JP2006202678A - Positive pole active substance and its manufacturing method and nonaqueous electrolyte battery using it - Google Patents

Positive pole active substance and its manufacturing method and nonaqueous electrolyte battery using it Download PDF

Info

Publication number
JP2006202678A
JP2006202678A JP2005015382A JP2005015382A JP2006202678A JP 2006202678 A JP2006202678 A JP 2006202678A JP 2005015382 A JP2005015382 A JP 2005015382A JP 2005015382 A JP2005015382 A JP 2005015382A JP 2006202678 A JP2006202678 A JP 2006202678A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
active material
electrode active
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015382A
Other languages
Japanese (ja)
Inventor
Hiroe Nakagawa
裕江 中川
Toshiyuki Onda
敏之 温田
Tokuo Inamasu
徳雄 稲益
Daisuke Endo
大輔 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2005015382A priority Critical patent/JP2006202678A/en
Publication of JP2006202678A publication Critical patent/JP2006202678A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery with excellent battery performance under a high-temperature environment. <P>SOLUTION: Fluorination treatment is given to a material expressed by: Li<SB>x</SB>Ni<SB>a</SB>Mn<SB>b</SB>Co<SB>c</SB>O<SB>z</SB>(0<x≤1.3, 0<a<1, 0<b<0.6, 0<c<1, a+b+c=1, 1.7≤z≤2.3) to impart a fluoride on the surface of a positive pole active substance, whereby battery performance is improved at a high-temperature environment. Further, the fluoride is imparted only on the surface of positive pole active substance particles, and not inside the particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、正極活物質及びその製造方法に関する。また、それを用いた非水電解質電池に関する。   The present invention relates to a positive electrode active material and a method for producing the same. Moreover, it is related with the nonaqueous electrolyte battery using the same.

近年、高性能化、小型化が進む電子機器用電源、電力貯蔵用電源、電気自動車用電源として、高エネルギー密度が得られる非水電解質電池が注目されている。   In recent years, attention has been focused on non-aqueous electrolyte batteries that can obtain high energy density as power supplies for electronic devices, power storage power supplies, and electric vehicle power supplies that are becoming higher performance and smaller.

現在市販されている非水電解質電池は、正極にLiCoO2が、負極にリチウムイオンを吸蔵放出する炭素質材料が、電解質に六フッ化リン酸リチウム(LiPF6)等の電解質がエチレンカーボネートを主構成成分とする非水溶媒に溶解されたものが用いられている。 The non-aqueous electrolyte batteries currently on the market are mainly LiCoO 2 for the positive electrode, the carbonaceous material that absorbs and releases lithium ions for the negative electrode, and the electrolyte such as lithium hexafluorophosphate (LiPF 6 ) for the electrolyte is ethylene carbonate. Those dissolved in a non-aqueous solvent as a constituent are used.

正極活物質としては、LiCoO2の他、LiNiO2、LiMn24等が研究されている。近年、α−NaFeO2型層状構造を有し、LiNiaMnbCoc2(a+b+c=1)で表される組成の材料についても研究されている。 In addition to LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like have been studied as positive electrode active materials. In recent years, a material having an α-NaFeO 2 type layered structure and a composition represented by LiNi a Mn b Co c O 2 (a + b + c = 1) has been studied.

このような非水電解質電池に求められる性能の一つに高温環境下での充放電サイクル性能がある。即ち、携帯用機器は高温環境下で使用されることが少なくない。また、電力貯蔵用電源、電気自動車用電源等においては特に、使用環境温度の問題のみならず、電池が大型化することによる蓄熱の問題が大きく、このため、高温環境下で保存しても自己放電率が小さく、また、高温環境下で繰り返し充放電を行っても放電容量の低下が小さい非水電解質電池が強く求められていた。高温環境下で自己放電が生じるメカニズムや、高温環境下で繰り返し充放電を行った場合に放電容量が低下するメカニズムのひとつとしては、高温環境下で電極活物質表面に形成される表面皮膜が、常温環境下で形成される表面皮膜よりも高抵抗であるためと推測される。しかし、表面皮膜形成の抑制だけでは、高温環境下での充放電サイクル性能や高温環境下での自己放電性能を改善することは困難であった。   One of the performances required for such a nonaqueous electrolyte battery is charge / discharge cycle performance under a high temperature environment. That is, portable devices are often used in a high temperature environment. In addition, power storage power supplies, electric vehicle power supplies, etc. are particularly problematic not only in terms of the environmental temperature of use but also in the storage of heat due to the increase in size of the battery. There has been a strong demand for a non-aqueous electrolyte battery having a small discharge rate and a small decrease in discharge capacity even after repeated charge and discharge in a high temperature environment. As one of the mechanisms in which self-discharge occurs in a high temperature environment and the mechanism in which the discharge capacity decreases when repeated charge and discharge is performed in a high temperature environment, the surface film formed on the surface of the electrode active material in a high temperature environment is It is presumed that the resistance is higher than that of the surface film formed in a room temperature environment. However, it has been difficult to improve the charge / discharge cycle performance under a high temperature environment and the self-discharge performance under a high temperature environment only by suppressing the surface film formation.

一方、正極活物質にフッ素を含有させることにより、各種電池特性を向上させる技術が検討されている。例えば、特許文献1には、NF3ガスを用いてLiCoO2をフッ素化処理し、高電圧、高エネルギー密度化する技術が開示されているが、本発明者らの検討によれば、LiCoO2にフッ素化処理を行うと、容量の低下が大きく、高温環境下での電池性能については悪化するといった問題点があった。 On the other hand, a technique for improving various battery characteristics by incorporating fluorine into the positive electrode active material has been studied. For example, Patent Document 1 discloses a technique of fluorinating LiCoO 2 using NF 3 gas to increase the voltage and energy density. According to the study by the present inventors, LiCoO 2 When the fluorination treatment was performed, the capacity was greatly reduced, and the battery performance in a high temperature environment deteriorated.

特許文献2には、LiCoO2、LiNiO2あるいはLiMn24と炭酸リチウムとを混合し、20〜200ppmのフッ化水素を含有する電解液を用いて電池を組み立て、電池内で炭酸リチウムと電解液中のフッ化水素を反応させる工程を含むリチウム二次電池の製造方法が記載されている。しかしながら、この方法では高温環境下での充放電サイクル性能や高温環境下での自己放電性能を十分に向上させることができなかった。 In Patent Document 2, LiCoO 2 , LiNiO 2 or LiMn 2 O 4 and lithium carbonate are mixed and a battery is assembled using an electrolytic solution containing 20 to 200 ppm of hydrogen fluoride. A method for producing a lithium secondary battery including a step of reacting hydrogen fluoride in a liquid is described. However, this method cannot sufficiently improve the charge / discharge cycle performance under a high temperature environment and the self-discharge performance under a high temperature environment.

特許文献3には、正極活物質を合成する際にLiFを原料に混合させて焼成することでフッ素を420ppm又は1200ppm含有する正極活物質を得る技術が開示されている。そして、200〜300℃における電解液と正極活物質の化学的な反応性が抑制される効果が示されている。しかしながら、本発明者らの検討によれば、種々の元素組成の正極材料に対してこの方法を適用しても、高温環境下での充放電サイクル性能や高温環境下での自己放電性能については向上することがなく、逆に低下してしまう傾向があった。また、活物質自体の放電容量も低下する傾向があった。この原因については必ずしも明らかではないが、フッ素の含有量が過度となってしまうこと、活物質の内部にまでフッ素が存在してしまうこと、LiFが残存する場合があること等が原因と推察された。
特許第3340515号 特開2004−95188号公報 特開2004−296098号公報 国際公開第02/086993号パンフレット
Patent Document 3 discloses a technique for obtaining a positive electrode active material containing 420 ppm or 1200 ppm of fluorine by mixing LiF with a raw material and baking it when synthesizing a positive electrode active material. And the effect by which the chemical reactivity of the electrolyte solution and positive electrode active material in 200-300 degreeC is suppressed is shown. However, according to the study by the present inventors, even when this method is applied to positive electrode materials having various elemental compositions, the charge / discharge cycle performance under a high temperature environment and the self-discharge performance under a high temperature environment There was a tendency that it was not improved and decreased. Also, the discharge capacity of the active material itself tended to decrease. The cause of this is not necessarily clear, but it is presumed that the content of fluorine becomes excessive, fluorine exists inside the active material, LiF may remain, and the like. It was.
Japanese Patent No. 3340515 JP 2004-95188 A JP 2004-296098 A International Publication No. 02/086993 Pamphlet

本発明は、前記問題点に鑑みてなされたものであり、その目的は、高温下でのサイクル性能や高温保存性能に優れた非水電解質電池を提供することを目的とする。   This invention is made | formed in view of the said problem, The objective is to provide the nonaqueous electrolyte battery excellent in the cycling performance in high temperature, and the high temperature storage performance.

前記課題を解決するため、本発明者らは、鋭意検討の結果、α−NaFeO2型層状構造を有し、特定の元素組成範囲のリチウム遷移金属化合物を選択してフッ化処理を行うことにより、実に驚くべきことに、従来の技術では悪化する傾向のあった高温環境下での電池性能が、逆に向上することを見出し、本発明に至った。すなわち、本発明の技術的構成及びその作用効果は以下の通りである。ただし、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。 In order to solve the above-mentioned problems, the present inventors have conducted fluorination treatment by selecting a lithium transition metal compound having an α-NaFeO 2 type layered structure and having a specific element composition range as a result of intensive studies. Surprisingly, the present inventors have found that the battery performance under a high temperature environment, which tends to be deteriorated by the conventional technology, is improved, and thus the present invention has been achieved. That is, the technical configuration and operational effects of the present invention are as follows. However, the action mechanism includes estimation, and its correctness does not limit the present invention.

本発明の一は、α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される材料にフッ化処理を施す正極活物質の製造方法である。 One aspect of the present invention has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, This is a method for producing a positive electrode active material in which a material represented by 0 <c <1, a + b + c = 1, 1.7 ≦ z ≦ 2.3) is subjected to fluorination treatment.

また、本発明は、正極活物質の粒子表面にフッ素化合物が存在するようにフッ化処理を施すことを特徴とする前記正極活物質の製造方法である。   Further, the present invention is the above-described method for producing a positive electrode active material, characterized in that a fluorination treatment is performed so that a fluorine compound is present on the particle surface of the positive electrode active material.

また、本発明は、正極活物質粒子の中心部にフッ素化合物が存在しないようにフッ化処理を施すことを特徴とする前記正極活物質の製造方法である。   Further, the present invention is the above-described method for producing a positive electrode active material, characterized by subjecting the positive electrode active material particles to a fluorination treatment so that no fluorine compound is present at the center.

また、本発明は、前記正極活物質の製造方法によって製造された正極活物質である。   Moreover, this invention is a positive electrode active material manufactured by the manufacturing method of the said positive electrode active material.

また、本発明は、前記正極活物質を用いた非水電解質電池である。   Moreover, this invention is a nonaqueous electrolyte battery using the said positive electrode active material.

このような構成によれば、高温環境下での電池性能に優れた非水電解質電池とすることのできる正極活物質及びその製造方法、並びに高温環境下での電池性能に優れた非水電解質電池を提供できる。
本発明の構成により、高温環境下での電池性能、具体的には、高温環境下での充放電サイクル性能及び高温環境下での自己放電性能が向上できる。その作用機構については必ずしも十分に解析ができているとはいえないものの、特定元素組成を有するリチウム遷移金属化合物に対してフッ化処理を行うことで、活物質粒子の表面にのみ適度な程度のフッ素化を施すことができ、その程度は電解液にHFを含有させておく方法に比べて十分なものとなり、正極活物質の合成前の原料にLiFを含有させておく方法に比べてフッ素含有量が過度となることがなく、またフッ素の含有が活物質粒子内部にまで至ることを避けることができたことによるものと推察される。また、この作用の程度は、リチウム遷移金属化合物の元素組成、特に、Mnの含有量と深く関連しているものと推察している。
According to such a configuration, a positive electrode active material that can be a nonaqueous electrolyte battery excellent in battery performance under a high temperature environment, a method for producing the same, and a nonaqueous electrolyte battery excellent in battery performance under a high temperature environment Can provide.
With the configuration of the present invention, battery performance under a high temperature environment, specifically, charge / discharge cycle performance under a high temperature environment and self-discharge performance under a high temperature environment can be improved. Although it cannot be said that the mechanism of action has been sufficiently analyzed, by performing fluorination treatment on a lithium transition metal compound having a specific elemental composition, only an appropriate degree is applied to the surface of the active material particles. Fluorination can be performed, and the degree thereof is sufficient as compared with the method of containing HF in the electrolytic solution, and the content of fluorine is compared with the method of containing LiF in the raw material before synthesis of the positive electrode active material. The amount is not excessive, and it is presumed that the fluorine content can be prevented from reaching the inside of the active material particles. The degree of this action is presumed to be closely related to the elemental composition of the lithium transition metal compound, particularly the Mn content.

本発明によれば、高温環境下での電池性能に優れた非水電解質電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte battery excellent in the battery performance in a high temperature environment can be provided.

以下に、本発明を詳細に説明するが、本発明はこれらの記述により限定されるものではない。   The present invention is described in detail below, but the present invention is not limited to these descriptions.

α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される材料は、例えば特許文献4に詳述された方法により合成することができ、原料に用いる金属酸化物の比率を調整することにより、元素組成比を任意に調整できる。本発明に用いるLixNiaMnbCoczの組成は、なかでも係数aとbの比が実質的に1:1であるものが好ましく、工程中の誤差を考慮すれば|a―b|≦0.03である。この材料の組成について、上記には便宜上a+b+c=1と記載したが、Ni、Mn、Co以外の元素を含んでいても良い。このような元素としては、この材料の結晶格子に存在するMnと置換可能な元素が好ましく、具体的には、Be、B、V、C、Si、P、Sc、Cu、Zn、Ga、Ge、As、Se、Sr、Mo、Pd、Ag、Cd、In、Sn、Sb、Te、Ba、Ta、W.Pb、Bi、Fe、Cr、Ni、Ti、Zr、Nb、Y、Al、Na、K、Mg、Ca、Cs、La、Ce、Nd、Sm、Eu、Tb等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上混合して用いてもよい。なかでも、V、Al、Mg、Cr、Ti、In、Snのいずれかを用いると、高率放電性能を向上させる効果が得られるため、より好ましい。これらの元素の含有量としては0.1以下とすることが好ましい。 It has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, 0 <c <1, The material represented by a + b + c = 1, 1.7 ≦ z ≦ 2.3) can be synthesized, for example, by the method described in detail in Patent Document 4, and the ratio of the metal oxide used as a raw material is adjusted. Thus, the elemental composition ratio can be arbitrarily adjusted. The composition of Li x Ni a Mn b Co c O z used in the present invention include, among others coefficients a and b of the ratio substantially 1: preferably those which 1, considering the errors in the process | a- b | ≦ 0.03. The composition of this material has been described above as a + b + c = 1 for convenience, but may contain elements other than Ni, Mn, and Co. As such an element, an element that can be substituted for Mn present in the crystal lattice of this material is preferable. Specifically, Be, B, V, C, Si, P, Sc, Cu, Zn, Ga, Ge , As, Se, Sr, Mo, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, Ta, W. Examples include, but are not limited to, Pb, Bi, Fe, Cr, Ni, Ti, Zr, Nb, Y, Al, Na, K, Mg, Ca, Cs, La, Ce, Nd, Sm, Eu, and Tb. Is not to be done. These may be used alone or in combination of two or more. Among these, it is more preferable to use any of V, Al, Mg, Cr, Ti, In, and Sn because an effect of improving the high rate discharge performance can be obtained. The content of these elements is preferably 0.1 or less.

α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される材料にフッ化処理を施す方法としては、特に限定されるものではないが、F2ガスやNF3ガスの熱分解ガスによって処理する方法が挙げられ、これらの方法を用いると、フッ素化合物を主体とする被膜が安定且つ均一に材料の表面にのみ形成させることができる点で好ましい。なかでも、F2ガスを用いる方法によれば、F2ガスの活性が高いことから、比較的低温で短時間に処理ができ、製造コストも抑えられるため、より好ましい。材料表面に存在するフッ素化合物を仮に被膜と見なしたとき、その被膜厚さは、処理ガスの注入圧力、処理温度、処理時間を調整することによって任意に制御可能である。 It has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, 0 <c <1, The method of subjecting the material represented by a + b + c = 1, 1.7 ≦ z ≦ 2.3) to fluorination treatment is not particularly limited, but depending on the pyrolysis gas of F 2 gas or NF 3 gas There are methods of treating, and using these methods is preferable in that a film mainly composed of a fluorine compound can be formed stably and uniformly only on the surface of the material. In particular, the method using F 2 gas is more preferable because the activity of F 2 gas is high, so that processing can be performed at a relatively low temperature in a short time and the manufacturing cost can be suppressed. When the fluorine compound present on the surface of the material is regarded as a film, the film thickness can be arbitrarily controlled by adjusting the processing gas injection pressure, the processing temperature, and the processing time.

具体的には、α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される材料を密閉容器に封入して脱気した後、フッ素ガスを注入し、一定時間保持する方法が好ましい。前記保持の間、密閉容器内の温度を上昇させるとより好ましい。 Specifically, it has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, 0 <C <1, a + b + c = 1, 1.7 ≦ z ≦ 2.3) is preferably sealed in a sealed container, degassed, and then injected with fluorine gas and held for a certain period of time. More preferably, the temperature in the sealed container is raised during the holding.

フッ素ガスとして、フッ素/アルゴン混合ガス等の混合ガスを用いてもよく、減圧状態で所定量の純フッ素ガスを注入する方法を用いてもよい。使用するフッ素ガスの純度としては、酸素の混入がないことが好ましく、この観点から酸素含有量を可能な限り減じたガスを用いることに留意することが好ましい。   As the fluorine gas, a mixed gas such as a fluorine / argon mixed gas may be used, or a method of injecting a predetermined amount of pure fluorine gas in a reduced pressure state may be used. As the purity of the fluorine gas to be used, it is preferable that oxygen is not mixed. From this viewpoint, it is preferable to note that a gas in which the oxygen content is reduced as much as possible is used.

フッ素ガスの注入量は、0.02×105Pa以上1.0×105Pa以下が好ましい。フッ素ガスの注入量を0.02×105Pa以上とすることにより、材料の粒子表面に対するフッ素化の程度を十分なものとすることができ、高温環境下における充放電サイクル性能及び高温環境下における自己放電性能が向上した電池とすることのできる正極活物質を提供できる。フッ素ガスの注入量は、より好ましくは0.5×105Pa以上であり、さらに好ましくは0.1×105Pa以上である。また、フッ素ガスの注入量を1.0×105Pa以下とすることにより、フッ素化の程度が過度となりすぎる虞を低減でき、よって十分な放電容量を有する非水電解質電池とすることのできる正極活物質を提供できる。 The amount of fluorine gas injected is preferably 0.02 × 10 5 Pa or more and 1.0 × 10 5 Pa or less. By setting the injection amount of fluorine gas to 0.02 × 10 5 Pa or more, the degree of fluorination of the material particle surface can be made sufficient, and charge / discharge cycle performance in a high temperature environment and in a high temperature environment The positive electrode active material which can be set as the battery which improved the self-discharge performance in can be provided. The injection amount of fluorine gas is more preferably 0.5 × 10 5 Pa or more, and further preferably 0.1 × 10 5 Pa or more. Moreover, by setting the injection amount of fluorine gas to 1.0 × 10 5 Pa or less, it is possible to reduce the possibility that the degree of fluorination becomes excessive, and thus a non-aqueous electrolyte battery having a sufficient discharge capacity can be obtained. A positive electrode active material can be provided.

フッ素ガス注入後の保持温度は常温であってもよいが、75℃〜150℃の温度とすることが好ましい。フッ素ガス注入後の保持温度を75℃〜150℃の温度とすることにより、材料の粒子表面に対するフッ素化を速やかに進行させ完結させることができる。   The holding temperature after the fluorine gas injection may be room temperature, but is preferably 75 ° C to 150 ° C. By setting the holding temperature after the fluorine gas injection to a temperature of 75 ° C. to 150 ° C., the fluorination of the material particle surface can be rapidly advanced and completed.

以上のフッ素化の処理により、α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される材料の粒子のごく表面にフッ素化合物が存在し、且つ、該材料の粒子の内部にフッ素化合物が存在していない正極活物質を製造することができる。 By the above fluorination treatment, it has an α-NaFeO 2 type layered structure and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0. 6, 0 <c <1, a + b + c = 1, 1.7 ≦ z ≦ 2.3) The fluorine compound is present on the very surface of the particle of the material, and the fluorine compound is present inside the particle of the material. It is possible to produce a positive electrode active material that does not exist.

なお、α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3 、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表され る材料の一個の粒子の形態は、多数の一次粒子が集合した二次粒子の形態を呈している。本願明 細書にいう「正極活物質の粒子」とは、前記多数の一次粒子が集合した二次粒子の形態を呈して いる一個の粒子のことをいう。 It has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, 0 <c < The form of one particle of the material represented by 1, a + b + c = 1, 1.7 ≦ z ≦ 2.3) is in the form of a secondary particle in which a large number of primary particles are aggregated. The “positive electrode active material particles” referred to in the specification of the present application refers to a single particle in the form of a secondary particle in which a large number of the primary particles are aggregated.

本発明に係る非水電解質を構成する有機溶媒は、一般に非水電解質電池用非水電解質に使用さ れる有機溶媒が使用できる。例えば、プロピレンカーボネート、エチレンカーボネート、ブチレ ンカーボネート、クロロエチレンカーボネート、等の環状カーボネート;γ−ブチロラクトン、 γ−バレロラクトン、プロピオラクトン等の環状エステル;ジメチルカーボネート、ジエチルカ ーボネート、エチルメチルカーボネート、ジフェニルカーボネート等の鎖状カーボネート;酢酸 メチル、酪酸メチル等の鎖状エステル;テトラヒドロフラン又はその誘導体、1,3−ジオキサ ン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルジグライム等のエ ーテル類;アセトニトリル、ベンゾニトリル等のニトリル類等の単独又はそれら2種以上の混合 物等を挙げることができるが、これらに限定されるものではない。また、一般に非水電解質電池 用電解液に添加される難燃性溶媒である、リン酸エステルを使用することもできる。例えば、リ ン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸ト リプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリフルオ ロエチル)、リン酸トリ(トリパーフルオロエチル)などが挙げられるが、これらに限定される ものではない。これらは単独で用いてもよく、2種以上混合して用いてもよい。     As the organic solvent constituting the nonaqueous electrolyte according to the present invention, an organic solvent generally used for a nonaqueous electrolyte for a nonaqueous electrolyte battery can be used. For example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate; cyclic esters such as γ-butyrolactone, γ-valerolactone, propiolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate Chain carbonates such as methyl acetate, chain esters such as methyl acetate and methyl butyrate; Ethers such as tetrahydrofuran or derivatives thereof, 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, methyldiglyme; acetonitrile In addition, nitriles such as benzonitrile can be used alone, or a mixture of two or more of these, but is not limited thereto. In addition, a phosphate ester, which is a flame retardant solvent that is generally added to an electrolyte solution for a non-aqueous electrolyte battery, can also be used. For example, trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trifluoroethyl phosphate), triphosphate phosphate (Triperfluoroethyl) and the like are exemplified, but not limited thereto. These may be used alone or in combination of two or more.

非水電解質中のリチウム塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、1mol/l〜2 .5mol/lである。     The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 1 mol / l to 2... In order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. 5 mol / l.

以下に、本発明のさらなる詳細を実施例により説明するが、本発明はこれらの記述により限定されるものではない。   EXAMPLES Further details of the present invention will be described below with reference to examples, but the present invention is not limited to these descriptions.

α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される材料として、LiNi0.42Mn0.42Co0.162、LiMn0.33Ni0.33Co0.342、LiMn0.25Ni0.25Co0.52、LiMn0.16Ni0.16Co0.682及びLiMn0.08Ni0.08Co0.842の各組成の材料を次のようにして合成した。 It has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, 0 <c <1, As a material represented by a + b + c = 1, 1.7 ≦ z ≦ 2.3), LiNi 0.42 Mn 0.42 Co 0.16 O 2 , LiMn 0.33 Ni 0.33 Co 0.34 O 2 , LiMn 0.25 Ni 0.25 Co 0.5 O 2 , LiMn 0.16 Materials having compositions of Ni 0.16 Co 0.68 O 2 and LiMn 0.08 Ni 0.08 Co 0.84 O 2 were synthesized as follows.

以下、LiMn0.42Ni0.42Co0.162組成を有する材料を得る方法を例に挙げて説明するが、他の組成の材料は、下記原料溶液の作製に用いる遷移金属化合物のモル比を調整することによって任意に合成可能である。 Hereinafter, a method for obtaining a material having a LiMn 0.42 Ni 0.42 Co 0.16 O 2 composition will be described as an example, but the materials of other compositions should be adjusted in the molar ratio of the transition metal compound used for the preparation of the following raw material solution. Can be arbitrarily synthesized.

密閉型反応槽に水を3.5リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。パドルタイプの攪拌羽根を備えた攪拌機を用いて1200rpmの回転速度で攪拌し、外部ヒーターにより反応槽内溶液温度を50℃に保った。また、前記反応槽内溶液にアルゴンガスを吹き込んで、溶液内の溶存酸素を除去した。硫酸マンガン5水和物(0.738mol/l)と硫酸ニッケル6水和物(0.738mol/l)と硫酸コバルト7水和物(0.282mol/l)とヒドラジン1水和物(0.0101mol/l)が溶解している原料溶液を作製した。該原料溶液を3.17ml/minの流量で前記反応槽に連続的に滴下した。これと同期して、12mol/lのアンモニア溶液を0.22ml/minの流量で滴下混合した。また、前記反応槽内溶液のpHが11.4±0.1と一定になるよう、32%水酸化ナトリウム水溶液を断続的に投入した。また、前記反応槽内の溶液温度が50℃と一定になるよう断続的にヒーターで制御した。また、前記反応槽内が還元雰囲気となるよう、アルゴンガスを液中に直接吹き込んだ。また、溶液量が3.5リットルと常に一定量となるよう、フローポンプを使ってスラリーを系外に排出した。反応開始から60時間経過後、そこから5時間の間に、反応晶析物であるNi−Mn−Co複合酸化物のスラリーを採取した。採取したスラリーを水洗、ろ過し、80℃で一晩乾燥させ、Ni−Mn−Co共沈前駆体の乾燥粉末を得た。   3.5 liters of water was placed in a closed reaction tank. Further, a 32% aqueous sodium hydroxide solution was added so that pH = 11.6. The mixture was stirred at a rotational speed of 1200 rpm using a stirrer equipped with a paddle type stirring blade, and the solution temperature in the reaction vessel was kept at 50 ° C. by an external heater. Further, argon gas was blown into the reaction tank solution to remove dissolved oxygen in the solution. Manganese sulfate pentahydrate (0.738 mol / l), nickel sulfate hexahydrate (0.738 mol / l), cobalt sulfate heptahydrate (0.282 mol / l) and hydrazine monohydrate (0. A raw material solution in which 0101 mol / l) was dissolved was prepared. The raw material solution was continuously added dropwise to the reaction vessel at a flow rate of 3.17 ml / min. In synchronization with this, a 12 mol / l ammonia solution was added dropwise and mixed at a flow rate of 0.22 ml / min. Further, a 32% aqueous sodium hydroxide solution was intermittently added so that the pH of the solution in the reaction tank was constant at 11.4 ± 0.1. Further, the temperature of the solution in the reaction vessel was intermittently controlled with a heater so as to be constant at 50 ° C. In addition, argon gas was blown directly into the liquid so that the inside of the reaction vessel had a reducing atmosphere. Further, the slurry was discharged out of the system using a flow pump so that the amount of the solution was always a constant amount of 3.5 liters. After the elapse of 60 hours from the start of the reaction, a slurry of Ni-Mn-Co composite oxide, which is a reaction crystallized product, was collected for 5 hours. The collected slurry was washed with water, filtered, and dried overnight at 80 ° C. to obtain a dry powder of a Ni—Mn—Co coprecipitation precursor.

得られたNi−Mn−Co共沈前駆体粉末を75μm未満に篩い分け、水酸化リチウム一水塩粉末をLi/(Ni+Mn+Co)=1.0となるように秤量し、遊星型混練器を用いて混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて、ドライエア流通下、100℃/hrの昇温速度で850℃まで昇温し、850℃の温度を15hr保持し、次いで、100℃/hrの冷却速度で200℃まで冷却し、その後放冷した。得られた粉体を75μm以下に篩い分けすることでリチウムニッケルマンガンコバルト複合酸化物の粉末を得た。エックス線回折測定の結果、得られた粉末は層状岩塩型結晶構造を有する単一相を確認した。ICP発光分光分析の結果、LiMn0.42Ni0.42Co0.162組成を確認した。 The obtained Ni—Mn—Co coprecipitated precursor powder is sieved to less than 75 μm, the lithium hydroxide monohydrate powder is weighed so that Li / (Ni + Mn + Co) = 1.0, and a planetary kneader is used. And mixed. This was filled in an alumina pot and heated to 850 ° C. at a heating rate of 100 ° C./hr under a flow of dry air using an electric furnace, maintained at a temperature of 850 ° C. for 15 hours, and then 100 ° C. / It cooled to 200 degreeC with the cooling rate of hr, and stood to cool after that. The obtained powder was sieved to 75 μm or less to obtain a lithium nickel manganese cobalt composite oxide powder. As a result of X-ray diffraction measurement, the obtained powder confirmed a single phase having a layered rock salt type crystal structure. As a result of ICP emission spectroscopic analysis, the composition of LiMn 0.42 Ni 0.42 Co 0.16 O 2 was confirmed.

次に、α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される上記各組成の材料に対して、次の手順によりフッ化処理を施した。一例として、LiNi0.42Mn0.42Co0.162粉末を用いた場合を例に挙げて説明するが、他の組成の材料に対するフッ化処理の手順についても同様である。LiNi0.42Mn0.42Co0.162粉末をニッケル製の密閉容器に封入して脱気した後、フッ素ガス(純度99.4−99.7%、ダイキン工業株式会社製)を0.2×105Paの圧力まで注入した。次に、密閉容器内を100℃に昇温し、10分間保持した後、室温に戻し、大気圧まで空気を注入した。このようにして、表面にフッ素化合物が存在するLiMn0.42Ni0.42Co0.162粉末を得た。エックス線回折測定の結果、得られた粉末はフッ化処理後もα−NaFeO2型層状構造を有する単一相であることを確認した。エックス線光電子分光分析(XPS)測定の結果、粉末の表面にF1sピークが存在し、かつ、エッチングにより前記ピークの大きさが徐々に小さくなり、やがて観測されなくなったことから、前記フッ素化合物は材料表面にのみ存在していることが確認された。 Next, it has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, 0 <c <1, a + b + c = 1, 1.7 ≦ z ≦ 2.3) The materials having the respective compositions described above were subjected to fluorination treatment by the following procedure. As an example, the case of using LiNi 0.42 Mn 0.42 Co 0.16 O 2 powder will be described as an example, but the same applies to the procedure of fluorination treatment for materials of other compositions. LiNi 0.42 Mn 0.42 Co 0.16 O 2 powder was sealed in a nickel sealed container and degassed, and then fluorine gas (purity 99.4-99.7%, manufactured by Daikin Industries, Ltd.) was added at 0.2 × 10 5. Injected to a pressure of Pa. Next, the inside of the sealed container was heated to 100 ° C., held for 10 minutes, then returned to room temperature, and air was injected to atmospheric pressure. In this way, LiMn 0.42 Ni 0.42 Co 0.16 O 2 powder having a fluorine compound on the surface was obtained. As a result of X-ray diffraction measurement, it was confirmed that the obtained powder was a single phase having an α-NaFeO 2 type layered structure even after the fluorination treatment. As a result of X-ray photoelectron spectroscopy (XPS) measurement, the F 1s peak was present on the surface of the powder, and the size of the peak was gradually reduced by etching. It was confirmed that it exists only on the surface.

続いて、本実施例において作製した非水電解質電池について説明する。図1は本実施例に用いた非水電解質電池の断面図であり、正極1、負極2及びセパレータ3からなる極群4と、非水電解質と、金属樹脂複合フィルム5から構成されている。正極1は、正極合剤11が正極集電体12上に塗布されてなる。また、負極2は、負極合剤21が負極集電体22上に塗布されてなる。非水電解質は極群4に含浸されている。金属樹脂複合フィルム5は、極群4を覆い、その四方を熱溶着により封止されている。   Next, the nonaqueous electrolyte battery produced in this example will be described. FIG. 1 is a cross-sectional view of the nonaqueous electrolyte battery used in this example, and is composed of a pole group 4 including a positive electrode 1, a negative electrode 2 and a separator 3, a nonaqueous electrolyte, and a metal resin composite film 5. The positive electrode 1 is formed by applying a positive electrode mixture 11 on a positive electrode current collector 12. The negative electrode 2 is formed by applying a negative electrode mixture 21 on a negative electrode current collector 22. The nonaqueous electrolyte is impregnated in the pole group 4. The metal resin composite film 5 covers the pole group 4 and is sealed on all four sides by heat welding.

次に、本実施例において作製した非水電解質電池の作製方法につき説明する。正極1は、正極活物質と、導電剤であるアセチレンブラックを混合し、さらに結着剤としてポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液を混合し、この混合物をアルミ箔からなる正極集電体12の片面に塗布した後、乾燥し、正極合剤11の厚みが0.1mmとなるようにプレスした。以上の工程により正極1を得た。   Next, a method for manufacturing the nonaqueous electrolyte battery manufactured in this example will be described. The positive electrode 1 is a mixture of a positive electrode active material and acetylene black, which is a conductive agent, and further mixed with an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder, and this mixture is a positive electrode current collector made of an aluminum foil. After apply | coating to the single side | surface of the body 12, it dried and pressed so that the thickness of the positive mix 11 might be set to 0.1 mm. The positive electrode 1 was obtained by the above process.

負極2は、負極活物質であるグラファイトと、結着剤であるポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液を混合し、この混合物を銅箔からなる負極集電体22の片面に塗布した後、乾燥し、負極合剤21厚みが0.1mmとなるようにプレスした。以上の工程により負極2を得た。   In the negative electrode 2, graphite as a negative electrode active material and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder were mixed, and this mixture was applied to one surface of a negative electrode current collector 22 made of copper foil. Then, it dried and pressed so that the negative mix 21 thickness might be set to 0.1 mm. The negative electrode 2 was obtained by the above process.

極群4は、正極合剤11と負極合剤21とを対向させ、その間にセパレータ3を配し、正極1、セパレータ3、負極2の順に積層することにより、構成した。次に、非水電解質中に極群4を浸漬させることにより、極群4に非水電解質を含浸させた。さらに、金属樹脂複合フィルム5で極群4を覆い、その四方を熱溶着により封止した。以上の製法により非水電解質電池を得た。   The pole group 4 was configured by facing the positive electrode mixture 11 and the negative electrode mixture 21, placing the separator 3 therebetween, and laminating the positive electrode 1, the separator 3, and the negative electrode 2 in this order. Next, the electrode group 4 was impregnated with the non-aqueous electrolyte by immersing the electrode group 4 in the non-aqueous electrolyte. Furthermore, the pole group 4 was covered with the metal resin composite film 5, and the four sides were sealed by heat welding. A nonaqueous electrolyte battery was obtained by the above production method.

(本発明電池1)
上記の方法でフッ化処理を施したLiMn0.42Ni0.42Co0.162を正極活物質として用い、非水電解質として、エチレンカーボネートとジエチルカーボネートを体積比6:4の割合で混合した混合溶媒1リットルに、1モルのLiPF6を溶解させたものを用い、容量10mAhの非水電解質電池を作製し、本発明電池1とした。
(Invention battery 1)
1 liter of mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 6: 4 as a non-aqueous electrolyte using LiMn 0.42 Ni 0.42 Co 0.16 O 2 subjected to fluorination treatment by the above method as a positive electrode active material In addition, a nonaqueous electrolyte battery having a capacity of 10 mAh was prepared using 1 mol of LiPF 6 dissolved therein, and this battery 1 was obtained.

(本発明電池2)
非水電解質として、エチレンカーボネートとジエチルカーボネートを体積比6:4の割合で混合した混合溶媒1リットルに、1モルのLiClO4を溶解させたものを用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、本発明電池2とした。
(Invention battery 2)
Except for using 1 mol of LiClO 4 dissolved in 1 liter of a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 6: 4 as the non-aqueous electrolyte, the same as the battery 1 of the present invention. Thus, a non-aqueous electrolyte battery having a capacity of 10 mAh was produced and used as the battery 2 of the present invention.

(本発明電池3)
正極活物質として、上記の方法でフッ化処理を施したLiMn0.33Ni0.33Co0.342を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、本発明電池3とした。
(Invention battery 3)
A non-aqueous electrolyte battery having a capacity of 10 mAh was prepared in the same manner as the battery 1 of the present invention, except that LiMn 0.33 Ni 0.33 Co 0.34 O 2 fluorinated by the above method was used as the positive electrode active material. Invention battery 3 was obtained.

(本発明電池4)
正極活物質として、上記の方法でフッ化処理を施したLiMn0.25Ni0.25Co0.52を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、本発明電池4とした。
(Invention Battery 4)
A non-aqueous electrolyte battery having a capacity of 10 mAh was produced in the same manner as the battery 1 of the present invention except that LiMn 0.25 Ni 0.25 Co 0.5 O 2 subjected to fluorination treatment by the above method was used as the positive electrode active material. Invention battery 4 was obtained.

(本発明電池5)
正極活物質として、上記の方法でフッ化処理を施したLiMn0.16Ni0.16Co0.682を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、本発明電池5とした。
(Invention battery 5)
A nonaqueous electrolyte battery having a capacity of 10 mAh was prepared in the same manner as the battery 1 of the present invention, except that LiMn 0.16 Ni 0.16 Co 0.68 O 2 subjected to fluorination treatment by the above method was used as the positive electrode active material. Invention battery 5 was obtained.

(本発明電池6)
正極活物質として、上記の方法でフッ化処理を施したLiMn0.08Ni0.08Co0.842を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、本発明電池6とした。
(Invention battery 6)
A nonaqueous electrolyte battery having a capacity of 10 mAh was prepared in the same manner as the battery 1 of the present invention except that LiMn 0.08 Ni 0.08 Co 0.84 O 2 subjected to fluorination treatment by the above method was used as the positive electrode active material. Invention battery 6 was obtained.

(比較電池1)
正極活物質として、フッ化処理を施していないLiMn0.42Ni0.42Co0.162を用いた以外は、本発明電池1と同一の原料及び製法により、容量10mAhの非水電解質電池を作製し、比較電池1とした。
(Comparative battery 1)
A non-aqueous electrolyte battery having a capacity of 10 mAh was manufactured and compared using the same raw materials and manufacturing method as in the present invention battery 1 except that LiMn 0.42 Ni 0.42 Co 0.16 O 2 not subjected to fluorination treatment was used as the positive electrode active material. Battery 1 was obtained.

(比較電池2)
正極活物質として、上記の方法でフッ化処理を施したLiCoO2を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、比較電池2とした。
(Comparison battery 2)
A non-aqueous electrolyte battery having a capacity of 10 mAh was produced in the same manner as the battery 1 of the present invention, except that LiCoO 2 subjected to fluorination treatment by the above method was used as the positive electrode active material.

(比較電池3)
正極活物質として、フッ化処理を施していないLiCoO2を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、比較電池3とした。
(Comparative battery 3)
A non-aqueous electrolyte battery having a capacity of 10 mAh was produced as Comparative Battery 3 in the same manner as the battery 1 of the present invention, except that LiCoO 2 not subjected to fluorination treatment was used as the positive electrode active material.

(比較電池4)
正極活物質として、上記の方法でフッ化処理を施したLiMn0.5Ni0.52を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、比較電池2とした。
(Comparison battery 4)
A non-aqueous electrolyte battery having a capacity of 10 mAh was produced in the same manner as the battery 1 of the present invention except that LiMn 0.5 Ni 0.5 O 2 subjected to fluorination treatment by the above method was used as the positive electrode active material. It was.

(比較電池5)
正極活物質として、フッ化処理を施していないLiMn0.5Ni0.52を用いた以外は、本発明電池1と同様にして、容量10mAhの非水電解質電池を作製し、比較電池2とした。
(Comparison battery 5)
A non-aqueous electrolyte battery having a capacity of 10 mAh was produced in the same manner as in the present invention battery 1 except that LiMn 0.5 Ni 0.5 O 2 not subjected to fluorination treatment was used as the positive electrode active material.

(比較電池6)
正極活物質として、フッ化処理を施していないLiMn0.42Ni0.42Co0.162を用いた以外は、本発明電池2と同様にして、容量10mAhの非水電解質電池を作製し、比較電池6とした。
(Comparison battery 6)
A non-aqueous electrolyte battery having a capacity of 10 mAh was produced in the same manner as the battery 2 of the present invention except that LiMn 0.42 Ni 0.42 Co 0.16 O 2 not subjected to fluorination treatment was used as the positive electrode active material. did.

なお、本発明電池1〜6及び比較電池1〜5に用いた非水電解質中に含まれるHFの濃度は15ppmであり、本発明電池2及び比較電池6に用いた非水電解質からはHFは検出されなかった。   In addition, the density | concentration of HF contained in the nonaqueous electrolyte used for the present invention batteries 1 to 6 and the comparative batteries 1 to 5 is 15 ppm. From the nonaqueous electrolyte used for the present invention battery 2 and the comparative battery 6 HF is Not detected.

(初放電容量試験)
本発明電池1〜6及び比較電池1〜6について、初放電容量を測定した。20℃において、電流2mA、終止電圧4.2Vの定電流定電圧充電した後、20℃において、電流2mA、終止電圧2.7Vの定電流放電した時の放電容量を測定し、これを初放電容量とした。
(First discharge capacity test)
The initial discharge capacities of the inventive batteries 1 to 6 and the comparative batteries 1 to 6 were measured. After charging at a constant current and a constant voltage of 20 mA at a current of 2 mA and a final voltage of 4.2 V, the discharge capacity was measured when a constant current was discharged at a current of 2 mA and a final voltage of 2.7 V at 20 ° C. The capacity.

(高温サイクル試験)
本発明電池1〜6及び比較電池1〜6について、高温サイクル試験を行った。試験温度は50℃とし、充電は、電流2mA、終止電圧4.2Vの定電流定電圧充電とした。放電は、電流2mA、終止電圧2.7Vで、定電流放電とした。1サイクル目の放電容量を100%としたときの200サイクル後の放電容量を、高温サイクル後容量とした。
(High temperature cycle test)
A high temperature cycle test was performed on the batteries 1 to 6 of the present invention and the comparative batteries 1 to 6. The test temperature was 50 ° C., and charging was constant current and constant voltage charging with a current of 2 mA and a final voltage of 4.2 V. The discharge was a constant current discharge at a current of 2 mA and a final voltage of 2.7 V. The discharge capacity after 200 cycles when the discharge capacity at the first cycle was 100% was taken as the capacity after the high temperature cycle.

(高温保存試験)
本発明電池1〜6及び比較電池1〜6について、高温保存試験を行った。前述の初期放電容量試験と同様の条件で、初期容量の確認を行った電池を、前述した条件で充電後、環境温度60℃で30日間保存し、前述した条件で保存後の放電容量を測定し、自己放電率を求めた。なお、自己放電率は(式1)により算出した。

Figure 2006202678
(High temperature storage test)
A high temperature storage test was performed on the batteries 1 to 6 of the present invention and the comparative batteries 1 to 6. A battery whose initial capacity has been confirmed under the same conditions as in the initial discharge capacity test described above is charged under the conditions described above, stored at an environmental temperature of 60 ° C. for 30 days, and the discharge capacity after storage under the conditions described above is measured. The self-discharge rate was obtained. The self-discharge rate was calculated by (Equation 1).
Figure 2006202678

初放電容量試験、高温サイクル試験及び高温保存試験の結果を表1に示すと共に、電解質塩としてLiPF6を用いた場合の電池性能について、一般式LixNiaMnbCoczにおける係数cの値を横軸として図2〜4に示す。 The results of the initial discharge capacity test, the high-temperature cycle test, and the high-temperature storage test are shown in Table 1, and the battery performance when LiPF 6 is used as the electrolyte salt is the coefficient c in the general formula Li x Ni a Mn b Co c O z 2 to 4 are shown on the horizontal axis.

Figure 2006202678
Figure 2006202678

比較電池2と比較電池3とを比べると、正極活物質としてLiCoO2を用いた場合には、正極活物質に対してフッ化処理を行うと、初放電容量、高温充放電サイクル性能及び高温保存後自己放電率がいずれも却って悪化することがわかる。 Comparing the comparative battery 2 and the comparative battery 3, when LiCoO 2 is used as the positive electrode active material, the initial discharge capacity, the high temperature charge / discharge cycle performance, and the high temperature storage are obtained when the positive electrode active material is subjected to fluorination treatment. It can be seen that the post self-discharge rate deteriorates on the contrary.

同様に、比較電4と比較電池5とを比べると、正極活物質としてLiMn0.5Ni0.52を用いた場合にも、正極活物質に対してフッ化処理を行うと、初放電容量、高温充放電サイクル性能及び高温保存後自己放電率がいずれも却って悪化することがわかる。 Similarly, when the comparative battery 4 and the comparative battery 5 are compared, even when LiMn 0.5 Ni 0.5 O 2 is used as the positive electrode active material, if the positive electrode active material is fluorinated, the initial discharge capacity, the high temperature It can be seen that both the charge / discharge cycle performance and the self-discharge rate after high-temperature storage deteriorate.

ところが、本発明電池1と比較電池1とを比べると、正極活物質としてLiMn0.42Ni0.42Co0.162を用いた場合には、正極活物質に対してフッ化処理を行うと、初放電容量はフッ化処理を行わない正極活物質を用いた場合と同等の性能を維持したまま、高温充放電サイクル性能が向上し、高温保存後自己放電率についても大きく低下させることができるという顕著な効果が認められた。 However, when the present invention battery 1 and the comparative battery 1 are compared, when LiMn 0.42 Ni 0.42 Co 0.16 O 2 is used as the positive electrode active material, the initial discharge capacity is obtained when the positive electrode active material is fluorinated. Significantly improves the high-temperature charge / discharge cycle performance while maintaining the same performance as when using a positive electrode active material that is not fluorinated, and can significantly reduce the self-discharge rate after high-temperature storage Was recognized.

本発明電池2と比較電池6とを比べると、電解質塩としてフッ素を含まない無機塩であるLiClO4を用いた場合にも、正極活物質としてLiMn0.42Ni0.42Co0.162を用いた場合には、フッ素処理を行った正極活物質を用いることにより、高温充放電サイクル性能の向上と、自己放電量の顕著な低下が認められた。 When the present invention battery 2 and the comparative battery 6 are compared, when LiClO 4 which is an inorganic salt containing no fluorine is used as an electrolyte salt, LiMn 0.42 Ni 0.42 Co 0.16 O 2 is used as a positive electrode active material. Improved the high-temperature charge / discharge cycle performance and significantly reduced the self-discharge amount by using a positive electrode active material that had been subjected to fluorine treatment.

本発明電池1,3〜6及び比較電池1〜5の結果をプロットした図2〜4より、一般式LiNiaMnbCoc2におけるcの値が0<c<1のときにのみ、正極活物質に対するフッ化処理を行うことで電池の諸特性に顕著な効果を示すことがわかる。 From FIGS. 2 to 4 in which the results of the present invention batteries 1 to 3 and comparative batteries 1 to 5 are plotted, only when the value of c in the general formula LiNi a Mn b Co c O 2 is 0 <c <1, It can be seen that performing the fluorination treatment on the positive electrode active material has significant effects on the various characteristics of the battery.

本発明の非水電解質電池の断面図である。It is sectional drawing of the nonaqueous electrolyte battery of this invention. 本発明電池及び比較電池の初放電容量を示す図である。It is a figure which shows the initial discharge capacity of this invention battery and a comparison battery. 本発明電池及び比較電池の高温充放電サイクル性能を示す図である。It is a figure which shows the high temperature charging / discharging cycle performance of this invention battery and a comparison battery. 本発明電池及び比較電池の高温保存後自己放電率を示す図である。It is a figure which shows the self-discharge rate after high temperature preservation | save of this invention battery and a comparison battery.

符号の説明Explanation of symbols

1 正極
11 正極合剤
12 正極集電体
2 負極
21 負極合剤
22 負極集電体
3 セパレータ
4 極群
5 金属樹脂複合フィルム
DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Positive electrode mixture 12 Positive electrode collector 2 Negative electrode 21 Negative electrode mixture 22 Negative electrode collector 3 Separator 4 Electrode group 5 Metal resin composite film

Claims (5)

α−NaFeO2型層状構造を有し、LixNiaMnbCocz(0<x≦1.3、0<a<1、0<b<0.6、0<c<1、a+b+c=1、1.7≦z≦2.3)で表される材料にフッ化処理を施す正極活物質の製造方法。 It has an α-NaFeO 2 type layered structure, and Li x Ni a Mn b Co c O z (0 <x ≦ 1.3, 0 <a <1, 0 <b <0.6, 0 <c <1, The manufacturing method of the positive electrode active material which fluorinates the material represented by a + b + c = 1, 1.7 <= z <= 2.3). 前記正極活物質の粒子表面にフッ素化合物が存在するようにフッ化処理を施すことを特徴とする請求項1記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to claim 1, wherein the fluorination treatment is performed so that a fluorine compound is present on the particle surface of the positive electrode active material. 前記正極活物質粒子の中心部にフッ素化合物が存在しないようにフッ化処理を施すことを特徴とする請求項1又は2記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to claim 1 or 2, wherein a fluorination treatment is performed so that a fluorine compound does not exist at the center of the positive electrode active material particles. 請求項1〜3のいずれかに記載の正極活物質の製造方法によって製造された正極活物質。 The positive electrode active material manufactured by the manufacturing method of the positive electrode active material in any one of Claims 1-3. 請求項4記載の正極活物質を用いた非水電解質電池。 A nonaqueous electrolyte battery using the positive electrode active material according to claim 4.
JP2005015382A 2005-01-24 2005-01-24 Positive pole active substance and its manufacturing method and nonaqueous electrolyte battery using it Pending JP2006202678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015382A JP2006202678A (en) 2005-01-24 2005-01-24 Positive pole active substance and its manufacturing method and nonaqueous electrolyte battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015382A JP2006202678A (en) 2005-01-24 2005-01-24 Positive pole active substance and its manufacturing method and nonaqueous electrolyte battery using it

Publications (1)

Publication Number Publication Date
JP2006202678A true JP2006202678A (en) 2006-08-03

Family

ID=36960480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015382A Pending JP2006202678A (en) 2005-01-24 2005-01-24 Positive pole active substance and its manufacturing method and nonaqueous electrolyte battery using it

Country Status (1)

Country Link
JP (1) JP2006202678A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052440A1 (en) * 2005-11-02 2007-05-10 Toyo Tanso Co., Ltd. Lithium ion rechargeable battery
JP2008060033A (en) * 2006-09-04 2008-03-13 Sony Corp Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
JP2009110952A (en) * 2007-10-11 2009-05-21 Univ Of Fukui Cathode material for nonaqueous electrolyte secondary battery
WO2012102354A1 (en) * 2011-01-27 2012-08-02 旭硝子株式会社 Cathode active material for lithium ion secondary battery, and method for producing same
JP2013032283A (en) * 2005-06-28 2013-02-14 Toda Kogyo Europe Gmbh Inorganic compound
WO2013073231A1 (en) * 2011-11-16 2013-05-23 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing same
JP2016025010A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary batteries and its use
JP2016025009A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium secondary batteries and its use
JP2016518958A (en) * 2013-03-08 2016-06-30 コリア ベーシック サイエンス インスティテュート Method for F-passivation of lithium transition metal oxide
US10312514B2 (en) 2014-07-22 2019-06-04 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022264748A1 (en) * 2021-06-17 2022-12-22 パナソニックIpマネジメント株式会社 Positive electrode material and battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032283A (en) * 2005-06-28 2013-02-14 Toda Kogyo Europe Gmbh Inorganic compound
WO2007052440A1 (en) * 2005-11-02 2007-05-10 Toyo Tanso Co., Ltd. Lithium ion rechargeable battery
JP2007128719A (en) * 2005-11-02 2007-05-24 Toyo Tanso Kk Lithium ion secondary battery
US8057935B2 (en) 2005-11-02 2011-11-15 Toyo Tanso Co., Ltd. Lithium ion rechargeable battery
JP2008060033A (en) * 2006-09-04 2008-03-13 Sony Corp Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
JP2009110952A (en) * 2007-10-11 2009-05-21 Univ Of Fukui Cathode material for nonaqueous electrolyte secondary battery
WO2012102354A1 (en) * 2011-01-27 2012-08-02 旭硝子株式会社 Cathode active material for lithium ion secondary battery, and method for producing same
JPWO2013073231A1 (en) * 2011-11-16 2015-04-02 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
WO2013073231A1 (en) * 2011-11-16 2013-05-23 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing same
JP2016518958A (en) * 2013-03-08 2016-06-30 コリア ベーシック サイエンス インスティテュート Method for F-passivation of lithium transition metal oxide
JP2016025010A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary batteries and its use
JP2016025009A (en) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 Positive electrode active material for lithium secondary batteries and its use
US9786907B2 (en) 2014-07-22 2017-10-10 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10312514B2 (en) 2014-07-22 2019-06-04 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10340513B2 (en) 2014-07-22 2019-07-02 Toyota Jidosha Kabushiki Kaisha Positive active material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2022264748A1 (en) * 2021-06-17 2022-12-22 パナソニックIpマネジメント株式会社 Positive electrode material and battery

Similar Documents

Publication Publication Date Title
JP4803486B2 (en) Non-aqueous electrolyte battery
US9911968B2 (en) Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US9593024B2 (en) Electrode structures and surfaces for Li batteries
JP5894388B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5100024B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN103459321B (en) Li-Ni composite oxide particle powder and manufacture method thereof and rechargeable nonaqueous electrolytic battery
JP5409174B2 (en) Lithium nickel composite oxide for positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP5601337B2 (en) Active material and lithium ion secondary battery
JP6217636B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP2005044801A (en) Positive electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery including same
JP5946011B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
WO2014049958A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP6968844B2 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and their manufacturing methods, and non-aqueous electrolyte secondary batteries
JP7336648B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP2023505185A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP7258372B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2022523183A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.
JP6481907B2 (en) Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006202678A (en) Positive pole active substance and its manufacturing method and nonaqueous electrolyte battery using it
WO2021039120A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
JP4811697B2 (en) Lithium secondary battery and initial activation method thereof
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
JP2018206609A (en) Nonaqueous electrolyte secondary battery
JP3835180B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same