JP2006210701A - Solid-state image sensing device and its manufacturing method - Google Patents

Solid-state image sensing device and its manufacturing method Download PDF

Info

Publication number
JP2006210701A
JP2006210701A JP2005021701A JP2005021701A JP2006210701A JP 2006210701 A JP2006210701 A JP 2006210701A JP 2005021701 A JP2005021701 A JP 2005021701A JP 2005021701 A JP2005021701 A JP 2005021701A JP 2006210701 A JP2006210701 A JP 2006210701A
Authority
JP
Japan
Prior art keywords
filter
light receiving
infrared light
light
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005021701A
Other languages
Japanese (ja)
Inventor
Hisashi Matsuyama
久 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005021701A priority Critical patent/JP2006210701A/en
Publication of JP2006210701A publication Critical patent/JP2006210701A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of generation of irregularities in the surface of an image sensor due to a thick IR transmitting filter laminated in an IR picture element in a solid-state image sensing element wherein R, G, B picture elements detecting RGB color factors and IR picture element detecting infrared light factor are disposed. <P>SOLUTION: After a transfer electrode and a wiring are formed on a semiconductor substrate 30, a flattened film 32 is formed. A recess 34 is formed by etching the flattened film 32 in a position corresponding to an IR picture element. A B filter 36 is buried in the recess 34 on the IR picture element, and an R filter 42 is further laminated. R, G, B filters are laminated on the R, G, B picture elements using the unetched flattened film 32 as a foundation. The height of the surface of a filter array formed in the RGB picture element and IR picture element becomes even by making the recess part 34 deep by one layer of a color filter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像装置及びその製造方法に関し、特に、赤外領域に感度を有する受光素子を含んだ固体撮像装置におけるオンチップカラーフィルタに関する。   The present invention relates to a solid-state imaging device and a manufacturing method thereof, and more particularly to an on-chip color filter in a solid-state imaging device including a light receiving element having sensitivity in an infrared region.

ビデオカメラやデジタルカメラに搭載されるCCD(Charge Coupled Device)イメージセンサ等の固体撮像素子(固体撮像装置)は二次元配列された受光部(受光素子)を有し、この受光部で入射光を光電変換して電気的な画像信号を生成する。受光部自体は、波長が380〜780nm程度の可視光領域全般に加え、さらに長波長の近赤外領域まで感度を有する。そのため、カラー画像を取得するために、透過光の色、つまり透過波長領域が異なる複数種類のカラーフィルタを受光面上に配置する。カラーフィルタは、受光面上に透明な平坦化膜を形成した後、この平坦化膜の上に積層される。また、カラーフィルタの上にはさらに別途の平坦化膜や保護膜が積層される。   A solid-state imaging device (solid-state imaging device) such as a CCD (Charge Coupled Device) image sensor mounted on a video camera or a digital camera has a two-dimensionally arranged light receiving portion (light receiving device), and incident light is received by this light receiving portion. An electrical image signal is generated through photoelectric conversion. The light-receiving unit itself has sensitivity to the near-infrared region having a longer wavelength in addition to the entire visible light region having a wavelength of about 380 to 780 nm. Therefore, in order to acquire a color image, a plurality of types of color filters having different colors of transmitted light, that is, transmitted wavelength regions, are arranged on the light receiving surface. The color filter is laminated on the flattened film after forming a transparent flattened film on the light receiving surface. Further, a separate flattening film and protective film are laminated on the color filter.

カラーフィルタには、透過光が赤(R)、緑(G)及び青(B)である原色系のフィルタセットや、シアン(Cy)、マゼンタ(Mg)及びイエロー(Ye)である補色系のフィルタセットがある。これらカラーフィルタは例えば、有機材料を着色して構成され、それぞれ対応する色の可視光を透過するが、その材質上、赤外光も透過する。例えば、図5は、RGB各フィルタの透過率の波長特性を示すグラフであり、同図は受光部の分光感度特性も併せて示している。   Color filters include primary color filter sets whose transmitted light is red (R), green (G), and blue (B), and complementary color systems that are cyan (Cy), magenta (Mg), and yellow (Ye). There is a filter set. These color filters are configured by, for example, coloring an organic material and transmit visible light of a corresponding color, but also transmit infrared light due to the material. For example, FIG. 5 is a graph showing the wavelength characteristics of the transmittance of each of the RGB filters, and the figure also shows the spectral sensitivity characteristics of the light receiving unit.

受光部は赤外光にも感度を有するため、赤外光成分が入射すると当該成分による信号電荷が発生し、正しい色表現ができない。そのため、従来は、カメラのレンズと固体撮像素子との間に、別途、赤外カットフィルタを配置している。   Since the light receiving section is sensitive to infrared light, when an infrared light component is incident, signal charges are generated by the component, and correct color expression cannot be performed. Therefore, conventionally, an infrared cut filter is separately provided between the camera lens and the solid-state imaging device.

この赤外カットフィルタは、赤外光をカットすると同時に、可視光も10〜20%程度、減衰させる。そのため、受光部に入射する可視光の強度が減少し、それに応じて出力信号のS/N比が低下し、画質の劣化を招くという問題があった。   The infrared cut filter cuts infrared light and attenuates visible light by about 10 to 20%. For this reason, there is a problem that the intensity of visible light incident on the light receiving portion is reduced, the S / N ratio of the output signal is lowered accordingly, and the image quality is deteriorated.

この問題への対処として、赤外カットフィルタを無くす一方で、基本的に入射光中の赤外光成分のみを検出する受光部を設け、当該受光部から得られる赤外光成分に関する情報に基づき、正しい色を再現する信号処理を行う方法が考えられる。   As a countermeasure to this problem, while eliminating the infrared cut filter, a light receiving unit that basically detects only the infrared light component in the incident light is provided, and based on information on the infrared light component obtained from the light receiving unit. A method of performing signal processing for reproducing correct colors can be considered.

赤外光成分のみを検出する受光部は、その受光面上に互いに異なる色の可視光を透過する複数種類のカラーフィルタを積層することにより実現できる。すなわち、互いに積層されたカラーフィルタは、あるカラーフィルタを透過した可視光成分を他のカラーフィルタで吸収することにより可視光の透過を阻止する一方、各カラーフィルタが赤外光成分を透過する結果、赤外光を選択的に透過する。
特願2003−425708号
The light receiving unit that detects only the infrared light component can be realized by stacking a plurality of types of color filters that transmit visible light of different colors on the light receiving surface. In other words, the color filters stacked on each other prevent visible light from being transmitted by absorbing visible light components transmitted through one color filter with other color filters, while each color filter transmits infrared light components. , Selectively transmits infrared light.
Japanese Patent Application No. 2003-425708

図6は、撮像部の従来のフィルタアレイの模式的な断面図である。可視光の各色成分を検出する受光部60と赤外光成分を検出する受光部62とをモザイク状に混在配置させる場合、可視光成分に対応する受光部60には、平坦化膜64の上にその色成分を透過するカラーフィルタ66が1層だけ積層され、これに対して、赤外光成分に対応する受光部62には、平坦化膜64の上に複数層のカラーフィルタ66,68が積層される。そのため、赤外光成分を検出する受光部62と可視光成分を検出する他の受光部60とで平坦化膜64の上に積層されるフィルタの厚みに差異が生じ、それらフィルタ上に構造物を形成する際に支障を来し得るという問題があった。例えば、フィルタ上に形成される平坦化膜70の膜厚を薄くすると平坦性の確保が難しくなり、反対に平坦性を確保しようとすると膜厚が厚くなるという問題があった。   FIG. 6 is a schematic cross-sectional view of a conventional filter array of the imaging unit. When the light receiving unit 60 that detects each color component of the visible light and the light receiving unit 62 that detects the infrared light component are mixedly arranged in a mosaic shape, the light receiving unit 60 corresponding to the visible light component has an upper surface of the planarizing film 64. On the other hand, only one color filter 66 that transmits the color component is laminated. On the other hand, the light receiving unit 62 corresponding to the infrared light component has a plurality of layers of color filters 66 and 68 on the planarizing film 64. Are stacked. For this reason, there is a difference in the thickness of the filter laminated on the planarizing film 64 between the light receiving unit 62 that detects the infrared light component and the other light receiving unit 60 that detects the visible light component, and a structure is formed on the filter. There was a problem that could interfere with forming. For example, if the thickness of the flattening film 70 formed on the filter is reduced, it is difficult to ensure flatness. On the other hand, if it is attempted to ensure flatness, the film thickness increases.

本発明は上記問題を解決するためになされたものであり、カラーフィルタ形成後の固体撮像素子の表面の平坦性を向上し、カラーフィルタ上の平坦化膜での光の屈折による解像度の低下防止や、さらにカラーフィルタ上に積層され得るマイクロレンズアレイの形成を容易とする固体撮像素子を提供することを目的とする。   The present invention has been made to solve the above problem, and improves the flatness of the surface of the solid-state imaging device after the color filter is formed, and prevents the resolution from being lowered due to the refraction of light in the flattening film on the color filter. Another object of the present invention is to provide a solid-state imaging device that can easily form a microlens array that can be stacked on a color filter.

本発明に係る固体撮像装置は、互いに異なる色を透過する色フィルタがそれぞれ透明の下地層を介して受光面上に積層された複数種類の可視光成分受光素子と、赤外光成分を選択的に透過する赤外光透過フィルタが前記下地層を介して受光面上に積層された赤外光成分受光素子とが配列されたものにおいて、前記下地層が、前記赤外光成分受光素子の受光面上にて、前記可視光成分受光素子の受光面上より薄く形成され、前記赤外光透過フィルタが、前記色フィルタのうち赤外光を透過する複数種類の色フィルタを前記下地層上にて積層して構成される。   The solid-state imaging device according to the present invention selectively includes a plurality of types of visible light component light receiving elements in which color filters that transmit different colors are stacked on a light receiving surface through transparent base layers, and an infrared light component selectively. Infrared light transmission filter that transmits light is arranged with an infrared light component light receiving element laminated on a light receiving surface through the underlayer, and the underlayer receives light of the infrared light component light receiving element. On the surface, the infrared light transmitting filter is formed thinner than the light receiving surface of the visible light component light receiving element, and the infrared light transmitting filter transmits a plurality of types of color filters that transmit infrared light among the color filters on the base layer. It is configured by stacking.

本発明の好適な態様は、前記色フィルタとして、赤色に応じた成分を透過する赤色透過フィルタ、及び青色に応じた成分を透過する青色透過フィルタを有し、前記赤外光透過フィルタが、前記赤色透過フィルタ及び前記青色透過フィルタを積層して構成される固体撮像装置である。   A preferred aspect of the present invention includes, as the color filter, a red transmission filter that transmits a component corresponding to red, and a blue transmission filter that transmits a component corresponding to blue, and the infrared light transmission filter includes: It is a solid-state imaging device configured by laminating a red transmission filter and the blue transmission filter.

本発明に係る固体撮像装置の製造方法は、互いに異なる色を透過する色フィルタがそれぞれ受光面上に積層された複数種類の可視光成分受光素子と、赤外光成分を選択的に透過する赤外光透過フィルタが受光面上に積層された赤外光成分受光素子とが配列された固体撮像装置を製造する方法において、前記各可視光成分受光素子及び前記赤外光成分受光素子の前記受光面上に共通に、透明の下地層を形成する工程と、前記赤外光透過フィルタを形成する赤外光透過フィルタ形成工程と、を有し、前記赤外光透過フィルタ形成工程が、前記下地層をエッチングして前記赤外光成分受光素子の前記受光面上に前記下地層の凹部を形成するエッチング工程と、前記色フィルタのうち赤外光を透過する少なくとも1種類の色フィルタを下部フィルタとして前記凹部に積層する下部フィルタ形成工程と、前記色フィルタのうち赤外光を透過し、かつ前記下部フィルタとは異なる種類の色フィルタを上部フィルタとして当該下部フィルタ上に積層する上部フィルタ形成工程と、を有するものである。   The method for manufacturing a solid-state imaging device according to the present invention includes a plurality of types of visible light component light receiving elements in which color filters that transmit different colors are stacked on a light receiving surface, and red that selectively transmits infrared light components. In the method of manufacturing a solid-state imaging device in which an infrared light component light receiving element in which an external light transmission filter is laminated on a light receiving surface is arranged, the light reception of each visible light component light receiving element and the infrared light component light receiving element A step of forming a transparent base layer in common on the surface and an infrared light transmission filter forming step of forming the infrared light transmission filter, wherein the infrared light transmission filter formation step comprises An etching step of etching a ground layer to form a concave portion of the underlayer on the light receiving surface of the infrared light-receiving element; and at least one color filter that transmits infrared light among the color filters as a lower filter When A lower filter forming step of laminating in the recess, and an upper filter forming step of laminating on the lower filter using a color filter of the color filter that transmits infrared light and is different from the lower filter as the upper filter. And.

本発明に係る固体撮像装置の他の製造方法は、互いに異なる色を透過する色フィルタがそれぞれ受光面上に積層された複数種類の可視光成分受光素子と、赤外光成分を選択的に透過する赤外光透過フィルタが受光面上に積層された赤外光成分受光素子とが配列された固体撮像装置を製造する方法において、前記各可視光成分受光素子及び前記赤外光成分受光素子の前記受光面上に共通に、透明の下地層を形成する工程と、前記赤外光透過フィルタを形成する赤外光透過フィルタ形成工程と、を有し、前記赤外光透過フィルタ形成工程が、前記赤外光成分受光素子の前記受光面上に前記下地層の凹部を形成する凹部形成工程と、前記色フィルタのうち赤外光を透過する少なくとも1種類の色フィルタを下部フィルタとして前記凹部に積層する下部フィルタ形成工程と、前記色フィルタのうち赤外光を透過し、かつ前記下部フィルタとは異なる種類の色フィルタを上部フィルタとして当該下部フィルタ上に積層する上部フィルタ形成工程と、を有するものである。   Another method of manufacturing a solid-state imaging device according to the present invention is to selectively transmit infrared light components and a plurality of types of visible light component light receiving elements in which color filters that transmit different colors are stacked on the light receiving surface. In a method of manufacturing a solid-state imaging device in which an infrared light transmission filter is arranged with an infrared light component light receiving element laminated on a light receiving surface, the visible light component light receiving element and the infrared light component light receiving element Commonly on the light receiving surface, a step of forming a transparent base layer, and an infrared light transmission filter forming step of forming the infrared light transmission filter, the infrared light transmission filter formation step, A recess forming step of forming a recess of the base layer on the light receiving surface of the infrared light receiving element; and at least one type of color filter that transmits infrared light among the color filters as a lower filter. Under laminated A filter forming step, and an upper filter forming step of laminating on the lower filter a color filter of the color filter that transmits infrared light and is different from the lower filter as an upper filter. .

本発明の好適な態様は、赤色に応じた成分を透過する赤色透過フィルタ及び青色に応じた成分を透過する青色透過フィルタのいずれか一方を前記下部フィルタとして形成し、他方を前記上部フィルタとして形成する製造方法である。   According to a preferred aspect of the present invention, one of a red transmission filter that transmits a component corresponding to red and a blue transmission filter that transmits a component corresponding to blue is formed as the lower filter, and the other is formed as the upper filter. Manufacturing method.

本発明によれば、色フィルタの下地層が可視光成分受光素子上より赤外光成分受光素子上にて窪んで形成される。複数の色フィルタを積層して形成される赤外光透過フィルタは可視光成分受光素子上の色フィルタに比べて厚くなる。しかし、当該赤外光透過フィルタは下地層の窪み(凹部)に形成されるので、赤外光透過フィルタと可視光成分受光素子上の色フィルタとの表面の平坦化が図られる。   According to the present invention, the base layer of the color filter is formed so as to be recessed on the infrared light component light receiving element from on the visible light component light receiving element. An infrared light transmission filter formed by laminating a plurality of color filters is thicker than a color filter on a visible light component light receiving element. However, since the infrared light transmission filter is formed in the depression (concave portion) of the base layer, the surfaces of the infrared light transmission filter and the color filter on the visible light component light receiving element can be flattened.

以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1は、本実施形態に係るCCDイメージセンサの構成を示す模式的な平面図である。このCCDイメージセンサはフレーム転送型のものであり、半導体基板上に形成される撮像部2、蓄積部4、水平転送部6、及び出力部8を含んで構成される。   FIG. 1 is a schematic plan view showing the configuration of the CCD image sensor according to the present embodiment. This CCD image sensor is of a frame transfer type and includes an imaging unit 2, a storage unit 4, a horizontal transfer unit 6, and an output unit 8 formed on a semiconductor substrate.

撮像部2は、列方向(垂直方向)に延びる複数のCCDシフトレジスタ(垂直シフトレジスタ10)からなり、これら垂直シフトレジスタ10は行方向(水平方向)に配列される。撮像部2を構成する垂直シフトレジスタ10の各ビットは、それぞれ画素を構成する受光部として機能する。   The imaging unit 2 includes a plurality of CCD shift registers (vertical shift registers 10) extending in the column direction (vertical direction), and these vertical shift registers 10 are arranged in the row direction (horizontal direction). Each bit of the vertical shift register 10 constituting the imaging unit 2 functions as a light receiving unit constituting each pixel.

各受光部に対応してカラーフィルタが配置され、そのカラーフィルタの透過特性に応じて、受光部が感度を有する光成分が定まる。ここでは、2×2画素の配列が受光部の配列の単位を構成する。例えば、受光部12,14,16,18がこの単位を構成する。   A color filter is arranged corresponding to each light receiving portion, and a light component having sensitivity to the light receiving portion is determined according to the transmission characteristics of the color filter. Here, an array of 2 × 2 pixels constitutes a unit of an array of light receiving units. For example, the light receiving units 12, 14, 16, and 18 constitute this unit.

受光部12,14,16はそれぞれGフィルタ、Rフィルタ、Bフィルタを配置される。これら各フィルタは例えば、図5に示す透過特性を有する。赤外光成分(IR成分)を含む入射光に対して、受光部12はG成分及びIR成分に応じた信号電荷を発生する。また、同様に、受光部14はR成分及びIR成分に応じた信号電荷を発生し、受光部16はB成分及びIR成分に応じた信号電荷を発生する。   The light receiving units 12, 14, and 16 are respectively provided with a G filter, an R filter, and a B filter. Each of these filters has, for example, the transmission characteristics shown in FIG. For incident light including an infrared light component (IR component), the light receiving unit 12 generates signal charges corresponding to the G component and the IR component. Similarly, the light receiving unit 14 generates a signal charge corresponding to the R component and the IR component, and the light receiving unit 16 generates a signal charge corresponding to the B component and the IR component.

受光部18は、赤外光成分を選択的に透過するIRフィルタ(赤外光透過フィルタ)を配置され、入射光中のIR成分に応じた信号電荷を発生する。このIRフィルタは、RフィルタとBフィルタとを積層して構成することができる。なぜならば、可視光のうちBフィルタを透過するB成分はRフィルタを透過せず、一方、Rフィルタを透過するR成分はBフィルタを透過しないため、両フィルタを通すことで、基本的に可視光成分が除去され、もっぱら透過光には両フィルタを透過するIR成分が残るからである。   The light receiving unit 18 is provided with an IR filter (infrared light transmitting filter) that selectively transmits an infrared light component, and generates a signal charge corresponding to the IR component in the incident light. This IR filter can be configured by laminating an R filter and a B filter. This is because, among visible light, the B component that passes through the B filter does not pass through the R filter, while the R component that passes through the R filter does not pass through the B filter. This is because the light component is removed, and the IR component that passes through both filters remains exclusively in the transmitted light.

撮像部2には、当該2×2画素の構成が垂直方向、水平方向それぞれに繰り返して配列される。   In the imaging unit 2, the 2 × 2 pixel configuration is repeatedly arranged in the vertical direction and the horizontal direction.

蓄積部4も撮像部2と同様に複数の垂直シフトレジスタ20からなる。各垂直シフトレジスタ20は、それぞれ撮像部2の垂直シフトレジスタ10に対応して設けられ、その入力端が垂直シフトレジスタ10の出力端に接続される。垂直シフトレジスタ20は撮像部2からフレーム転送動作により高速に垂直転送された信号電荷を保持し、その信号電荷を1行ずつ水平転送部6へ垂直転送する。   The storage unit 4 includes a plurality of vertical shift registers 20 in the same manner as the imaging unit 2. Each vertical shift register 20 is provided corresponding to the vertical shift register 10 of the imaging unit 2, and its input terminal is connected to the output terminal of the vertical shift register 10. The vertical shift register 20 holds the signal charges vertically transferred from the imaging unit 2 by the frame transfer operation at high speed, and vertically transfers the signal charges to the horizontal transfer unit 6 line by line.

水平転送部6は、CCDシフトレジスタで構成され、その各ビットに垂直シフトレジスタ20の出力端が接続される。水平転送部6は、複数の垂直シフトレジスタ20から並列に出力される1行分の信号電荷を受け取った後、それら信号電荷を出力部8へ向けて水平転送する。   The horizontal transfer unit 6 includes a CCD shift register, and an output terminal of the vertical shift register 20 is connected to each bit. The horizontal transfer unit 6 receives the signal charges for one row output in parallel from the plurality of vertical shift registers 20, and then horizontally transfers the signal charges toward the output unit 8.

出力部8は、水平転送部6から出力される信号電荷を電圧信号に変換し、画像信号として出力する。   The output unit 8 converts the signal charge output from the horizontal transfer unit 6 into a voltage signal and outputs it as an image signal.

各垂直シフトレジスタ10は、半導体基板に形成された不純物拡散層であって電荷転送路となると共に、受光部としても機能するチャネル領域と、半導体基板上に行方向に延在して形成され、かつ列方向に配列された複数の垂直転送電極とを含んで構成される。   Each vertical shift register 10 is an impurity diffusion layer formed in a semiconductor substrate and serves as a charge transfer path, and is formed to extend in the row direction on the semiconductor substrate, a channel region that also functions as a light receiving portion, And a plurality of vertical transfer electrodes arranged in the column direction.

半導体基板上には、さらに、例えば、Al膜で形成される配線層が積層される。これをパターニングして、隣接するチャネル領域間を分離するチャネルストップ上に沿って延びるクロック配線等が形成される。ここで、クロック配線は垂直転送電極に転送クロックを印加する。この配線層の上に透明な材質からなる平坦化膜を積層した後、さらにその上に上述のR,G,Bフィルタ、及びIRフィルタからなるフィルタアレイが形成される。   On the semiconductor substrate, a wiring layer formed of, for example, an Al film is further stacked. This is patterned to form a clock wiring or the like extending along a channel stop that separates adjacent channel regions. Here, the clock wiring applies a transfer clock to the vertical transfer electrode. After a planarizing film made of a transparent material is laminated on the wiring layer, a filter array made of the above-described R, G, B filter and IR filter is further formed thereon.

図2は、撮像部のフィルタアレイの製造方法を示す模式的な斜視図である。また図3及び図4は、撮像部のフィルタアレイの製造方法を示す模式的な断面図である。これら図は、上述の受光部12〜18を取り出して示したものである。図3は、受光部16,18を通る垂直断面から受光部12,14の方向を見た様子を示しており、図4は、受光部14,18を通る垂直断面から受光部12,16の方向を見た様子を示している。上述のように、半導体基板30の上に転送電極や配線層が形成された後、平坦化膜32が形成される(図2(a)、図3(a)、図4(a))。なお、図2〜図4では転送電極や配線層は省略されている。   FIG. 2 is a schematic perspective view showing a method for manufacturing the filter array of the imaging unit. 3 and 4 are schematic cross-sectional views illustrating a method for manufacturing the filter array of the imaging unit. These drawings show the above-described light receiving portions 12 to 18 taken out. 3 shows a state in which the direction of the light receiving parts 12 and 14 is viewed from a vertical section passing through the light receiving parts 16 and 18, and FIG. 4 shows a state of the light receiving parts 12 and 16 from a vertical section passing through the light receiving parts 14 and 18. Shows the direction. As described above, after the transfer electrode and the wiring layer are formed on the semiconductor substrate 30, the planarizing film 32 is formed (FIGS. 2A, 3A, and 4A). 2 to 4, the transfer electrode and the wiring layer are omitted.

平坦化膜32は、図2(a)、図3(a)、図4(a)に示すように一旦、その表面が平坦となるように形成された後、受光部18の受光面上の部分をエッチングされる。これにより、平坦化膜32には受光部18の受光面上に凹部34が形成される(図2(b)、図3(b)、図4(b))。このエッチングは、例えば、フォトリソグラフィ技術を用いて、平坦化膜表面のうち受光部18以外の部分にエッチングに対するマスク層を形成した上で行われる。また、エッチング量、つまり凹部の深さは、次の工程でこの凹部34に積層されるBフィルタの厚さに応じて設定される。   As shown in FIGS. 2A, 3A, and 4A, the planarizing film 32 is once formed to have a flat surface, and then is formed on the light receiving surface of the light receiving unit 18. The part is etched. As a result, a recess 34 is formed on the light receiving surface of the light receiving portion 18 in the planarizing film 32 (FIGS. 2B, 3B, and 4B). This etching is performed, for example, after a mask layer for etching is formed in a portion other than the light receiving portion 18 on the surface of the planarizing film by using a photolithography technique. Further, the etching amount, that is, the depth of the recess is set in accordance with the thickness of the B filter laminated on the recess 34 in the next step.

受光部18上の凹部34には、Bフィルタ36が積層される(図2(c)、図3(c)、図4(c))。このBフィルタ36は、例えば、青色に着色された感光性樹脂を用いて形成される。例えば、当該感光性樹脂は、半導体基板全面にスピンコート等の方法で塗布された後、フォトマスクを用いて露光され、さらに現像される。この露光・現像工程により、感光性樹脂は、凹部34の部分だけに残るようにパターニングされ、Bフィルタ36が形成される。Bフィルタ36は、凹部34に埋め込まれ、例えば、その上面が凹部34の周りの平坦化膜32の表面と同程度の高さとなるように、凹部34の深さとBフィルタ36の膜厚とが定められる。   A B filter 36 is stacked in the recess 34 on the light receiving unit 18 (FIG. 2C, FIG. 3C, and FIG. 4C). The B filter 36 is formed using, for example, a photosensitive resin colored in blue. For example, the photosensitive resin is applied to the entire surface of the semiconductor substrate by a method such as spin coating, and then exposed and developed using a photomask. By this exposure / development process, the photosensitive resin is patterned so as to remain only in the concave portion 34, and the B filter 36 is formed. The B filter 36 is embedded in the recess 34. For example, the depth of the recess 34 and the film thickness of the B filter 36 are set so that the upper surface of the B filter 36 has the same height as the surface of the planarizing film 32 around the recess 34. Determined.

次いで、Bフィルタ36と同様の方法により、受光部16上にBフィルタ38が積層される(図2(d)、図3(d)、図4(d))。また、やはりBフィルタ36と同様の方法により、受光部12上にGフィルタ40が積層される(図2(e)、図3(e)、図4(e))。これらBフィルタ38及びGフィルタ40は、凹部34に隣接するエッチングされなかった平坦化膜32上に形成されるので、その上面はBフィルタ36より高くなる。   Next, the B filter 38 is laminated on the light receiving unit 16 by the same method as that for the B filter 36 (FIGS. 2D, 3D, and 4D). Further, the G filter 40 is laminated on the light receiving unit 12 by the same method as the B filter 36 (FIGS. 2E, 3E, and 4E). Since the B filter 38 and the G filter 40 are formed on the unetched planarizing film 32 adjacent to the concave portion 34, the upper surface thereof is higher than the B filter 36.

また、受光部14と受光部18の上にRフィルタ42が積層される。Rフィルタ42は、受光部14の位置では平坦化膜32に積層される。一方、受光部18の位置ではBフィルタ36に積層される。ここで、上述のようにBフィルタ36の上面と受光部14の位置の平坦化膜32の表面との高さは基本的に揃っているので、例えば、Rフィルタ42は、受光部14,18の上に一体的に平坦に形成することができる(図2(f)、図3(f)、図4(f))。   An R filter 42 is laminated on the light receiving unit 14 and the light receiving unit 18. The R filter 42 is stacked on the planarizing film 32 at the position of the light receiving unit 14. On the other hand, the light receiving unit 18 is laminated on the B filter 36. Here, as described above, since the height of the upper surface of the B filter 36 and the surface of the planarizing film 32 at the position of the light receiving unit 14 are basically equal, for example, the R filter 42 includes the light receiving units 14 and 18. (Fig. 2 (f), Fig. 3 (f), Fig. 4 (f)).

以上の工程により、各受光部の上にカラーフィルタが積層される。IR成分を検出する受光部18には、Bフィルタ36及びRフィルタ42という2層のカラーフィルタを積層してIRフィルタが形成されるが、その下地の平坦化膜32に凹部34を設けて、1層のカラーフィルタをその凹部34に埋め込んだことにより、受光部18の上に形成された2層目のフィルタが周りの受光部のフィルタより突出することが防止される。すなわち、各受光部12〜18の上に形成されたフィルタアレイの表面の平坦性が向上する。この表面に、平坦化膜44が積層される(図2(g)、図3(g)、図4(g))。平坦化膜44の下地となるフィルタアレイの表面の起伏が上述のように抑制されているので、平坦化膜44は比較的薄い膜厚で撮像部2表面の平坦化を実現することができる。   Through the above steps, a color filter is laminated on each light receiving portion. An IR filter is formed by laminating two color filters, a B filter 36 and an R filter 42, in the light receiving unit 18 that detects the IR component, and a recess 34 is provided in the underlying planarization film 32, By embedding the one-layer color filter in the recess 34, the second-layer filter formed on the light-receiving portion 18 is prevented from protruding from the filters of the surrounding light-receiving portions. That is, the flatness of the surface of the filter array formed on each of the light receiving portions 12 to 18 is improved. A planarizing film 44 is laminated on this surface (FIG. 2 (g), FIG. 3 (g), FIG. 4 (g)). Since the undulation of the surface of the filter array serving as the base of the flattening film 44 is suppressed as described above, the flattening film 44 can realize the flattening of the surface of the imaging unit 2 with a relatively thin film thickness.

なお、ここではフレーム転送型CCDイメージセンサを示したが、インターライン転送型等、他のタイプのものや、C−MOSイメージセンサにも本発明を適用することができる。   Although a frame transfer type CCD image sensor is shown here, the present invention can also be applied to other types such as an interline transfer type and C-MOS image sensors.

また、補色系のカラーフィルタのセットを用いた場合には、IRフィルタをCyフィルタ、Mgフィルタ及びYeフィルタの3つを積層して構成することができる。この場合には、凹部34はカラーフィルタ2層分の深さに形成する。これにより、IRフィルタを構成する最上層の3層目のカラーフィルタと、周りの可視光用の受光部のカラーフィルタとの表面の高さを揃えることができる。   Further, when a set of complementary color filters is used, the IR filter can be configured by stacking three of a Cy filter, an Mg filter, and a Ye filter. In this case, the recess 34 is formed to a depth of two color filter layers. Thereby, the surface height of the color filter of the 3rd layer of the uppermost layer which comprises IR filter, and the surrounding color filter of the light-receiving part for visible light can be arrange | equalized.

実施形態に係るCCDイメージセンサの構成を示す模式的な平面図である。It is a typical top view which shows the structure of the CCD image sensor which concerns on embodiment. 撮像部のフィルタアレイの製造方法の各工程を示す模式的な斜視図である。It is a typical perspective view which shows each process of the manufacturing method of the filter array of an imaging part. 撮像部のフィルタアレイの製造方法の各工程を示す模式的な断面図である。It is typical sectional drawing which shows each process of the manufacturing method of the filter array of an imaging part. 撮像部のフィルタアレイの製造方法の各工程を示す模式的な断面図である。It is typical sectional drawing which shows each process of the manufacturing method of the filter array of an imaging part. RGB各フィルタの透過率の波長特性及び受光部の分光感度特性を示すグラフである。It is a graph which shows the wavelength characteristic of the transmittance | permeability of each RGB filter, and the spectral sensitivity characteristic of a light-receiving part. 撮像部の従来のフィルタアレイの模式的な断面図である。It is typical sectional drawing of the conventional filter array of an imaging part.

符号の説明Explanation of symbols

2 撮像部、4 蓄積部、6 水平転送部、8 出力部、10,20 垂直シフトレジスタ、12〜18 受光部、30 半導体基板、32,44 平坦化膜、34 凹部、36,38 Bフィルタ、40 Gフィルタ、42 Rフィルタ。   2 imaging unit, 4 storage unit, 6 horizontal transfer unit, 8 output unit, 10, 20 vertical shift register, 12-18 light receiving unit, 30 semiconductor substrate, 32, 44 planarization film, 34 recess, 36, 38 B filter, 40 G filter, 42 R filter.

Claims (5)

互いに異なる色を透過する色フィルタがそれぞれ透明の下地層を介して受光面上に積層された複数種類の可視光成分受光素子と、赤外光成分を選択的に透過する赤外光透過フィルタが前記下地層を介して受光面上に積層された赤外光成分受光素子とが配列された固体撮像装置において、
前記下地層は、前記赤外光成分受光素子の受光面上にて、前記可視光成分受光素子の受光面上より薄く形成され、
前記赤外光透過フィルタは、前記色フィルタのうち赤外光を透過する複数種類の色フィルタを前記下地層上にて積層して構成されること、
を特徴とする固体撮像装置。
There are a plurality of types of visible light component light receiving elements in which color filters that transmit different colors are laminated on a light receiving surface through transparent underlayers, and an infrared light transmission filter that selectively transmits infrared light components. In a solid-state imaging device in which infrared light component light receiving elements stacked on a light receiving surface through the base layer are arranged,
The underlayer is formed thinner on the light receiving surface of the infrared light component light receiving element than on the light receiving surface of the visible light component light receiving element,
The infrared light transmission filter is configured by laminating a plurality of types of color filters that transmit infrared light among the color filters on the base layer,
A solid-state imaging device.
請求項1に記載の固体撮像装置において、
前記色フィルタとして、赤色に応じた成分を透過する赤色透過フィルタ、及び青色に応じた成分を透過する青色透過フィルタを有し、
前記赤外光透過フィルタは、前記赤色透過フィルタ及び前記青色透過フィルタを積層して構成されること、
を特徴とする固体撮像装置。
The solid-state imaging device according to claim 1,
As the color filter, a red transmission filter that transmits a component corresponding to red, and a blue transmission filter that transmits a component corresponding to blue,
The infrared light transmission filter is configured by stacking the red transmission filter and the blue transmission filter;
A solid-state imaging device.
互いに異なる色を透過する色フィルタがそれぞれ受光面上に積層された複数種類の可視光成分受光素子と、赤外光成分を選択的に透過する赤外光透過フィルタが受光面上に積層された赤外光成分受光素子とが配列された固体撮像装置を製造する方法において、
前記各可視光成分受光素子及び前記赤外光成分受光素子の前記受光面上に共通に、透明の下地層を形成する工程と、
前記赤外光透過フィルタを形成する赤外光透過フィルタ形成工程と、
を有し、
前記赤外光透過フィルタ形成工程は、
前記下地層をエッチングして前記赤外光成分受光素子の前記受光面上に前記下地層の凹部を形成するエッチング工程と、
前記色フィルタのうち赤外光を透過する少なくとも1種類の色フィルタを下部フィルタとして前記凹部に積層する下部フィルタ形成工程と、
前記色フィルタのうち赤外光を透過し、かつ前記下部フィルタとは異なる種類の色フィルタを上部フィルタとして当該下部フィルタ上に積層する上部フィルタ形成工程と、
を有することを特徴とする製造方法。
A plurality of types of visible light component light receiving elements each having a color filter that transmits different colors are stacked on the light receiving surface, and an infrared light transmitting filter that selectively transmits infrared light components are stacked on the light receiving surface. In a method of manufacturing a solid-state imaging device in which infrared light component light receiving elements are arranged,
Forming a transparent base layer in common on the light receiving surfaces of the visible light component light receiving elements and the infrared light component light receiving elements;
An infrared light transmission filter forming step of forming the infrared light transmission filter;
Have
The infrared light transmission filter forming step includes:
An etching step of etching the underlayer to form a recess in the underlayer on the light receiving surface of the infrared light component light receiving element;
A lower filter forming step of laminating at least one type of color filter that transmits infrared light among the color filters as a lower filter in the recess;
An upper filter forming step of transmitting infrared light among the color filters and laminating on the lower filter as a type of color filter different from the lower filter;
The manufacturing method characterized by having.
互いに異なる色を透過する色フィルタがそれぞれ受光面上に積層された複数種類の可視光成分受光素子と、赤外光成分を選択的に透過する赤外光透過フィルタが受光面上に積層された赤外光成分受光素子とが配列された固体撮像装置を製造する方法において、
前記各可視光成分受光素子及び前記赤外光成分受光素子の前記受光面上に共通に、透明の下地層を形成する工程と、
前記赤外光透過フィルタを形成する赤外光透過フィルタ形成工程と、
を有し、
前記赤外光透過フィルタ形成工程は、
前記赤外光成分受光素子の前記受光面上に前記下地層の凹部を形成する凹部形成工程と、
前記色フィルタのうち赤外光を透過する少なくとも1種類の色フィルタを下部フィルタとして前記凹部に積層する下部フィルタ形成工程と、
前記色フィルタのうち赤外光を透過し、かつ前記下部フィルタとは異なる種類の色フィルタを上部フィルタとして当該下部フィルタ上に積層する上部フィルタ形成工程と、
を有することを特徴とする製造方法。
A plurality of types of visible light component light receiving elements each having a color filter that transmits different colors are stacked on the light receiving surface, and an infrared light transmitting filter that selectively transmits infrared light components are stacked on the light receiving surface. In a method of manufacturing a solid-state imaging device in which infrared light component light receiving elements are arranged,
Forming a transparent base layer in common on the light receiving surfaces of the visible light component light receiving elements and the infrared light component light receiving elements;
An infrared light transmission filter forming step of forming the infrared light transmission filter;
Have
The infrared light transmission filter forming step includes:
A recess forming step of forming a recess in the base layer on the light receiving surface of the infrared light receiving element;
A lower filter forming step of laminating at least one type of color filter that transmits infrared light among the color filters as a lower filter in the recess;
An upper filter forming step of transmitting infrared light among the color filters and laminating on the lower filter as a type of color filter different from the lower filter;
The manufacturing method characterized by having.
請求項3又は請求項4に記載の製造方法において、
赤色に応じた成分を透過する赤色透過フィルタ及び青色に応じた成分を透過する青色透過フィルタのいずれか一方を前記下部フィルタとして形成し、他方を前記上部フィルタとして形成することを特徴とする固体撮像装置の製造方法。
In the manufacturing method of Claim 3 or Claim 4,
One of a red transmission filter that transmits a component corresponding to red and a blue transmission filter that transmits a component corresponding to blue is formed as the lower filter, and the other is formed as the upper filter. Device manufacturing method.
JP2005021701A 2005-01-28 2005-01-28 Solid-state image sensing device and its manufacturing method Pending JP2006210701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021701A JP2006210701A (en) 2005-01-28 2005-01-28 Solid-state image sensing device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021701A JP2006210701A (en) 2005-01-28 2005-01-28 Solid-state image sensing device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006210701A true JP2006210701A (en) 2006-08-10

Family

ID=36967188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021701A Pending JP2006210701A (en) 2005-01-28 2005-01-28 Solid-state image sensing device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006210701A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235753A (en) * 2007-03-23 2008-10-02 Sony Corp Solid imaging apparatus and method of manufacturing the same
JP2010078970A (en) * 2008-09-26 2010-04-08 Toppan Printing Co Ltd Color filter, its manufacturing method, and solid imaging element having the color filter
JPWO2008093834A1 (en) * 2007-02-02 2010-05-20 ローム株式会社 Solid-state imaging device and manufacturing method thereof
JP2010532869A (en) * 2007-07-09 2010-10-14 ボリーメディアコミュニケーションズ(シンチェン)カンパニーリミテッド Multispectral sensing device and manufacturing method thereof
KR20110052256A (en) * 2009-11-12 2011-05-18 삼성전자주식회사 3d color image sensor using stack structure of organic photoelectric conversion layers
US8035068B2 (en) 2008-07-28 2011-10-11 Ricoh Company, Limited Imaging device and imaging apparatus
US8138467B2 (en) 2008-06-26 2012-03-20 Samsung Electronics Co., Ltd. Color filter array including color filters only of first type and second type, method of fabricating the same, and image pickup device including the same
US8519317B2 (en) 2010-08-09 2013-08-27 Samsung Display Co., Ltd. Photosensor, manufacturing method thereof, and liquid crystal display including a photosensor
KR101444263B1 (en) * 2012-12-04 2014-09-30 (주)실리콘화일 CMOS image sensor having an infra-red pixel enhanced spectral characteristic and manufacturing method thereof
JP2016197733A (en) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー Photosensitive imaging element and related method
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
CN109936690A (en) * 2017-12-15 2019-06-25 百度(美国)有限责任公司 System and method for capturing two or more groups light image simultaneously
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US10741399B2 (en) 2004-09-24 2020-08-11 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
JPWO2008093834A1 (en) * 2007-02-02 2010-05-20 ローム株式会社 Solid-state imaging device and manufacturing method thereof
JP2008235753A (en) * 2007-03-23 2008-10-02 Sony Corp Solid imaging apparatus and method of manufacturing the same
JP2010532869A (en) * 2007-07-09 2010-10-14 ボリーメディアコミュニケーションズ(シンチェン)カンパニーリミテッド Multispectral sensing device and manufacturing method thereof
US8138467B2 (en) 2008-06-26 2012-03-20 Samsung Electronics Co., Ltd. Color filter array including color filters only of first type and second type, method of fabricating the same, and image pickup device including the same
US8035068B2 (en) 2008-07-28 2011-10-11 Ricoh Company, Limited Imaging device and imaging apparatus
JP2010078970A (en) * 2008-09-26 2010-04-08 Toppan Printing Co Ltd Color filter, its manufacturing method, and solid imaging element having the color filter
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
JP2016197733A (en) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー Photosensitive imaging element and related method
KR20110052256A (en) * 2009-11-12 2011-05-18 삼성전자주식회사 3d color image sensor using stack structure of organic photoelectric conversion layers
KR101666600B1 (en) 2009-11-12 2016-10-17 삼성전자주식회사 3D Color Image Sensor Using Stack Structure of Organic Photoelectric Conversion Layers
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
US8519317B2 (en) 2010-08-09 2013-08-27 Samsung Display Co., Ltd. Photosensor, manufacturing method thereof, and liquid crystal display including a photosensor
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
KR101444263B1 (en) * 2012-12-04 2014-09-30 (주)실리콘화일 CMOS image sensor having an infra-red pixel enhanced spectral characteristic and manufacturing method thereof
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US11069737B2 (en) 2013-06-29 2021-07-20 Sionyx, Llc Shallow trench textured regions and associated methods
CN109936690A (en) * 2017-12-15 2019-06-25 百度(美国)有限责任公司 System and method for capturing two or more groups light image simultaneously
US10834341B2 (en) 2017-12-15 2020-11-10 Baidu Usa Llc Systems and methods for simultaneous capture of two or more sets of light images

Similar Documents

Publication Publication Date Title
JP2006210701A (en) Solid-state image sensing device and its manufacturing method
KR102431210B1 (en) Image sensor having phase difference detection pixel
JP5247042B2 (en) Color filter array and image sensor
KR100871564B1 (en) Camera module
JP4826111B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
JP5845856B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP4341700B2 (en) SOLID-STATE IMAGING DEVICE, COLOR FILTER, CAMERA, AND COLOR FILTER MANUFACTURING METHOD
JP2012074521A (en) Manufacturing method of solid-state image pickup device, solid-state image pickup device, and electronic equipment
JP2005057024A (en) Solid state imaging device, manufacturing method thereof and camera
JP2012023137A (en) Solid state imaging device and method of manufacturing the same
US7012240B2 (en) Image sensor with guard rings and method for forming the same
JP5331119B2 (en) Solid-state imaging device and imaging apparatus
JP2009080313A (en) Color filter and its manufacturing method, solid-state imaging element using this filter and its manufacturing method
WO2014021130A1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device
JP2010062417A (en) Solid-state imaging device and method of manufacturing the same
JP2007324321A (en) Color filter, method of manufacturing the filter, solid-state image sensing device using the filter, and method of manufacturing the device
US10672811B2 (en) Image sensing device
US9215361B2 (en) Array cameras with light barriers
JP2007294552A (en) Solid-state imaging device
JP2006351775A (en) Method of manufacturing color filter, method of manufacturing solid-state imaging device and the solid-state imaging device employing the filter
US7180049B2 (en) Image sensor with optical guard rings and method for forming the same
JP2011061134A (en) Semiconductor image sensor
JP2011258884A (en) Solid-state imaging device and manufacturing method thereof
JP2007147738A (en) Color filter and its manufacturing method, and solid-state imaging element using the same and its manufacturing method
JP2006351786A (en) Manufacturing method of color filter, manufacturing method of imaging device, and solid-stage image pickup element using the same