional group is introduced at the 4-position, and a dimethylamino group is introduced at the 6-position, and these compounds were announced at the 2003 Pharmaceutical Society. (See Non-Patent Document 1). When these compounds coexist with zinc ions, the fluorescence at 422 nm decreases depending on the concentration of zinc ions, and has a dual wavelength property that emits new fluorescence at 503 nm. However, these compounds exhibit such dual wavelength properties only in non-polar solvents such as toluene, but hardly exhibit such behavior in polar solvents, and are inferior in metal coordination ability and selectivity. There were enough points, and there were problems in actual use. Further, as a compound having a similar function, Non-Patent Document 2 (J. Am. Chem. Soc.
2002, 124 , 10650-10651), Non-Patent Document 3 (J. Am. Chem. Soc. 2003, 125 , 11458-11459), Non-Patent Document 4 (J. Am. Chem. Soc.
2004, 126 , 712-713), etc. have been reported, but the shift in wavelength before and after the coordination of zinc is small, the background is high due to factors other than zinc, etc. There were various problems. For this reason, there has been a strong demand for the development of a completely new fluorescent molecule that improves the coordination ability and selectivity for metals, and exhibits a dual wavelength with high sensitivity even in polar solvents.
これまでに知られている蛍光分子は具体的には以下のようなものである。 Specific examples of fluorescent molecules known so far are as follows.
本発明者らによって開発された以下の化合物は上記のように二波長性を有している。しかし、この効果は非極性溶媒中でのみ見られるものである。また構造的にはキノリンカルボン酸を母核とするものであり、4位に酸素官能基、6位にジメチルアミノ基を有することを特徴とするものである。 The following compounds developed by the present inventors have dual wavelength properties as described above. However, this effect is only seen in nonpolar solvents. Further, structurally, it has a quinolinecarboxylic acid as a mother nucleus and has an oxygen functional group at the 4-position and a dimethylamino group at the 6-position.
非特許文献2(J. Am. Chem. Soc. 2002, 124, 10650-10651)には、亜鉛イオンが選択的に結合し、二波長性を示す以下の化合物が報告されているが、これらはキノリン骨格またはナフタレン骨格を有するものではない。 Non-Patent Document 2 (J. Am. Chem. Soc. 2002, 124 , 10650-10651) reports the following compounds in which zinc ions are selectively bound and exhibit dual wavelength properties. It does not have a quinoline skeleton or a naphthalene skeleton.
非特許文献3(J. Am. Chem. Soc. 2004, 126, 712-713)には、亜鉛イオンが選択的に結合し、二波長性を示す以下の化合物が報告されているが、これらはキノリン骨格またはナフタレン骨格を有するものではない。 Non-Patent Document 3 (J. Am. Chem. Soc. 2004, 126 , 712-713) reports the following compounds that selectively bind zinc ions and exhibit dual wavelength properties. It does not have a quinoline skeleton or a naphthalene skeleton.
非特許文献4(J. Am. Chem. Soc. 2003, 125, 11458-11459)には、亜鉛イオンが選択的に結合し、二波長性を示す以下の化合物が報告されているが、これらはキノリン骨格またはナフタレン骨格を基本骨格とするものではない。 Non-Patent Document 4 (J. Am. Chem. Soc. 2003, 125 , 11458-11459) reports the following compounds in which zinc ions are selectively bound and exhibit dual wavelength properties. The quinoline skeleton or naphthalene skeleton is not a basic skeleton.
特許文献1(特開平11−199581)には下記の蛍光発光性環状フェノール硫化物誘導体が示されているが、この物質は、Alイオンの存在により510nm付近の蛍光強度が減少するものであり、二波長性を示すものではない。またキノリン骨格およびナフタレン骨格を有する化合物でもない。 Patent Document 1 (Japanese Patent Laid-Open No. 11-199581) discloses the following fluorescent light-emitting cyclic phenol sulfide derivative. This substance has a fluorescence intensity near 510 nm reduced by the presence of Al ions. It does not show dual wavelength. Further, it is not a compound having a quinoline skeleton and a naphthalene skeleton.
特許文献2(特開2004−317398)には生体分子の蛍光標識化剤のひとつとして、「キノリン基幹構造を有するもの」が示されている。生体分子としては、核酸、タンパク、糖鎖を標的としており、金属イオンについての記載はない。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-317398) discloses “having a quinoline backbone structure” as one of fluorescent labeling agents for biomolecules. Biomolecules target nucleic acids, proteins, and sugar chains, and do not describe metal ions.
特許文献3(特開2004−196683)には生体内物質としてのメラトニン含量を測定するために、メラトニンを酸化し蛍光を発するキノリンオキシド誘導体(下記式)とし、その蛍光強度を測定する方法および、そのキノリンオキシド誘導体が示されている。励起スペクトルが245nm, 蛍光スペクトルが376-8nmである。金属濃度の測定についての記載や、二波長性に関しての記載はない。 Patent Document 3 (Japanese Patent Laid-Open No. 2004-196683) discloses a method for measuring the fluorescence intensity of a quinoline oxide derivative (the following formula) that oxidizes melatonin and emits fluorescence in order to measure the melatonin content as an in vivo substance. The quinoline oxide derivative is shown. The excitation spectrum is 245 nm and the fluorescence spectrum is 376-8 nm. There is no description about the measurement of the metal concentration or about the dual wavelength property.
特許文献4(特開2002−138081)には、蛍光性色素や有機EL素子用材料として有用な金属錯体の原料に適した新規なキノリン系化合物(下記式)が示されている。キノリン系化合物と錯体を形成することのできる金属としては、Li、Na、K、Rb、Be、Mg、Ca、Sr、Ba、Zn、Al、Ga、In、Sc、Yおよび希土類金属をあげるとして、Znが羅列的に挙げられているが、実施例において示されてはいない。さらに、錯体を形成することにより異なる蛍光波長を示すというような二波長性についての記載は全くない。 Patent Document 4 (Japanese Patent Application Laid-Open No. 2002-138081) discloses a novel quinoline compound (the following formula) suitable as a raw material for a metal complex useful as a fluorescent dye or a material for an organic EL device. Examples of metals that can form complexes with quinoline compounds include Li, Na, K, Rb, Be, Mg, Ca, Sr, Ba, Zn, Al, Ga, In, Sc, Y, and rare earth metals. Zn is listed in an enumeration but is not shown in the examples. Furthermore, there is no description of dual wavelength properties that show different fluorescence wavelengths by forming a complex.
また、本発明は、一般式[1]において、R1またはR2が、アリール基であることを特徴とする上記キノリン
系化合物に関する。また、本発明は、2−メチル−5−アリール−8−ヒドロキシキノリン
である上記キノリン 系化合物に関する
The present invention also relates to the above quinoline compound, wherein in the general formula [1], R 1 or R 2 is an aryl group. The present invention also relates to the above quinoline compound which is 2-methyl-5-aryl-8-hydroxyquinoline.
特許文献5(特開平10−226691)には、エレクトロルミネッセンス素子の発光層、蛍光材料および紫外線吸収材料に有用な色素として、下記式のキノリン化合物が示されている。しかし二波長性についての記載は全くない。 Patent Document 5 (Japanese Patent Laid-Open No. 10-226691) discloses a quinoline compound represented by the following formula as a dye useful for a light emitting layer, a fluorescent material and an ultraviolet absorbing material of an electroluminescence element. However, there is no description about dual wavelength characteristics.
下記式で示した同人化学製品である細胞内カルシウムイオン測定試薬Indo 1は、Ca2+ Free も Ca2+ 錯体も励起波長は 330 nm 前後と同じであるが蛍光波長はそれぞれ 485 nm と 410 nm と異なる特長をもっている。フローサイトメトリー分析法で細胞内 Ca2+ の動向を測定する際に Indo 1 を使用している報告例が増加している。しかしこの化合物はキノリン骨格およびナフタレン骨格は有していない(例えば非特許文献5参照)。 Indo 1, a doujin chemical product represented by the following formula, has the same excitation wavelength at around 330 nm for both Ca 2+ Free and Ca 2+ complexes, but the fluorescence wavelengths are 485 nm and 410 nm, respectively. And have different features. An increasing number of reports use Indo 1 to measure intracellular Ca 2+ trends by flow cytometry. However, this compound does not have a quinoline skeleton or a naphthalene skeleton (see, for example, Non-Patent Document 5).
下記式で示した同人化学製品である細胞内カルシウムイオン測定試薬Fura-2は1 μmol/l 付近までの Ca2+ 濃度を計測できる蛍光分子である。Ca2+ 結合により励起波長のピークが顕著にブルーシフト(362 nm→335 nm)することで、335 nm 付近で励起した場合には Ca2+ 濃度の上昇に伴い蛍光強度が増大するのに対し、 370〜380 nm 付近で励起した時は逆に蛍光強度が減少する。したがって適当な二波長を選択して励起し、その時の蛍光強度の比をとるとそれが色素の濃度、光源の強度、細胞の大きさ等に関係なく Ca2+ 濃度と対応づけられる。Ca2+の結合により、蛍光波長の変化は見られない(例えば非特許文献6参照)。 Fura-2, an intracellular calcium ion measuring reagent represented by the following formula, is a fluorescent molecule that can measure Ca 2+ concentration up to around 1 μmol / l. The peak of the excitation wavelength is markedly blue shifted (362 nm → 335 nm) due to Ca 2+ binding, whereas the fluorescence intensity increases with increasing Ca 2+ concentration when excited near 335 nm. Conversely, when excited at around 370 to 380 nm, the fluorescence intensity decreases. Therefore, when appropriate two wavelengths are selected and excited, and the ratio of the fluorescence intensity at that time is taken, it can be correlated with the Ca 2+ concentration regardless of the concentration of the dye, the intensity of the light source, the size of the cell, and the like. The fluorescence wavelength does not change due to the binding of Ca 2+ (for example, see Non-Patent Document 6).
下記式で示した同人化学製品である細胞内カルシウムイオン測定試薬Quin 2 は R. Y. Tsien らによって合成されたカルシウムに特異的な蛍光指示薬で、カルシウムと錯形成することによって強い蛍光を示す。マグネシウムとの反応は無視できる。カルシウム選択性の GEDTA の分子構造に蛍光性のキノリン骨格を組込むことにより、Mg2+ に対して約 105 台の選択性を可能とした(logKCa=7.1,logKMg=2.7)。メトキシ基の存在によって、高い蛍光量子収率を示す(Ca錯体のφ=0.14) 。カルシウム錯体の蛍光励起波長は 339 nm, 蛍光波長は 492 nm であり、いわゆる二波長性を示すものではない(例えば非特許文献7参照)。 Quin 2 is an intracellular calcium ion measuring reagent that is a doujin chemical product represented by the following formula, and is a fluorescent indicator specific to calcium synthesized by RY Tsien et al., And exhibits strong fluorescence when complexed with calcium. Reaction with magnesium is negligible. By incorporating a fluorescent quinoline skeleton into the molecular structure of calcium-selective GEDTA, it was possible to select about 10 5 units with respect to Mg 2+ (logK Ca = 7.1, logK Mg = 2.7). Due to the presence of the methoxy group, high fluorescence quantum yield is exhibited (Ca complex φ = 0.14). The calcium complex has a fluorescence excitation wavelength of 339 nm and a fluorescence wavelength of 492 nm, and does not exhibit a so-called dual wavelength property (see, for example, Non-Patent Document 7).
蛍光法による金属イオンの分析において、上記問題点を克服し得る、従来にない全く新しい構造を有し、特定の金属を識別でき、かつその金属の添加により新たな蛍光を示す二波長性を有する新規蛍光分子及びその利用法を提供することにある。 In the analysis of metal ions by the fluorescence method, it has a completely new structure that can overcome the above-mentioned problems, can identify a specific metal, and has a dual wavelength property that shows a new fluorescence by adding the metal It is to provide a novel fluorescent molecule and a method for using the same.
本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、本発明の完成に至った。すなわち本発明は、以下に示すとおりである。
(1)下記一般式〈I〉で表されるキノリン化合物又はナフタレン化合物。
一般式〈1〉
In order to solve the above-mentioned problems, the present inventors have conducted extensive research and as a result, completed the present invention. That is, the present invention is as follows.
(1) A quinoline compound or naphthalene compound represented by the following general formula <I>.
General formula <1>
とR32は、隣接する窒素原子と一緒になって、4乃至7員の複素環を形成してもよい。)を表す。Xは窒素原子または炭素原子を表す。]
(2)R1が上記酸素官能基で置換されてもよいフェニル基、ナフチル基又はチエニル基であり、R2がハロゲン原子、C1−6アルコキシ基又は―(OC2H4)nーOCH3(ここでn=1〜2)であり、R3がピペラジノ基又はピペリジノ基である(1)に記載のキノリン化合物又はナフタレン化合物。
(3)(1)又は(2)に記載のキノリン化合物又はナフタレン化合物のうち少なくとも1種を含むことを特徴とする金属イオンセンシング剤。
(4)(3)に記載の金属イオンセンシング剤を用いて金属イオン濃度を測定することを特徴とする金属イオン分析方法。
(5)金属イオンが12族金属イオン(亜鉛、カドミウム、水銀)である(4)に記載の金属イオン分析方法。
And R 32 together with the adjacent nitrogen atom may form a 4- to 7-membered heterocyclic ring. ). X represents a nitrogen atom or a carbon atom. ]
(2) R 1 is a phenyl group, a naphthyl group, or a thienyl group that may be substituted with the oxygen functional group, and R 2 is a halogen atom, a C 1-6 alkoxy group, or — (OC 2 H 4 ) n —OCH. 3 (where n = 1 to 2), and R 3 is a piperazino group or piperidino group. The quinoline compound or naphthalene compound according to (1).
(3) A metal ion sensing agent comprising at least one of the quinoline compound or naphthalene compound according to (1) or (2).
(4) A metal ion analysis method, wherein the metal ion concentration is measured using the metal ion sensing agent according to (3).
(5) The metal ion analysis method according to (4), wherein the metal ion is a group 12 metal ion (zinc, cadmium, mercury).
本発明の新規蛍光分子は、極性溶媒中および非極性溶媒中のどちらにおいても、Zn2+の濃度に依存して例えば422nmの蛍光が減少し503nmに新たな蛍光が出現し、溶媒中のZn2+濃度の測定に有用であることが明らかとなった。このように溶媒として非極性溶媒のみならず、極性溶媒中(メタノール、含水ジオキサン、水、HEPESバッファーなど)においても二波長性を示すため、様々な溶媒中の金属イオン濃度を幅広く測定することができ、便利である。また溶媒中のみならず、生体組織切片に作用させることにより、金属イオンが局在している部位で強い蛍光を発することも明らかとなった。さらに、新たに出現する蛍光波長と元の蛍光波長の差は約80nmと大きく離れているため、金属イオン濃度を正しく測定することが可能である。またNi2+, Cu2+に対してはこのような二波長性は全く示さず、高い金属イオン識別性を有することも明らかとなった。 The novel fluorescent molecules of the present invention, for example, in both polar and nonpolar solvents, depending on the concentration of Zn 2+ , for example, the fluorescence at 422 nm decreases and new fluorescence appears at 503 nm. It proved to be useful for the measurement of 2+ concentration. In this way, it exhibits dual wavelength not only in nonpolar solvents but also in polar solvents (methanol, hydrous dioxane, water, HEPES buffer, etc.) as a solvent, so it is possible to measure a wide range of metal ion concentrations in various solvents. It is possible and convenient. It was also revealed that strong fluorescence was emitted at sites where metal ions were localized by acting on a biological tissue slice as well as in a solvent. Furthermore, since the difference between the newly appearing fluorescence wavelength and the original fluorescence wavelength is as large as about 80 nm, the metal ion concentration can be measured correctly. It was also revealed that Ni 2+ and Cu 2+ did not show such dual wavelength properties and had high metal ion discrimination.
本明細書において使用する各置換基の定義は次の通りである。
「C1−6アルキル基」とは、炭素数1乃至6個の直鎖又は分枝してもよいアルキル基であり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基又はヘキシル基等であり、好ましくは炭素数1乃至4個の直鎖又は分枝してもよいアルキル基である。特に好ましくはメチル基、エチル基、又はイソプロピル基である。
The definition of each substituent used in the present specification is as follows.
The “C 1-6 alkyl group” is a linear or branched alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or an isobutyl group. , Sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, etc., preferably a linear or branched alkyl having 1 to 4 carbon atoms It is a group. Particularly preferred is a methyl group, an ethyl group, or an isopropyl group.
「C1−6アルキルアミノ基」とは、前記「C1−6アルキル基」がアミノ基に結合した基であり、例えば、メチルアミノ、エチルアミノ、n−プロピルアミノ、イソプロピルアミノ、n−ブチルアミノ、イソブチルアミノ、s−ブチルアミノ、tert−ブチルアミノ、n−ペンチルアミノ、イソペンチルアミノ、2−メチルブチルアミノ、ネオペンチルアミノ、1−エチルプロピルアミノ、n−ヘキシルアミノ、イソヘキシルアミノ、4−メチルペンチルアミノ、3−メチルペンチルアミノ、2−メチルペンチルアミノ、1−メチルペンチルアミノ、3,3−ジメチルブチルアミノ、2,2−ジメチルブチルアミノ、1,1−ジメチルブチルアミノ、1,2−ジメチルブチルアミノ、1,3−ジメチルブチルアミノ、2,3−ジメチルブチルアミノ、2−エチルブチルアミノ基を挙げることができる。R2において好ましくは、メチルアミノ、エチルアミノ、n−プロピルアミノ、イソプロピルアミノ基等のC1−4アルキルアミノ基である。 The “C 1-6 alkylamino group” is a group in which the “C 1-6 alkyl group” is bonded to an amino group, such as methylamino, ethylamino, n-propylamino, isopropylamino, n-butyl. Amino, isobutylamino, s-butylamino, tert-butylamino, n-pentylamino, isopentylamino, 2-methylbutylamino, neopentylamino, 1-ethylpropylamino, n-hexylamino, isohexylamino, 4 -Methylpentylamino, 3-methylpentylamino, 2-methylpentylamino, 1-methylpentylamino, 3,3-dimethylbutylamino, 2,2-dimethylbutylamino, 1,1-dimethylbutylamino, 1,2 -Dimethylbutylamino, 1,3-dimethylbutylamino, 2,3-dimethyl Chiruamino, and 2-ethyl-butylamino group. R 2 is preferably a C 1-4 alkylamino group such as methylamino, ethylamino, n-propylamino, or isopropylamino group.
「C1−6ジアルキルアミノ基」とは、アミノ基に同一又は異なった前記「C1−6アルキル基」が2個置換した基であり、例えば、N,N−ジメチルアミノ、N,N−ジエチルアミノ、N,N−ジn−プロピルアミノ、N,N−ジイソプロピルアミノ、N,N−ジn−ブチルアミノ、N,N−ジイソブチルアミノ、N,N−ジs−ブチルアミノ、N,N−ジtert−ブチルアミノ、N,N−ジn−ペンチルアミノ、N,N−ジイソペンチルアミノ、N,N−ジ2−メチルブチルアミノ、N,N−ジネオペンチルアミノ、N,N−ジ1−エチルプロピルアミノ、N,N−ジn−ヘキシルアミノ、N,N−ジイソヘキシルアミノ、N,N−ジ4−メチルペンチルアミノ、N,N−ジ3−メチルペンチルアミノ、N,N−ジ2−メチルペンチルアミノ、N,N−ジ1−メチルペンチルアミノ、N,N−エチルメチルアミノ、N,N−イソプロピルメチルアミノ基を挙げることができる。R2において好ましくは、N,N−ジメチルアミノ、N,N−ジエチルアミノ、N,N−ジn−プロピルアミノ、N,N−ジイソプロピルアミノ基等のC1−4ジアルキルアミノ基である。 The “C 1-6 dialkylamino group” is a group obtained by substituting two identical or different “C 1-6 alkyl groups” with an amino group, for example, N, N-dimethylamino, N, N— Diethylamino, N, N-di-n-propylamino, N, N-diisopropylamino, N, N-di-n-butylamino, N, N-diisobutylamino, N, N-di-s-butylamino, N, N- Di-tert-butylamino, N, N-di-n-pentylamino, N, N-diisopentylamino, N, N-di2-methylbutylamino, N, N-dineopentylamino, N, N-di 1-ethylpropylamino, N, N-di-n-hexylamino, N, N-diisohexylamino, N, N-di4-methylpentylamino, N, N-di3-methylpentylamino, N, N -Di-2-methyl pliers Amino, N, N- di 1-methylpentylamino, N, N- ethylmethylamino, N, may be mentioned N- isopropyl-methyl-amino group. R 2 is preferably a C 1-4 dialkylamino group such as N, N-dimethylamino, N, N-diethylamino, N, N-di-n-propylamino, or N, N-diisopropylamino group.
「ハロゲン原子」とは、塩素原子、臭素原子、フッ素原子等である。R3において好ましくはフッ素原子である。 The “halogen atom” is a chlorine atom, a bromine atom, a fluorine atom or the like. R 3 is preferably a fluorine atom.
「C1−6アルコキシ基」とは、そのアルキル部位が上記定義の「C1−6アルキル基」であるアルキル−オキシ基であり、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基、tert−ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。R1において好ましくは、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基等のC1−6アルコキシ基である。 The “C 1-6 alkoxy group” is an alkyl-oxy group whose alkyl moiety is the above-defined “C 1-6 alkyl group”, specifically, a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group. Group, butoxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group and the like. R 1 is preferably a C 1-6 alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, or an isopropyloxy group.
「C3−10炭素環基」とは、炭素数3乃至10の飽和若しくは不飽和の環状炭化水素基であり、アリール基、シクロアルキル基、シクロアルケニル基、或いはそれらの縮合環を意味するが、好ましくはアリール基である。アリール基として具体的には、フェニル基、ナフチル基、ペンタレニル基、アズレニル基等が挙げられ、好ましくはフェニル基及びナフチル基であり、特に好ましくはフェニル基である。「シクロアルキル基」として具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基、ノルボルナニル基等が挙げられ、好ましくはシクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等のC3−6シクロアルキル基である。「シクロアルケニル基」とは、少なくとも1個、好ましくは1又は2個の二重結合を含み、具体的にはシクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基(2,4−シクロヘキサジエン−1−イル基、2,5−シクロヘキサジエン−1−イル基等)、シクロヘプテニル基及びシクロオクテニル基等が挙げられる。これら「アリール基」、「シクロアルキル基」、「シクロアルケニル基」が縮合した環として具体的には、インデニル基、インダニル基、1,4−ジヒドロナフチル基、1,2,3,4−テトラヒドロナフチル基(1,2,3,4−テトラヒドロ−2−ナフチル基、5,6,7,8−テトラヒドロ−2−ナフチル基等)、ペルヒドロナフチル基等が挙げられる。好ましくはフェニル基とその他環の縮合環であり、インデニル基、インダニル基、1,4−ジヒドロナフチル基、1,2,3,4−テトラヒドロナフチル基等であり、特に好ましくはインダニル基である。 “C 3-10 carbocyclic group” is a saturated or unsaturated cyclic hydrocarbon group having 3 to 10 carbon atoms, and means an aryl group, a cycloalkyl group, a cycloalkenyl group, or a condensed ring thereof. An aryl group is preferable. Specific examples of the aryl group include a phenyl group, a naphthyl group, a pentarenyl group, and an azulenyl group, preferably a phenyl group and a naphthyl group, and particularly preferably a phenyl group. Specific examples of the “cycloalkyl group” include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornanyl group, etc., preferably a cyclopropyl group, a cyclobutyl group , C 3-6 cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group. The “cycloalkenyl group” includes at least one, preferably 1 or 2, double bonds, specifically, a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, Examples thereof include a cyclohexadienyl group (2,4-cyclohexadien-1-yl group, 2,5-cyclohexadien-1-yl group, etc.), cycloheptenyl group, cyclooctenyl group and the like. Specific examples of the ring in which these “aryl group”, “cycloalkyl group” and “cycloalkenyl group” are condensed include indenyl group, indanyl group, 1,4-dihydronaphthyl group, 1,2,3,4-tetrahydro Examples thereof include a naphthyl group (1,2,3,4-tetrahydro-2-naphthyl group, 5,6,7,8-tetrahydro-2-naphthyl group, etc.), a perhydronaphthyl group, and the like. Preferred is a condensed ring of a phenyl group and another ring, such as an indenyl group, an indanyl group, a 1,4-dihydronaphthyl group, a 1,2,3,4-tetrahydronaphthyl group, and particularly preferably an indanyl group.
次に各種置換基又は置換位置についてより詳しく述べると以下の通りである。 Next, various substituents or substitution positions will be described in more detail as follows.
R1における「窒素原子、イオウ原子及び酸素原子から選ばれるヘテロ原子を1又は2含む5員乃至6員の芳香族複素環基」としては、例えばフリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、1,2,3−オキサジアゾリル、1,2,4−オキサジアゾリル、1,3,4−オキサジアゾリル、フラザニル、1,2,3−チアジアゾリル、1,2,4−チアジアゾリル、1,3,4−チアジアゾリル、1,2,3−トリアゾリル、1,2,4−トリアゾリル、テトラゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル等の5ないし6員の芳香族単環式複素環基などが挙げられる。 Examples of the “5- to 6-membered aromatic heterocyclic group containing 1 or 2 heteroatoms selected from a nitrogen atom, a sulfur atom and an oxygen atom” in R 1 include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, Isothiazolyl, imidazolyl, pyrazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, furazanyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1, 3,4-thiadiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, etc. 5- to 6-membered aromatic monocyclic heterocyclic groups, etc. Can be mentioned.
R3における「隣接する窒素原子と一緒になって形成する、4員乃至7員の飽和複素環」としては、例えばピペラジノ基、ピペリジノ基などが挙げられる。 Examples of the “4- to 7-membered saturated heterocyclic ring formed together with the adjacent nitrogen atom” in R 3 include a piperazino group and a piperidino group.
R1において好ましくはピリジル基、フェニル基、又はチエニル基であり、これらはオキソ基、水酸基またはC1−6アルコキシ基から選ばれる酸素官能基によって置換されてもよく、更に好ましくは、メトキシ基によって置換されてもよいピリジル基であり、最も好ましくは、ピリジル基である。R2において好ましくは、水素原子、ハロゲン原子、メトキシ基、又は−(OC2H4)n−OCH3(ここでn=2)であり、更に好ましくは、水素原子、フッ素原子、メトキシ基である。置換位置については、キノリン環の8位が好ましい。R3において好ましくは、ジメチルアミノ基、又はピペラジノ基であり、さらに好ましくはピペラジノ基である。Xにおいて好ましくは窒素原子である。 R 1 is preferably a pyridyl group, a phenyl group, or a thienyl group, which may be substituted with an oxygen functional group selected from an oxo group, a hydroxyl group, or a C 1-6 alkoxy group, and more preferably a methoxy group. It is a pyridyl group which may be substituted, and most preferably a pyridyl group. R 2 is preferably a hydrogen atom, a halogen atom, a methoxy group, or — (OC 2 H 4 ) n —OCH 3 (where n = 2), more preferably a hydrogen atom, a fluorine atom, or a methoxy group. is there. The substitution position is preferably the 8-position of the quinoline ring. R 3 is preferably a dimethylamino group or a piperazino group, and more preferably a piperazino group. X is preferably a nitrogen atom.
本発明のキノリン化合物又はナフタレン化合物の好適な具体例を以下に列挙する:
化合物(a):ピリジンー2イルー6−ピロリジンー1イルキノリン、
化合物(b):8―フルオロー2−ピリジンー2−イルー6−ピロリジンー1−イルキノリン、
化合物(c):8―メトキシー2−ピリジンー2−イルー6−ピロリジンー1−イルキノリン、
化合物(d):8―[2―(2−メトキシエトキシ)−エトキシ]−2−ピリジンー2−イルー6−ピロリジンー1−イルキノリン、
化合物(e):2−フェニルー6−ピロリジンー1ーイルキノリン、
化合物(f):6−ピロリジンー1ーイルー2−チオフェンー2−イルキノリン、
化合物(g):2−(4−メトキシピリジンー2−イル)−6−ピロリジンー1ーイルキノリン
Preferred specific examples of the quinoline compound or naphthalene compound of the present invention are listed below:
Compound (a): Pyridin-2-yl-6-pyrrolidine-1-ylquinoline,
Compound (b): 8-fluoro-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline,
Compound (c): 8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline,
Compound (d): 8- [2- (2-methoxyethoxy) -ethoxy] -2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline,
Compound (e): 2-phenyl-6-pyrrolidin-1-ylquinoline,
Compound (f): 6-pyrrolidin-1-yl-2-thiophen-2-ylquinoline,
Compound (g): 2- (4-methoxypyridin-2-yl) -6-pyrrolidin-1-ylquinoline
以上、列挙した化合物の中でも、以下に示す化合物が特に好ましい。
化合物(c):8―メトキシー2−ピリジンー2−イルー6−ピロリジンー1−イルキノリン、
化合物(d):8―[2―(2−メトキシエトキシ)−エトキシ]−2−ピリジンー2−イルー6−ピロリジンー1−イルキノリン、
Among the compounds listed above, the following compounds are particularly preferable.
Compound (c): 8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline,
Compound (d): 8- [2- (2-methoxyethoxy) -ethoxy] -2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline,
本発明の金属イオンセンシング剤は、一般式〈I〉で表されるキノリン化合物又はナフタレン化合物の1種のみを含んでもよく、又は2種以上を含んでもよい。本発明の金属イオンセンシング剤は、一般式〈I〉で表されるキノリン化合物又はナフタレン化合物を溶媒に溶解させ、溶液としてもよい。本発明の金属イオンセンシング剤による金属イオンの分析方法は、1種又は2種以上の一般式〈I〉で表されるキノリン化合物又はナフタレン化合物を溶解させた溶液に、金属が溶解した溶液を添加し、添加前後の特定の波長の蛍光強度を測定し比較することにより、金属イオン濃度を知ることができるものである。一般式〈I〉で表されるキノリン化合物又はナフタレン化合物を溶解させる溶媒としては、トルエン等の非極性溶媒およびメタノール、含水ジオキサンなどの極性溶媒を用いることができる。 The metal ion sensing agent of this invention may contain only 1 type of the quinoline compound or naphthalene compound represented by general formula <I>, or may contain 2 or more types. The metal ion sensing agent of the present invention may be a solution by dissolving the quinoline compound or naphthalene compound represented by the general formula <I> in a solvent. In the method for analyzing metal ions using the metal ion sensing agent of the present invention, a solution in which a metal is dissolved is added to a solution in which one or more quinoline compounds or naphthalene compounds represented by the general formula <I> are dissolved. Then, by measuring and comparing the fluorescence intensity of a specific wavelength before and after the addition, the metal ion concentration can be known. As a solvent for dissolving the quinoline compound or naphthalene compound represented by the general formula <I>, a nonpolar solvent such as toluene and a polar solvent such as methanol or hydrous dioxane can be used.
これらの溶媒としては、一般式〈I〉で表される蛍光分子を溶解させ、また、蛍光測定に影響を与えない溶媒が用いられる。適当な具体例としては、トルエン、メタノール、含水ジオキサン、水、HEPES バッファー、DMSOなどが挙げられる。 As these solvents, a solvent that dissolves the fluorescent molecule represented by the general formula <I> and does not affect the fluorescence measurement is used. Suitable examples include toluene, methanol, hydrous dioxane, water, HEPES buffer, DMSO and the like.
また、本発明の金属イオン分析方法としては、生体組織切片等に作用させることも可能である。それにより、組織切片における金属イオンの局在部位およびその量を測定することができる。 In addition, the metal ion analysis method of the present invention can be applied to a biological tissue section or the like. Thereby, the localization site | part and quantity of the metal ion in a tissue section can be measured.
本発明の金属イオンセンシング剤により金属イオン分析が可能な金属としては、12族金属が挙げられ、特に亜鉛、カドミウムが適している。 Examples of metals that can be analyzed by the metal ion sensing agent of the present invention include group 12 metals, and zinc and cadmium are particularly suitable.
金属イオン濃度は特に制限はなく、通常1X10−6M以上であり、本発明のキノリン化合物又はナフタレン化合物に比較して大過剰に存在してもよい。 The metal ion concentration is not particularly limited, and is usually 1 × 10 −6 M or more, and may be present in a large excess as compared with the quinoline compound or naphthalene compound of the present invention.
次に、一般式〈I〉で表されるキノリン化合物又はナフタレン化合物の製造方法の一例を説明するが、本発明の製造方法はこれに限定されるものではない。また、後述の反応を行う際に、当該部位以外の官能基については必要に応じてあらかじめ保護しておき、適当な段階においてこれを脱保護してもよい。更に、各工程において、反応は通常行われる方法で行えばよく、単離精製は結晶化、再結晶化、カラムクロマトグラフィー、分取HPLC等の慣用される方法を適宜選択し、または組み合わせて行えばよい。 Next, although an example of the manufacturing method of the quinoline compound or naphthalene compound represented by general formula <I> is demonstrated, the manufacturing method of this invention is not limited to this. Moreover, when performing the reaction mentioned later, functional groups other than the site may be protected in advance if necessary, and this may be deprotected at an appropriate stage. Furthermore, in each step, the reaction may be carried out by a usual method, and isolation and purification are carried out by appropriately selecting or combining conventional methods such as crystallization, recrystallization, column chromatography and preparative HPLC. Just do it.
一般製法
一般式〈1〉で表される化合物(X=N)の製造方法についてその一例を以下に例示する。
For general preparation method of manufacturing the general formula <1> a compound represented by (X = N) illustrate an example below.
工程1
工程2Process 2
(式中、R1、R2、R3は前記と同意である。) (Wherein R1, R2 and R3 are the same as above)
工程1
アルゴン雰囲気下、0℃乃至室温、好ましくは0℃雰囲気下で、2−アセチルピリジンの無水THF溶液に水酸化ベンジルトリメチルアンモニウムのメタノール溶液を加え、さらに化合物[1]の無水THF溶液を加えて、0℃で1乃至2時間撹拌し、さらに室温で10〜25時間撹拌する。反応混合物を酢酸エチルで抽出し、有機層を無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮する。残渣を順相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 9 : 1) で精製して、化合物[2]を得ることができる。
Under an argon atmosphere at 0 ° C. to room temperature, preferably at 0 ° C., a methanol solution of benzyltrimethylammonium hydroxide is added to an anhydrous THF solution of 2-acetylpyridine, and an anhydrous THF solution of compound [1] is further added, Stir at 0 ° C. for 1 to 2 hours and further at room temperature for 10 to 25 hours. The reaction mixture is extracted with ethyl acetate, the organic layer is dried over anhydrous magnesium sulfate and filtered, and the filtrate is concentrated under reduced pressure. The residue can be purified by normal phase silica gel column chromatography (methanol: water = 9: 1) to give compound [2].
工程2
アルゴン雰囲気下、上記化合物[2]、酢酸パラジウム(II)、ナトリウムーtertーブトキシドの無水トルエン懸濁液に、ピロリジン等のR3−H化合物、ナトリウムーtertーブトキシドの無水トルエン溶液を加えて2乃至5時間撹拌する。反応混合物にさらに酢酸パラジウム(II)、ナトリウム-tert-ブトキシドの無水トルエン溶液とを加え、室温で約30分、50℃で数時間撹拌する。反応混合物を酢酸エチルで希釈して濾過し、濾液を減圧下濃縮する。残渣を逆相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 4 : 1) で精製し、さらに順相フラッシュシリカゲルカラムクロマトグラフィー (ヘキサン : エーテル = 3 : 1) で精製することにより化合物[3]を得ることができる。
Process 2
Under an argon atmosphere, an anhydrous toluene solution of R 3 -H compound such as pyrrolidine and sodium-tert-butoxide is added to an anhydrous toluene suspension of the above compound [2], palladium (II) acetate, sodium-tert-butoxide for 2 to 5 hours. Stir. To the reaction mixture are further added palladium (II) acetate and an anhydrous toluene solution of sodium-tert-butoxide, and the mixture is stirred at room temperature for about 30 minutes and at 50 ° C. for several hours. The reaction mixture is diluted with ethyl acetate and filtered, and the filtrate is concentrated under reduced pressure. The residue is purified by reverse phase silica gel column chromatography (methanol: water = 4: 1), and further purified by normal phase flash silica gel column chromatography (hexane: ether = 3: 1) to obtain compound [3]. Can do.
上記方法は化合物[1]をスタート物質としてキノリン環を作る方法であるが、、上記の方法に限ることなく、既知のキノリン誘導体に適宜公知の手法に従ってR1,R2,R3基を導入してもよい。また、化合物[1]が公知でない場合であっても、化合物[1]は単純な化合物であるので、当業者であれば適宜公知の合成法によってこれを合成することができるだろう。また、Xが炭素原子である化合物については、公知のナフタレン誘導体に、公知の方法に従ってR1,R2,R3基を導入することによって製造することができる。 The above method is a method of forming a quinoline ring using compound [1] as a starting material, but is not limited to the above method, and R 1 , R 2 , R 3 groups are appropriately introduced into known quinoline derivatives according to known methods. May be. Even if the compound [1] is not known, since the compound [1] is a simple compound, those skilled in the art will be able to appropriately synthesize it by a known synthesis method. A compound in which X is a carbon atom can be produced by introducing R 1 , R 2 , and R 3 groups into a known naphthalene derivative according to a known method.
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited to these Examples.
化合物(a)の製造Production of compound (a)
6-ブロモ-2-ピリジン-2-イルキノリン (化合物2) の製造: Production of 6-bromo-2-pyridin-2-ylquinoline (compound 2) :
アルゴン雰囲気下、0 ºCで2-アセチルピリジン (44.8mL, 0.40 mmol) の無水THF (4.0 mL) 溶液に40% 水酸化ベンジルトリメチルアンモニウムのメタノール溶液 (727 mL, 1.6 mmol) を加え、さらに、2-アミノ-5-ブロモベンズアルデヒド (88.0 mg, 0.44 mmol) の無水THF (0.5 mL) 溶液を加え、同温で1時間撹拌した。さらに室温で20時間撹拌後、飽和塩化アンモニウム水溶液 (4.0 mL) を加えて5分間撹拌した。反応混合物を酢酸エチルで三回抽出し、有機層を無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 5 : 1) で精製し、化合物2の白色結晶(115.9 mg, 0.40 mmol, 100%収率) を得た。 Under an argon atmosphere, 40% benzyltrimethylammonium hydroxide in methanol (727 mL, 1.6 mmol) was added to a solution of 2-acetylpyridine (44.8 mL, 0.40 mmol) in anhydrous THF (4.0 mL) at 0 º C. Then, a solution of 2-amino-5-bromobenzaldehyde (88.0 mg, 0.44 mmol) in anhydrous THF (0.5 mL) was added, and the mixture was stirred at the same temperature for 1 hour. Furthermore, after stirring at room temperature for 20 hours, a saturated aqueous ammonium chloride solution (4.0 mL) was added and stirred for 5 minutes. The reaction mixture was extracted three times with ethyl acetate, the organic layer was dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 5: 1) to give compound 2 as white crystals (115.9 mg, 0.40 mmol, 100% yield).
白色結晶 mp 122-123 ºC. IR (KBr) ncm-1; 1595, 1487, 1432, 785. 1H NMR (300 MHz,
CD3OD) d; 7.52 (1H, ddd, J = 1.0, 4.8, 7.5 Hz), 7.89 (1H, dd, J =
2.2, 9.1 Hz), 8.02 (1H, ddd, J = 1.8, 7.5, 8.0 Hz), 8.06 (1H, d, J =
9.1 Hz), 8.18 (1H, d, J = 2.2 Hz), 8.38 (1H, d, J = 8.7 Hz), 8.52
(1H, d, J = 8.7 Hz), 8.59 (1H, dt, J = 1.0, 8.0 Hz), 8.73 (1H,
ddd, J = 1.0, 1.8, 4.8 Hz). 13C NMR (75 MHz, CD3OD)
d; 120.9, 121.8, 123.2, 125.8, 130.8, 131.0, 132.3, 134.4, 137.5,
138.7, 147.7, 150.3, 157.0, 157.7.
White crystal mp 122-123 º C.IR (KBr) ncm -1 ; 1595, 1487, 1432, 785. 1 H NMR (300 MHz,
CD 3 OD) d; 7.52 (1H, ddd, J = 1.0, 4.8, 7.5 Hz), 7.89 (1H, dd, J =
2.2, 9.1 Hz), 8.02 (1H, ddd, J = 1.8, 7.5, 8.0 Hz), 8.06 (1H, d, J =
9.1 Hz), 8.18 (1H, d, J = 2.2 Hz), 8.38 (1H, d, J = 8.7 Hz), 8.52
(1H, d, J = 8.7 Hz), 8.59 (1H, dt, J = 1.0, 8.0 Hz), 8.73 (1H,
ddd, J = 1.0, 1.8, 4.8 Hz). 13 C NMR (75 MHz, CD 3 OD)
d; 120.9, 121.8, 123.2, 125.8, 130.8, 131.0, 132.3, 134.4, 137.5,
138.7, 147.7, 150.3, 157.0, 157.7.
2-ピリジン-2-イル-6-ピロリジン-1-イルキノリン(化合物(a))の製造:Production of 2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline (compound (a)):
アルゴン雰囲気下、化合物2 (122.0 mg, 0.43 mmol)、酢酸パラジウム(II) (3.84 mg, 17.1
mmol)、ナトリウム-tert-ブトキシド (53.5 mg, 0.56 mmol) の無水トルエン (0.6 mL) 懸濁液に、さらにピロリジン (47.1 mL, 0.56 mmol)、トリ-tert-ブチルホスフィン (3.84 mL, 15.4 mmol) の無水トルエン (0.1 mL) 溶液を加え、室温で3時間撹拌した。さらに酢酸パラジウム(II) (3.84
mg, 17.1 mmol)、ナトリウム-tert-ブトキシド (53.5 mg, 0.56 mmol) と、ピロリジン (47.1 mL, 0.56 mmol)、トリ-tert-ブチルホスフィン (3.84 mL, 15.4 mmol) の無水トルエン (0.1 mL) 溶液を加え、室温で30分間、50 ºCで1時間撹拌した。室温に冷却後、反応混合物に飽和食塩水 (3 mL) と酢酸エチル (3 mL) を加え、5分間撹拌した。有機層を分取後、水層を酢酸エチルで二回抽出し、得た有機層を合わせ無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 10 : 1) で精製し、化合物(a)の黄色結晶(89.4 mg, 0.32 mmol, 76%収率) を得た。
Under argon atmosphere, Compound 2 (122.0 mg, 0.43 mmol), Palladium (II) acetate (3.84 mg, 17.1
mmol), sodium-tert-butoxide (53.5 mg, 0.56 mmol) in anhydrous toluene (0.6 mL) suspension, pyrrolidine (47.1 mL, 0.56 mmol), tri-tert-butylphosphine (3.84 mL, 15.4 mmol) Solution of anhydrous toluene (0.1 mL) was added and stirred at room temperature for 3 hours. Further palladium (II) acetate (3.84
mg, 17.1 mmol), sodium-tert-butoxide (53.5 mg, 0.56 mmol), pyrrolidine (47.1 mL, 0.56 mmol), tri-tert-butylphosphine (3.84 mL, 15.4 mmol) in anhydrous toluene (0.1 mL) And stirred at room temperature for 30 minutes and 50 º C for 1 hour. After cooling to room temperature, saturated brine (3 mL) and ethyl acetate (3 mL) were added to the reaction mixture, and the mixture was stirred for 5 min. After separating the organic layer, the aqueous layer was extracted twice with ethyl acetate. The obtained organic layers were combined, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 10: 1) to obtain yellow crystals (89.4 mg, 0.32 mmol, 76% yield) of compound (a).
黄色結晶 mp 185-188 ºC. IR (KBr) ncm-1; 1622, 1590, 1509, 1390,
813. 1H NMR (300 MHz, C6D6) d; 1.50-1.67
(4H, m), 2.95-3.10 (4H, m), 6.60 (1H, d, J = 2.7 Hz), 6.85 (1H, ddd, J
= 1.2, 4.8, 7.4 Hz), 7.03 (1H, dd, J = 2.7, 9.2 Hz), 7.42 (1H, ddd, J
= 1.8, 7.4, 8.0 Hz), 7.94 (1H, d, J = 8.7 Hz), 8.45 (1H, d, J =
9.2 Hz), 8.74 (1H, ddd, J = 0.9, 1.8, 4.8 Hz), 9.13 (2H, d, J =
8.7 Hz). 13C NMR (75 MHz, C6D6) d; 25.4,
47.5, 104.1, 119.2, 119.7, 121.1, 123.1, 130.8, 131.2, 134.3, 136.4, 142.4,
146.3, 149.2, 152.2, 157.6. HRESIMS Calcd for C18H18N3:
276.1501 (M+H)+, Found: 276.1520. Anal. Calcd for C18H17N3:
C, 78.40; H, 6.23; N, 15.60. Found: C, 78.52; H, 6.22; N, 15.26.
Yellow crystal mp 185-188 º C. IR (KBr) ncm -1 ; 1622, 1590, 1509, 1390,
813. 1 H NMR (300 MHz, C 6 D 6 ) d; 1.50-1.67
(4H, m), 2.95-3.10 (4H, m), 6.60 (1H, d, J = 2.7 Hz), 6.85 (1H, ddd, J
= 1.2, 4.8, 7.4 Hz), 7.03 (1H, dd, J = 2.7, 9.2 Hz), 7.42 (1H, ddd, J
= 1.8, 7.4, 8.0 Hz), 7.94 (1H, d, J = 8.7 Hz), 8.45 (1H, d, J =
9.2 Hz), 8.74 (1H, ddd, J = 0.9, 1.8, 4.8 Hz), 9.13 (2H, d, J =
. 8.7 Hz) 13 C NMR ( 75 MHz, C 6 D 6) d; 25.4,
47.5, 104.1, 119.2, 119.7, 121.1, 123.1, 130.8, 131.2, 134.3, 136.4, 142.4,
146.3, 149.2, 152.2, 157.6. HRESIMS Calcd for C 18 H 18 N 3 :
276.1501 (M + H) + , Found: 276.1520. Anal. Calcd for C 18 H 17 N 3 :
C, 78.40; H, 6.23; N, 15.60. Found: C, 78.52; H, 6.22; N, 15.26.
化合物(b)の製造Production of compound (b)
2-フルオロフェニルーカルバミン酸ーtert-―ブチルエステル (化合物4) の製造: Preparation of 2-fluorophenyl-carbamic acid-tert-butyl ester (compound 4) :
アルゴン雰囲気下、2-フルオロアニリン (2.61 mL, 27.0 mmol)の無水1,4-ジオキサン (5 mL) 溶液にジ-tert-ブチルジカルボネート (8.06 mL, 35.1 mmol) を加え、室温で4時間、50 ºCで48時間撹拌した後、減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 20 : 1) で精製し、化合物4の白色結晶(5.70 mg, 27.0 mmol, 100%収率) を得た。
Di-tert-butyl dicarbonate (8.06 mL, 35.1 mmol) was added to a solution of 2-fluoroaniline (2.61 mL, 27.0 mmol) in
白色結晶 mp 44-45 ºC. IR (KBr) ncm-1; 3300, 2983, 1708, 1525,
1260, 1158, 754. 1H NMR (300 MHz, CDCl3) d; 1.53 (9H,
s), 6.72 (1H, bs), 6.91-7.13 (3H, m), 8.08 (1H, t, J = 7.9 Hz). 13C
NMR (75 MHz, C6D6) d; 28.2, 80.9, 114.6 (d,
J = 19.2 Hz), 120.0 (d, J = 7.1 Hz), 122.8 (dd, J = 2.0,
7.4 Hz), 124.4 (d, J =3.6 Hz), 126.8 (dd, J = 6.0, 10.0 Hz),
152.0 (dd, J = 4.8, 242.1 Hz), 152.3 (d, J = 4.5 Hz).
White crystal mp 44-45 º C. IR (KBr) ncm -1 ; 3300, 2983, 1708, 1525,
1260, 1158, 754. 1 H NMR (300 MHz, CDCl 3 ) d; 1.53 (9H,
s), 6.72 (1H, bs ), 6.91-7.13 (3H, m), 8.08 (1H, t, J = 7.9 Hz). 13 C
NMR (75 MHz, C 6 D 6 ) d; 28.2, 80.9, 114.6 (d,
J = 19.2 Hz), 120.0 (d, J = 7.1 Hz), 122.8 (dd, J = 2.0,
7.4 Hz), 124.4 (d, J = 3.6 Hz), 126.8 (dd, J = 6.0, 10.0 Hz),
152.0 (dd, J = 4.8, 242.1 Hz), 152.3 (d, J = 4.5 Hz).
2-フルオロ-6-フォルミルフェニル-カルバミン酸ーtert-―ブチルエステル (化合物5) の製造: Preparation of 2-fluoro-6-formylphenyl-carbamic acid-tert-butyl ester (compound 5) :
アルゴン雰囲気下、化合物4 (12.8 g, 60.6 mmol) の無水THF (90.0 mL) 溶液に-78 ºCでtert-BuLi (1.47 M ペンタン溶液, 90.7 mL, 133.3 mmol) を滴下して1時間撹拌した後、さらに-20 ºCで3時間撹拌した。反応混合物に無水DMF (10.3 mL, 133.3 mmol) を滴下し、同温で30分間撹拌した後、飽和塩化アンモニウム水溶液 (150 mL) を加えて室温で20分間撹拌した。有機層を分取後、水層を酢酸エチルで二回抽出し、得た有機層を合わせ無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 10 : 1) で精製し、化合物5の白色結晶(9.12 g, 38.1 mmol, 63%収率) を得た。 Under an argon atmosphere, tert-BuLi (1.47 M pentane solution, 90.7 mL, 133.3 mmol) was added dropwise to a solution of compound 4 (12.8 g, 60.6 mmol) in anhydrous THF (90.0 mL) at -78 º C and stirred for 1 hour. Then, the mixture was further stirred at −20 º C for 3 hours. Anhydrous DMF (10.3 mL, 133.3 mmol) was added dropwise to the reaction mixture, and the mixture was stirred at the same temperature for 30 minutes. A saturated aqueous ammonium chloride solution (150 mL) was added, and the mixture was stirred at room temperature for 20 minutes. After separating the organic layer, the aqueous layer was extracted twice with ethyl acetate. The obtained organic layers were combined, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 10: 1) to obtain white crystals of compound 5 (9.12 g, 38.1 mmol, 63% yield).
白色結晶 mp 85-86 ºC. IR (KBr) ncm-1; 3277, 1720, 1702, 1528,
1268, 1157. 1H NMR (300 MHz, CDCl3) d; 1.49 (9H,
s), 7.22-7.38 (2H, m), 7.56 (1H, ddd, J = 0.8, 1.4, 7.5 Hz), 7.89 (1H,
bs), 9.98 (1H, d, J =1.4 Hz). 13C NMR (75 MHz, CDCl3)
d; 28.0, 81.7, 121.6 (d, J = 21.0 Hz), 125.4 (d, J =
7.8 Hz), 127.4 (d, J = 12.6 Hz), 127.6 (d, J = 3.2 Hz), 129.5 (d,
J = 1.1 Hz), 153.0, 155.4 (d, J = 250.9 Hz), 191.3 (d, J =
3.1 Hz). HRESIMS Calcd for C12H15FNO3: 240.1036
(M+H)+, Found: 240.1021. Anal. Calcd for C12H14FNO3:
C, 60.26; H, 6.07; N, 5.72. Found: C, 60.24; H, 5.90; N, 5.85.
White crystal mp 85-86 º C. IR (KBr) ncm -1 ; 3277, 1720, 1702, 1528,
1268, 1157. 1 H NMR (300 MHz, CDCl 3 ) d; 1.49 (9H,
s), 7.22-7.38 (2H, m), 7.56 (1H, ddd, J = 0.8, 1.4, 7.5 Hz), 7.89 (1H,
bs), 9.98 (1H, d , J = 1.4 Hz). 13 C NMR (75 MHz, CDCl 3)
d; 28.0, 81.7, 121.6 (d, J = 21.0 Hz), 125.4 (d, J =
7.8 Hz), 127.4 (d, J = 12.6 Hz), 127.6 (d, J = 3.2 Hz), 129.5 (d,
J = 1.1 Hz), 153.0, 155.4 (d, J = 250.9 Hz), 191.3 (d, J =
3.1 Hz) .HRESIMS Calcd for C 12 H 15 FNO 3 : 240.1036
(M + H) + , Found: 240.1021. Anal. Calcd for C 12 H 14 FNO 3 :
C, 60.26; H, 6.07; N, 5.72. Found: C, 60.24; H, 5.90; N, 5.85.
2-フルオロ-6-ハイドロキシメチルフェニル-カルバミン酸ーtert-―ブチルエステル (化合物6) の製造: Preparation of 2-fluoro-6-hydroxymethylphenyl-carbamic acid-tert-butyl ester (compound 6) :
アルゴン雰囲気下、室温で化合物5 (400.0 mg, 1.67 mmol) のメタノール (4.0 mL) 溶液に水素化ホウ素ナトリウム (63.3 mg,
1.67 mmol) を徐々に加え、同温で15分間撹拌した。反応混合物に水を加え、水層を酢酸エチルで三回抽出した。得た有機層を合わせ飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 2 : 1) で精製し、化合物6の白色結晶(398.5 mg, 1.65 mmol, 99%収率) を得た。
To a solution of compound 5 (400.0 mg, 1.67 mmol) in methanol (4.0 mL) at room temperature under argon atmosphere, sodium borohydride (63.3 mg,
1.67 mmol) was gradually added and stirred at the same temperature for 15 minutes. Water was added to the reaction mixture, and the aqueous layer was extracted three times with ethyl acetate. The obtained organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 2: 1) to give compound 6 as white crystals (398.5 mg, 1.65 mmol, 99% yield).
白色結晶 mp 64-66 ºC. IR (KBr) ncm-1; 3327, 1711, 1512, 1468,
1251, 1161. 1H NMR (300 MHz, CDCl3) d; 1.48 (9H,
s), 3.72 (1H, bs), 4.53 (2H, d, J = 5.7 Hz), 6.61 (1H, bs), 6.97-7.07
(1H, m), 7.11-7.21 (2H, m). 13C NMR (75 MHz, CDCl3) d; 28.1, 61.6
(d, J = 2.6 Hz), 81.3, 115.2 (d, J = 20.7 Hz), 123.4 (d, J =
12.7 Hz), 125.3, 127.2 (d, J = 8.3 Hz), 138.8, 154.8, 157.0 (d, J =
247.2 Hz). HRESIMS Calcd for C12H17FNO3: 242.1192
(M+H)+, Found: 242.1213. Anal. Calcd for C12H16FNO3:
C, 59.80; H, 6.52; N, 5.70. Found: C, 59.74; H, 6.68; N, 5.81.
White crystal mp 64-66 º C. IR (KBr) ncm -1 ; 3327, 1711, 1512, 1468,
1251, 1161. 1 H NMR (300 MHz, CDCl 3 ) d; 1.48 (9H,
s), 3.72 (1H, bs), 4.53 (2H, d, J = 5.7 Hz), 6.61 (1H, bs), 6.97-7.07
(1H, m), 7.11-7.21 (2H, m). 13 C NMR (75 MHz, CDCl 3 ) d; 28.1, 61.6
(d, J = 2.6 Hz), 81.3, 115.2 (d, J = 20.7 Hz), 123.4 (d, J =
12.7 Hz), 125.3, 127.2 (d, J = 8.3 Hz), 138.8, 154.8, 157.0 (d, J =
HRESIMS Calcd for C 12 H 17 FNO 3 : 242.1192
(M + H) + , Found: 242.1213. Anal. Calcd for C 12 H 16 FNO 3 :
C, 59.80; H, 6.52; N, 5.70. Found: C, 59.74; H, 6.68; N, 5.81.
2-アミノ-3-フルオロフェニル-メタノールl (化合物7) の製造:Preparation of 2-amino-3-fluorophenyl-methanol (compound 7):
アルゴン雰囲気下、室温で化合物6 (8.35 g, 34.6 mmol) のクロロホルム (40.0 mL) 溶液にヨウ化トリメチルシリル (5.62 mL,
39.5 mmol) を加え、同温で30分間撹拌した。反応混合物を飽和炭酸水素ナトリウム水溶液でpH 9.0 にし、さらに水を加えて有機層を分取した。水層を酢酸エチルで三回抽出し、得た有機層を合わせ飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣をアルゴン雰囲気下、室温で無水THF (40 mL) に溶解し、フッ化テトラブチルアンモニウム (1.0 M
THF 溶液, 19.8
mL, 19.8 mmol) を加え、同温で30分間撹拌した。水を加えて有機層を分取後、水層を酢酸エチルで三回抽出し、得た有機層を合わせ飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 3 : 1) で精製し、化合物7の白色結晶(2.9 g, 20.5 mmol, 59%収率) を得た。
To a solution of compound 6 (8.35 g, 34.6 mmol) in chloroform (40.0 mL) at room temperature under argon atmosphere, trimethylsilyl iodide (5.62 mL,
39.5 mmol) was added and stirred at the same temperature for 30 minutes. The reaction mixture was adjusted to pH 9.0 with a saturated aqueous sodium hydrogen carbonate solution, and water was added to separate the organic layer. The aqueous layer was extracted three times with ethyl acetate, and the obtained organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was dissolved in anhydrous THF (40 mL) at room temperature under an argon atmosphere, and tetrabutylammonium fluoride (1.0 M
THF solution, 19.8
mL, 19.8 mmol) was added, and the mixture was stirred at the same temperature for 30 minutes. Water was added to separate the organic layer, and the aqueous layer was extracted three times with ethyl acetate. The obtained organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. . The residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 3: 1) to give compound 7 as white crystals (2.9 g, 20.5 mmol, 59% yield).
白色結晶 mp 70-71 ºC. IR (KBr) ncm-1;
3413, 3336, 1638, 1491, 1233, 998, 778, 728. 1H NMR (300 MHz, CDCl3)
d; 2.05 (1H, bs), 4.22 (2H, bs), 4.66 (2H, s), 6.63 (1H, dt, J =
5.1, 7.8 Hz), 6.84 (1H, d, J = 7.3 Hz), 6.96 (1H, ddd, J = 1.4,
8.2, 10.8 Hz). 13C NMR (75 MHz, CDCl3) d; 63.7 (d, J
= 3.0 Hz), 115.0 (d, J = 19.2 Hz), 117.4 (d, J = 7.5 Hz),
124.1 (d, J = 2.8 Hz), 127.0 (d, J = 3.3 Hz), 134.1 (d, J =
13.0 Hz), 152.0 (d, J = 238.3 Hz). HRESIMS Calcd for C7H9FNO:
142.0668 (M+H)+, Found: 142.0659. Anal. Calcd for C7H8FNO:
C, 59.73; H, 5.84; N, 9.77. Found: C, 59.57; H, 5.71; N, 9.92.
White crystals mp 70-71 º C. IR (KBr) ncm -1 ;
3413, 3336, 1638, 1491, 1233, 998, 778, 728. 1 H NMR (300 MHz, CDCl 3 )
d; 2.05 (1H, bs), 4.22 (2H, bs), 4.66 (2H, s), 6.63 (1H, dt, J =
5.1, 7.8 Hz), 6.84 (1H, d, J = 7.3 Hz), 6.96 (1H, ddd, J = 1.4,
. 8.2, 10.8 Hz) 13 C NMR (75 MHz, CDCl 3) d; 63.7 (d, J
= 3.0 Hz), 115.0 (d, J = 19.2 Hz), 117.4 (d, J = 7.5 Hz),
124.1 (d, J = 2.8 Hz), 127.0 (d, J = 3.3 Hz), 134.1 (d, J =
13.0 Hz), 152.0 (d, J = 238.3 Hz). HRESIMS Calcd for C 7 H 9 FNO:
142.0668 (M + H) + , Found: 142.0659. Anal. Calcd for C 7 H 8 FNO:
C, 59.73; H, 5.84; N, 9.77. Found: C, 59.57; H, 5.71; N, 9.92.
2-アミノ-5-ブロモ-3-フルオロフェニル-メタノール (化合物8) の製造: Preparation of 2-amino-5-bromo-3-fluorophenyl-methanol (Compound 8) :
アルゴン雰囲気下、0 ºCで化合物7 (10.0 mg, 70.9 mmol) の無水ジクロロメタン (0.3 mL) 溶液に2,4,4,6-テトラブロモ-2,5-シクロヘキサジエノン (29.0 mg, 70.9 mmol) を加え、同温で15分間撹拌した後、さらに室温で15分間撹拌した。反応混合物に2N 水酸化ナトリウム水溶液を加えて有機層を分取した。水層を酢酸エチルで三回抽出し、得た有機層を合わせ飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 1 : 1) で精製し、化合物8の白色結晶(13.9 mg, 63.2 mmol, 89%収率) を得た。 Under argon atmosphere, 0 º C was added 2,4,4,6-tetrabromo-2,5-cyclohexadienone (29.0 mg, 70.9 mmol) to a solution of compound 7 (10.0 mg, 70.9 mmol) in anhydrous dichloromethane (0.3 mL). ) Was added, and the mixture was stirred at the same temperature for 15 minutes, and further stirred at room temperature for 15 minutes. A 2N aqueous sodium hydroxide solution was added to the reaction mixture, and the organic layer was separated. The aqueous layer was extracted three times with ethyl acetate, and the obtained organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 1: 1) to obtain white crystals of compound 8 (13.9 mg, 63.2 mmol, 89% yield).
白色結晶 mp 136-138 ºC. IR (KBr) ncm-1; 3399, 3326, 1638, 1490,
1232, 1000, 865. 1H NMR (300 MHz, CDCl3) d; 1.68 (1H,
t, J = 5.5 Hz), 4.25 (2H, bs), 4.66 (2H, d, J = 5.5 Hz), 7.02
(1H, s), 7.13 (1H, dd, J = 2.2, 10.1 Hz). 13C NMR (75 MHz,
CDCl3) d; 63.4 (d, J = 3.1 Hz), 107.8 (d, J = 9.5 Hz), 118.2
(d, J = 22.4 Hz), 126.9 (d, J = 3.0 Hz), 128.1 (d, J = 3.6
Hz), 133.6 (d, J = 12.9 Hz), 151.6 (d, J = 242.9 Hz). HRESIMS
Calcd for C7H8BrFNO: 219.9773 (M+H)+, Found:
219.9786. Anal. Calcd for C7H7BrFNO: C, 37.89; H, 3.58;
N, 6.00. Found: C, 38.21; H, 3.21; N, 6.37.
White crystal mp 136-138 º C. IR (KBr) ncm -1 ; 3399, 3326, 1638, 1490,
1232, 1000, 865. 1 H NMR (300 MHz, CDCl 3 ) d; 1.68 (1H,
t, J = 5.5 Hz), 4.25 (2H, bs), 4.66 (2H, d, J = 5.5 Hz), 7.02
(1H, s), 7.13 ( 1H, dd, J = 2.2, 10.1 Hz). 13 C NMR (75 MHz,
CDCl 3 ) d; 63.4 (d, J = 3.1 Hz), 107.8 (d, J = 9.5 Hz), 118.2
(d, J = 22.4 Hz), 126.9 (d, J = 3.0 Hz), 128.1 (d, J = 3.6
Hz), 133.6 (d, J = 12.9 Hz), 151.6 (d, J = 242.9 Hz). HRESIMS
Calcd for C 7 H 8 BrFNO: 219.9773 (M + H) + , Found:
219.9786. Anal.Calcd for C 7 H 7 BrFNO: C, 37.89; H, 3.58;
N, 6.00. Found: C, 38.21; H, 3.21; N, 6.37.
2-アミノ-5-ブロモ-3-フルオロベンズアルデヒド (化合物9) の製造: Preparation of 2-amino-5-bromo-3-fluorobenzaldehyde (Compound 9) :
アルゴン雰囲気下、室温で化合物8 (23.0 mg, 0.10 mol) の無水ジクロロメタン (1.5 mL) 溶液に二酸化マンガン (27.3 mg, 0.31 mol) を加え、同温で13時間撹拌した。さらに二酸化マンガン (27.3 mg,
0.31 mol) を混合物に加え、2時間撹拌した。反応混合物を濾過後、濾液を減圧下濃縮し、化合物9の白色結晶(21.8 mg, 0.10 mol, 100%収率) を得た。
Manganese dioxide (27.3 mg, 0.31  mol) was added to a solution of compound 8 (23.0 mg, 0.10  mol) in anhydrous dichloromethane (1.5 mL) at room temperature under an argon atmosphere and stirred at the same temperature for 13 hours. did. In addition, manganese dioxide (27.3 mg,
0.31  mol) was added to the mixture and stirred for 2 hours. After filtration of the reaction mixture, the filtrate was concentrated under reduced pressure to obtain white crystals of compound 9 (21.8 mg, 0.10  mol, 100% yield).
白色結晶 mp 74-76 ºC. IR (KBr) ncm-1;
3444, 3337, 1669, 1629, 1551, 1475, 1230, 872. 1H NMR (300 MHz, CDCl3)
d; 6.17 (2H, bs), 7.28 (1H, dd, J = 2.2, 10.5 Hz), 7.43 (1H,
t, J = 2.0 Hz), 9.81 (1H, d, J = 2.0 Hz). 13C NMR (75
MHz, CDCl3) d; 105.3 (d, J = 8.8 Hz), 120.9 (d, J =4.8 Hz), 122.6
(d, J = 21.2 Hz), 132.4 (d, J = 3.4 Hz), 138.0 (d, J =
13.7 Hz), 150.6 (d, J = 246.6 Hz), 192.2 (d, J = 2.7 Hz). HRESIMS
Calcd for C7H6BrFNO: 217.9617 (M+H)+, Found:
217.9635. Anal. Calcd for C7H5BrFNO: C, 38.79; H, 2.64;
N, 6.20. Found: C, 38.56; H, 2.31; N, 6.42.
White crystals mp 74-76 º C. IR (KBr) ncm -1 ;
3444, 3337, 1669, 1629, 1551, 1475, 1230, 872.1 1 H NMR (300 MHz, CDCl 3 )
d; 6.17 (2H, bs), 7.28 (1H, dd, J = 2.2, 10.5 Hz), 7.43 (1H,
t, J = 2.0 Hz), 9.81 (1H, d, J = 2.0 Hz). 13 C NMR (75
MHz, CDCl 3 ) d; 105.3 (d, J = 8.8 Hz), 120.9 (d, J = 4.8 Hz), 122.6
(d, J = 21.2 Hz), 132.4 (d, J = 3.4 Hz), 138.0 (d, J =
13.7 Hz), 150.6 (d, J = 246.6 Hz), 192.2 (d, J = 2.7 Hz). HRESIMS
Calcd for C 7 H 6 BrFNO: 217.9617 (M + H) + , Found:
217.9635. Anal.Calcd for C 7 H 5 BrFNO: C, 38.79; H, 2.64;
N, 6.20. Found: C, 38.56; H, 2.31; N, 6.42.
6-ブロモ-8-フルオロ-2-ピリジン-2-イルキノリン (化合物10) の製造: Preparation of 6-bromo-8-fluoro-2-pyridin-2-ylquinoline (compound 10) :
アルゴン雰囲気下、0 ºCで2-アセチルピリジン (28.1 mL, 0.25 mmol) の無水THF (0.5 mL) 溶液にカリウム-tert-ブトキシド (51.6 mg, 0.46 mmol) のtert-ブタノール (0.46 mL) 溶液を加え、さらに、化合物9 (50.0 mg, 0.23 mol) を加え、同温で1.5時間撹拌した。さらに室温で30分間撹拌後、反応混合物を減圧下濃縮した。残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 5 : 1) で精製し、化合物10の白色結晶(59.1 mg, 0.17 mmol, 75%収率) を得た。
A solution of potassium tert-butoxide (51.6 mg, 0.46 mmol) in tert-butanol (0.46 mL) in anhydrous THF (0.5 mL) in 2-acetylpyridine (28.1 mL, 0.25 mmol) at 0 º C in an argon atmosphere Further, Compound 9 (50.0 mg, 0.23  mol) was added and stirred at the same temperature for 1.5 hours. After further stirring at room temperature for 30 minutes, the reaction mixture was concentrated under reduced pressure. The residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 5: 1) to give
白色結晶 mp 155-157 ºC. IR (KBr) ncm-1; 1593, 1490, 861, 777. 1H
NMR (300 MHz, DMSO) d; 7.68 (1H, ddd, J = 1.0, 4.8, 7.4
Hz), 8.04 (1H, dd, J = 2.0, 10.3 Hz), 8.16 (1H, ddd, J = 1.8, 7.4,
9.0 Hz), 8.32 (1H, bs), 8.68 (1H, bt, J = 9.0 Hz), 8.70 (1H, d, J =
8.7 Hz), 8.79 (1H, d, J = 8.7 Hz), 8.89 (1H, bd, J = 4.8 Hz). 13C
NMR (75 MHz, DMSO) d; 118.7 (d, J = 22.1 Hz), 119.6 (d, J = 9.7 Hz),
121.3, 122.4, 126.1, 127.1 (d, J = 4.8 Hz), 131.2 (d, J = 2.4
Hz), 137.2 (d, J = 11.5 Hz), 137.3 (d, J = 3.0 Hz), 138.5, 150.4,
155.4, 156.9, 158.1 (d, J = 260.4 Hz). HRESIMS Calcd for C14H9BrFN2:
302.9933 (M+H)+, Found: 302.9944. Anal. Calcd for C14H8BrFN2:
C, 55.22; H, 3.04; N, 9.20. Found: C, 55.47; H, 2.66; N, 9.24.
White crystal mp 155-157 º C. IR (KBr) ncm -1 ; 1593, 1490, 861, 777. 1 H
NMR (300 MHz, DMSO) d; 7.68 (1H, ddd, J = 1.0, 4.8, 7.4
Hz), 8.04 (1H, dd, J = 2.0, 10.3 Hz), 8.16 (1H, ddd, J = 1.8, 7.4,
9.0 Hz), 8.32 (1H, bs), 8.68 (1H, bt, J = 9.0 Hz), 8.70 (1H, d, J =
8.7 Hz), 8.79 (1H, d, J = 8.7 Hz), 8.89 (1H, bd, J = 4.8 Hz). 13 C
NMR (75 MHz, DMSO) d; 118.7 (d, J = 22.1 Hz), 119.6 (d, J = 9.7 Hz),
121.3, 122.4, 126.1, 127.1 (d, J = 4.8 Hz), 131.2 (d, J = 2.4
Hz), 137.2 (d, J = 11.5 Hz), 137.3 (d, J = 3.0 Hz), 138.5, 150.4,
155.4, 156.9, 158.1 (d, J = 260.4 Hz) .HRESIMS Calcd for C 14 H 9 BrFN 2 :
302.9933 (M + H) + , Found: 302.9944. Anal.Calcd for C 14 H 8 BrFN 2 :
C, 55.22; H, 3.04; N, 9.20. Found: C, 55.47; H, 2.66; N, 9.24.
8-フルオロ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリン(化合物(b))の製造: Production of 8-fluoro-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline (compound (b)) :
アルゴン雰囲気下、ピロリジン (52.3 mL, 0.62 mmol) 、酢酸パラジウム(II) (1.4 mg, 6.2 mmol)、(S)-BINAP (5.8 mg,
9.3 mmol) の無水トルエン (1.0 mL) 懸濁液を、100 ºCで3分間撹拌した。室温に冷却後、反応混合物に化合物10
(187.5 mg, 0.62 mmol) の無水トルエン (1.5 mL) 溶液とナトリウム-tert-ブトキシド (83.2 mg, 0.87 mmol) を加え、100 ºCで1.5時間撹拌した。さらに、ピロリジン (52.3 mL, 0.62 mmol) 、酢酸パラジウム(II) (1.4 mg, 6.2 mmol)、(S)-BINAP (5.8 mg, 9.3 mmol)、ナトリウム-tert-ブトキシド (83.2 mg, 0.87 mmol) を加え、100 ºCで30分間撹拌した。反応混合物を酢酸エチルで希釈して濾過し、濾液を減圧下濃縮した。残渣を逆相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 4 : 1) で精製し、さらに順相フラッシュシリカゲルカラムクロマトグラフィー (ヘキサン : エーテル = 3 : 1) で精製して、化合物(b)の黄色結晶(148.4 mg, 0.51 mmol, 82%収率) を得た。
Under argon atmosphere, pyrrolidine (52.3 mL, 0.62 mmol), palladium (II) acetate (1.4 mg, 6.2 mmol), (S) -BINAP (5.8 mg,
A suspension of 9.3 mmol) in anhydrous toluene (1.0 mL) was stirred at 100 º C for 3 minutes. After cooling to room temperature,
A solution of (187.5 mg, 0.62 mmol) in anhydrous toluene (1.5 mL) and sodium-tert-butoxide (83.2 mg, 0.87 mmol) were added, and the mixture was stirred at 100 º C for 1.5 hours. Furthermore, pyrrolidine (52.3 mL, 0.62 mmol), palladium (II) acetate (1.4 mg, 6.2 mmol), (S) -BINAP (5.8 mg, 9.3 mmol), sodium-tert-butoxide (83.2 mg, 0.87 mmol) were added. In addition, the mixture was stirred at 100 º C for 30 minutes. The reaction mixture was diluted with ethyl acetate and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by reverse phase silica gel column chromatography (methanol: water = 4: 1) and further purified by normal phase flash silica gel column chromatography (hexane: ether = 3: 1) to give yellow crystals of compound (b). (148.4 mg, 0.51 mmol, 82% yield) was obtained.
黄色結晶 mp 205-207 ºC. IR (KBr) ncm-1; 1635, 1501, 1484, 1441,
774. 1H NMR (300 MHz, CD3OD) d; 2.10-2.16 (4H, m),
3.43-3.49 (4H, m), 6.63 (1H, d, J = 2.5 Hz), 7.08 (1H, dd, J =
2.5, 13.7 Hz), 7.46 (1H, ddd, J = 1.2, 4.9, 7.5 Hz), 7.98 (1H, ddd, J
= 1.8, 7.5, 8.0 Hz), 8.17 (1H, dd, J = 1.7, 8.8 Hz), 8.33 (1H, d J
= 8.8 Hz), 8.53 (1H, bd, J = 8.0 Hz), 8.67 (1H, ddd J = 0.8,
1.8, 4.9 Hz). 13C NMR (75 MHz, DMSO) d; 26.1, 48.7, 100.5 (d,
J = 2.8 Hz), 104.8 (d, J = 22.2 Hz), 120.5, 121.4, 124.9, 131.4
(d, J = 11.9 Hz), 132.0 (d, J = 3.6 Hz), 135.2 (d, J = 3.3
Hz), 138.2, 147.1 (d, J = 10.6 Hz), 150.1, 151.2, 156.5, 159.0 (d, J =
252.9 Hz). HRESIMS Calcd for C18H17FN3: 294.1407
(M+H)+, Found: 294.1422. Anal. Calcd for C18H16FN3:
C, 73.91; H, 5.58; N, 14.28. Found: C, 73.70; H, 5.50; N, 14.32.
Yellow crystal mp 205-207 º C. IR (KBr) ncm -1 ; 1635, 1501, 1484, 1441,
774. 1 H NMR (300 MHz, CD 3 OD) d; 2.10-2.16 (4H, m),
3.43-3.49 (4H, m), 6.63 (1H, d, J = 2.5 Hz), 7.08 (1H, dd, J =
2.5, 13.7 Hz), 7.46 (1H, ddd, J = 1.2, 4.9, 7.5 Hz), 7.98 (1H, ddd, J
= 1.8, 7.5, 8.0 Hz), 8.17 (1H, dd, J = 1.7, 8.8 Hz), 8.33 (1H, d J
= 8.8 Hz), 8.53 (1H, bd, J = 8.0 Hz), 8.67 (1H, ddd J = 0.8,
. 1.8, 4.9 Hz) 13 C NMR (75 MHz, DMSO) d; 26.1, 48.7, 100.5 (d,
J = 2.8 Hz), 104.8 (d, J = 22.2 Hz), 120.5, 121.4, 124.9, 131.4
(d, J = 11.9 Hz), 132.0 (d, J = 3.6 Hz), 135.2 (d, J = 3.3
Hz), 138.2, 147.1 (d, J = 10.6 Hz), 150.1, 151.2, 156.5, 159.0 (d, J =
HRESIMS Calcd for C 18 H 17 FN 3 : 294.1407
(M + H) + , Found: 294.1422. Anal.Calcd for C 18 H 16 FN 3 :
C, 73.91; H, 5.58; N, 14.28.Found: C, 73.70; H, 5.50; N, 14.32.
6-ブロモ-8-メトキシ-2-ピリジン-2-イルキノリン (化合物11) の製造: Preparation of 6-bromo-8-methoxy-2-pyridin-2-ylquinoline (compound 11) :
アルゴン雰囲気下、室温で化合物10 (50.0 mg, 0.17 mmol) の無水THF (0.3 mL) 溶液に水酸化ベンジルトリメチルアンモニウムのメタノール溶液 (40%, 0.30 L, 0.66 mmol)を加え、50 ºCで42時間撹拌した。反応混合物に水を加え、酢酸エチルで三回抽出した。有機層を合わせ飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後濾過し、濾液を減圧下濃縮した。残渣を逆相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 9 : 1) で精製し、化合物11の淡黄色結晶(52.0 mg, 0.17 mmol, 100%収率) を得た。 A solution of benzyltrimethylammonium hydroxide in methanol (40%, 0.30  L, 0.66 mmol) was added to a solution of compound 10 (50.0 mg, 0.17 mmol) in anhydrous THF (0.3 mL) at room temperature under an argon atmosphere. Stir at º C for 42 hours. Water was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by reverse phase silica gel column chromatography (methanol: water = 9: 1) to obtain pale yellow crystals (52.0 mg, 0.17 mmol, 100% yield) of compound 11.
また別の方法として、アルゴン雰囲気下、0 ºCで2-アセチルピリジン (56.1mL, 0.50 mmol) の無水THF (2.0 mL) 溶液にメタノール (0.4 mL)、水酸化ベンジルトリメチルアンモニウムのメタノール溶液 (40%, 0.83 L, 1.83 mmol)、実施例2記載の化合物9 (100.0 mg, 0.46 mmol) の無水THF (1.5 mL) 溶液を加えて1時間撹拌した。さらに室温で2.5時間、40 ºCで17時間撹拌後、反応混合物にメタノール (0.5 mL) を加え、60 ºCで4時間撹拌した。反応混合物を減圧下濃縮後、残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 5 : 1) で精製し、化合物11の淡黄色結晶
(116.4 mg, 0.37 mmol, 81%収率) を得た。
Alternatively, in an argon atmosphere at 0 º C, 2-acetylpyridine (56.1 mL, 0.50 mmol) in anhydrous THF (2.0 mL) in methanol (0.4 mL) and benzyltrimethylammonium hydroxide in methanol ( 40%, 0.83  L, 1.83 mmol), a solution of compound 9 (100.0 mg, 0.46 mmol) described in Example 2 in anhydrous THF (1.5 mL) was added and stirred for 1 hour. After further stirring at room temperature for 2.5 hours and 40 º C for 17 hours, methanol (0.5 mL) was added to the reaction mixture, followed by stirring at 60 º C for 4 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 5: 1) to give pale yellow crystals of compound 11.
(116.4 mg, 0.37 mmol, 81% yield) was obtained.
淡黄色結晶 mp 112-116 ºC. IR (KBr) ncm-1; 1618, 1484, 1452, 1385,
1115, 778. 1H NMR (300 MHz, CD3OD) d; 4.10 (3H,
s) 7.26 (1H, d, J = 1.9 Hz), 7.49 (1H, ddd, J = 1.2, 4.9, 7.5
Hz), 7.67 (1H, d, J = 1.9 Hz), 7.98 (1H, ddd, J = 1.7, 7.5, 8.0
Hz), 8.26 (1H, d, J = 8.7 Hz), 8.46 (1H, d, J = 8.7 Hz), 8.58
(1H, bd, J = 8.0 Hz), 8.69 (1H, ddd, J = 0.9, 1.7, 4.9 Hz). 13C
NMR (75 MHz, CD3OD) d; 56.9, 113.4, 121.4, 121.9, 122.7, 123.5,
125.6, 131.3, 137.2, 138.5, 139.7, 150.1, 156.3, 157.1, 157.4. HRESIMS Calcd
for C15H12BrN2O: 315.0133 (M+H)+,
Found: 315.0120. Anal. Calcd for C15H11BrN2O:
C, 57.33; H, 3.82; N, 8.60. Found: C, 57.16; H, 3.52; N, 8.89.
Light yellow crystal mp 112-116 º C. IR (KBr) ncm -1 ; 1618, 1484, 1452, 1385,
1115, 778. 1 H NMR (300 MHz, CD 3 OD) d; 4.10 (3H,
s) 7.26 (1H, d, J = 1.9 Hz), 7.49 (1H, ddd, J = 1.2, 4.9, 7.5
Hz), 7.67 (1H, d, J = 1.9 Hz), 7.98 (1H, ddd, J = 1.7, 7.5, 8.0
Hz), 8.26 (1H, d, J = 8.7 Hz), 8.46 (1H, d, J = 8.7 Hz), 8.58
(1H, bd, J = 8.0 Hz), 8.69 (1H, ddd, J = 0.9, 1.7, 4.9 Hz). 13 C
NMR (75 MHz, CD 3 OD) d; 56.9, 113.4, 121.4, 121.9, 122.7, 123.5,
125.6, 131.3, 137.2, 138.5, 139.7, 150.1, 156.3, 157.1, 157.4. HRESIMS Calcd
for C 15 H 12 BrN 2 O: 315.0133 (M + H) + ,
Found: 315.0120. Anal. Calcd for C 15 H 11 BrN 2 O:
C, 57.33; H, 3.82; N, 8.60. Found: C, 57.16; H, 3.52; N, 8.89.
8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリン(化合物(c))の製造: Production of 8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline (compound (c)) :
アルゴン雰囲気下、化合物11 (21.5 mg, 68.2 mmol)、酢酸パラジウム(II) (0.3 mg, 1.36 mmol)、ナトリウム-tert-ブトキシド (8.5 mg, 88.7 mmol) の無水トルエン (0.2 mL) 懸濁液に、さらにピロリジン (7.51 mL, 88.7 mmol) の無水トルエン (0.05 mL) 溶液、トリ-tert-ブチルホスフィン (0.31 mL, 1.23 mmol) の無水トルエン (0.05 mL) 溶液を加え、室温で2.5日間撹拌した。さらに、酢酸パラジウム(II) (0.3
mg, 1.36 mmol)、ナトリウム-tert-ブトキシド (8.5 mg, 88.7 mmol) と、ピロリジン (7.51 mL, 88.7 mmol) の無水トルエン (0.05 mL) 溶液、トリ-tert-ブチルホスフィン (0.31 mL, 1.23 mmol) の無水トルエン (0.05 mL)溶液を加え、室温で3時間撹拌した。反応混合物を減圧下濃縮し、残渣を逆相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 9 : 1) で精製し、化合物(c)の黄色結晶(19.8 mg, 64.8 mmol, 95%収率) を得た。
Under an argon atmosphere, a suspension of compound 11 (21.5 mg, 68.2 mmol), palladium (II) acetate (0.3 mg, 1.36 mmol), sodium-tert-butoxide (8.5 mg, 88.7 mmol) in anhydrous toluene (0.2 mL) was suspended. Further, a solution of pyrrolidine (7.51 mL, 88.7 mmol) in anhydrous toluene (0.05 mL) and a solution of tri-tert-butylphosphine (0.31 mL, 1.23 mmol) in anhydrous toluene (0.05 mL) were added, and the mixture was stirred at room temperature for 2.5 days. In addition, palladium (II) acetate (0.3
mg, 1.36 mmol), sodium-tert-butoxide (8.5 mg, 88.7 mmol) and pyrrolidine (7.51 mL, 88.7 mmol) in anhydrous toluene (0.05 mL), tri-tert-butylphosphine (0.31 mL, 1.23 mmol) Of anhydrous toluene (0.05 mL) was added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by reverse phase silica gel column chromatography (methanol: water = 9: 1) to obtain yellow crystals (19.8 mg, 64.8 mmol, 95% yield) of compound (c). It was.
黄色結晶 mp 55-60 ºC. IR (KBr) ncm-1; 1618, 1588, 1484, 1452,
1385, 778. 1H NMR (300 MHz, CD3OD) d; 2.08-2.15
(4H, m), 3.42-3.50 (4H, m), 4.11 (3H, s), 6.38 (1H, d, J = 2.1 Hz), 6.69
(1H, d, J = 2.1 Hz), 7.43 (1H, ddd, J =1.2, 4.9, 7.5 Hz), 7.96
(1H, ddd, J = 1.8, 7.5, 8.0 Hz), 8.07 (1H, d, J = 8.7 Hz), 8.23
(1H, d, J = 8.7 Hz), 8.50 (1H, ddd, J = 0.8, 1.2, 8.0 Hz), 8.64
(1H, ddd, J = 0.8, 1.8, 4.9 Hz). 13C NMR (75 MHz, CD3OD)
d; 26.5, 48.8, 56.4, 97.2, 100.1, 120.8, 123.1, 124.5, 132.6, 134.8,
135.6, 138.5, 148.6, 149.9, 150.7, 157.2, 158.1. HRESIMS Calcd for C19H20N3O:
306.1606 (M+H)+, Found: 306.1578. Anal. Calcd for C19H19N3O:
C, 74.73; H, 6.20; N, 13.40. Found: C, 74.73; H, 6.27; N, 13.76.
Yellow crystal mp 55-60 º C. IR (KBr) ncm -1 ; 1618, 1588, 1484, 1452,
1385, 778. 1 H NMR (300 MHz, CD 3 OD) d; 2.08-2.15
(4H, m), 3.42-3.50 (4H, m), 4.11 (3H, s), 6.38 (1H, d, J = 2.1 Hz), 6.69
(1H, d, J = 2.1 Hz), 7.43 (1H, ddd, J = 1.2, 4.9, 7.5 Hz), 7.96
(1H, ddd, J = 1.8, 7.5, 8.0 Hz), 8.07 (1H, d, J = 8.7 Hz), 8.23
(1H, d, J = 8.7 Hz), 8.50 (1H, ddd, J = 0.8, 1.2, 8.0 Hz), 8.64
(1H, ddd, J = 0.8, 1.8, 4.9 Hz). 13 C NMR (75 MHz, CD 3 OD)
d; 26.5, 48.8, 56.4, 97.2, 100.1, 120.8, 123.1, 124.5, 132.6, 134.8,
135.6, 138.5, 148.6, 149.9, 150.7, 157.2, 158.1. HRESIMS Calcd for C 19 H 20 N 3 O:
306.1606 (M + H) + , Found: 306.1578. Anal.Calcd for C 19 H 19 N 3 O:
C, 74.73; H, 6.20; N, 13.40. Found: C, 74.73; H, 6.27; N, 13.76.
6-ブロモ-8-[2-(2-メトキシエトキシ)-エトキシ]-2-ピリジン-2-イルキノリン (化合物12) の製造: Preparation of 6-bromo-8- [2- (2-methoxyethoxy) -ethoxy] -2-pyridin-2-ylquinoline (Compound 12) :
アルゴン雰囲気下、室温で化合物10 (20.0 mg, 66.0 mmol) の無水THF (0.2 mL) 溶液に2-(2-メトキシエトキシ)エタノール (78.5 mL, 0.66 mmol)、水酸化ベンジルトリメチルアンモニウム水溶液
(40%, 0.1 L, 0.26 mmol) を加え、同温で1.5時間撹拌し、さらに50 ºCで40時間した。反応混合物を減圧下濃縮し、残渣を逆相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 7 : 3) で精製して、化合物12の淡黄色油状物質(22.4 mg, 55.5 mmol, 84%収率) を得た。
2- (2-methoxyethoxy) ethanol (78.5 mL, 0.66 mmol), benzyltrimethylammonium hydroxide aqueous solution in anhydrous THF (0.2 mL) solution of compound 10 (20.0 mg, 66.0 mmol) at room temperature under argon atmosphere
(40%, 0.1  L, 0.26 mmol) was added, and the mixture was stirred at the same temperature for 1.5 hours, and further at 50 º C for 40 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by reverse-phase silica gel column chromatography (methanol: water = 7: 3) to give Compound 12 as a pale yellow oil (22.4 mg, 55.5 mmol, 84% yield). Obtained.
また別の方法として、アルゴン雰囲気下、0 ºCで2-アセチルピリジン (56.1mL, 0.50 mmol) の2-(2-メトキシエトキシ)エタノール (1.0 mL) 溶液に水酸化ベンジルトリメチルアンモニウム水溶液 (40%, 0.72 L, 1.83 mmol) を加え、さらに、実施例2に記載の化合物9
(100.0 mg, 0.46 mmol) を加え、同温で1時間撹拌し、さらに室温で18時間した。反応混合物を減圧下濃縮し、残渣を順相シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 3 : 1) で精製し、さらに逆相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 7 : 3) で精製して、化合物12の淡黄色油状物質(142.8 mg, 0.35 mmol, 77%収率) を得た。
Alternatively, in an argon atmosphere at 0 º C, 2-acetylpyridine (56.1 mL, 0.50 mmol) in 2- (2-methoxyethoxy) ethanol (1.0 mL) solution in benzyltrimethylammonium hydroxide aqueous solution (40 %, 0.72  L, 1.83 mmol), and the compound 9 described in Example 2
(100.0 mg, 0.46 mmol) was added, and the mixture was stirred at the same temperature for 1 hour and further at room temperature for 18 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by normal phase silica gel column chromatography (hexane: ethyl acetate = 3: 1) and further purified by reverse phase silica gel column chromatography (methanol: water = 7: 3). A pale yellow oily substance of compound 12 (142.8 mg, 0.35 mmol, 77% yield) was obtained.
淡黄色油状物質 IR (neat) ncm-1; 2925, 2877, 1586, 1114, 782. 1H NMR (300
MHz, CD3OD) d; 3.37 (3H, s), 3.58-3.64 (2H, m), 3.84-3.91 (2H, m), 3.99-4.06 (2H,
m), 4.34-4.41 (2H, m), 7.26 (1H, d, J = 1.8 Hz), 7.45 (1H, ddd, J =
1.1, 4.9, 7.5 Hz), 7.60 (1H, d, J = 1.8 Hz), 7.93 (1H, ddd, J =
1.7, 7.5, 7.9 Hz), 8.18 (1H, d, J = 8.7 Hz), 8.42 (1H, d, J = 8.7
Hz), 8.56 (1H, bd, J = 7.9 Hz), 8.66 (1H, ddd, J = 0.8, 1.7, 4.9
Hz). 13C NMR (75 MHz, CD3OD) d; 59.2, 70.6, 70.7,
71.9, 73.1, 115.1, 121.1, 121.8, 123.1, 123.3, 125.5, 131.4, 137.1, 138.4,
139.9, 150.1, 156.0, 156.8, 157.1. HRESIMS Calcd for C19H20BrN2O3:
403.0657 (M+H)+, Found: 403.0666. Anal. Calcd for C19H19BrN2O3:
C, 56.56; H, 4.85; N, 6.81. Found: C, 56.59; H, 4.75; N, 6.95.
Pale yellow oil IR (neat) ncm -1 ; 2925, 2877, 1586, 1114, 782.1 1 H NMR (300
MHz, CD 3 OD) d; 3.37 (3H, s), 3.58-3.64 (2H, m), 3.84-3.91 (2H, m), 3.99-4.06 (2H,
m), 4.34-4.41 (2H, m), 7.26 (1H, d, J = 1.8 Hz), 7.45 (1H, ddd, J =
1.1, 4.9, 7.5 Hz), 7.60 (1H, d, J = 1.8 Hz), 7.93 (1H, ddd, J =
1.7, 7.5, 7.9 Hz), 8.18 (1H, d, J = 8.7 Hz), 8.42 (1H, d, J = 8.7
Hz), 8.56 (1H, bd, J = 7.9 Hz), 8.66 (1H, ddd, J = 0.8, 1.7, 4.9
Hz). 13 C NMR (75 MHz, CD 3 OD) d; 59.2, 70.6, 70.7,
71.9, 73.1, 115.1, 121.1, 121.8, 123.1, 123.3, 125.5, 131.4, 137.1, 138.4,
139.9, 150.1, 156.0, 156.8, 157.1. HRESIMS Calcd for C 19 H 20 BrN 2 O 3 :
403.0657 (M + H) + , Found: 403.0666. Anal. Calcd for C 19 H 19 BrN 2 O 3 :
C, 56.56; H, 4.85; N, 6.81. Found: C, 56.59; H, 4.75; N, 6.95.
8-[2-(2-メトキシエトキシ)-エトキシ]-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリン(化合物(d))の製造: Preparation of 8- [2- (2-methoxyethoxy) -ethoxy] -2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline (compound (d)) :
アルゴン雰囲気下、化合物12 (50.0 mg, 124.0 mmol)、酢酸パラジウム(II) (1.1 mg, 4.96 mmol)、ナトリウム-tert-ブトキシド (15.5 mg, 161.2 mmol) の無水トルエン (0.05 mL) 懸濁液に、ピロリジン (13.6 mL, 161.2 mmol)、トリ-tert-ブチルホスフィン (1.11 ml, 4.46 mmol) の無水トルエン (0.05 mL) 溶液を加え、室温で2時間、50 ºCで18時間撹拌した。反応混合物を減圧下濃縮し、残渣を逆相シリカゲルカラムクロマトグラフィー (メタノール : 水 = 1 : 1) で精製し、化合物(d)の黄褐色結晶(35.3 mg, 89.7 mmol, 72%収率) を得た。 Under an argon atmosphere, a suspension of compound 12 (50.0 mg, 124.0 mmol), palladium (II) acetate (1.1 mg, 4.96 mmol), sodium-tert-butoxide (15.5 mg, 161.2 mmol) in anhydrous toluene (0.05 mL) was suspended. , Pyrrolidine (13.6 mL, 161.2 mmol) and tri-tert-butylphosphine (1.11 ml, 4.46 mmol) in anhydrous toluene (0.05 mL) were added, and the mixture was stirred at room temperature for 2 hours and 50 º C for 18 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by reversed-phase silica gel column chromatography (methanol: water = 1: 1) to obtain yellowish brown crystals (35.3 mg, 89.7 mmol, 72% yield) of compound (d). Obtained.
黄褐色結晶 mp 80-85 ºC. IR (KBr) ncm-1; 2874, 1610, 1440, 1388,
1103, 777. 1H NMR (300 MHz, CD3OD) d; 2.03-2.11
(4H, m), 3.37-3.45 (4H, m), 3.38 (3H, s), 3.60-3.66 (2H, m), 3.86-3.97 (2H, m),
4.02-4.09 (2H, m), 4.40-4.46 (2H, m), 6.35(1H, d, J = 2.3 Hz), 6.71 (1H,
d, J = 2.3 Hz), 7.41 (1H, ddd, J = 1.2, 4.9, 7.5 Hz), 7.93 (1H,
ddd, J = 1.7, 7.5, 8.1 Hz), 8.02 (1H, d, J = 8.7 Hz), 8.24 (1H,
d, J = 8.7 Hz), 8.52 (1H, bd, J = 8.1 Hz), 8.63 (1H, ddd, J =
0.8, 1.7, 4.9 Hz). 13C NMR (75 MHz, CD3OD) d; 26.5,
48.8, 59.1, 70.4, 70.8, 71.9, 73.1, 97.7, 102.3, 120.5, 122.9, 124.5, 132.7,
135.1, 135.5, 138.4, 148.4, 149.8, 150.6, 156.6, 158.3. HRESIMS Calcd for C23H28N3O3:394.2131
(M+H)+, Found: 394.2156.
Tan crystals mp 80-85 º C. IR (KBr) ncm -1 ; 2874, 1610, 1440, 1388,
1103, 777. 1 H NMR (300 MHz, CD 3 OD) d; 2.03-2.11
(4H, m), 3.37-3.45 (4H, m), 3.38 (3H, s), 3.60-3.66 (2H, m), 3.86-3.97 (2H, m),
4.02-4.09 (2H, m), 4.40-4.46 (2H, m), 6.35 (1H, d, J = 2.3 Hz), 6.71 (1H,
d, J = 2.3 Hz), 7.41 (1H, ddd, J = 1.2, 4.9, 7.5 Hz), 7.93 (1H,
ddd, J = 1.7, 7.5, 8.1 Hz), 8.02 (1H, d, J = 8.7 Hz), 8.24 (1H,
d, J = 8.7 Hz), 8.52 (1H, bd, J = 8.1 Hz), 8.63 (1H, ddd, J =
. 0.8, 1.7, 4.9 Hz) 13 C NMR (75 MHz, CD 3 OD) d; 26.5,
48.8, 59.1, 70.4, 70.8, 71.9, 73.1, 97.7, 102.3, 120.5, 122.9, 124.5, 132.7,
135.1, 135.5, 138.4, 148.4, 149.8, 150.6, 156.6, 158.3. HRESIMS Calcd for C 23 H 28 N 3 O 3 : 394.2131
(M + H) + , Found: 394.2156.
2−フェニルー6−ピロリジンー1ーイルキノリン
(化合物(e))の製造
上記実施例1〜4と同様の方法で作成した。
2-Phenyl-6-pyrrolidine-1-ylquinoline
Production of (Compound (e)) The compound (e) was prepared in the same manner as in Examples 1 to 4 above.
黄色結晶 mp 174-175 ºC. IR
(KBr) n cm-1; 1623, 1507, 1386, 823, 758, 691. 1H NMR
(300 MHz, C6D6) d; 1.56-1.63 (4H, m),
3.01-3.08 (4H, m), 6.67 (1H, d, J = 2.7 Hz), 7.04 (1H, dd, J =
2.7, 9.2 Hz), 7.29-7.38 (1H, m), 7.42-7.51 (2H, m), 7.73 (1H, d, J = 8.7
Hz), 7.87 (1H, d, J = 8.7 Hz), 8.46 (1H, d, J = 9.2 Hz),
8.47-8.56 (2H, m). 13C NMR (75 MHz, C6D6) d; 25.4 (CH2),
47.6 (CH2), 103.8 (CH), 119.0 (CH), 119.4
(CH), 127.4 (CH), 128.6 (CH), 128.8 (CH), 129.6 (C), 131.3 (CH), 134.2 (CH),
140.8 (C), 143.0 (C), 146.1 (C), 152.5 (C). HRESIMS Calcd for C19H19N2:
275.1548 (M+H)+, Found: 275.1569.
Yellow crystal mp 174-175 º C. IR
(KBr) n cm -1 ; 1623, 1507, 1386, 823, 758, 691. 1 H NMR
(300 MHz, C 6 D 6 ) d; 1.56-1.63 (4H, m),
3.01-3.08 (4H, m), 6.67 (1H, d, J = 2.7 Hz), 7.04 (1H, dd, J =
2.7, 9.2 Hz), 7.29-7.38 (1H, m), 7.42-7.51 (2H, m), 7.73 (1H, d, J = 8.7
Hz), 7.87 (1H, d, J = 8.7 Hz), 8.46 (1H, d, J = 9.2 Hz),
. 8.47-8.56 (2H, m) 13 C NMR (75 MHz, C 6 D 6) d; 25.4 (CH 2),
47.6 (CH 2 ), 103.8 (CH), 119.0 (CH), 119.4
(CH), 127.4 (CH), 128.6 (CH), 128.8 (CH), 129.6 (C), 131.3 (CH), 134.2 (CH),
140.8 (C), 143.0 (C), 146.1 (C), 152.5 (C) .HRESIMS Calcd for C 19 H 19 N 2 :
275.1548 (M + H) + , Found: 275.1569.
6−ピロリジンー1ーイルー2−チオフェンー2−イルキノリン (化合物(f)) の製造:
上記実施例1〜4と同様の方法で作成した。
Production of 6-pyrrolidin-1-yl-2-thiophen-2-ylquinoline (compound (f)):
It created by the method similar to the said Examples 1-4.
黄色結晶 mp 210-213 ºC. IR (KBr) n cm-1; 1619, 1501, 1387, 822,
706. 1H NMR (300 MHz, C6D6) d; 1.52-1.62
(4H, m), 2.94-3.04 (4H, m), 6.59 (1H, d, J = 2.5 Hz), 6.94 (1H, dd, J
= 2.6, 9.2 Hz), 6.98 (1H, dd, J = 3.7, 5.0 Hz), 7.09 (1H, d, J =
5.0 Hz), 7.58 (1H, d, J = 8.6 Hz), 7.60 (1H, s), 7.74 (1H, d, J =
8.6 Hz), 8.34 (1H, d, J = 9.2 Hz). 13C NMR (75 MHz, C6D6)
d; 25.4 (CH2), 47.5 (CH2), 104.0 (CH), 118.0 (CH), 119.4 (CH), 124.2 (CH), 127.3 (CH),
127.8 (CH), 129.5 (C), 130.7 (CH), 134.0 (CH), 142.5 (C), 145.9 (C), 147.3 (C),
148.3 (C). HRESIMS Calcd for C17H17N2S: 281.1112
(M+H)+, Found: 281.1110.
Yellow crystal mp 210-213 º C. IR (KBr) n cm -1 ; 1619, 1501, 1387, 822,
706. 1 H NMR (300 MHz, C 6 D 6 ) d; 1.52-1.62
(4H, m), 2.94-3.04 (4H, m), 6.59 (1H, d, J = 2.5 Hz), 6.94 (1H, dd, J
= 2.6, 9.2 Hz), 6.98 (1H, dd, J = 3.7, 5.0 Hz), 7.09 (1H, d, J =
5.0 Hz), 7.58 (1H, d, J = 8.6 Hz), 7.60 (1H, s), 7.74 (1H, d, J =
8.6 Hz), 8.34 (1H, d, J = 9.2 Hz). 13 C NMR (75 MHz, C 6 D 6 )
d; 25.4 (CH 2 ), 47.5 (CH 2 ), 104.0 (CH), 118.0 (CH), 119.4 (CH), 124.2 (CH), 127.3 (CH),
127.8 (CH), 129.5 (C), 130.7 (CH), 134.0 (CH), 142.5 (C), 145.9 (C), 147.3 (C),
148.3 (C). HRESIMS Calcd for C 17 H 17 N 2 S: 281.1112
(M + H) + , Found: 281.1110.
2−(4−メトキシピリジンー2−イル)−6−ピロリジンー1ーイルキノリン (化合物(g)) の製造:
上記実施例1〜4と同様の方法で作成した。
Preparation of 2- (4-methoxypyridin-2-yl) -6-pyrrolidin-1-ylquinoline (compound (g)):
It created by the method similar to the said Examples 1-4.
黄色結晶 mp 192-195 ºC. IR (KBr) n cm-1; 1617, 1594, 1565,1379,
1036, 904, 825. 1H NMR (300 MHz, C6D6) d; 1.54-1.61
(4H, m), 2.96-3.05 (4H, m), 3.40 (3H, s), 6.62 (1H, d, J = 2.5 Hz), 6.67
(1H, dd, J = 2.6, 5.6 Hz), 7.02 (1H, dd, J = 2.6, 9.2 Hz), 7.96
(1H, d, J = 8.7 Hz), 8.46 (1H, d, J = 9.2 Hz), 8.63 (1H, d, J =
5.6 Hz), 8.79 (1H, d, J = 2.5 Hz), 9.22 (1H, d, J = 8.7 Hz). 13C
NMR (75 MHz, C6D6) d; 25.4 (CH2),
47.5 (CH2), 54.6 (CH3), 104.1 (CH), 105.7 (CH), 111.0
(CH), 119.2 (CH), 120.2 (CH), 130.9 (C), 131.1 (CH), 134.2 (CH), 142.4 (C),
146.3 (C), 150.4 (CH), 152.2 (C), 159.6 (C), 166.8 (C). HRESIMS Calcd for C19H20N3O:
306.1606 (M+H)+, Found: 306.1580.
Yellow crystal mp 192-195 º C. IR (KBr) n cm -1 ; 1617, 1594, 1565,1379,
1036, 904, 825. 1 H NMR (300 MHz, C 6 D 6 ) d; 1.54-1.61
(4H, m), 2.96-3.05 (4H, m), 3.40 (3H, s), 6.62 (1H, d, J = 2.5 Hz), 6.67
(1H, dd, J = 2.6, 5.6 Hz), 7.02 (1H, dd, J = 2.6, 9.2 Hz), 7.96
(1H, d, J = 8.7 Hz), 8.46 (1H, d, J = 9.2 Hz), 8.63 (1H, d, J =
5.6 Hz), 8.79 (1H, d, J = 2.5 Hz), 9.22 (1H, d, J = 8.7 Hz). 13 C
NMR (75 MHz, C 6 D 6 ) d; 25.4 (CH 2 ),
47.5 (CH 2 ), 54.6 (CH 3 ), 104.1 (CH), 105.7 (CH), 111.0
(CH), 119.2 (CH), 120.2 (CH), 130.9 (C), 131.1 (CH), 134.2 (CH), 142.4 (C),
146.3 (C), 150.4 (CH), 152.2 (C), 159.6 (C), 166.8 (C). HRESIMS Calcd for C 19 H 20 N 3 O:
306.1606 (M + H) + , Found: 306.1580.
8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリンの励起と蛍光スペクトル
8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イル-キノリン(1 mg)を,THF,アセトン,メタノール,50 mM HEPESバッファー (pH 7.2) に溶解して10 mLとし,さらに1000倍に希釈した溶液を用いて測定を行った.測定波長は,蛍光スペクトルを測定する際の励起波長が,それぞれ400 nm付近の極大励起波長,励起スペクトルを測定する際の蛍光波長が,それぞれ極大蛍光波長で測定した。溶媒の誘電率によって、波長が長波長側にシフトした(図1)。
Excitation and fluorescence spectra of 8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline
8-Methoxy-2-pyridin-2-yl-6-pyrrolidin-1-yl-quinoline (1 mg) is dissolved in THF, acetone, methanol, 50 mM HEPES buffer (pH 7.2) to make 10 mL. Measurements were performed using a 1000-fold diluted solution. The measurement wavelength was measured at the excitation wavelength when measuring the fluorescence spectrum, the maximum excitation wavelength near 400 nm, respectively, and the fluorescence wavelength when measuring the excitation spectrum at the maximum fluorescence wavelength. The wavelength shifted to the longer wavelength side due to the dielectric constant of the solvent (FIG. 1).
メタノール中での亜鉛存在下における二波長性
8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリンをメタノールに溶解して10 mLとし,さらに1000倍に希釈した溶液に対し,臭化亜鉛のメタノール溶液を徐々に滴下して測定した。測定波長は、330 nmの励起波長で測定した。臭化亜鉛の濃度依存的に500nm付近の蛍光波長が減少し、570nm付近の蛍光波長が増大した(図2)。
Dual wavelength in the presence of zinc in methanol.
Dissolve 8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline in methanol to make 10 mL, and gradually add a methanol solution of zinc bromide dropwise to a 1000-fold diluted solution. Measured. The measurement wavelength was measured at an excitation wavelength of 330 nm. Depending on the concentration of zinc bromide, the fluorescence wavelength near 500 nm decreased and the fluorescence wavelength near 570 nm increased (FIG. 2).
バッファー(50mMHEPESバッファー(pH7.2))中での亜鉛存在下における二波長性(1)
8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリンを50mMHEPESバッファー(pH7.2)に溶解して10mLとし、さらに1000倍に希釈した溶液に対し、塩化亜鉛の50mMHEPESバッファー(pH7.2)溶液を徐々に滴下して測定した。測定波長は、433 nmの励起波長で測定した。塩化亜鉛の濃度依存的に530nm付近の蛍光が減少し、570nm付近の蛍光が増大した(図3)。
Dual wavelength (1) in the presence of zinc in a buffer (50 mM HEPES buffer (pH 7.2))
8-Methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline was dissolved in 50 mM HEPES buffer (pH 7.2) to make 10 mL, and further diluted 1000 times with 50 mM HEPES buffer of zinc chloride ( pH 7.2) The solution was gradually dropped and measured. The measurement wavelength was measured at an excitation wavelength of 433 nm. The fluorescence around 530 nm decreased and the fluorescence around 570 nm increased depending on the concentration of zinc chloride (FIG. 3).
バッファー(50mMHEPESバッファー(pH7.2))中での亜鉛存在下における二波長性(2)
8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリン(1 mg)を, 50mMHEPESバッファー(pH7.2)
に溶解して10mLとし、さらに1000倍に希釈した溶液に,塩化亜鉛の50mMHEPESバッファー(pH7.2)溶液を十分量滴下して測定した。測定波長は,蛍光スペクトルを測定する際の励起波長が、それぞれ400−500nm付近の極大励起波長、励起スペクトルを測定する際の蛍光波長が、それぞれ極大蛍光波長で測定した。亜鉛イオン添加により、波長は長波長側にシフトした(図4)。
Dual wavelength (2) in the presence of zinc in buffer (50 mM HEPES buffer (pH 7.2))
8-Methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline (1 mg) in 50 mM HEPES buffer (pH 7.2)
To a solution diluted to 10 mL and further diluted 1000 times, a sufficient amount of a 50 mM HEPES buffer (pH 7.2) solution of zinc chloride was dropped and measured. The measurement wavelength was measured with the excitation wavelength when measuring the fluorescence spectrum being a maximum excitation wavelength around 400-500 nm, respectively, and the fluorescence wavelength when measuring the excitation spectrum being respectively the maximum fluorescence wavelength. With the addition of zinc ions, the wavelength shifted to the longer wavelength side (Fig. 4).
金属選択性、レシオ測定(1)
8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリン(1 mg)を,50mMHEPESバッファー(pH7.2)に溶解して10mLとし、さらに1000倍に希釈した溶液に,記載された金属イオンの50mMHEPESバッファー(pH7.2)溶液を加え,遷移金属は25μM、アルカリ、アルカリ土類金属は5mMとして測定した。
433 nmで励起し、565 nmと535 nmの蛍光の比を測定した。亜鉛イオン及びカドミウムイオン存在下では蛍光波長が長波長側にシフトしたが、それ以外の金属イオンでは変化が見られなかった(図5)。
Metal selectivity, ratio measurement (1)
8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline (1 mg) dissolved in 50 mM HEPES buffer (pH 7.2) to 10 mL, and further diluted 1000 times. Further, a 50 mM HEPES buffer (pH 7.2) solution of metal ions was added, and the transition metal was measured at 25 μM, and the alkali and alkaline earth metals were measured at 5 mM.
Excitation at 433 nm measured the ratio of fluorescence at 565 nm and 535 nm. In the presence of zinc ions and cadmium ions, the fluorescence wavelength shifted to the longer wavelength side, but no change was observed with other metal ions (FIG. 5).
金属選択性、レシオ測定(2)
6-ブロモ-8-[2-(2-メトキシエトキシ)-エトキシ]-2-ピリジン-2-イルキノリン(1 mg)を、50mMHEPESバッファー(pH7.2)に溶解して10mLとし、さらに1000倍に希釈した溶液に,記載された金属イオンの50mMHEPESバッファー(pH7.2)溶液を加え、遷移金属は(25μM)、アルカリ、アルカリ土類金属は(5mM)として測定した。433 nmで励起し、565nmと535 nmの蛍光の比を測定した。亜鉛イオ存在下では蛍光波長が高波長側にシフトしたが、それ以外の金属イオンでは変化が見られなかった(図6)。
Metal selectivity, ratio measurement (2)
6-Bromo-8- [2- (2-methoxyethoxy) -ethoxy] -2-pyridin-2-ylquinoline (1 mg) was dissolved in 50 mM HEPES buffer (pH 7.2) to make 10 mL, and further 1000 times A 50 mM HEPES buffer (pH 7.2) solution of the described metal ions was added to the diluted solution, and the transition metal (25 μM), alkali, and alkaline earth metal (5 mM) were measured. Excitation was performed at 433 nm and the ratio of fluorescence at 565 nm and 535 nm was measured. In the presence of zinc ion, the fluorescence wavelength shifted to the higher wavelength side, but no change was observed with other metal ions (FIG. 6).
脳組織切片の亜鉛イオン局在の解析
ddY系マウス(6〜7週齢)の海馬の300um冠状断スライスを常法により作成した。8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリンの20uM溶液で60分間染色、30分間洗浄の後、480nmで励起し、590nmの蛍光を測定した。亜鉛イオンが局在している部分が発光した(図7)。
Analysis of localization of zinc ion in brain tissue section A 300-um coronal slice of the hippocampus of a ddY mouse (6-7 weeks old) was prepared by a conventional method. After staining with a 20 uM solution of 8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline for 60 minutes and washing for 30 minutes, excitation was performed at 480 nm and fluorescence at 590 nm was measured. The portion where zinc ions were localized emitted light (FIG. 7).
脳組織切片の亜鉛イオン局在の解析(レシオ測定)
ddY系マウス(6〜7週齢)の海馬の300um冠状断スライスを常法により作成した。8-メトキシ-2-ピリジン-2-イル-6-ピロリジン-1-イルキノリンの20uM溶液で60分間染色、30分間洗浄の後、480nmで励起し、590nmの蛍光を、蛍光顕微鏡―画像処理システム下で25分間測定した。人工脳脊髄液の状態でベースラインを5分間測定し、虚血リンガー(グルコースフリーの状態)に変えて10分間測定後、再び人工脳脊髄液に戻し10分間の測定を行った。各時間帯の蛍光画像を比較し、スライス上の細胞の亜鉛イオン変動を解析した。蛍光顕微鏡―画像処理システムの条件はFilter1 : 470~490の励起 Filter,Filter2 : 400~440の励起
Filter,ダイクロイックミラー : DM505, 蛍光 Filter : BA510 /
20, Ratio : F470~490 / F400~440で行った。虚血による亜鉛イオン局在の変動を各部位毎に解析することができた。最も変動率が高かったのは、CA1であった(図8)。
Analysis of zinc ion localization in brain tissue sections (ratio measurement)
A 300-um coronal slice of the hippocampus of a ddY mouse (6-7 weeks old) was prepared by a conventional method. Stained with 20 uM solution of 8-methoxy-2-pyridin-2-yl-6-pyrrolidin-1-ylquinoline for 60 minutes, washed for 30 minutes, excited at 480 nm, and emitted fluorescence at 590 nm under fluorescence microscope-image processing system For 25 minutes. The baseline was measured for 5 minutes in the state of artificial cerebrospinal fluid, changed to ischemic Ringer (glucose-free state) for 10 minutes, then returned to artificial cerebrospinal fluid and measured for 10 minutes. The fluorescence images of each time zone were compared, and the zinc ion fluctuation of the cells on the slice was analyzed. Fluorescence microscope-Image processing system conditions are Filter1: 470-490 excitation Filter, Filter2: 400-440 excitation
Filter, dichroic mirror: DM505, fluorescence Filter: BA510 /
20, Ratio: F470-490 / F400-440. The fluctuation of zinc ion localization due to ischemia could be analyzed for each site. CA1 had the highest fluctuation rate (FIG. 8).
Claims (5)
一般式〈1〉
とR32は、隣接する窒素原子と一緒になって、4乃至7員の複素環を形成してもよい。)を表す。Xは窒素原子または炭素原子を表す。] A quinoline compound or naphthalene compound represented by the following general formula <I>.
General formula <1>
And R 32 together with the adjacent nitrogen atom may form a 4- to 7-membered heterocyclic ring. ). X represents a nitrogen atom or a carbon atom. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005036165A JP2006219453A (en) | 2005-02-14 | 2005-02-14 | Metal-discrimination-type two-color fluorescent molecule containing quinoline ring as parent nucleus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005036165A JP2006219453A (en) | 2005-02-14 | 2005-02-14 | Metal-discrimination-type two-color fluorescent molecule containing quinoline ring as parent nucleus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006219453A true JP2006219453A (en) | 2006-08-24 |
Family
ID=36981995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005036165A Pending JP2006219453A (en) | 2005-02-14 | 2005-02-14 | Metal-discrimination-type two-color fluorescent molecule containing quinoline ring as parent nucleus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006219453A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012501312A (en) * | 2008-09-02 | 2012-01-19 | ノバルティス アーゲー | Bicyclic kinase inhibitor |
CN102584857A (en) * | 2011-12-31 | 2012-07-18 | 山西大同大学 | 2,6-bis-(1,1'-naphthalene amino azo)benzo(1,2-d;4,5-d') dithiazole, and preparation method and application thereof |
JP2014153228A (en) * | 2013-02-08 | 2014-08-25 | Mitsubishi Rayon Co Ltd | Water quality monitoring method |
CN104673279A (en) * | 2015-03-24 | 2015-06-03 | 郑州大学 | Water-soluble cadmium ion fluorescence probe molecule as well as preparation method and application thereof |
JP2020522570A (en) * | 2017-06-05 | 2020-07-30 | ピーティーシー セラピューティクス, インコーポレイテッド | Compounds for treating Huntington's disease |
US11382918B2 (en) | 2017-06-28 | 2022-07-12 | Ptc Therapeutics, Inc. | Methods for treating Huntington's Disease |
US11395822B2 (en) | 2017-06-28 | 2022-07-26 | Ptc Therapeutics, Inc. | Methods for treating Huntington's disease |
US11638706B2 (en) | 2015-12-10 | 2023-05-02 | Ptc Therapeutics, Inc. | Methods for treating Huntington's disease |
US11685746B2 (en) | 2018-06-27 | 2023-06-27 | Ptc Therapeutics, Inc. | Heteroaryl compounds for treating Huntington's disease |
US11780839B2 (en) | 2018-03-27 | 2023-10-10 | Ptc Therapeutics, Inc. | Compounds for treating Huntington's disease |
US11858941B2 (en) | 2018-06-27 | 2024-01-02 | Ptc Therapeutics, Inc. | Heterocyclic and heteroaryl compounds for treating Huntington's disease |
US12139499B2 (en) | 2019-06-25 | 2024-11-12 | Ptc Therapeutics, Inc. | Heteroaryl compounds for treating Huntington's disease |
-
2005
- 2005-02-14 JP JP2005036165A patent/JP2006219453A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012501312A (en) * | 2008-09-02 | 2012-01-19 | ノバルティス アーゲー | Bicyclic kinase inhibitor |
US8735424B2 (en) | 2008-09-02 | 2014-05-27 | Novartis Ag | Bicyclic kinase inhibitors |
CN102584857A (en) * | 2011-12-31 | 2012-07-18 | 山西大同大学 | 2,6-bis-(1,1'-naphthalene amino azo)benzo(1,2-d;4,5-d') dithiazole, and preparation method and application thereof |
JP2014153228A (en) * | 2013-02-08 | 2014-08-25 | Mitsubishi Rayon Co Ltd | Water quality monitoring method |
CN104673279A (en) * | 2015-03-24 | 2015-06-03 | 郑州大学 | Water-soluble cadmium ion fluorescence probe molecule as well as preparation method and application thereof |
US11638706B2 (en) | 2015-12-10 | 2023-05-02 | Ptc Therapeutics, Inc. | Methods for treating Huntington's disease |
US11407753B2 (en) | 2017-06-05 | 2022-08-09 | Ptc Therapeutics, Inc. | Compounds for treating Huntington's disease |
IL271046B1 (en) * | 2017-06-05 | 2023-04-01 | Ptc Therapeutics Inc | Compounds for treating huntington's disease |
JP7376471B2 (en) | 2017-06-05 | 2023-11-08 | ピーティーシー セラピューティクス, インコーポレイテッド | Compounds to treat Huntington's disease |
IL271046B2 (en) * | 2017-06-05 | 2023-08-01 | Ptc Therapeutics Inc | Compounds for treating huntington's disease |
EP3634953A4 (en) * | 2017-06-05 | 2021-03-24 | PTC Therapeutics, Inc. | Compounds for treating huntington's disease |
US20220251098A1 (en) * | 2017-06-05 | 2022-08-11 | Ptc Therapeutics, Inc. | Compounds for treating huntington's disease |
EP4151627A1 (en) * | 2017-06-05 | 2023-03-22 | PTC Therapeutics, Inc. | Compounds for treating huntington's disease |
AU2018282154B2 (en) * | 2017-06-05 | 2022-04-07 | Ptc Therapeutics, Inc. | Compounds for treating huntington's disease |
JP2020522570A (en) * | 2017-06-05 | 2020-07-30 | ピーティーシー セラピューティクス, インコーポレイテッド | Compounds for treating Huntington's disease |
US11395822B2 (en) | 2017-06-28 | 2022-07-26 | Ptc Therapeutics, Inc. | Methods for treating Huntington's disease |
US11382918B2 (en) | 2017-06-28 | 2022-07-12 | Ptc Therapeutics, Inc. | Methods for treating Huntington's Disease |
US11780839B2 (en) | 2018-03-27 | 2023-10-10 | Ptc Therapeutics, Inc. | Compounds for treating Huntington's disease |
US12103926B2 (en) | 2018-03-27 | 2024-10-01 | Ptc Therapeutics, Inc. | Compounds for treating huntington's disease |
US11685746B2 (en) | 2018-06-27 | 2023-06-27 | Ptc Therapeutics, Inc. | Heteroaryl compounds for treating Huntington's disease |
US11858941B2 (en) | 2018-06-27 | 2024-01-02 | Ptc Therapeutics, Inc. | Heterocyclic and heteroaryl compounds for treating Huntington's disease |
US12139499B2 (en) | 2019-06-25 | 2024-11-12 | Ptc Therapeutics, Inc. | Heteroaryl compounds for treating Huntington's disease |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4759200B2 (en) | Reactive oxygen measurement reagent | |
JP6351511B2 (en) | Synthesis of asymmetric Si rhodamine and rhodol | |
Gunnlaugsson et al. | Novel sodium-selective fluorescent PET and optically based chemosensors: towards Na+ determination in serum | |
US8143069B2 (en) | Fluorescent probe and method of measuring hypochlorite ion | |
JP5228190B2 (en) | Peroxynitrite fluorescent probe | |
CA2295880A1 (en) | Diaminorhodamine derivatives | |
WO2015081803A1 (en) | Boron-dipyrromethene fluorescence probes and manufacturing method and use thereof | |
US7939330B2 (en) | Fluorescent probe | |
JP6275689B2 (en) | Fluorescent probe | |
WO2009110487A1 (en) | Fluorescent probe specific to hydrogen peroxide | |
JP2006219453A (en) | Metal-discrimination-type two-color fluorescent molecule containing quinoline ring as parent nucleus | |
JP5887011B2 (en) | Fluorescent probe | |
WO2005085811A1 (en) | Fluorescent probes | |
Benco et al. | A fluoroionophore for detection of potassium ions: 9-anthryl-substituted azacrown ether covalently linked to a 1, 3-alternate calix [4] arene | |
JP5477749B2 (en) | Reactive oxygen measurement reagent | |
Khatua et al. | Direct dizinc displacement approach for efficient detection of Cu2+ in aqueous media: acetate versus phenolate bridging platforms | |
WO2007013201A1 (en) | Zinc fluorescent probe | |
WO2002102795A1 (en) | Fluorescent probes for zinc | |
CN114230494A (en) | Synthesis of large Stokes shift near-infrared fluorescent probe and application thereof in detecting hydrogen sulfide | |
JP2004101389A (en) | Probe for measuring aluminum ion and/or ferric ion | |
JP2005201773A (en) | Secondary copper ion measuring probe and measuring method of secondary copper ion using the same | |
JP2020176108A (en) | Guanine quadruplex-binding ligand | |
CN108689925B (en) | Hypochlorous acid and nitric oxide fluorescent probe based on 1, 8-diaminonaphthalene unit | |
JP2004315501A (en) | Zinc fluorescent probe | |
JP4597573B2 (en) | Compound, method for producing compound and method for detecting apoptotic cell |