JP2006192438A - Multi-layered welding method of narrow bevel joint - Google Patents

Multi-layered welding method of narrow bevel joint Download PDF

Info

Publication number
JP2006192438A
JP2006192438A JP2005003298A JP2005003298A JP2006192438A JP 2006192438 A JP2006192438 A JP 2006192438A JP 2005003298 A JP2005003298 A JP 2005003298A JP 2005003298 A JP2005003298 A JP 2005003298A JP 2006192438 A JP2006192438 A JP 2006192438A
Authority
JP
Japan
Prior art keywords
welding
wire
groove
layer
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005003298A
Other languages
Japanese (ja)
Inventor
Akiyoshi Imanaga
昭慈 今永
Takeshi Obana
健 尾花
Mitsuaki Haneda
光明 羽田
Mitsuo Kato
光雄 加藤
Hiroo Koide
宏夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005003298A priority Critical patent/JP2006192438A/en
Publication of JP2006192438A publication Critical patent/JP2006192438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To change the tensile stress remained in a weld part on a back side and a face side of a multi-layered weld of a bevel joint of a thick plate into the compressive stress, or to drastically reduce the tensile stress. <P>SOLUTION: In a bevel joint, residual stresses must be reduced at a part of the single side welding and a back side of the welding from a bottom part to a top part of a bevel at which tubular members or plate members such as a container and a pipe consisting of thick austenitic stainless steel butted to each other. In a multi-layered welding method of a narrow bevel joint, the arc welding for laminate welding is performed to the top part of the bevel by properly using two wires of different materials. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、厚板のオーステナイト系ステンレス鋼からなる容器や配管などの管部材又は平板部材を相互に突き合せた開先継手の多層盛溶接方法に係わり、特に、溶接終了後の裏面側及び表面側の溶接部分に残留する引張応力を圧縮応力に変化させる又は大幅低減させるのに有効な狭開先継手の多層盛溶接方法に関する。   The present invention relates to a multi-layer welding method for groove joints in which pipe members or flat plate members such as containers and pipes made of thick austenitic stainless steel are abutted against each other, and in particular, the back side and the surface after welding is finished. The present invention relates to a multi-layer welding method for a narrow groove joint that is effective in changing or significantly reducing the tensile stress remaining in the welded portion on the side to a compressive stress.

原子力発電プラントや火力発電プラントの容器,配管,構成部品などの溶接構造物に用いられるオーステナイト系ステンレス鋼材は、溶接などによって結晶粒界にCr炭化物が析出し易く、結晶粒界近傍にCr欠乏層の形成により腐食に対する割れ感受性(材料の鋭敏化)が高くなることが知られている。また、溶接部分(溶接金属部及び隣接する熱影響部)には、高い引張残留応力が存在しており、高温水などの厳しい腐食環境下で使用されると、応力腐食割れが発生し易い。この応力腐食割れを防止するためには、前記材料の鋭敏化,引張応力,腐食環境の3因子の中から1つの因子を取り除く必要がある。このため、特に、高温水などの腐食環境下にさらされる溶接部分の表面及び近傍に残留する引張応力を圧縮応力に変化させる又は大幅低減させることが強く求められている。   Austenitic stainless steel materials used in welded structures such as containers, pipes, and components of nuclear power plants and thermal power plants tend to precipitate Cr carbide at the grain boundaries due to welding, and a Cr-deficient layer near the grain boundaries. It is known that crack formation (sensitization of material) against corrosion is enhanced by the formation of the above. Further, a high tensile residual stress exists in the welded portion (welded metal portion and adjacent heat affected zone), and stress corrosion cracking is likely to occur when used in a severe corrosive environment such as high-temperature water. In order to prevent this stress corrosion cracking, it is necessary to remove one factor from the three factors of sensitization of the material, tensile stress, and corrosive environment. For this reason, in particular, it is strongly required to change or significantly reduce the tensile stress remaining on and near the surface of the welded portion exposed to a corrosive environment such as high-temperature water.

従来から溶接材部分の引張残留応力の低減に関する溶接方法や溶接装置が幾つか提案されている。例えば、特許文献1(特公昭53−38246号公報)に記載の配管系の熱処理方法では、溶接組み立て後の配管の内部に冷却水を存在させ、前記配管の外部を加熱して管内面と管外面との間に温度差を発生させ、管内面を引張降伏させ、管外面を圧縮降伏させることが提案されている。   Conventionally, several welding methods and welding apparatuses for reducing the tensile residual stress of the welded material portion have been proposed. For example, in the piping system heat treatment method described in Patent Document 1 (Japanese Patent Publication No. 53-38246), cooling water is present inside the pipe after welding assembly, and the outside of the pipe is heated so that the inner surface of the pipe and the pipe are heated. It has been proposed to generate a temperature difference with the outer surface, to cause tensile yielding of the inner surface of the tube, and compression yielding of the outer surface of the tube.

また、特許文献2(特開2001−141629号公報)に記載のオーステナイト系ステンレス鋼溶接部位の予防保全方法及び装置では、線状の溶接部位を追従しながら高周波加熱コイルを移動させ、この高周波加熱コイルによって溶接部位を応力降伏点の温度より高い温度まで加熱する手順と、過熱領域に冷却水を噴出して急速冷却する手順を有することが提案されている。   In the preventive maintenance method and apparatus for an austenitic stainless steel welded part described in Patent Document 2 (Japanese Patent Laid-Open No. 2001-141629), the high-frequency heating coil is moved while following the linear welded part, and this high-frequency heating is performed. It has been proposed to have a procedure for heating a welded part to a temperature higher than the stress yield point temperature by a coil, and a procedure for rapidly cooling a jet of cooling water in an overheated region.

一方、特許文献3(特表平9−512485号公報)に記載の金属部品を接合する方法及び装置では、選定速度(毎分127cm以上)で走行する電極先端のチップ近傍に溶接材を連続的に供給する段階と、前記チップからの放電電流によって溶接材料を開先内で連続的に溶融する段階と、溶接ビードを形成する段階とを有し、前記電極はチップに接合及び電気的に接続された非円形断面のブレードを有し、所定数の溶接パス全体で圧縮性のある最終残留応力状態を外部にヒートシンク媒体なしで生成して達成することが提案されている。   On the other hand, in the method and apparatus for joining metal parts described in Patent Document 3 (Japanese Patent Publication No. 9-512485), the welding material is continuously applied in the vicinity of the tip of the electrode tip that travels at a selected speed (127 cm / min or more). A welding current is continuously melted in the groove by a discharge current from the tip, and a weld bead is formed, and the electrode is joined and electrically connected to the tip. It has been proposed to achieve a final residual stress state that is compressible over a predetermined number of weld passes and is generated without an external heat sink medium.

また、特許文献4(特公昭62−19953号公報)に記載のオーステナイト系ステンレス鋼の狭開先継手の多層盛溶接方法では、開先最深部に近い側の層を、オーステナイト系溶加材を用いて溶着(溶接)し、前記層に隣接する外側の少なくとも1つの層をマルテンサイト系溶加材を用いて溶接することが提案されている。   Moreover, in the multilayer prime welding method of the narrow groove joint of the austenitic stainless steel described in Patent Document 4 (Japanese Patent Publication No. 62-19953), the layer near the groove deepest portion is made of an austenitic filler material. It has been proposed to weld (weld) and weld at least one outer layer adjacent to the layer using a martensitic filler material.

さらに、特許文献5(特開平11−138290号公報)に記載の溶接方法及び溶接材料では、溶接によって生成する溶接金属に溶接後の冷却過程でマルテンサイト変態を生じさせ、前記溶接金属が室温時においてマルテンサイト変態の開始温度(例えば250℃未満170度以下)時より膨張している状態にすることが提案されている。   Furthermore, in the welding method and welding material described in Patent Document 5 (Japanese Patent Laid-Open No. 11-138290), a martensitic transformation is caused in the weld metal generated by welding in the cooling process after welding, and the weld metal is at room temperature. It has been proposed to make a state of expansion from the start temperature of martensitic transformation (for example, less than 250 ° C. and 170 degrees or less).

また、特許文献6(特開平9−253860号公報)に記載の高張力鋼のTIG溶接方法及びTIG溶接用ソリッドワイヤでは、全溶着金属のマルテンサイト変態開始温度が
400℃以下であり、ワイヤ全重量に対してNiが7.5〜12%を含有し、Cが0.1%以下、Hは2ppm 以下に規制されたソリッドワイヤを使用し、ワイヤ送り速度を5〜40g/分にして溶接することが提案されている。
Further, in the TIG welding method and solid wire for TIG welding of high-strength steel described in Patent Document 6 (Japanese Patent Application Laid-Open No. 9-253860), the martensitic transformation start temperature of all weld metals is 400 ° C. or less, Welding using solid wire with 7.5 to 12% Ni, C 0.1% or less and H 2ppm or less, with wire feed rate 5-40g / min. It has been proposed to do.

特公昭53−38246号公報(特許第957324号)Japanese Patent Publication No. 53-38246 (Patent No. 957324) 特開2001−141629号公報JP 2001-141629 A 特表平9−512485号公報(特許第3215427号)Japanese National Patent Publication No. 9-512485 (Patent No. 3215427) 特公昭62−19953号公報(特許第1415054号)Japanese Examined Patent Publication No. 62-19953 (Patent No. 1415054) 特開平11−138290号公報(特許第3350726号)JP 11-138290 A (Patent No. 3350726) 特開平9−253860号公報JP-A-9-253860

上記特許文献1の場合には、溶接組み立て時に生じていた配管内面の引張残留応力を圧縮残留応力に変化させるのに有効な方法であると考えられる。しかしながら、溶接設備と異なる大型の高周波加熱設備が必要であるばかりでなく、溶接完了後に、配管の内周部に冷却水を供給しながら外周部を高温加熱するための作業工数及び費用が必要になる。   In the case of the said patent document 1, it is thought that it is an effective method for changing the tensile residual stress of the piping inner surface which had arisen at the time of welding assembly into a compressive residual stress. However, not only large-scale high-frequency heating equipment different from the welding equipment is required, but also work man-hours and costs for heating the outer peripheral portion at a high temperature while supplying cooling water to the inner peripheral portion of the pipe after welding is required. Become.

また、上記特許文献2の場合には、引張残留応力を低減するための工夫がされている。しかしながら、溶接完了後に、線状の溶接部位表面上を移動させる高周波コイルにより高温加熱し、過熱領域を冷却水の噴射により急速冷却しているため、移動式の加熱及び水冷設備が必要になると共に、この高温加熱及び急速冷却を実施するための作業工数及び費用が必要になる。   Moreover, in the case of the said patent document 2, the device for reducing a tensile residual stress is made | formed. However, after completion of welding, high-temperature heating is performed by a high-frequency coil that moves on the surface of the linear welding site, and the superheated area is rapidly cooled by jetting cooling water, so that mobile heating and water-cooling facilities are required. In addition, work man-hours and costs for implementing this high-temperature heating and rapid cooling are required.

一方、上記特許文献3の場合には、外部にヒートシンク媒体を使用せずに、熱効率の高い溶接施工及び狭い開先継手の伝導性自己冷却効果により、引張残留応力及び溶接ひずみを低減する工夫がされている。しかしながら、この引張残留応力を圧縮残留応力に変化させるまでに至らない可能性が高い。また、安価な円形断面のタングステン電極棒と異なる非円筒形(非円形断面)に成形した薄い電極を使用しているため、この薄い電極は、製作費が高価になり、また、開先内に挿入してアーク溶接する時に生じる電極先端の消耗に伴う電極交換費用もコスト高になる。開先内に供給して溶融させるワイヤ(溶加材)は、溶接対象の開先継手材と同じ組成のオーステナイト系ワイヤが使用され、このワイヤと異なるマルテンサイト系ワイヤは使用されていない。   On the other hand, in the case of the above-mentioned Patent Document 3, there is a device for reducing the tensile residual stress and the welding strain by using the heat self-cooling effect of the high heat efficiency welding construction and the narrow groove joint without using the heat sink medium outside. Has been. However, there is a high possibility that this tensile residual stress is not changed to a compressive residual stress. In addition, since a thin electrode formed in a non-cylindrical shape (non-circular cross section) different from an inexpensive circular cross-section tungsten electrode rod is used, this thin electrode is expensive to manufacture, and it is also in the groove. The cost of electrode replacement accompanying the consumption of the electrode tip that occurs when inserting and arc welding is also high. As the wire (melting material) supplied and melted in the groove, an austenitic wire having the same composition as the groove joint material to be welded is used, and a martensite wire different from this wire is not used.

また、上記特許文献4の場合には、管内面の引張残留応力を低減するために、開先継手の材質と同質系のオーステナイト系ワイヤとマルテンサイト系ワイヤとを使い分けて溶接している。引張残留応力の低減に有効であるが、まだ引張応力が残留しており、圧縮応力に変化させるまでには至っていない。また、マルテンサイト系ワイヤは、開先内の中間層の溶接部分のみに使用されており、開先表面の最終層の溶接部分には使用されていない。さらに、開先継手の角度が広いため、板厚の厚い開先継手を溶接する場合には、溶接すべき開先断面積及び開先肩幅が増加し、1層1パスずつ積層する溶接が困難であり、1層多パスの多層盛溶接が必要になり、引張残留応力及び収縮変形が増す可能性が高い。溶接方法については、不明であるが、実施例から想定すると、非消耗性のタングステンを電極にするアーク溶接法ではなく、溶接ワイヤ(溶加材)を電極にするアーク溶接法の可能性が高い。   Moreover, in the case of the said patent document 4, in order to reduce the tensile residual stress of a pipe inner surface, the material of a groove joint and the austenite type | system | group wire and martensite type | system | group wire of the same quality are used and welded separately. Although effective in reducing the tensile residual stress, the tensile stress still remains and has not yet been changed to a compressive stress. Further, the martensitic wire is used only for the welded portion of the intermediate layer in the groove, and is not used for the welded portion of the final layer on the groove surface. In addition, since the groove joint has a wide angle, when welding a thick groove joint, the groove cross-sectional area to be welded and the groove shoulder width increase, making it difficult to weld one layer at a time for each pass. 1 and multipass multi-layer welding is required, and there is a high possibility that tensile residual stress and shrinkage deformation increase. The welding method is unknown, but assuming from the examples, there is a high possibility of an arc welding method using a welding wire (a filler metal) as an electrode rather than an arc welding method using non-consumable tungsten as an electrode. .

また、上記特許文献5の場合には、溶接継手の疲労強度を向上するために、マルテンサイト変態を生じさせる溶接材料(溶接ワイヤに該当)を用いて溶接している。溶接対象は主に低合金鉄鋼材料(高張力鋼材など)の溶接構造物であり、材質が異なるオーステナイト系ステンレス鋼材の溶接に適用できない。また、溶接で生じる引張残留応力の低減箇所は、すみ肉継手やT継手や十字継手の溶接表面部分、又はX開先継手の両面溶接の表面部分であり、継手形状及び溶け込み形状が異なる狭開先継手のような片面溶接で求められている溶接裏面部分が対象ではない。さらに、溶接方法については、溶接ワイヤを電極にするアーク溶接法であり、非消耗性のタングステンを電極にするアーク溶接法ではない。   Moreover, in the case of the said patent document 5, in order to improve the fatigue strength of a welded joint, it welds using the welding material (it corresponds to a welding wire) which produces a martensitic transformation. Welding objects are mainly welded structures of low-alloy steel materials (such as high-strength steel materials) and cannot be applied to welding austenitic stainless steel materials of different materials. In addition, the place where the tensile residual stress generated by welding is reduced is the welded surface part of fillet joints, T joints and cross joints, or the surface part of double-sided welding of X groove joints. It does not apply to the weld back surface portion that is required for single-sided welding such as a point joint. Furthermore, the welding method is an arc welding method using a welding wire as an electrode, and not an arc welding method using non-consumable tungsten as an electrode.

また、上記特許文献6の場合には、高張力鋼の溶接割れの防止に有効であると考えられるが、材質の異なるステンレス鋼材の溶接に適用できない。   In the case of Patent Document 6, it is considered effective for preventing weld cracking of high-strength steel, but it cannot be applied to welding of stainless steel materials of different materials.

この他にも、マルテンサイト変態を生じさせる溶接ワイヤを用いて溶接する溶接方法が幾つか提案されているが、主に高張力鋼材の溶接が対象であり、オーステナイト系ステンレス鋼材の溶接ではないようである。また、前記特許文献6と同様に、溶接で生じる引張残留応力の低減箇所は、溶接表面部分であり、継手形状及び溶け込み形状が異なる狭開先継手のような片面溶接で求められている溶接裏面部分が対象になっていない。   In addition to this, several welding methods have been proposed in which welding is performed using a welding wire that causes martensitic transformation, but it is mainly intended for welding high-tensile steel materials, and not for austenitic stainless steel materials. It is. Similarly to Patent Document 6, the portion of the tensile residual stress that is reduced by welding is the weld surface portion, and the weld back surface that is required for single-sided welding such as a narrow groove joint having a different joint shape and penetration shape. The part is not targeted.

本発明の目的は、厚板の開先継手に必要な開先底部の初層裏波溶接から開先上面部の最終層溶接まで積層する多層盛溶接を良好に施工すると共に、溶接終了後の裏面側及び表面側の溶接部分に残留する引張応力を圧縮応力に変化させる又は大幅低減させるのに有効な狭開先継手の多層盛溶接方法を提供することにある。   The object of the present invention is to successfully perform multi-layer welding for laminating from the first layer back wave welding of the groove bottom necessary for the groove joint of the thick plate to the final layer welding of the groove upper surface, and after completion of welding. It is an object of the present invention to provide a multi-layer welding method for a narrow groove joint which is effective for changing or greatly reducing the tensile stress remaining in the welded portion on the back surface side and the front surface side into a compressive stress.

本願発明者らは、上記目的を達成するために、管部材又は平板部材を相互に突き合せた開先を片面から積層溶接する狭開先継手の多層盛溶接方法において、前記積層溶接は積層溶接の開始より部材厚さの1/5以上4/5以下の範囲に前記管部材又は平板部材と同種のワイヤを用いて行う第一の溶接工程と、前記第一の溶接工程後に残存部より溶接最終層までの範囲に前記管部材又は平板部材より小さい線膨張係数を有するワイヤを用いて行う第二の溶接工程とを有することを特徴とする多層盛溶接方法を提案する。   In order to achieve the above-mentioned object, the inventors of the present invention provide a multi-layer welding method for a narrow groove joint in which a groove in which a pipe member or a flat plate member are butted against each other is laminated and welded from one side. A first welding step using the same kind of wire as the pipe member or flat plate member within a range of 1/5 to 4/5 of the member thickness from the start of welding, and welding from the remaining portion after the first welding step And a second welding process using a wire having a smaller linear expansion coefficient than the tube member or the flat plate member in the range up to the final layer.

本発明の狭開先継手の多層盛溶接方法によれば、2種類のワイヤを使い分けて積層溶接することより、表面側の溶接金属部に膨張作用及び張力が生じ、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができ、同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。その結果、残留応力腐食割れ防止,装置の長寿命化に寄与することができる。   According to the multi-layer welding method of the narrow groove joint of the present invention, by using two kinds of wires and laminating and welding, expansion action and tension are generated in the weld metal part on the surface side, The tensile stress remaining in the vicinity thereof can be changed to a compressive stress, and at the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced. As a result, it can contribute to the prevention of residual stress corrosion cracking and the extension of the device life.

また、溶接すべき開先断面積を小さくでき、ワイヤの使用量を削減し、溶接工数を低減できる。   Moreover, the groove sectional area to be welded can be reduced, the amount of wire used can be reduced, and the number of welding steps can be reduced.

本発明は厚板のオーステナイト系ステンレス鋼からなる容器や配管などの管部材又は平板部材を相互に突き合せた開先底部から開先上面部まで片面溶接及び溶接裏面部分の残留応力低減が必要な開先継手であり、材質の異なる2種類のワイヤを使い分けて前記開先上面部まで積層溶接するアーク溶接を行う狭開先継手の多層盛溶接方法において、溶接すべき累計の積層ビード高さが開先裏面より板厚の1/5以上から4/5以下の範囲に到達、あるいは残存する開先深さが開先表面より板厚の1/5以上から4/5以下の範囲に到達するまでは、前記開先継手の材質と同質系のオーステナイト系ワイヤを用い、開先底部の前記初層裏波溶接から順番に積層する非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行い、その後に、前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換して用い、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に積層する非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うことを特徴とする狭開先継手の多層盛溶接方法を提案する。   The present invention requires single-sided welding and reduction of residual stress in the welded back surface portion from the groove bottom portion to the groove upper surface portion where pipe members or flat plate members such as containers and pipes made of thick austenitic stainless steel are butted against each other. In the multi-layer welding method of a narrow groove joint, which is a groove joint and uses arc welding to perform lamination welding to the groove top surface using two different types of wires, the total number of laminated bead heights to be welded is The groove depth reaches from 1/5 to 4/5 from the groove back surface, or the remaining groove depth reaches from 1/5 to 4/5 from the groove surface. Until, using the austenitic wire of the same quality as the material of the groove joint, pulse arc welding or direct current arc welding of the non-consumable electrode method of laminating in order from the first layer back wave welding of the groove bottom, And A non-consumable electrode type pulse arc that is used by switching to a martensite wire different from the stenite wire and laminating in order from the welding of the remaining portion in the groove to be continued to the final layer welding of the upper surface of the groove. A multi-pass welding method for narrow groove joints, characterized by performing welding or DC arc welding, is proposed.

また、本発明は、上記目的を達成するために、厚板のオーステナイト系ステンレス鋼からなる容器や配管などの管部材又は平板部材を相互に突き合せた開先底部から開先上面部まで片面溶接及び溶接裏面部分の残留応力低減が必要な開先継手であり、材質の異なる2種類のワイヤを使い分けて前記開先上面部まで積層溶接するアーク溶接を行う狭開先継手の多層盛溶接方法において、前記開先底部の開先幅又はこの開先底部中央に挿入するインサート材の幅を含む開先幅を最小で4mm以上、最大で8mm以下の寸法に予め形成すると共に、開先上面部までの片面角度を10°以下の狭い開先形状に形成し、多層盛溶接を施工する時に、溶接すべき累計の積層ビード高さが開先裏面より板厚の1/5以上から4/5以下の範囲に到達、あるいは残存する開先深さが開先表面より板厚の1/5以上から4/5以下の範囲に到達するまでは、前記開先継手の材質と同質系のオーステナイト系ワイヤを用い、開先底部の前記初層裏波溶接から順番に積層する非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行い、その後に、前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換して用い、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に積層する前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行う、あるいはインコネル系ワイヤに交換又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤに交換して用い、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に積層する前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うことを特徴とする狭開先継手の多層盛溶接方法を提案する。   Further, in order to achieve the above object, the present invention provides a single-side welding from a groove bottom portion to a groove top surface portion where a tube member or a flat plate member such as a vessel or piping made of thick austenitic stainless steel is abutted against each other. And a groove joint that requires a reduction in residual stress on the back surface of the weld, and a multi-layer prime welding method for a narrow groove joint that performs arc welding in which two types of wires of different materials are selectively used up to the top surface of the groove The groove width including the groove width of the groove bottom part or the width of the insert material inserted in the center of the groove bottom part is preliminarily formed to a dimension of 4 mm or more and 8 mm or less at the maximum. When one side angle of is formed into a narrow groove shape of 10 ° or less and multilayer build-up welding is performed, the cumulative laminated bead height to be welded is 1/5 or more to 4/5 or less of the plate thickness from the groove back surface. Reach or remain Until the groove depth reaches a range of 1/5 or more to 4/5 or less of the plate thickness from the groove surface, using an austenitic wire of the same quality as the material of the groove joint, Perform non-consumable electrode-type pulse arc welding or direct current arc welding, which are laminated in order from the first layer back wave welding, and then replace and use a martensitic wire different from the austenitic wire, and a groove to be continued. The non-consumable electrode type pulse arc welding or direct current arc welding is performed in order from the welding of the remaining portion to the final layer welding of the upper surface portion of the groove, or replaced with an Inconel wire or the groove joint. Used as a replacement for other austenitic wire with a coefficient of linear expansion smaller than that of the material, reaching the final layer weld on the upper surface of the groove from the remaining weld in the groove to be continued Suggest narrow groove joint method of multi-pass welding and performing pulsed arc welding or DC arc welding of the non-consumable electrode method of laminating in sequence until the.

また、本発明は、上記目的を達成するために、厚板のオーステナイト系ステンレス鋼からなる容器や配管などの管部材又は平板部材を相互に突き合せた開先底部から開先上面部まで片面溶接及び溶接裏面部分の残留応力低減が必要な開先継手であり、材質の異なる2種類のワイヤを使い分けて前記開先上面部まで積層溶接するアーク溶接を行う狭開先継手の多層盛溶接方法において、前記開先底部の開先幅又はこの開先底部中央に挿入するインサート材の幅を含む開先幅を最小で4mm以上、最大で8mm以下の寸法に予め形成すると共に、開先上面部までの片面角度を10°以下の狭い開先形状に形成し、この狭い開先内を溶接すべき累計の積層ビード高さが開先裏面より板厚の1/5以上から4/5以下の範囲に到達、あるいは残存する開先深さが開先表面より板厚の1/5以上から4/5以下の範囲に到達するまでの溶接施工では、前記開先継手の材質と同質系のオーステナイト系ワイヤを用い、前記開先幅より細径の円形断面形状を有する非消耗性の電極を開先内に挿入し、あるいはこの電極径より太径の電極下部の横幅を前記開先幅より狭い偏平形状に形成した非消耗性の電極か、又は前記開先幅より狭い偏平形状に該当する非円形断面形状を有する他の非消耗性の電極を開先内に挿入し、この挿入した電極先端に発生させるアーク中及びこのアーク直下に形成する溶融プール中に前記オーステナイト系ワイヤを送給して溶融させ、開先底部の前記初層裏波溶接から順番に1層1パスずつ積層するにように非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行い、その後に積層すべき開先上面部までの溶接施工では、少なくとも前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換し、あるいはインコネル系ワイヤに交換又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤに交換して用い、この交換した前記ワイヤを前記アーク中及びこのアーク直下に形成する溶融プール中に送給して溶融させ、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に1層1パスずつ積層するように前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行う、あるいは前記1層1パスずつ積層する途中で必要に応じて左右に振分けて1層2パスずつ積層する、あるいは最終層の溶接パスを3パスに増して積層するように前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うことを特徴とする狭開先継手の多層盛溶接方法を提案する。   Further, in order to achieve the above object, the present invention provides a single-side welding from a groove bottom portion to a groove top surface portion where a tube member or a flat plate member such as a vessel or piping made of thick austenitic stainless steel is abutted against each other. And a groove joint that requires a reduction in residual stress on the back surface of the weld, and a multi-layer prime welding method for a narrow groove joint that performs arc welding in which two types of wires of different materials are selectively used up to the top surface of the groove The groove width including the groove width of the groove bottom part or the width of the insert material inserted in the center of the groove bottom part is preliminarily formed to a dimension of 4 mm or more and 8 mm or less at the maximum. Is formed in a narrow groove shape with a single groove angle of 10 ° or less, and the cumulative laminated bead height to be welded in the narrow groove is in the range from 1/5 to 4/5 of the plate thickness from the groove back surface. Reaching or remaining groove depth When welding is performed from the groove surface until it reaches a range of 1/5 or more to 4/5 or less of the plate thickness, an austenitic wire of the same quality as the material of the groove joint is used, and is narrower than the groove width. Insert a non-consumable electrode having a circular cross-sectional shape into the groove, or a non-consumable electrode in which the lateral width of the electrode lower than the electrode diameter is formed into a flat shape narrower than the groove width. Or another non-consumable electrode having a non-circular cross-sectional shape corresponding to a flat shape narrower than the groove width is inserted into the groove, and formed in and immediately below the arc generated at the tip of the inserted electrode. Non-consumable electrode type pulse arc welding or direct current so that the austenitic wire is fed into the molten pool to be melted and laminated one by one in order from the first layer back wave welding of the groove bottom Arc welding, then In welding work up to the upper surface of the groove to be laminated, replace with at least a martensitic wire different from the austenitic wire, or replace with an Inconel wire or a linear expansion coefficient smaller than the linear expansion coefficient of the groove joint material. It is used by exchanging with another austenitic wire having, and the exchanged wire is fed into the arc and the melt pool formed immediately below the arc to be melted, and the remaining portion in the groove to be continued is welded. The non-consumable electrode type pulse arc welding or direct current arc welding is performed so as to laminate one layer one pass at a time until the final layer welding of the groove upper surface is reached, or the one layer one pass is laminated. If necessary, the above-mentioned non-consumables are arranged so that two layers are stacked one by one as needed, or the final layer is welded with three additional welding passes. A multi-pass welding method for narrow gap joints is proposed, characterized by performing electrode-type pulse arc welding or DC arc welding.

また、前記開先継手の開先底部中央にインサート材を表面側及び裏面側に各々突き出すように予め設け、このインサート材は、前記開先継手材と同質材のオーステナイト系ステンレスからなるインサート材、あるいは前記開先継手材と同質材であって、化学組成の一つであるS(重量%)が前記開先継手材より高めの0.008〜0.015%含有しているインサート材を用い、本溶接の前記初層裏波溶接を施工する以前に、裏面側まで溶融しない浅い溶け込みの低入熱アーク及びワイヤ送りなしの仮付け条件を用いて、表面側の開先底部の継ぎ部とインサート材の突き出し部とが溶融接合するように仮付け溶接を行い、この仮付け溶接の終了後に、開先底部の裏面側に突き出している前記インサート材及び継ぎ部を溶融させ、裏面側の裏ビード幅が特定値の範囲に形成するように前記初層裏波溶接を行うこともできる。   In addition, the insert material is provided in advance in the groove bottom center of the groove joint so as to protrude to the front side and the back surface side, and this insert material is an insert material made of austenitic stainless steel of the same quality as the groove joint material, Alternatively, an insert material that is the same material as the groove joint material and contains 0.008 to 0.015% of S (weight%), which is one of the chemical compositions, is higher than the groove joint material. Before the first-layer backside welding of the main welding, using the shallow penetration low heat input arc that does not melt to the back side and the temporary attachment condition without wire feed, Tack welding is performed so that the protruding portion of the insert material is melt-bonded, and after the tack welding is completed, the insert material and the joint portion protruding to the back side of the groove bottom portion are melted, and the back side Bee Width can be performed the first layer Uranami welding to form a range of specific values.

特に、前記初層裏波溶接の施工では、表面側の開先底部から裏面側まで完全溶け込み可能な入熱アークの初層溶接条件を用い、パルスアーク溶接中又は直流アーク溶接中に1つ以上の条件因子を調整又は制御し、裏面側の溶融プール幅又はこの溶融プール近傍の裏ビード幅が特定値の4〜7mmの範囲、好ましくは4〜6mmの範囲に形成するとよい。   In particular, in the construction of the first layer back wave welding, the first layer welding conditions of a heat input arc that can completely melt from the groove bottom on the front side to the back side are used, and one or more during pulse arc welding or DC arc welding. In this case, the melt pool width on the back surface side or the back bead width in the vicinity of the melt pool is adjusted to a specific value in the range of 4 to 7 mm, preferably in the range of 4 to 6 mm.

また、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接まで積層する溶接施工では、前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換し、あるいはインコネル系ワイヤに交換又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤに交換して用いると共に、前記溶接施工の以前に前記オーステナイト系ワイヤを用いて溶接施工した時の最後の溶接条件又はこの最後前の溶接条件よりも小さい入熱量の溶接条件に変更して使用し、あるいは前記最後の溶接条件又はこの最後前の溶接条件と同等の溶接条件を再使用して前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うことができる。特に、前記マルテンサイト系ワイヤは、少なくとも化学組成のNiが8〜12重量%、Crが8〜12重量%含有し、マルテンサイト変態開始温度が100℃以上,300℃以下であるマルテンサイト系ステンレスワイヤを用いるとよい。   In addition, in the welding construction to laminate from the welding of the remaining portion in the groove to be continued to the final layer welding of the groove upper surface portion, it is replaced with a martensite wire different from the austenite wire, or is replaced with an inconel wire. It is used by exchanging with another austenitic wire having a linear expansion coefficient smaller than the linear expansion coefficient of the groove joint material, and the last welding condition when welding is performed using the austenitic wire before the welding operation. Alternatively, the non-consumable electrode method is used by changing to a welding condition having a heat input smaller than the last welding condition, or by reusing the last welding condition or a welding condition equivalent to the last welding condition. Pulse arc welding or direct current arc welding can be performed. In particular, the martensitic wire contains at least 8 to 12% by weight of Ni of chemical composition and 8 to 12% by weight of Cr, and has a martensitic transformation start temperature of 100 ° C. or higher and 300 ° C. or lower. A wire may be used.

すなわち、本発明の狭開先継手の多層盛溶接方法では、溶接すべき累計の積層ビード高さが開先裏面より板厚の1/5以上から4/5以下の範囲に到達、あるいは残存する開先深さが開先表面より板厚の1/5以上から4/5以下の範囲に到達するまでは、前記開先継手の材質と同質系のオーステナイト系ワイヤを用い、開先底部の前記初層裏波溶接から順番に積層する非消耗電極方式のパルスアーク溶接又は直流アーク溶接を施工することにより、例えば、高温水などの腐食環境下にさらされる内面側又は底面側の溶接裏面部及びこの溶接裏面部から所定の開先深さまで、開先継手材と同質系のオーステナイト系の溶接金属で確実に埋めることができる。   That is, in the multi-layer welding method of the narrow groove joint of the present invention, the cumulative laminated bead height to be welded reaches or remains in the range from 1/5 to 4/5 of the plate thickness from the back of the groove. Until the groove depth reaches the range of 1/5 or more to 4/5 or less of the plate thickness from the groove surface, using the austenitic wire of the same quality as the material of the groove joint, By applying non-consumable electrode-type pulse arc welding or direct current arc welding, which are laminated in order from the first layer back wave welding, for example, the inner surface or bottom surface of the welding back surface exposed to a corrosive environment such as high-temperature water, and From this weld back surface portion to a predetermined groove depth, it can be reliably filled with austenitic weld metal of the same type as the groove joint material.

その後に、前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換して用い、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に積層する非消耗電極方式のパルスアーク溶接又は直流アーク溶接を施工することにより、マルテンサイト系ワイヤによるマルテンサイト変態及び膨張効果によって、室温時の溶接金属部に膨張作用及び張力が生じ、開先底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができる。同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。マルテンサイト系ワイヤは、溶接時の冷却過程でマルテンサイト変態を生じ、通常の室温(例えば20℃)時に、マルテンサイト変態の開始温度
(例えば100〜300℃)時よりも膨張した状態になる溶接金属であり、しかも、溶接対象のオーステナイト系ステンレス鋼の溶接継手材と融合性の良いマルテンサイト系のステンレスワイヤを用いるとよい。例えば、少なくとも化学組成のNiが8〜12重量%、Crが8〜12重量%含有し、マルテンサイト変態開始温度が100℃以上,300℃以下であるマルテンサイト系ステンレスワイヤを用いればよい。
Thereafter, the non-consumable electrode is used by exchanging with a martensite wire different from the austenite wire and sequentially stacking from the welding of the remaining portion in the groove to be continued to the final layer welding of the groove upper surface portion. By applying pulse arc welding or direct current arc welding of the type, the martensite transformation and expansion effect by the martensite wire causes expansion action and tension in the weld metal part at room temperature, and the weld back side on the groove bottom side And the tensile stress remaining in the vicinity thereof can be changed to a compressive stress. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced. A martensitic wire undergoes martensitic transformation during the cooling process during welding, and is in a state of being expanded at a normal room temperature (for example, 20 ° C.) than at a martensitic transformation starting temperature (for example, 100 to 300 ° C.). It is preferable to use a martensitic stainless wire that is a metal and has good fusion properties with the welded joint material of austenitic stainless steel to be welded. For example, a martensitic stainless wire containing at least 8 to 12 wt% of chemical composition and 8 to 12 wt% of Cr and having a martensite transformation start temperature of 100 ° C. or higher and 300 ° C. or lower may be used.

さらに、上述した溶接施工で残留応力を改善できる結果、溶接完了後に、残留応力を除去するための高価な加熱処理装置を設けたり、加熱処理を行ったりする必要がなくなり、コスト低減を図ることができる。   Furthermore, as a result of improving the residual stress by the above-described welding construction, it is not necessary to provide an expensive heat treatment apparatus for removing the residual stress or to perform the heat treatment after the welding is completed, thereby reducing the cost. it can.

また、本発明の狭開先継手の多層盛溶接方法では、前記管部材又は平板部材を相互に突き合せた開先底部の開先幅又はこの開先底部中央に挿入するインサート材の幅を含む開先幅を最小で4mm以上、最大で8mm以下の寸法に予め形成すると共に、開先上面部までの片面角度を10°以下の狭い開先形状に形成することにより、溶接パス毎の入熱量,溶接熱による収縮変形を小さくできるばかりでなく、溶接すべき開先断面積を小さくでき、ワイヤの使用量の削減,溶接工数の低減を図ることができる。   Further, in the multi-layer welding method of the narrow groove joint according to the present invention, the groove width of the groove bottom portion where the pipe member or the flat plate member is abutted with each other or the width of the insert material inserted into the center of the groove bottom portion is included. By forming the groove width to a minimum dimension of 4 mm or more and a maximum dimension of 8 mm or less in advance, and forming a single groove angle up to the groove upper surface to a narrow groove shape of 10 ° or less, the heat input per welding pass Not only can shrink deformation due to welding heat be reduced, but also the cross-sectional area of the groove to be welded can be reduced, so that the amount of wire used can be reduced and the number of welding steps can be reduced.

また、多層盛溶接を施工する時に、上述したように、溶接すべき累計の積層ビード高さが開先裏面より板厚の1/5以上から4/5以下の範囲に到達、あるいは残存する開先深さが開先表面より板厚の1/5以上から4/5以下の範囲に到達するまでは、前記開先継手の材質と同質系のオーステナイト系ワイヤを用い、開先底部の前記初層裏波溶接から順番に積層する非消耗電極方式のパルスアーク溶接又は直流アーク溶接を施工することにより、例えば、高温水などの腐食環境下にさらされる内面側又は底面側の溶接裏面部及びこの溶接裏面部から所定の開先深さまで、開先継手材と同質系のオーステナイト系の溶接金属で確実に埋めることができる。その後に、前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換して用い、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に積層する非消耗電極方式のパルスアーク溶接又は直流アーク溶接を施工することにより、上述したように、マルテンサイト系ワイヤによるマルテンサイト変態及び膨張効果によって、室温時の溶接金属部に膨張作用及び張力が生じ、開先底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができる。同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。   In addition, when multi-layer welding is performed, as described above, the cumulative stacked bead height to be welded reaches or remains in the range from 1/5 to 4/5 of the plate thickness from the groove back surface. Until the tip depth reaches the range of 1/5 or more to 4/5 or less of the plate thickness from the groove surface, an austenitic wire of the same quality as the material of the groove joint is used. By performing non-consumable electrode type pulse arc welding or direct current arc welding, which are laminated in order from layer back wave welding, for example, the inner or lower surface of the weld back surface exposed to a corrosive environment such as high-temperature water and the like From the weld back surface portion to a predetermined groove depth, it can be reliably filled with austenitic weld metal of the same type as the groove joint material. Thereafter, the non-consumable electrode is used by exchanging with a martensite wire different from the austenite wire and sequentially stacking from the welding of the remaining portion in the groove to be continued to the final layer welding of the groove upper surface portion. By applying the pulse arc welding or direct current arc welding of the method, as described above, the martensite transformation and expansion effect by the martensite wire causes expansion action and tension in the weld metal part at room temperature, and the groove bottom surface The tensile stress remaining in the weld back surface side and the vicinity thereof can be changed to compressive stress. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced.

また、マルテンサイト系ワイヤの代わりに、インコネル系ワイヤに交換又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤに交換して用い、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に積層する前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うようにしてもよい。前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤ又はインコネル系ワイヤに交換して、前記開先内の残りの溶接から開先上面部まで積層溶接することにより、溶接金属部に線膨張係数の偏差による収縮抑制作用及び張力が生じ、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変える又は大幅に低減できる。また、同時に最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。   Also, instead of martensite wire, use in place of inconel wire or replace with other austenite wire having a linear expansion coefficient smaller than that of the groove joint material. The non-consumable electrode type pulse arc welding or direct current arc welding may be performed in which the layers are sequentially laminated from the remaining portion welding to the final layer welding of the groove upper surface portion. By exchanging with another austenitic wire or inconel wire having a linear expansion coefficient smaller than the linear expansion coefficient of the groove joint material, by laminating and welding from the remaining weld in the groove to the groove upper surface portion, A shrinkage suppressing action and a tension due to the deviation of the linear expansion coefficient occur in the weld metal portion, and the tensile stress remaining in the weld back surface portion on the bottom surface side and the vicinity thereof can be changed to a compressive stress or greatly reduced. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced.

さらに、本発明の狭開先継手の多層盛溶接方法では、上述した狭い開先形状に形成し、この狭い開先内を溶接すべき累計の積層ビード高さが開先裏面より板厚の1/5以上から4/5以下の範囲に到達、あるいは残存する開先深さが開先表面より板厚の1/5以上から4/5以下の範囲に到達するまでの溶接施工では、前記開先継手の材質と同質系のオーステナイト系ワイヤを用い、前記開先幅より細径の円形断面形状を有する非消耗性の電極を開先内に挿入し、あるいはこの電極径より太径の電極下部の横幅を前記開先幅より狭い偏平形状に形成した非消耗性の電極か、又は前記開先幅より狭い偏平形状に該当する非円形断面形状を有する他の非消耗性の電極を開先内に挿入し、この挿入した電極先端に発生させるアーク中及びこのアーク直下に形成する溶融プール中に前記オーステナイト系ワイヤを送給して溶融させ、開先底部の前記初層裏波溶接から順番に1層1パスずつ積層するように非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うことにより、上述したように、高温水などの腐食環境下にさらされる内面側又は底面側の溶接裏面部及びこの溶接裏面部から所定の開先深さまで、開先継手材と同質系のオーステナイト系の溶接金属で確実に埋めることができ、溶接パス毎の溶接ビードを良好に積み重ねることができる。また、溶接パス毎の入熱量,溶接熱による収縮変形を小さくでき、溶接ワイヤの使用量の削減や溶接工数の低減を図ることができる。   Furthermore, in the multi-layer welding method of the narrow groove joint according to the present invention, the accumulated bead height to be welded in the narrow groove shape is equal to the plate thickness of 1 from the groove back surface. / 5 to 4/5 or less, or when the remaining groove depth reaches from the groove surface to 1/5 or more to 4/5 or less of the plate thickness, Using an austenitic wire of the same type as the material of the tip joint, insert a non-consumable electrode having a circular cross-sectional shape with a diameter smaller than the groove width into the groove, or a lower electrode having a diameter larger than this electrode diameter A non-consumable electrode formed in a flat shape whose lateral width is narrower than the groove width, or another non-consumable electrode having a non-circular cross-sectional shape corresponding to a flat shape narrower than the groove width. Inserted into the arc, and the arc generated at the tip of the inserted electrode Non-consumable electrode type pulse arc welding so that the austenitic wire is fed and melted into a molten pool formed below, and the layers are laminated one by one in order from the first layer backside welding at the groove bottom. Or, by performing direct current arc welding, as described above, the inner surface or the bottom surface of the welded back surface exposed to a corrosive environment such as high-temperature water, and the groove joint material from the welded back surface portion to a predetermined groove depth. Can be reliably filled with austenitic weld metal of the same type, and weld beads for each welding pass can be stacked well. In addition, the amount of heat input for each welding pass and shrinkage deformation due to welding heat can be reduced, and the amount of welding wire used can be reduced and the number of welding steps can be reduced.

特に、細径の円形断面形状を有する非消耗性の電極の場合は、前記パルスアーク溶接又は直流アーク溶接に使用できるばかりでなく、安価に入手,丸電極棒の先端のみを簡便な電極研磨器で簡単に円錐加工でき、溶接使用で先端部の一部が消耗した時にも、消耗部の再加工や取り付け取り外し作業が容易で使い勝手が良い。また、太径の電極下部の横幅を前記開先幅より狭い偏平形状に形成した非消耗性の電極の場合には、偏平形状にするための製作費用を要するが、上述した丸電極棒とほぼ同様に、電極先端のみを簡便な電極研磨器によって簡単に円錐加工でき、取り付け取り外し作業も容易である。この他に、開先幅より狭い偏平形状に該当する非円形断面形状を有する他の非消耗性の電極を用いることも可能である。   In particular, in the case of a non-consumable electrode having a small circular cross-sectional shape, not only can it be used for the pulse arc welding or the direct current arc welding, but it can be obtained at a low cost, and only the tip of the round electrode rod is a simple electrode polisher. Conical processing can be easily performed, and even when a part of the tip is consumed due to welding, it is easy to rework or attach / remove the consumable part. Further, in the case of a non-consumable electrode in which the width of the lower portion of the large-diameter electrode is formed in a flat shape narrower than the groove width, manufacturing costs for making the flat shape are required. Similarly, only the tip of the electrode can be easily conical processed with a simple electrode grinder, and attachment and removal operations are also easy. In addition, other non-consumable electrodes having a non-circular cross-sectional shape corresponding to a flat shape narrower than the groove width can be used.

また、その後に前記積層すべき開先上面部までの溶接施工では、上述したように、オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換して、1層パスずつ積層溶接することにより、溶接パス毎の溶接ビード(マルテンサイト系ワイヤの溶接金属)を開先上面部まで良好に積み重ねることができるばかりでなく、上述したように、マルテンサイト系ワイヤによるマルテンサイト変態及び膨張効果によって、室温時の溶接金属部に膨張作用及び張力が生じ、開先底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えられる。同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。また、上述したように、溶接パス毎の入熱量,溶接熱による収縮変形を小さくでき、溶接ワイヤの使用量の削減や溶接工数の低減を図ることができる。さらに、1層1パスずつ積層する途中で必要に応じて左右に振分けて1層2パスずつ積層する、あるいは最終層を3パスに増して積層溶接することにより、1パスでは溶けにくくなる開先幅の壁面であっても、入熱アークが同一条件のまま又は少し低く抑制した条件でも開先幅の両壁面を確実に溶融でき、開先上面部まで良好な溶接結果を得られる。さらに、最終層の累計ビード幅をより広くでき、最終層の溶接表面部及びその近傍に残留する引張応力を小さくできる。また、前記積層すべき開先上面部までの溶接施工では、マルテンサイト系ワイヤの代わりに、インコネル系ワイヤに交換又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤに交換して、上述したように、開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで1層パスずつ積層する、あるいはこの1層1パスずつ積層する途中で必要に応じて左右に振分けて1層2パスずつ積層する、あるいは最終層の溶接パスを3パスに増して積層するように前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うことにより、溶接金属部に線膨張係数の偏差による収縮抑制作用及び張力が生じ、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変える又は大幅低減できる。また、同時に最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。また、1パスでは溶けにくくなる開先幅の壁面であっても、この開先幅の両壁面を確実に溶融できるばかりでなく、開先上面部まで良好な溶接結果を得ることができ、さらに、最終層の累計ビード幅をより広くできる。   Further, in the welding operation up to the groove upper surface portion to be laminated thereafter, as described above, by replacing the austenite wire with a martensite wire and laminating and welding one layer at a time, each welding pass Welding beads (welded metal of martensitic wire) can be well stacked up to the upper surface of the groove, and as described above, the martensitic wire is welded at room temperature due to the martensitic transformation and expansion effects. An expansion action and tension are generated in the metal portion, and the tensile stress remaining in the weld back surface portion on the groove bottom surface side and in the vicinity thereof can be changed to a compressive stress. At the same time, the tensile stress remaining in the weld surface portion of the final layer and the vicinity thereof can be reduced. Further, as described above, the amount of heat input for each welding pass and shrinkage deformation due to welding heat can be reduced, and the amount of welding wire used and the number of welding steps can be reduced. Further, in the course of laminating one pass at a time, the groove is divided into left and right as needed, and laminated one layer by two passes, or the final layer is increased to three passes, and the groove becomes difficult to melt in one pass. Even if the wall surface has a width, both wall surfaces of the groove width can be reliably melted even under the condition that the heat input arc is kept under the same condition or a little lower, and a good welding result can be obtained up to the groove upper surface portion. Furthermore, the cumulative bead width of the final layer can be increased, and the tensile stress remaining on the weld surface portion of the final layer and its vicinity can be reduced. Further, in the welding operation up to the groove upper surface portion to be laminated, in place of the martensite wire, it is replaced with an Inconel wire, or other austenite system having a linear expansion coefficient smaller than the linear expansion coefficient of the groove joint material Switch to a wire and, as described above, stack one layer at a time until welding reaches the final layer weld on the groove upper surface from the welding of the remaining portion in the groove, By performing the non-consumable electrode type pulse arc welding or direct current arc welding so as to be laminated to the left and right as needed and laminated one layer by two passes, or the final layer welding pass is laminated to three passes, Shrinkage suppression action and tension are generated in the weld metal part due to the deviation of the linear expansion coefficient, and the tensile stress remaining in the weld back side and its vicinity on the bottom side can be changed to compressive stress or greatly reduced.At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced. Moreover, even if the wall surface has a groove width that is difficult to melt in one pass, not only can both wall surfaces of this groove width be melted reliably, but also a good welding result can be obtained up to the groove upper surface part. The accumulated bead width of the final layer can be made wider.

また、本発明の狭開先継手の多層盛溶接方法では、前記開先継手の開先底部中央にインサート材を表面側及び裏面側に各々突き出すように予め設け、このインサート材は、前記開先継手材と同質材のオーステナイト系ステンレスからなるインサート材、あるいは前記開先継手材と同質材であって、化学組成の一つであるS(重量%)が前記開先継手材より高めの0.008〜0.015%含有しているインサート材を用いることにより、開先底部の突き合せ部に生じ易い段違いやギャップの影響を緩和できるばかりでなく、初層裏波溶接で重要な裏面側に形成すべき裏ビード幅を確実に凸形状に形成できる。特に、前記Sの含有量が高めのインサート材を用いることにより、Sの含有量が少ない通常のインサート材使用の溶接時よりも、アーク形状が細く絞られ、深さ方向への溶融金属の対流及び溶け込みが促進し、10〜20%程度少ない溶接電流(又は入熱量)の溶接条件で裏面側に裏ビードが容易に形成でき、凹みのない凸形状でほぼ均一な裏ビード幅を良好に得られる。また、前記初層裏波溶接を施工する以前に、裏面側まで溶融しない浅い溶け込みの低入熱アーク及びワイヤ送りなしの仮付け条件を用いて、表面側の開先底部の継ぎ部とインサート材の突き出し部とが溶融接合するように仮付け溶接を行うことにより、溶接対象の開先継手を確実に接合固定でき、本溶接の初層裏波溶接時にワイヤ送りが容易になると共に、裏ビード形成への悪影響をなくすことができる。そして、この仮付け溶接の終了後に、開先底部の裏面側に突き出している前記インサート材及び継ぎ部を溶融させ、裏面側の裏ビード幅が特定値の範囲に形成するように前記初層裏波溶接を行うことにより、裏波溶接が比較的易しい下向き姿勢や立向き上進姿勢の溶接はもちろんのこと、高度な溶接技術を要する配管の全姿勢溶接,管材の横向き姿勢の溶接,平板材の上向き姿勢の溶接であっても、凹みのない凸形状でほぼ均一な裏ビード幅を良好に得ることができる。   In the multi-layer welding method of the narrow groove joint of the present invention, an insert material is provided in advance in the center of the groove bottom of the groove joint so as to protrude to the front side and the back side, respectively. An insert material made of austenitic stainless steel of the same quality as the joint material, or the same material as the groove joint material, and S (weight%), which is one of the chemical compositions, is higher than that of the groove joint material. By using an insert material containing 008 to 0.015%, not only can the effects of gaps and gaps that are likely to occur at the butt portion of the groove bottom portion be mitigated, but also on the back side, which is important in the first layer back wave welding The back bead width to be formed can be reliably formed in a convex shape. In particular, by using an insert material with a high S content, the arc shape is narrowed more than when welding with a normal insert material with a low S content, and convection of the molten metal in the depth direction is performed. Also, penetration is promoted, and a back bead can be easily formed on the back side under welding conditions with a welding current (or heat input) of about 10 to 20% less, and a substantially uniform back bead width is obtained with a convex shape without a dent. It is done. In addition, before the first layer backside welding, using a shallow penetration low heat input arc that does not melt to the back side and temporary attachment conditions without wire feed, the joint portion of the groove bottom portion on the surface side and the insert material By performing tack welding so that the projecting part of the weld is melt-bonded, the groove joint to be welded can be securely joined and fixed, and wire feed is facilitated during the first layer back wave welding of the main welding, and the back bead The adverse effect on formation can be eliminated. Then, after the tack welding is completed, the insert material and the joint projecting to the back side of the groove bottom are melted, and the back bead width on the back side is formed within a specific value range so that the back of the first layer is formed. By performing wave welding, it is possible to weld not only in the downward posture and the upwardly upward posture, which are relatively easy to perform reverse wave welding, but also in all posture welding of pipes that require advanced welding technology, welding in the horizontal posture of the pipe material, flat plate material Even in the upward-facing posture, it is possible to obtain a substantially uniform back bead width with a convex shape without a dent.

特に、前記初層裏波溶接の施工では、表面側の開先底部から裏面側まで完全溶け込み可能な入熱アークの初層溶接条件を用い、パルスアーク溶接中又は直流アーク溶接中に1つ以上の条件因子を調整又は制御し、裏面側の溶融プール幅又はこの溶融プール近傍の裏ビード幅が特定値の4〜7mmの範囲、好ましくは4〜6mmの範囲に形成するようにすることにより、溶接装置を操作する溶接者が代わっても個人差の影響がなくなり、裏面側に目標としている溶融プール幅及び裏ビード幅を前記特定値の適正範囲内に確実に形成でき、凹みのない凸形状でほぼ均一な裏ビード幅を良好に得ることができる。調整又は制御すべき条件因子は、例えば、パルスアーク溶接のピーク電流,ベース電流,ピーク電圧又は平均アーク電圧又はアーク長,溶接速度又は走行速度,ピーク電流時間中かベース電流時間中のワイヤ送り速度又は両時間中のワイヤ送り速度であり、また、直流アーク溶接の平均電流,平均アーク電圧又はアーク長,溶接速度又は走行速度,ワイヤ送り速度である。裏面側の溶融プール幅又はこの溶融プール近傍の裏ビード幅が特定値の4〜7mmの範囲、好ましくは4〜6mmの範囲内に形成するように、いずれか1つ以上の前記条件因子を調整又は制御すればよい。   In particular, in the construction of the first layer back wave welding, the first layer welding conditions of a heat input arc that can completely melt from the groove bottom on the front side to the back side are used, and one or more during pulse arc welding or DC arc welding. By adjusting or controlling the condition factor of the rear surface, the melt pool width on the back side or the back bead width in the vicinity of the melt pool is formed in a specific value range of 4 to 7 mm, preferably in the range of 4 to 6 mm. Even if the welder who operates the welding device changes, there is no effect of individual differences, and the target molten pool width and back bead width can be reliably formed within the appropriate range of the specific value on the back side, and a convex shape without dents Thus, a substantially uniform back bead width can be obtained satisfactorily. Condition factors to be adjusted or controlled include, for example, pulsed arc welding peak current, base current, peak voltage or average arc voltage or arc length, welding speed or travel speed, wire feed rate during peak current time or base current time Or the wire feed speed during both hours, and the average current, average arc voltage or arc length, welding speed or running speed, and wire feed speed of DC arc welding. Any one or more of the above-mentioned condition factors is adjusted so that the melt pool width on the back surface side or the back bead width in the vicinity of the melt pool is formed within a specified value range of 4 to 7 mm, preferably 4 to 6 mm. Alternatively, it may be controlled.

さらに、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接まで積層する溶接施工では、前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換し、あるいはインコネル系ワイヤに交換又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤに交換して用いると共に、前記溶接施工の以前に前記オーステナイト系ワイヤを用いて溶接施工した時の最後の溶接条件又はこの最後前の溶接条件よりも小さい入熱量の溶接条件に変更して使用し、あるいは前記最後の溶接条件又はこの最後前の溶接条件と同等の溶接条件を再使用して前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うことにより、上述したように、溶接時の冷却過程でマルテンサイト変態及び膨張効果を有するマルテンサイト系ワイヤにて積層溶接された溶接金属部に生じる膨張作用及び張力によって、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができる。同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。例えば、前記マルテンサイト系ワイヤは、少なくとも化学組成のNiが8〜12重量%、Crが8〜12重量%含有し、マルテンサイト変態開始温度が100℃以上,300℃以下であるマルテンサイト系ステンレスワイヤを用いるとよい。また、このマルテンサイト系ステンレスワイヤの代わりに、開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤ又はインコネル系ワイヤに交換して前記積層溶接することにより、上述したように、溶接金属部に線膨張係数の偏差による収縮抑制作用及び張力が生じ、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変える又は大幅低減できる。また、同時に最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。また、溶接パス毎の入熱量を小さく抑制した溶接条件を用いることにより、パス毎の溶接及び累計の積層溶接で生じる溶接金属部及びこの周辺部の収縮変形やたわみ変形,熱影響部の領域を小さくできる。   Furthermore, in the welding construction that laminates from the welding of the remaining portion in the groove to be continued to the final layer welding of the groove upper surface portion, it is replaced with a martensite wire different from the austenite wire, or replaced with an inconel wire. It is used by exchanging with another austenitic wire having a linear expansion coefficient smaller than the linear expansion coefficient of the groove joint material, and the last welding condition when welding is performed using the austenitic wire before the welding operation. Alternatively, the non-consumable electrode method is used by changing to a welding condition having a heat input smaller than the last welding condition, or by reusing the last welding condition or a welding condition equivalent to the last welding condition. By performing pulse arc welding or direct current arc welding, as described above, martensitic transformation and expansion effects during the cooling process during welding The expansion agent and tension occurring in the weld metal laminated welded at martensitic wire with, it is possible to change the tensile stress remaining at the back of the weld portion and its vicinity of the bottom side to the compression stress. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced. For example, the martensitic wire contains at least 8 to 12% by weight of Ni of chemical composition and 8 to 12% by weight of Cr, and has a martensitic transformation start temperature of 100 ° C. or higher and 300 ° C. or lower. A wire may be used. Further, instead of this martensitic stainless steel wire, the above-mentioned lamination welding is performed by replacing with another austenitic wire or inconel wire having a linear expansion coefficient smaller than that of the groove joint material, as described above. In addition, the shrinkage suppressing action and the tension due to the deviation of the linear expansion coefficient are generated in the weld metal portion, and the tensile stress remaining in the weld back surface portion on the bottom surface side and the vicinity thereof can be changed to a compressive stress or greatly reduced. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced. In addition, by using welding conditions in which the heat input for each welding pass is suppressed to a small level, the weld metal part generated by welding for each pass and cumulative lamination welding and the area of shrinkage deformation, deflection deformation, and heat affected zone of this peripheral part can be reduced. Can be small.

以下、本発明の内容について、図1〜図10の実施例に用いて具体的に説明する。図1は、本発明の狭開先継手の多層盛溶接方法の概要を示す一実施例であり、(1)は継手部材の狭い開先内に非消耗性の電極及びワイヤを挿入した状態の溶接前の開先断面、(2)はオーステナイト系ワイヤを用いて開先底部から板厚Tの3/5程度の高さHbまで積層溶接し、その後にマルテンサイト系ワイヤに交換して残りの部分から開先上面部まで積層溶接した時の溶接断面、(3)は(2)と同様に、オーステナイト系ワイヤを用いて板厚Tの1/4程度の浅い高さHbまで積層溶接し、その後にマルテンサイト系ワイヤに交換して残りの深い部分から開先上面部まで積層溶接した時の溶接断面である。この開先継手部材1,2は、開先裏面1b,2b側に裏ビード15を形成させると共に、開先表面1a,2a側の開先上面部まで積層する多層盛溶接が必要な容器や配管や案内管など厚板の管部材又は厚板の平板部材を突き合せた狭い開先継手である。特に、原子力発電プラント,火力発電プラント,化学プラントなどで使用されるオーステナイト系のステンレス鋼材からなる狭開先継手であって、多層盛溶接の施工によって裏面側の溶接部分(裏ビード15部分)に残留する応力を圧縮応力に変化させることが重要である。   Hereinafter, the contents of the present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is an embodiment showing an outline of a multi-layer welding method for a narrow groove joint of the present invention. (1) is a state in which a non-consumable electrode and a wire are inserted into a narrow groove of a joint member. The groove cross section before welding, (2) is laminated welding from the groove bottom to a height Hb of about 3/5 of the plate thickness T using an austenitic wire, and then replaced with a martensitic wire. The weld cross section when laminating and welding from the part to the groove upper surface part, (3) is laminating and welding to a shallow height Hb of about ¼ of the plate thickness T using an austenitic wire, as in (2). It is a welding cross section when it replaces | exchanges for a martensite type wire after that and carries out lamination | stacking welding from the remaining deep part to a groove | channel upper surface part. The groove joint members 1 and 2 are containers and pipes that require multi-layer welding to form a back bead 15 on the groove back surfaces 1b and 2b and to be laminated up to the groove top surface on the groove surfaces 1a and 2a. It is a narrow groove joint obtained by abutting a thick plate member such as a guide tube or a thick plate member. In particular, it is a narrow groove joint made of austenitic stainless steel used in nuclear power plants, thermal power plants, chemical plants, etc., and is applied to the welded portion on the back side (back bead 15 portion) by multi-layer welding. It is important to change the residual stress to compressive stress.

図1(1)に示すように、狭い開先継手部材1,2の開先内3に非消耗性の電極6とこの電極6先端に点弧するアーク10で溶融させるワイヤとを挿入して溶接を施工する。この非消耗性の電極6は、例えばLa23入りW,Y23入りW,ThO2 入りWなどの高融点材のタングステンを主成分とする市販品の丸電極棒を用いればよい。本溶接試験によれば、太径電極の横幅を狭く偏平形状に加工しなくても、開先内3に挿入可能な細径の丸電極6(例えば外径φ1.6,φ2.4の電極棒の先端のみを円錐形状に加工)であっても、図示していないシールドガス流入の雰囲気内で、この丸電極6先端と開先底部との間に発生させるアーク10が開先内3の壁面側にはい上がることなく、溶融すべき開先底部の部分に前記アークを安定に保持できる。開先内3に挿入可能な細径の丸電極は、安価に入手できると共に、丸電極棒の先端のみを簡便な電極研磨器で簡単に円錐加工でき、消耗時の再加工,溶接トーチへの取り付け取り外し作業が容易で使い勝手が優れている。また、この細径の丸電極6の代わりに、太径の電極下部の横幅を開先幅wより狭い偏平形状に形成した非消耗性の電極、あるいは開先幅wより狭い偏平形状に該当する非円形断面形状を有する他の非消耗性の電極を用いて溶接を行うことも可能である。偏平形状の電極は、太径の丸電極下部の横幅を偏平形状に加工するための製作費用を要するが、上述した丸電極とほぼ同様に、電極先端のみを簡便な電極研磨器によって簡単に円錐加工でき、溶接トーチへの取り付け取り外し作業容易である。 As shown in FIG. 1 (1), a non-consumable electrode 6 and a wire to be melted by an arc 10 ignited at the tip of the electrode 6 are inserted into the groove 3 of the narrow groove joint members 1 and 2. Welding is performed. As this non-consumable electrode 6, for example, a commercially available round electrode rod having tungsten as a high melting point material such as W with La 2 O 3, W with Y 2 O 3, W with ThO 2 may be used. . According to this welding test, a small-diameter round electrode 6 (for example, an electrode having an outer diameter of φ1.6 or φ2.4 can be inserted into the groove 3 without processing the flat width of the wide electrode with a narrow width). Even if only the tip of the rod is processed into a conical shape), an arc 10 generated between the tip of the round electrode 6 and the bottom of the groove is generated in the inside of the groove 3 in an atmosphere of shield gas inflow (not shown). The arc can be stably held in the portion of the groove bottom to be melted without rising to the wall surface side. A small round electrode that can be inserted into the groove 3 can be obtained at low cost, and the tip of the round electrode rod can be easily conical processed with a simple electrode grinder. Easy to install and remove and easy to use. Further, instead of the small-diameter round electrode 6, it corresponds to a non-consumable electrode in which the lateral width of the lower part of the large-diameter electrode is formed in a flat shape narrower than the groove width w, or a flat shape narrower than the groove width w. It is also possible to perform welding using other non-consumable electrodes having a non-circular cross-sectional shape. The flat electrode requires manufacturing costs for processing the width of the lower part of the large-diameter round electrode into a flat shape. However, just like the round electrode described above, only the electrode tip is easily conical with a simple electrode polisher. It can be processed and is easily attached to and detached from the welding torch.

裏ビード形成が必要な初層裏波溶接(裏ビード形成工程)では、裏面側まで溶融可能な入熱アークの初層条件を出力させ、図1(2)(3)に示すように、開先底部の裏面側に裏ビード15の幅が特定値の4〜7mmの範囲、好ましくは4〜6mm(5±1mm)の範囲に形成するように施工することにより、裏波溶接が比較的易しい下向き姿勢や立向き上進姿勢の溶接はもちろんのこと、高度な溶接技術を要する配管の全姿勢溶接,管材の横向き姿勢の溶接,平板材の上向き姿勢の溶接であっても、凹みのない凸形状でほぼ均一な裏ビード幅を良好に得ることができる。なお、この初層裏波溶接については、図6及び図7にて詳細に説明する。   In the first layer back wave welding (back bead forming process) that requires the formation of the back bead, the initial layer conditions of the heat input arc that can be melted to the back side are output and opened as shown in FIGS. 1 (2) and (3). By constructing the back bead 15 so that the width of the back bead 15 is in the range of 4 to 7 mm, preferably in the range of 4 to 6 mm (5 ± 1 mm) on the back side of the front bottom part, the back wave welding is relatively easy. Not only for welding in a downward posture or an upwardly upward posture, but also for all posture welding of pipes that require advanced welding techniques, welding in the horizontal orientation of pipe materials, and welding in the upward orientation of flat plate materials A substantially uniform back bead width in shape can be obtained satisfactorily. The first layer back wave welding will be described in detail with reference to FIGS.

また、開先裏面1b,2bから累計の積層ビード高さHbが所定範囲に到達するまでは、図1 (2)(3) に示したように、開先継手の部材1,2の材質(例えば、SUS304系,SUS316系)と同質系のオーステナイト系ワイヤ(例えば、外径がφ0.8 〜
φ1.2 で、SUS304系かSUS308系,SUS316系の市販ワイヤ)を用い、開先内3で溶融させて1層1パスずつ積層溶接するようにしている。なお、前記開先継手部材1,2の材質が異なる他のオーステナイト系ステンレス(例えば、SUS309系,SUS321系など)の場合には、この継手部材の材質に合った同質系のオーステナイト系ワイヤを用いればよい。
Further, until the cumulative laminated bead height Hb reaches a predetermined range from the groove back surfaces 1b and 2b, as shown in FIGS. 1 (2) and (3), the material of the groove joint members 1 and 2 ( For example, an austenitic wire (for example, an outer diameter of φ0.8 ~
φ1.2, SUS304, SUS308, or SUS316 commercially available wire) is melted in the groove 3 and laminated and welded one layer at a time. In addition, in the case of other austenitic stainless steels (for example, SUS309 series, SUS321 series, etc.) in which the material of the groove joint members 1 and 2 is different, a homogeneous austenitic wire suitable for the material of the joint member is used. That's fine.

この積層溶接の終了後に、前記オーステナイト系ワイヤと異なるマルテンサイト変態を有するマルテンサイト系ワイヤに交換し、開先内3の残りの溶接部分から開先上面部の最終層(ビード断面30)まで、前記交換したマルテンサイト系ワイヤを開先内のアーク溶接部分に送給及び溶融させて1層1パスずつ積層溶接するようにしている。このように第2の積層溶接工程で積層溶接することにより、マルテンサイト系ワイヤによるマルテンサイト変態及び膨張効果によって、室温時の溶接金属部に膨張作用及び張力が生じ、開先底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができる。同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。前記マルテンサイト系ワイヤは、溶接時の冷却過程でマルテンサイト変態を生じ、通常の室温(例えば20℃)時に、マルテンサイト変態の開始温度(例えば100〜300℃)時よりも膨張した状態になる溶接金属であり、しかも、溶接対象のオーステナイト系ステンレス鋼の溶接継手材と融合性の良いマルテンサイト系のステンレスワイヤを用いるとよい。例えば、少なくとも化学組成のNiが8〜12重量%、Crが8〜12重量%含有し、マルテンサイト変態開始温度が100℃以上,300℃以下であるマルテンサイト系ステンレスワイヤ(外径がφ0.8〜φ1.2のワイヤ)を用いればよい。   After the end of this lamination welding, replace with a martensitic wire having a martensitic transformation different from the austenitic wire, from the remaining welded portion in the groove 3 to the final layer (bead cross section 30) of the groove upper surface portion, The exchanged martensite wire is fed and melted to the arc welded portion in the groove so as to be laminated and welded one layer at a time. In this way, by laminating and welding in the second laminating welding process, the martensitic transformation and expansion effect by the martensitic wire causes expansion and tension in the weld metal part at room temperature, and the weld back surface on the groove bottom surface side. The tensile stress remaining in the portion and the vicinity thereof can be changed to a compressive stress. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced. The martensitic wire undergoes martensitic transformation in the cooling process during welding, and expands at a normal room temperature (for example, 20 ° C.) than at the start temperature of the martensitic transformation (for example, 100 to 300 ° C.). It is preferable to use a martensitic stainless wire which is a weld metal and has good fusion properties with the weld joint material of the austenitic stainless steel to be welded. For example, a martensitic stainless steel wire containing 8 to 12 wt% of Ni at least in chemical composition and 8 to 12 wt% of Cr and having a martensite transformation start temperature of 100 ° C or higher and 300 ° C or lower (the outer diameter is φ0. 8 to φ1.2 wire) may be used.

また、マルテンサイト系ワイヤの代わりに、例えば、インコネル系ワイヤに交換又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤに交換して用い、この交換した前記ワイヤを前記アーク中及びこのアーク直下に形成する溶融プール中(アーク溶接部分)に送給して溶融させ、継続すべき開先内の残り部分の溶接から開先上面部の最終層溶接に到達するまで順番に1層1パスずつ積層するように前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うようにしてもよい。このように第2の積層溶接工程で積層溶接することにより、溶接金属部に線膨張係数の偏差による収縮抑制作用及び張力が生じ、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変える又は大幅低減できる。また、同時に最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。   Further, instead of the martensite wire, for example, the wire is replaced with an inconel wire or replaced with another austenite wire having a linear expansion coefficient smaller than that of the groove joint material. Is fed into the arc and in the melt pool (arc welding portion) formed immediately below the arc to melt, and the final layer welding of the groove upper surface portion is reached from the welding of the remaining portion in the groove to be continued. The non-consumable electrode type pulse arc welding or direct current arc welding may be performed so that the layers are laminated one by one in order. In this way, by laminating and welding in the second laminating welding process, shrinkage suppressing action and tension are generated in the weld metal part due to the deviation of the linear expansion coefficient, and the tensile stress remaining in the bottom side of the weld and the vicinity thereof is compressed. It can be changed to stress or greatly reduced. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced.

また、非消耗電極方式のパルスアーク溶接を行う場合には、溶接毎に出力すべき高いピーク電流と低いベース電流とを交互に繰り返すパルス周波数を最小で1Hz以上、最大で500Hz以下、好ましくは150Hz以下の範囲で使用する1つ以上の特定値を定め、あるいは大別した3つの前記溶接工程で異なる複数の特定値を定めるとよい。この定めたパルス周波数のパルスアークを溶接毎に出力させて、前記裏ビード形成工程で仮付け溶接を含む初層裏波溶接を行い、その後に、前記第1の積層溶接工程で特定範囲の積層ビード高さまで積層する積層溶接を行い、次の前記第2の積層溶接工程で開先内の残り部分の溶接から開先上面部の最終層溶接まで積層する積層溶接を行うことにより、開先底部から初層裏波溶接から開先上面部の最終層溶接まで良好に積層溶接できる。また、目標とする特定値のパルス周波数のパルスアークを所望の溶接工程及び溶接パスで確実に出力できるばかりでなく、直流アーク溶接で出力させる平均電流と同じ平均電流であっても、アーク力及び指向力を強くでき、開先内の両壁面部及び開先底面部の溶融,溶け込み深さを促進できる。なお、パルスアーク溶接時のパルス周波数が最も低い約1Hz(パルス周期時間:1s)の場合は、例えば、溶接速度が90mm/min 以上の速度領域で溶接ビードのリップル形状(貝殻模様のような波目)が約1.5mm 以上に荒くなり易い。一方、パルス周波数が高い約300Hz,約500Hzの場合には、パルス周期時間が極端に短くなるため、給電ケーブルの延長(例えば10倍の100mm以上に延長)が必要な時に、このケーブル延長に伴うリアクタの増加によって、矩形状のピーク電流波形が台形状や三角形状に変化するので、事前にピーク電流値を少し高めに補正することが望ましい。このパルス周波数を約150Hz以下に下げた場合には、例えば、給電ケーブルを100mまで長く延長しても、ほぼ矩形状のピーク電流波形を出力することが可能である。   Further, when performing non-consumable electrode type pulse arc welding, the pulse frequency at which the high peak current and the low base current to be output at every welding are alternately repeated is a minimum of 1 Hz, a maximum of 500 Hz, and preferably 150 Hz. One or more specific values to be used in the following ranges may be determined, or a plurality of different specific values may be determined in three roughly divided welding processes. A pulse arc of the determined pulse frequency is output for each welding, and the first layer back wave welding including tack welding is performed in the back bead forming step, and then a specific range of laminating is performed in the first laminating welding step. By performing laminating welding for laminating up to the bead height and performing laminating welding for laminating from the welding of the remaining portion in the groove to the final layer welding of the groove upper surface in the next second laminating welding process, From the first layer back wave welding to the final layer welding of the groove upper surface portion, it can be laminated and welded satisfactorily. Moreover, not only can a pulse arc of a target specific pulse frequency be output in a desired welding process and welding pass, but even if the average current is the same as the average current output in DC arc welding, the arc force and The directivity can be increased, and the melting and penetration depth of both wall surfaces and the groove bottom surface in the groove can be promoted. When the pulse frequency at the time of pulse arc welding is about 1 Hz (pulse period time: 1 s), for example, the welding bead ripple shape (wave like a shell pattern) is used in a velocity region where the welding speed is 90 mm / min or more. The eye) tends to become rougher than about 1.5 mm. On the other hand, when the pulse frequency is high at about 300 Hz and about 500 Hz, the pulse cycle time becomes extremely short, so when the power supply cable needs to be extended (for example, 10 times longer than 100 mm), this cable extension is accompanied. As the number of reactors increases, the rectangular peak current waveform changes to a trapezoidal shape or a triangular shape. Therefore, it is desirable to correct the peak current value to be slightly higher in advance. When the pulse frequency is lowered to about 150 Hz or less, for example, a substantially rectangular peak current waveform can be output even if the power feeding cable is extended to 100 m.

また、前記オーステナイト系ワイヤを用いて溶接すべき累計の積層ビード高さHbは、開先裏面1b,2bより板厚Tの1/5以上から4/5以下の範囲にするとよい。あるいは開先表面1a,2aより残存する開先深さHが板厚Tの1/5以上から4/5以下の範囲とできる。なお、オーステナイト系ワイヤを用いて溶接すべき累計の積層ビード高さ
Hbが板厚Tの1/5より小さ過ぎる又は残存する開先深さHが板厚Tの4/5より大き過ぎると、腐食環境下にさらされる溶接裏面部分の耐食性保持,腐食進行の防止を損なうおそれがあって好ましくない。前記積層ビード高さHbの最小値は、板厚の大小によって変化するが、少なくとも2層目の溶接ビード高さまではオーステナイト系ワイヤを用いて溶接施工することが好ましい。一方、オーステナイト系ワイヤを用いて溶接すべき累計の積層ビード高さHbが板厚Tの4/5より大き過ぎる又は残存する開先深さHが板厚Tの1/5より小さ過ぎると、その後に、前記マルテンサイト系ワイヤに交換して最終層まで積層溶接すべき部分が少な過ぎるため、室温時の溶接金属部に生じさせる膨張効果及び張力が相対的に低下し、反対側の最も離れた溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができなくなって好ましくない。また、前記マルテンサイト系ワイヤの代わりに、インコネル系ワイヤ又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤを用いる場合も、最終層まで積層溶接すべき部分が少な過ぎることになるので好ましくない。
Further, the cumulative laminated bead height Hb to be welded using the austenitic wire is preferably in the range of 1/5 or more to 4/5 or less of the plate thickness T from the groove back surfaces 1b and 2b. Alternatively, the groove depth H remaining from the groove surfaces 1a and 2a can be in the range from 1/5 to 4/5 of the plate thickness T. If the cumulative laminated bead height Hb to be welded using the austenitic wire is too smaller than 1/5 of the plate thickness T or the remaining groove depth H is too large than 4/5 of the plate thickness T, This is not preferable because it may impair the corrosion resistance of the welded back surface exposed to a corrosive environment and prevent the progress of corrosion. The minimum value of the laminated bead height Hb varies depending on the thickness of the plate, but it is preferable to weld using an austenitic wire at least at the second weld bead height. On the other hand, if the cumulative laminated bead height Hb to be welded using the austenite wire is too larger than 4/5 of the plate thickness T or the remaining groove depth H is too small than 1/5 of the plate thickness T, After that, since there are too few parts to be laminated and welded to the final layer after replacing with the martensite wire, the expansion effect and tension generated in the weld metal part at room temperature are relatively lowered, and the farthest on the opposite side Further, it is not preferable because the tensile stress remaining in the weld back surface portion and the vicinity thereof cannot be changed to the compressive stress. In addition, in place of the martensite wire, inconel wire or other austenite wire having a linear expansion coefficient smaller than that of the groove joint material is used, the portion to be laminated and welded to the final layer is Since it will be too little, it is not preferable.

図2は、本発明の狭開先継手の多層盛溶接方法の概要を示す他の一実施例であり、(1)は特定範囲の積層ビード高さHbに到達するまで、オーステナイ系ワイヤを用いて積層溶接した後に、オーステナイト系ワイヤと異なるマルテンサイト系ワイヤに交換して用い、1層1パスずつ積層する途中で必要に応じて左右に振分けて1層2パスずつ積層溶接した時の断面、(2)は最終層の溶接パスを3パスに増して積層溶接した時の断面である。ここでは、例えば、開先底部から板厚Tの3/5程度の高さHbまで、開先継手の部材1,2と同質系のオーステナイト系ワイヤを開先内3で溶融させて積層溶接している。そして、この積層溶接の終了後に、前記オーステナイト系ワイヤと異なるマルテンサイト変態を有するマルテンサイト系ワイヤに交換して用い、この交換したマルテンサイト系ステンレスワイヤを前記開先内のアーク溶接部分に送給及び溶融させて、図2(1)(2)に示すように、開先内の残り部分の溶接から開先上面部の最終層溶接まで1層1パスずつ積層溶接する、あるいは1層1パスずつ積層する途中で必要に応じて開先左右に振分けて1層2パスずつ積層溶接する、あるいは最終層の溶接パスを3パスに増して積層溶接するようにしている。   FIG. 2 is another embodiment showing the outline of the multi-layer welding method of the narrow gap joint of the present invention. (1) uses an austenitic wire until the laminated bead height Hb in a specific range is reached. After being laminated and welded, the cross-section is obtained by exchanging with a martensitic wire different from the austenitic wire and using one layer and one pass for laminating and welding to the left and right as needed. (2) is a cross section when the final layer welding pass is increased to 3 passes and laminated welding is performed. Here, for example, from the groove bottom to a height Hb of about 3/5 of the plate thickness T, the austenitic wire homogeneous with the members 1 and 2 of the groove joint is melted in the groove 3 and laminated and welded. ing. After the lamination welding is completed, the martensitic wire having a martensitic transformation different from that of the austenitic wire is used for replacement, and the exchanged martensitic stainless wire is supplied to the arc welding portion in the groove. Then, as shown in FIGS. 2 (1) and 2 (2), the layers are welded one by one for each layer from the welding of the remaining portion in the groove to the final layer welding of the upper surface of the groove, or one layer and one pass. In the course of laminating one by one, the groove is distributed to the left and right as necessary and laminated and welded one by two, or the final layer is welded by increasing the number of welding passes to three.

このように積層溶接することにより、1パスでは溶けにくくなる開先幅の壁面であっても、入熱アークが同一条件のまま又は少し低く抑制した条件でも開先幅の両壁面を確実に溶融でき、開先上面部まで良好な溶接結果を得ることができる。また、高いピーク電流と低いベース電流を交互に出力させるパルスアーク溶接を行うことにより、直流アーク溶接で出力させる平均電流と同じ平均電流であっても、アーク力及び指向力を強くでき、開先内の両壁面部及び開先底面部の溶融、溶け込み深さを促進できる。また、上述したように、マルテンサイト系ワイヤによるマルテンサイト変態及び膨張効果によって、室温時の溶接金属部に膨張作用及び張力が生じ、開先底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができ、同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。また、最終層の溶接パスを3パスに増して溶接することにより、最終層の累計ビード幅をより広くでき、最終層の溶接表面部及びその近傍に残留する引張応力をさらに小さくできる。   By laminating in this way, even if the wall surface has a groove width that is difficult to melt in one pass, both wall surfaces of the groove width can be reliably melted even under conditions where the heat input arc remains the same or slightly lower. And good welding results can be obtained up to the groove upper surface. Also, by performing pulse arc welding that alternately outputs a high peak current and a low base current, even if the average current is the same as the average current output by DC arc welding, the arc force and directivity can be increased, and the groove It is possible to promote the melting and penetration depth of the inner wall surfaces and the groove bottom surface. Further, as described above, the martensite transformation and expansion effect caused by the martensitic wire causes expansion and tension in the weld metal part at room temperature, and the tensile stress remaining in the weld back side on the groove bottom side and in the vicinity thereof. Can be changed to compressive stress, and at the same time, the tensile stress remaining in the weld surface portion of the final layer and the vicinity thereof can be reduced. Further, by increasing the number of welding passes of the final layer to 3 passes, the accumulated bead width of the final layer can be increased, and the tensile stress remaining on the weld surface portion of the final layer and in the vicinity thereof can be further reduced.

図3は、本発明の狭開先継手の多層盛溶接方法の概要を示すもう一つ別の一実施例であり、図2との主な相違点は、前記マルテンサイト系ワイヤの代わりに、インコネル系ワイヤ又は前記開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤを用いて積層溶接することである。すなわち、この交換した前記インコネル系ワイヤ又は線膨張係数の小さい他のオーステナイト系ワイヤを開先内3のアーク溶接部分に送給及び溶融させて、図3(1)(2)に示すように、1層1パスずつ積層する途中で必要に応じて左右に振分けて1層2パスずつ最終層の溶接まで積層溶接する、あるいは最終層の溶接パスを3パスに増して積層溶接している。   FIG. 3 is another embodiment showing the outline of the multi-layer welding method of the narrow gap joint of the present invention. The main difference from FIG. 2 is that instead of the martensitic wire, Lamination welding is performed using an Inconel wire or another austenite wire having a linear expansion coefficient smaller than that of the groove joint material. That is, the exchanged Inconel wire or other austenite wire having a small coefficient of linear expansion is fed and melted to the arc welded portion 3 in the groove, as shown in FIGS. 3 (1) and (2), In the course of laminating one layer at a time, the layers are distributed to the left and right as necessary, and laminating and welding is performed until the final layer is welded by two layers per layer, or the final layer is welded by increasing the number of welding passes to three.

このように積層溶接することにより、上述したように、溶接金属部に線膨張係数の偏差による収縮抑制作用及び張力が生じ、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変える又は大幅低減できる。また、同時に最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。また、1パスでは溶けにくくなる開先幅の壁面であっても、上述したように、入熱アークが同一条件のまま又は少し低く抑制した条件でも開先幅の両壁面を確実に溶融でき、開先上面部まで良好な溶接結果を得ることができる。さらに、最終層の溶接パスを3パスに増して溶接することにより、最終層の累計ビード幅をより広くでき、最終層の溶接表面部及びその近傍に残留する引張応力をさらに小さくできる。   By laminating and welding in this way, as described above, a shrinkage suppressing action and tension due to the deviation of the linear expansion coefficient occur in the weld metal part, and the tensile stress remaining on the bottom surface side of the weld and the vicinity thereof is converted to compressive stress. Can be changed or greatly reduced. At the same time, the tensile stress remaining in the weld surface portion of the final layer and in the vicinity thereof can be reduced. Moreover, even if the wall surface of the groove width becomes difficult to melt in one pass, as described above, both wall surfaces of the groove width can be reliably melted even under the condition that the heat input arc is kept under the same condition or a little lower, Good welding results can be obtained up to the groove upper surface. Furthermore, by increasing the number of welding passes of the final layer to 3 passes, the cumulative bead width of the final layer can be increased, and the tensile stress remaining on the weld surface portion of the final layer and in the vicinity thereof can be further reduced.

図4は、図1及び図2に示した多層盛溶接方法に使用するマルテンサイト系ワイヤと、オーステナイト系ワイヤ(又はこのワイヤと同質係の開先継手材)とにおける温度と伸び(1mm長さ当りの伸び)との関係を模式的に示す説明図である。また、図5は、マルテンサイト系ワイヤで積層溶接した溶接断面の上位部分に生じる膨張効果による張力とオーステナイト系ワイヤで積層溶接した溶接断面の裏面部分に生じる圧縮応力との関係を模式的に示す説明図である。図4に示すように、オーステナイト系ワイヤ(又はオーステナイト系ステンレス鋼の開先継手材)の場合は、点線で示すように、温度変化(上昇時と下降時)に対する伸び曲線が同一線上を行き来するように変化している。これに対して、マルテンサイト変態を有するマルテンサイト系ワイヤの場合には、実線で示すように、温度上昇時の伸び曲線と温度下降時の伸び曲線とが異なるように変化している。特に、温度下降時の過程(高温領域から冷却する過程)で、マルテンサイト変態が生じ、冷却後の室温時(約20℃)に、マルテンサイト変態の開始温度Ms時より膨張した状態になることを示している。   FIG. 4 shows the temperature and elongation (1 mm length) of the martensitic wire used in the multi-layer welding method shown in FIGS. 1 and 2 and an austenitic wire (or a groove joint material of the same quality as this wire). It is explanatory drawing which shows typically the relationship with (elongation of hit). FIG. 5 schematically shows the relationship between the tension due to the expansion effect generated in the upper portion of the welded section laminated by martensitic wire and the compressive stress generated in the back surface portion of the welded section laminated by austenite wire. It is explanatory drawing. As shown in FIG. 4, in the case of an austenitic wire (or an austenitic stainless steel groove joint material), as shown by the dotted line, the elongation curve with respect to temperature change (during rising and falling) goes back and forth on the same line. Has changed. On the other hand, in the case of a martensitic wire having martensitic transformation, as shown by a solid line, the elongation curve at the time of temperature rise and the elongation curve at the time of temperature change are different. In particular, the martensitic transformation occurs in the process of lowering the temperature (cooling process from the high temperature region), and at the room temperature after cooling (about 20 ° C), the martensitic transformation starts to expand from the starting temperature Ms. Is shown.

本発明の狭開先継手の多層盛溶接方法では、図4に示した温度変化に対する伸び曲線が異なる2種類のワイヤを使い分けて積層溶接を施工している。すなわち、図5に示すように、前記オーステナイト系ワイヤを用いて開先底部側を積層溶接し、その後に、マルテンサイト変態を有する前記マルテンサイト系ワイヤを用いて、開先内の残り部分から開先上面部の最終層まで積層溶接している。このように2種類のワイヤを使い分けて積層溶接することにより、上述したように、マルテンサイト系ワイヤによるマルテンサイト変態及び膨張効果によって、室温時の溶接金属部に膨張作用及び張力が生じ、開先底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができる。同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。前記マルテンサイト系ワイヤは、オーステナイト系ステンレス鋼の溶接継手材と融合性の良いマルテンサイト系のステンレスワイヤであって、上述したように、少なくとも化学組成のNiが8〜12重量%、Crが8〜12重量%含有し、マルテンサイト変態開始温度が100℃以上,300℃以下であるマルテンサイト系ステンレスワイヤ(外径がφ0.8〜φ1.2のワイヤ)を用いればよい。また、前記マルテンサイト系ワイヤの代わりに、上述したように、インコネル系ワイヤ又は開先継手材の線膨張係数より小さい線膨張係数を有する他のオーステナイト系ワイヤを用いることもできる。   In the multi-layer welding method of the narrow groove joint of the present invention, lamination welding is performed by using two types of wires having different elongation curves with respect to temperature changes shown in FIG. That is, as shown in FIG. 5, the groove bottom side is laminated and welded using the austenitic wire, and thereafter, the martensitic wire having martensitic transformation is used to open from the remaining portion in the groove. Lamination welding is performed up to the final layer on the top surface. As described above, by laminating and welding two types of wires properly as described above, the martensitic transformation and expansion effect caused by the martensitic wire causes expansion and tension in the weld metal part at room temperature. The tensile stress remaining in the bottom surface side of the weld back surface and its vicinity can be changed to a compressive stress. At the same time, the tensile stress remaining in the weld surface portion of the final layer and the vicinity thereof can be reduced. The martensitic wire is a martensitic stainless steel wire that has good fusion properties with the welded joint material of austenitic stainless steel, and as described above, at least 8 to 12% by weight of Ni having a chemical composition and 8% to Cr. A martensitic stainless wire (a wire having an outer diameter of φ0.8 to φ1.2) having a content of ˜12 wt% and a martensite transformation start temperature of 100 ° C. or higher and 300 ° C. or lower may be used. In place of the martensite wire, as described above, another austenite wire having a linear expansion coefficient smaller than that of the inconel wire or the groove joint material can be used.

図6は、本発明の狭開先継手の多層盛溶接方法に係わる溶接装置の一実施を示す概略構成図である。溶接対象の開先継手部材1,2は、厚板のオーステナイト系ステンレス鋼からなる容器や配管や案内管などの管部材であり、開先底部の裏面側に裏ビード15形成
(完全溶け込み)を有する初層裏波溶接、開先上部までの多層盛溶接が必要な狭開先継手ある。また、前記管部材と異なる形状製品の平板部材の狭開先継手であってもよい。図6に示す実施例では、レール上を走行する溶接台車5に搭載されている溶接トーチ7(TIGトーチ)に装着した非消耗性の電極6と、ワイヤ4を案内するワイヤホルダ25の両方とを開先内3に挿入し、シールドガス33の流入雰囲気で発生させるアーク10中及び溶融プール中にワイヤ4を送給し、開先底部の裏面側に裏ビード15を形成させる初層裏波溶接を行っている状況を示している。表面側の溶接部に流入するシールドガス33は、不活性の純Arガス、あるいはAr+数パーセントH2 入りの混合ガス又はAr+数十パーセントHe入りの混合ガスを使用すればよい。これらの混合ガスを使用すると、純Arガスと比べてエネルギ密度やアークの集中性が高まり、溶融状態及び溶け込みを良くでき、溶接速度も上げることができる。
FIG. 6 is a schematic configuration diagram showing an embodiment of a welding apparatus according to the multi-layer welding method for narrow gap joints of the present invention. The groove joint members 1 and 2 to be welded are pipe members such as containers, pipes and guide pipes made of thick austenitic stainless steel, and a back bead 15 is formed on the back side of the groove bottom.
There are narrow groove joints that require first layer backside welding with (complete penetration) and multi-layer welding up to the top of the groove. Moreover, the narrow groove joint of the flat plate member of a shape product different from the said pipe member may be sufficient. In the embodiment shown in FIG. 6, both the non-consumable electrode 6 mounted on the welding torch 7 (TIG torch) mounted on the welding carriage 5 traveling on the rail and the wire holder 25 for guiding the wire 4 are used. First layer backside welding that inserts into the groove 3 and feeds the wire 4 into the arc 10 and the molten pool generated in the inflow atmosphere of the shield gas 33 to form the back bead 15 on the back side of the groove bottom. It shows the situation of doing. As the shielding gas 33 flowing into the welded portion on the surface side, an inert pure Ar gas, a mixed gas containing Ar + several percent H 2 , or a mixed gas containing Ar + several tens percent He may be used. When these mixed gases are used, the energy density and arc concentration are increased as compared with pure Ar gas, the molten state and penetration can be improved, and the welding speed can be increased.

TIG溶接電源8は、前記溶接トーチ7先端の電極6と開先継手部材1,2との間に接続されており、溶接モードを選択するスイッチによってパルスアーク溶接又は直流アーク溶接の切り換えが可能な溶接電源である。パルスアーク溶接を選択した場合は、このパルスアーク溶接の給電に必要なピーク電流とベース電流,アーク電圧などの各条件値を任意に出力でき、また、パルス周波数の任意変更(例えば1Hz〜最大500Hz)もできるようになっている。パルスアーク溶接と異なる直流アーク溶接を選択した場合には、溶接電流(平均電流)に該当する所望の直流電流,アーク電圧(平均アーク電圧)を出力できる。   The TIG welding power source 8 is connected between the electrode 6 at the tip of the welding torch 7 and the groove joint members 1 and 2 and can be switched between pulse arc welding and DC arc welding by a switch for selecting a welding mode. It is a welding power source. When pulse arc welding is selected, the peak current, base current, arc voltage, and other conditions required for power supply for this pulse arc welding can be output arbitrarily, and the pulse frequency can be arbitrarily changed (for example, 1 Hz to 500 Hz at maximum). ) Is also possible. When DC arc welding different from pulse arc welding is selected, desired DC current and arc voltage (average arc voltage) corresponding to the welding current (average current) can be output.

溶接制御装置9aは、溶接トーチ7及びワイヤ4を搭載した溶接台車5の走行を指令制御し、TIG溶接電源8の出力を指令制御し、溶接トーチ7(電極6)の左右位置,上下位置を必要に応じて指令制御し、電極6先端部へのワイヤ4の供給、このワイヤ4の左右位置及び上下位置を必要に応じて調整し、さらに、開先継手部材1,2の裏面側に配備してある裏面側監視装置17を駆動するものである。操作ペンダント9bは、溶接制御装置9aに接続されており、溶接条件調整手段,トーチ位置及びワイヤ位置調整手段を内蔵している。操作ペンダント9bに内蔵されている溶接条件調整手段により、パルスアーク溶接時のピーク電流とそのピーク電流時間,ベース電流とそのベース電流時間、又はパルス周波数とピーク電流の時間比率,電極高さの制御(AVC制御)に使用するピーク電圧又はベース電圧又は平均アーク電圧,ピークワイヤ送りとベースワイヤ送り、溶接速度又はこの溶接速度に該当する走行速度の各条件値を設定したり、これらの条件値を溶接中に割り込んで調整したりできるようになっている。また、トーチ位置及びワイヤ位置調整手段により、前記溶接トーチ7の位置ずれや、省略しているワイヤ4の位置ずれを調整したりできるようになっている。   The welding control device 9a commands and controls the traveling of the welding cart 5 on which the welding torch 7 and the wire 4 are mounted, controls the output of the TIG welding power source 8, and controls the left and right and vertical positions of the welding torch 7 (electrode 6). If necessary, command control is performed, supply of the wire 4 to the tip of the electrode 6, adjustment of the left and right position and vertical position of the wire 4 as necessary, and deployment on the back side of the groove joint members 1 and 2 The back side monitoring device 17 is driven. The operation pendant 9b is connected to the welding control device 9a and incorporates welding condition adjusting means, torch position and wire position adjusting means. Control of the peak current during pulse arc welding and its peak current time, base current and its base current time, or time ratio of pulse frequency and peak current, and electrode height by means of welding condition adjusting means built in the operation pendant 9b Set the peak voltage or base voltage or average arc voltage used for (AVC control), peak wire feed and base wire feed, welding speed or running speed corresponding to this welding speed, or set these condition values It can be adjusted by interrupting during welding. Further, the position deviation of the welding torch 7 and the position deviation of the omitted wire 4 can be adjusted by the torch position and wire position adjusting means.

また、直流アーク溶接を選択した場合には、前記溶接条件調整手段により、直流アーク溶接で出力すべき平均電流,電極高さの制御(AVC制御)に使用する平均アーク電圧又はアーク長,ワイヤ送り速度,溶接速度又はこの溶接速度に該当する走行速度の各条件値を設定したり、これらの条件値を溶接中に割り込んで調整したりできるようになっている。また、パルスアーク溶接の場合と同様に、トーチ位置及びワイヤ位置調整手段により、溶接トーチ7の位置ずれ、ワイヤ4の位置ずれを調整できるようになっている。また、前記操作ペンダント9bに内蔵している溶接条件調整手段は、仮付け溶接で出力すべき小入熱の仮付け条件,初層裏波溶接で出力すべき初層条件,特定の積層ビード高さまで積層溶接する施工で出力すべき複数の積層条件、その後に開先上面部の最終層まで積層溶接する施工で出力すべき複数の積層条件を設定,記憶及び再生が可能な機能を有している。この溶接条件調整手段に該当する機能を有する溶接データファイルや他の手段であってもよい。また、前記操作ペンダント9bは、溶接実行手段を兼用しており、前記溶接条件調整手段又はこの溶接条件調整手段に該当する溶接データファイルに予め設定された層別又はパス別の各溶接条件に基づいて、仮付け溶接,初層裏波溶接、その後2層目溶接、3層目から開先上面部の最終層までの各溶接が順番に実行できるようになっている。最終層まで積層溶接する手順については、図7にて説明する。   In addition, when DC arc welding is selected, the welding condition adjusting means uses the average current to be output by DC arc welding, the average arc voltage or arc length used for electrode height control (AVC control), wire feed, and so on. Each condition value of speed, welding speed or traveling speed corresponding to this welding speed can be set, or these condition values can be interrupted and adjusted during welding. Similarly to the pulse arc welding, the position deviation of the welding torch 7 and the position deviation of the wire 4 can be adjusted by the torch position and wire position adjusting means. Further, the welding condition adjusting means incorporated in the operation pendant 9b includes a small heat input temporary attachment condition to be output by tack welding, an initial layer condition to be output by first layer back wave welding, a specific laminated bead height. It has a function that can set, memorize and reproduce multiple lamination conditions that should be output in the construction to be laminated welded, and then multiple lamination conditions to be outputted in the construction to be laminated welded up to the final layer on the groove upper surface. Yes. It may be a welding data file or other means having a function corresponding to this welding condition adjusting means. The operation pendant 9b also serves as a welding execution unit, and is based on the welding conditions for each layer or pass set in advance in the welding condition adjusting unit or a welding data file corresponding to the welding condition adjusting unit. Thus, tack welding, first layer back wave welding, and then second layer welding, third layer to the last layer of the groove upper surface portion can be performed in order. The procedure for laminating and welding to the final layer will be described with reference to FIG.

また、溶接台車5には、表面側の溶接状態を監視するための第2のカメラ35を、溶接トーチ7とワイヤホルダ25との上部中間に配備している。この第2のカメラ35と一対のカメラ制御器36によって撮像する表面側の溶接状態の映像を第2の映像モニタ装置
37に画面表示して監視できるようにしている。前記第2のカメラ35,第2の映像モニタ装置37に該当する他の第2の映像手段,第2の映像表示手段であってもよい。前記第2の映像モニタ装置43の画面には、図6の左下段に示すように、開先表面1a,2a側から開先内3に挿入した電極6とワイヤ4,表側のアーク10及び溶融プール18、この溶融プール18及び電極6の後方に形成する表側の溶接ビードの状態を表示している。前記第2の映像モニタ装置37に画面表示する表面側の溶接状態の監視結果に基づいて、電極6の位置又はこの電極位置及びワイヤ4位置を調整又は制御することにより、電極6の位置ずれ(例えば左右方向の電極位置ずれ)やワイヤ4の位置ずれ(例えば左右方向,上下方向のワイヤ位置ずれ)をなくすことができる。また、溶接条件の因子も調整又は制御できる。
The welding cart 5 is provided with a second camera 35 for monitoring the welding state on the surface side in the upper middle between the welding torch 7 and the wire holder 25. An image of the welding state on the surface side imaged by the second camera 35 and the pair of camera controllers 36 is displayed on a second image monitor device 37 so as to be monitored. Other second video means and second video display means corresponding to the second camera 35 and the second video monitor device 37 may be used. On the screen of the second video monitor device 43, as shown in the lower left of FIG. 6, the electrode 6 and the wire 4, the arc 10 on the front side and the melted surface inserted into the groove 3 from the groove surfaces 1a and 2a side. The state of the weld bead on the front side formed behind the pool 18, the molten pool 18 and the electrode 6 is displayed. By adjusting or controlling the position of the electrode 6 or the position of the electrode 6 and the position of the wire 4 based on the monitoring result of the welding state on the surface side displayed on the screen of the second video monitor device 37, the position shift of the electrode 6 ( For example, it is possible to eliminate the positional deviation of the electrode in the left and right direction and the positional deviation of the wire 4 (for example, the positional deviation of the wire in the horizontal direction and the vertical direction). Moreover, the factor of welding conditions can also be adjusted or controlled.

一方、開先継手部材1,2の裏面側には、裏面側監視装置17を配備している。この裏面側監視装置17には、裏面側の溶融プール16及びこの周辺部を撮像する第1のカメラ11,この撮像周辺部を照らす照明手段32(例えば小径の照明ランプ)、前記裏面側の溶融プール16及びこの周辺部の裏ビード15を保護するためのバックシールドガス34(例えばArガス)を流すガス流出ボックスを装備している。また、第1の映像モニタ装置13は、図6の右下段に示すように、カメラ制御器12と一対の前記第1のカメラ11又はこの第1のカメラ11に該当する撮像手段によって撮像する裏面側の溶融プール16及びこの周辺部の映像をリアルタイムで画面表示するものである。同時に、この映像の大きさ又は溶融プール幅又はこの溶融プール近傍の裏ビード幅Bを示す寸法、初層裏波溶接で形成すべき裏面側の溶融プール幅又は裏ビード幅の適正範囲を示す特定値14を第1の映像モニタ装置13の画面内に表示するようにしている。第1の映像モニタ装置13は、これに該当する他の映像表示手段であってもよい。裏面側の溶融プール幅又は裏ビード幅を特定する適正範囲は、4〜7mm、好ましくは約4〜6mm(又は約5±1mm)であり、この適正範囲を特定した数値及びこの数値に該当する線引きライン(点線)又は寸法矢印を監視可能な状態に画面表示している。   On the other hand, a back side monitoring device 17 is provided on the back side of the groove joint members 1 and 2. The back side monitoring device 17 includes a back side melt pool 16 and a first camera 11 that images the periphery thereof, illumination means 32 (for example, a small-diameter illumination lamp) that illuminates the imaging periphery, and the back side melt. A gas outflow box for supplying a back shield gas 34 (for example, Ar gas) for protecting the pool 16 and the back bead 15 in the peripheral portion is provided. Further, as shown in the lower right part of FIG. 6, the first video monitor device 13 is a back surface imaged by a camera controller 12 and a pair of the first camera 11 or imaging means corresponding to the first camera 11. The image of the molten pool 16 on the side and the peripheral portion is displayed on the screen in real time. At the same time, the size of this image or the size indicating the melt pool width or the back bead width B in the vicinity of the melt pool, and the specific range indicating the appropriate range of the melt pool width or back bead width on the back side to be formed in the first layer back wave welding The value 14 is displayed on the screen of the first video monitor device 13. The first video monitor device 13 may be other video display means corresponding to this. The appropriate range for specifying the melt pool width or back bead width on the back side is 4 to 7 mm, preferably about 4 to 6 mm (or about 5 ± 1 mm). The drawing line (dotted line) or the dimension arrow is displayed on the screen in a monitorable state.

このように、前記第1の映像モニタ装置13の画面又はこの第1の映像モニタ装置13に該当する第1の映像表示手段の画面に直接表示することにより、初層裏波溶接で重要な裏面側の溶融プール及び裏ビードの形成状態や大きさ、裏面側に突き出ているインサート材19の溶融状態、特定値の裏ビード幅Bを映像として監視及び観察でき、溶接中の裏ビード幅が適正範囲に形成されているか否かを容易に判定できる。特に、裏面側の溶融プール幅又はこの溶融プール近傍の裏ビード幅Bの適正範囲を約4〜6mmに特定し、この特定値を前記第1の映像モニタ装置13の画面内に直接色分け表示して明瞭に監視可能な状態にする。その後に、裏面側の裏ビード幅Bが前記特定値の適正範囲に形成するように、初層溶接条件を出力させて前記パルスアーク溶接又は直流アーク溶接を行うことにより、溶接装置を操作する溶接者が代わっても個人差の影響がなくなり、裏面側に目標としている溶融プール幅及び裏ビード幅を適正範囲に確実に形成でき、凹みのない凸形状でほぼ均一な裏ビード幅を良好に得ることができる。   Thus, by directly displaying on the screen of the first video monitor device 13 or the screen of the first video display means corresponding to the first video monitor device 13, the back surface important in the first layer back wave welding is obtained. Monitoring and observing the formation state and size of the molten pool and back bead on the side, the molten state of the insert 19 protruding on the back side, and the back bead width B of a specific value as images, and the back bead width during welding is appropriate It can be easily determined whether or not it is formed in the range. In particular, the appropriate range of the melt pool width on the back surface side or the back bead width B in the vicinity of the melt pool is specified to be about 4 to 6 mm, and this specific value is directly color-coded and displayed on the screen of the first video monitor device 13. And clearly monitorable. Thereafter, welding is performed to operate the welding apparatus by outputting the initial layer welding conditions and performing the pulse arc welding or DC arc welding so that the back bead width B on the back surface side is formed within an appropriate range of the specific value. Even if the person changes, the influence of individual differences disappears, the target melt pool width and back bead width can be reliably formed in the proper range on the back side, and a substantially uniform back bead width is obtained with a convex shape without a dent. be able to.

また、画像処理装置38は、裏面側のインサート材19を含む溶融プール16及びこの周辺部の画像を処理して、裏面側の溶融プール16の幅B又はこの溶融プール16近傍の裏ビード15幅Bをリアルタイムで検出し、また、インサート材の幅Cをも検出するものである。この画像処理装置38に該当する他の検出処理手段であってもよい。溶接制御装置9a側にリアルタイムで送信される検出データは、溶接制御装置9a内で複数の値を平均化する処理を順次行い、その平均化処理した検出値と目標の前記特定値とを比較及び判定処理する。そして、この判定処理の結果に基づいて、裏面側の溶融プールB幅又はこの溶融プール近傍の裏ビード幅Bが特定値の適正範囲(約4〜6mm又は約5±1mmの範囲)に形成するように、パルスアーク溶接のピーク電流,ベース電流,ピーク電圧又は平均アーク電圧又はアーク長,溶接速度又は走行速度のいずれか1つ以上の条件因子、あるいは前記条件因子の他に、ピーク電流時間中かベース電流時間中のワイヤ送り速度又は両時間中のワイヤ送り速度の値を含むいずれか1つ以上の条件因子を増減制御するようにしている。また、直流アーク溶接の場合には、平均電流,平均アーク電圧又はアーク長,溶接速度又は走行速度,ワイヤ送り速度のいずれか1つ以上の条件因子を増減制御するようにしている。   Further, the image processing apparatus 38 processes the image of the molten pool 16 including the insert material 19 on the back surface side and the peripheral portion thereof, and the width B of the molten pool 16 on the back surface side or the width of the back bead 15 in the vicinity of the molten pool 16. B is detected in real time, and the width C of the insert material is also detected. Other detection processing means corresponding to the image processing device 38 may be used. The detection data transmitted in real time to the welding control apparatus 9a side sequentially performs a process of averaging a plurality of values in the welding control apparatus 9a, and compares the averaged detection value with the target specific value. Judgment processing. And based on the result of this determination process, the molten pool B width on the back surface side or the back bead width B near the molten pool is formed within an appropriate range of a specific value (a range of about 4 to 6 mm or about 5 ± 1 mm). As described above, any one or more condition factors of peak current, base current, peak voltage or average arc voltage or arc length, welding speed or running speed of pulse arc welding, or in addition to the above condition factors, during peak current time Any one or more condition factors including the value of the wire feed rate during the base current time or the value of the wire feed rate during both times are controlled to increase or decrease. In the case of DC arc welding, one or more condition factors of average current, average arc voltage or arc length, welding speed or traveling speed, and wire feed speed are controlled to increase or decrease.

例えば、前記画像処理装置38で検出する裏面側の溶融プール幅の検出値Bsが前記特定値の適正範囲より小さくなる状態(Bs<B1=4mm)であれば、ピーク電流Ip(パルスアーク溶接の時)や平均電流Ia(直流アーク溶接の時)を増加(Ip+ΔI又は
Ia+ΔI)させる。反対に、溶融プール幅の検出値Bsが前記特定値の適正範囲より大きくなる状態(Bs>B2=6mm)であれば、ピーク電流(パルスアーク溶接の時)や平均電流(直流アーク溶接の時)を減少(Ip−ΔI又はIa−ΔI)させるとよい。溶融プール幅の検出値Bsが適正範囲内の状態(例えばB1=4≦Bs≦B2=6mm)であれば、出力中の溶接条件をそのまま保持するとよい。
For example, if the detection value Bs of the melt pool width on the back surface side detected by the image processing device 38 is smaller than the appropriate range of the specific value (Bs <B1 = 4 mm), the peak current Ip (pulse arc welding Or the average current Ia (during DC arc welding) is increased (Ip + ΔI or Ia + ΔI). On the other hand, if the detected value Bs of the molten pool width is larger than the appropriate range of the specific value (Bs> B2 = 6 mm), the peak current (when using pulse arc welding) or the average current (when using DC arc welding) ) May be decreased (Ip−ΔI or Ia−ΔI). If the detected value Bs of the molten pool width is in a state within an appropriate range (for example, B1 = 4 ≦ Bs ≦ B2 = 6 mm), it is preferable to keep the welding condition during output as it is.

このように、検出値の判定結果に基づいて条件因子を適正に増減制御することにより、アーク力及び入熱量の増減によって溶融プール幅及びその溶融プール近傍の裏ビード幅を適正範囲内に短時間で回復させられる。また、ピーク電流又はベース電流(パルスアーク溶接の時),平均電流(直流アーク溶接の時)の増減と同時に、ピーク電圧又は平均アーク電圧又はワイヤ送り速度を増減する制御を行うことにより、裏面側に目標としている溶融プール幅及び裏ビード幅を適正範囲に確実に形成できる。さらに、前記1つ以上の条件因子を増減調整又は増減制御すると共に、表面側の溶接状態の監視結果に基づいて、前記電極6の位置又はこの電極位置及びワイヤ4位置を調整又は制御することにより、電極6の位置ずれ(例えば左右方向の電極位置ずれ)やワイヤ4の位置ずれをなくし、蛇行や融合不良のない良好な裏ビード幅を特定値の適正範囲に形成できるばかりでなく、溶接者の負担を大幅に軽減でき、溶接品質の向上や生産性の向上を図ることができる。   In this way, by appropriately increasing / decreasing the condition factor based on the determination result of the detected value, the molten pool width and the back bead width in the vicinity of the molten pool can be reduced within an appropriate range for a short time by increasing / decreasing the arc force and heat input. Can be recovered. Also, by controlling the peak voltage, average arc voltage, or wire feed rate at the same time as increasing / decreasing peak current or base current (during pulse arc welding) and average current (during DC arc welding), the back side Thus, the target melt pool width and back bead width can be reliably formed within an appropriate range. Further, the adjustment or increase / decrease control of the one or more conditional factors is performed, and the position of the electrode 6 or the position of the electrode and the position of the wire 4 are adjusted or controlled based on the monitoring result of the welding state on the surface side. In addition to eliminating misalignment of the electrode 6 (eg, misalignment of the electrode in the left-right direction) and misalignment of the wire 4, it is possible not only to form a good back bead width without meandering and poor fusion within an appropriate range of specific values, This can greatly reduce the burden of welding and improve welding quality and productivity.

図7は、狭開先継手の溶接施工の概要を示すものであり、(1)は溶接前の断面、(2)は本溶接前に仮付け溶接した時の断面、(3)は本溶接1パス目で初層裏波溶接した時の断面、(4)は前記継手部材の材質と同質系のオーステナイト系ワイヤを用いて2パス目まで溶接した時の断面、(5)は累計の積層ビード高さHbが板厚Tの約2/5に到達するまで積層溶接した時の断面、(6)は前記オーステナイト系ワイヤと異なるマルテンサイト系ワイヤを用いて、開先内の残りの溶接部分から開先上面部の最終層まで積層溶接した時の断面である。この開先継手部材1,2は、上述したように、原子力発電プラントや火力発電プラントなどで使用される厚板のオーステナイト系ステンレス鋼からなる容器や配管や案内管などの管部材又は平板部材の溶接製品であり、開先底部の初層裏波溶接から開先上面部まで積層する溶接施工及び溶接部分に残留する引張応力の圧縮応力化又は大幅低減が必要な狭開先継手ある。   Fig. 7 shows the outline of the welding operation of the narrow groove joint. (1) is a cross section before welding, (2) is a cross section when tack welding is performed before main welding, and (3) is main welding. Cross section when first layer back wave welding is performed in the first pass, (4) is a cross section when welding to the second pass using the austenitic wire of the same type as the material of the joint member, and (5) is the total number of laminated layers A cross-section when lamination welding is performed until the bead height Hb reaches about 2/5 of the plate thickness T, (6) shows the remaining welded portion in the groove using a martensite wire different from the austenite wire It is a cross section when carrying out lamination welding from the last layer of a groove | channel upper surface part. As described above, the groove joint members 1, 2 are made of thick plate austenitic stainless steel used in nuclear power plants or thermal power plants, pipe members such as pipes and guide tubes, or flat plate members. There are narrow groove joints that are welded products and require welding to be laminated from the first layer back surface welding of the groove bottom portion to the groove upper surface portion, and the compressive stress of the tensile stress remaining in the welded portion or a significant reduction.

この狭開先継手の一例では、図7(1)に示すように、開先底部の中央にインサート材19を表面側1a,2a及び裏面側1b,2bに各々突き出すように設けている。このインサート材19は、前記開先継手部材1,2の材質と同質系のオーステナイト系ステンレス鋼材である。このインサート材を設けることにより、裏面側に適正範囲(約4〜6mm)の裏ビード幅Bを確実に凸形状に形成できるばかりでなく、開先底部の突き合せ部に生じ易い段違いやギャップの影響を緩和できる。また、このインサート材19は、前記開先継手材と同質材であって、化学組成の一つであるS(重量%)が前記開先継手材より高めの0.008〜0.015%含有しているインサート材19を用いるとよい。特に、前記Sの含有量が高めの前記インサート材19を用いることにより、Sの含有量が少ない通常のインサート材19使用の溶接時よりも、アーク形状が細く絞られ、深さ方向への溶融金属の対流及び溶け込みが促進し、10〜20%程度少ない溶接電流(又は入熱量)の溶接条件で裏面側に裏ビード15が確実に形成でき、凹みのない凸形状でほぼ均一な裏ビード幅を得ることができる。なお、S(重量%)の含有量が0.015% を超えると、溶接割れの感受性が高まるので好ましくない。   In an example of this narrow groove joint, as shown in FIG. 7 (1), an insert material 19 is provided at the center of the groove bottom so as to protrude from the front side 1a, 2a and the back side 1b, 2b. The insert material 19 is an austenitic stainless steel material of the same quality as the material of the groove joint members 1 and 2. By providing this insert material, not only can the back bead width B in the proper range (about 4 to 6 mm) be formed in a convex shape on the back surface side, but also the step and gap that are likely to occur at the butted portion of the groove bottom. Impact can be mitigated. The insert material 19 is the same material as the groove joint material, and contains 0.008 to 0.015% of S (weight%), which is one of the chemical compositions, higher than the groove joint material. The insert material 19 is preferably used. In particular, by using the insert material 19 having a high S content, the arc shape is narrowed and melted in the depth direction, compared to welding using a normal insert material 19 having a low S content. The convection and penetration of metal are promoted, and the back bead 15 can be reliably formed on the back side under welding conditions with a welding current (or heat input amount) of about 10 to 20% less, and the back bead width is almost uniform with a convex shape without a dent. Can be obtained. In addition, it is not preferable that the content of S (% by weight) exceeds 0.015% because the sensitivity to weld cracking increases.

一方、インサート材19の幅を含む開先底部の開先幅wは、ここでは約6mmに設定した例を示しているが、例えば、最小値の約4mm又は約5mm、あるいは少し広めの約7mm又は最大値の約8mmの概略寸法、又はこれらの概略寸法に近い少数点含みの寸法(例えば約
5.3mm,6.4mm,7.5mm など)に予め形成するとよい。同時に、この狭開先継手の上部までの片面角度θを10°以下に形成(例えば、約2.5°,約5°,約7.5°,約
10°に形成)することにより、開先表面1a,2aの上部まで狭い開先内3を1層1パスずつ積層する多層盛溶接を確実に施工できる。また、溶接パス毎の入熱量や多層盛溶接の累計入熱量、溶接熱による収縮変形を従来溶接より大幅に低減できるばかりでなく、溶接すべき開先断面積を小さくでき、ワイヤの使用量の削減や溶接工数の低減を図ることもできる。なお、この片面角度θを広くした開先継手を多層盛溶接することは可能であるが、板厚T又は開先深さの増加と共に、溶接すべき開先断面積Aが増大(A=H2 *tanθ+H*w)するため、溶接パス数の増加や溶接作業時間の増加,累計入熱量及び収縮変形も増加することになる。これを抑制するべく、前記片面角度θを10°以下に限定した。開先底部のルートフェイスfについては、約1〜2.5mm の範囲に形成すること、好ましくは約1.5mm前後に形成することにより、裏面側まで容易に溶融させることができる。
On the other hand, the groove width w of the groove bottom portion including the width of the insert material 19 is shown here as an example where the groove width is set to about 6 mm. For example, the minimum value is about 4 mm or about 5 mm, or a little wider about 7 mm. Alternatively, it may be preliminarily formed to have a maximum dimension of approximately 8 mm or a dimension including a decimal point close to these approximate dimensions (for example, approximately 5.3 mm, 6.4 mm, 7.5 mm, etc.). At the same time, the one-sided angle θ up to the top of the narrow groove joint is formed to be 10 ° or less (for example, formed to about 2.5 °, about 5 °, about 7.5 °, about 10 °). It is possible to reliably perform multilayer overlay welding in which narrow gaps 3 are stacked one layer at a time up to the top of the front surfaces 1a and 2a. In addition, the heat input per welding pass, the cumulative heat input of multi-layer welding, and shrinkage deformation due to welding heat can be greatly reduced compared to conventional welding, and the groove cross-sectional area to be welded can be reduced, and the amount of wire used can be reduced. Reduction and welding man-hours can also be reduced. Note that it is possible to perform multi-layer welding of the groove joint with the wide one-side angle θ, but as the plate thickness T or the groove depth increases, the groove cross-sectional area A to be welded increases (A = H 2 * tanθ + H * w), the number of welding passes, the welding work time, the cumulative heat input and shrinkage deformation also increase. In order to suppress this, the one-sided angle θ is limited to 10 ° or less. The root face f at the bottom of the groove can be easily melted to the back side by forming it in the range of about 1 to 2.5 mm, preferably about 1.5 mm.

本実験によれば、前記インサート材19の幅を含む開先底部の開先幅wを4mm未満に形成すると、狭すぎるため、その開先内に挿入する電極6の外面と開先内3の壁面との隙間が極端に狭く、しかも、初層溶接及びその後の溶接による熱収縮によって開先幅全体が収縮し、開先壁面への電極6の接触やアーク発生が起こり易く、開先上部までの積層溶接が困難に至る。一方、開先底部の開先幅wが8mmを超えると、広すぎるため、開先面積の増加によって溶接パス数及びワイヤ使用量が増加し、溶接工数も増す結果となる。したがって、前記開先幅wは、上述したように、最小でも4mm以上、最大でも8mm以下の寸法に形成することが好ましい。なお、1層1パスずつ積層する溶接が途中で難しくなる場合には、図2及び図3に示したように、必要に応じて開先左右に振分けて1層2パスずつ積層溶接することにより、開先内の両壁面を確実に溶融でき、開先上面部まで良好な溶接結果を得ることができる。さらに、最終層の溶接パスを3パスに増して溶接することにより、最終層の累計ビード幅をより広くでき、最終層の溶接表面部及びその近傍に残留する引張応力をさらに小さくできる。   According to this experiment, if the groove width w of the groove bottom portion including the width of the insert material 19 is formed to be less than 4 mm, it is too narrow, so the outer surface of the electrode 6 inserted into the groove and the groove inner 3 The gap with the wall surface is extremely narrow, and the entire groove width shrinks due to the heat shrinkage caused by the first layer welding and the subsequent welding, and the contact of the electrode 6 to the groove wall surface and the occurrence of arcing easily occur. It becomes difficult to laminate welding. On the other hand, when the groove width w of the groove bottom exceeds 8 mm, it is too wide, so that the number of welding passes and the amount of wire used increase as the groove area increases, resulting in an increase in the number of welding processes. Therefore, as described above, the groove width w is preferably 4 mm or more at the minimum and 8 mm or less at the maximum. In addition, when it becomes difficult on the way to weld one layer at a time, as shown in FIG. 2 and FIG. Both wall surfaces in the groove can be reliably melted, and good welding results can be obtained up to the groove upper surface. Furthermore, by increasing the number of welding passes of the final layer to 3 passes, the cumulative bead width of the final layer can be increased, and the tensile stress remaining on the weld surface portion of the final layer and in the vicinity thereof can be further reduced.

本溶接の初層裏波溶接の以前に行う仮付け溶接では、図7(2)に示すように、開先継手部材1,2の裏面側の継ぎ部及びインサート材19の突き出し部が溶融しない浅い溶け込みの低入熱アーク及びワイヤ送りなしの仮付け条件を出力させて、表面側1a,2aから開先底部の継ぎ部とインサート材19の突き出し部とを溶融接合するように、ワイヤ4送りなしの仮付け溶接を行うとよい。このように仮付け溶接することにより、裏面側まで溶融しない浅い溶け込みの溶接ビードが開先底部に良好に形成でき、溶接対象の開先継手を確実に接合固定できる。また、本溶接の初層裏波溶接時にワイヤ送りが容易になると共に、裏ビード形成への悪影響をなくすことができる。   In the tack welding performed before the first layer back wave welding of the main welding, as shown in FIG. 7 (2), the joint portion on the back surface side of the groove joint members 1 and 2 and the protruding portion of the insert material 19 are not melted. The wire 4 feed is performed so as to output a shallow penetration low heat input arc and a temporary attachment condition without wire feed so as to melt-join the joint portion of the groove bottom portion and the protruding portion of the insert material 19 from the surface side 1a, 2a. It is good to perform tack welding without. By performing tack welding in this manner, a shallow penetration weld bead that does not melt to the back surface side can be well formed on the groove bottom, and the groove joint to be welded can be reliably bonded and fixed. In addition, wire feeding can be facilitated during the first layer backside welding of the main welding, and adverse effects on the back bead formation can be eliminated.

そして、本溶接で裏ビード15形成が必要な初層裏波溶接では、裏面側まで溶融させる入熱アークの初層条件を出力させ、図7(3)に示すように、裏面側まで完全に溶け込むように溶融させると共に、溶融プール幅又はこの溶融プール近傍の裏ビード15の幅Bが特定値の約4〜6mmの範囲(又は約5±1mmの範囲)に形成するようにしている。例えば、パルスアーク溶接の場合は、図6に示した第1の映像モニタ装置13に画面表示する裏面側の溶融プール16及びその溶融プール近傍の裏ビード15の状態や大きさを示す映像と、目標の裏ビード幅Bの適正範囲を示す特定値とを監視し、溶接中の裏ビード幅が前記特定値の範囲に形成するように、必要に応じてピーク電流,ベース電流,ピーク電圧又は平均アーク電圧又はアーク長,溶接速度又は走行速度,ピーク電流時間中かベース電流時間中のワイヤ送り速度又は両時間中のワイヤ送り速度の値を含むいずれか1つ以上の条件因子を調整又は制御するとよい。初層溶接時のワイヤ送りは少量(例えば積層溶接時の半分以下)で充分である。また、直流アーク溶接の場合には、同様の裏ビード幅が前記特定値の範囲に形成するように、必要に応じて平均電流,平均アーク電圧又はアーク長,溶接速度又は走行速度,ワイヤ送り速度のいずれか1つ以上の条件因子を調整又は制御するとよい。   Then, in the first layer back wave welding in which the back bead 15 needs to be formed in the main welding, the first layer condition of the heat input arc to be melted to the back side is output, and as shown in FIG. While melting so as to melt, the width of the molten pool or the width B of the back bead 15 in the vicinity of the molten pool is formed in a range of about 4 to 6 mm (or a range of about 5 ± 1 mm) of a specific value. For example, in the case of pulse arc welding, an image showing the state and size of the melt pool 16 on the back surface and the back bead 15 near the melt pool displayed on the first image monitor device 13 shown in FIG. The specific value indicating the appropriate range of the target back bead width B is monitored, and the peak current, base current, peak voltage or average is adjusted as necessary so that the back bead width during welding is formed within the range of the specific value. Adjusting or controlling any one or more of the condition factors including the value of arc voltage or arc length, welding speed or running speed, wire feed rate during peak current time or base current time, or wire feed rate during both times Good. A small amount of wire feed during the initial layer welding (for example, less than half that during lamination welding) is sufficient. In the case of DC arc welding, the average current, the average arc voltage or arc length, the welding speed or traveling speed, the wire feed speed, if necessary, so that the same back bead width is formed in the range of the specific value. Any one or more of the condition factors may be adjusted or controlled.

例えば、溶融プール幅又は裏ビード幅が前記特定値の適正範囲より小さくなる又は大きくなる状態であれば、ピーク電流(パルスアーク溶接の時)や平均電流(直流アーク溶接の時)を増減調整すると、アーク力及び入熱量の増減によって溶融プール幅及びその溶融プール近傍の裏ビード幅を短時間で適正範囲内に回復させることができ、応答性の緩やかな溶接速度又は走行速度の調整より優位である。前記ピーク電流や前記平均電流の次に、ベース電流の増減調整かアーク長又はアーク電圧の調整が有効であり、裏ビード幅を適正範囲内に回復させる。また、ワイヤ送り速度の調整は、溶着金属の増減及び溶融プールの温度変化によって裏ビード幅と表面側のビード高さとの両方を微調整できる。さらに、表面側の前記電極6の位置又はこの電極位置及びワイヤ4位置を調整又は制御するとよい。   For example, if the molten pool width or the back bead width is smaller or larger than the appropriate range of the specific value, the peak current (at the time of pulse arc welding) and the average current (at the time of DC arc welding) are adjusted to increase or decrease. By adjusting the arc force and heat input, the molten pool width and the back bead width near the molten pool can be restored to the appropriate range in a short time, which is superior to adjusting the welding speed or running speed with a responsive response. is there. Next to the peak current and the average current, the increase / decrease adjustment of the base current or the adjustment of the arc length or the arc voltage is effective, and the back bead width is restored within an appropriate range. Further, the adjustment of the wire feed speed can finely adjust both the back bead width and the bead height on the surface side by increasing / decreasing the weld metal and changing the temperature of the molten pool. Further, the position of the electrode 6 on the surface side or the position of the electrode and the position of the wire 4 may be adjusted or controlled.

本実験によれば、例えば、裏面側の溶融プール幅が約2.5mm 以下になると、裏ビードが形成したり、形成しなかったりする極めて不安定な状態になり、さらに小さくなると、全くでない溶融不足(裏ビードなし)の欠陥溶接の結果に至った。一方、裏面側の溶融プール幅が約7.5mm を超える大きさになると、下向き姿勢での裏ビード形状が1mm以上凸形状に盛り上り(下側に沈み込む形状)、反対に、上向き姿勢での裏ビード形状は1mm程度凹んでしまう結果になり、溶接姿勢の違いによって裏面側の裏ビードが凹凸形状に変化した。さらに、裏面側の溶融プール幅が約9mmを超えると、溶け落ちる欠陥溶接に至った。したがって、上述したように、裏面側の溶融プール幅及び裏ビード幅を4〜7mmの範囲、好ましくは4〜6mm(5±1mm)の範囲に特定して確実に形成させ、凹みのない凸形状でほぼ均一な裏ビードを得るようにしている。   According to this experiment, for example, when the melt pool width on the back surface side is about 2.5 mm or less, the back bead is formed or not formed, and it becomes an extremely unstable state. Insufficient (no back bead) defect welding results. On the other hand, when the melt pool width on the back side exceeds 7.5 mm, the back bead shape in the downward posture rises to a convex shape of 1 mm or more (the shape that sinks downward), on the contrary, in the upward posture As a result, the back bead shape was recessed by about 1 mm, and the back bead on the back side changed to an uneven shape due to the difference in welding position. Furthermore, when the molten pool width on the back side exceeded about 9 mm, it led to defect welding that melted down. Therefore, as described above, the melt pool width and back bead width on the back side are specified in the range of 4 to 7 mm, preferably in the range of 4 to 6 mm (5 ± 1 mm). In order to obtain an almost uniform back bead.

このように、裏面側の溶融プール幅及び裏ビード幅が前記特定値の適正範囲に形成するように、前記パルスアーク溶接又は直流アーク溶接を施工することにより、溶接装置を操作する溶接者が代わっても個人差の影響がなくなり、裏面側に目標としている溶融プール幅及び裏ビード幅を前記特定値の適正範囲に確実に形成でき、凹みのない凸形状でほぼ均一な裏ビード幅を良好に得ることができる。特に、高度な溶接技術を要する配管の全姿勢溶接,管材の横向き姿勢の溶接,平板材の上向き姿勢の初層裏波溶接に適している。さらに、前記1つ以上の条件値を調整又は制御すると共に、表面側の前記電極6の位置又はこの電極位置及びワイヤ4位置を調整又は制御することにより、電極6の位置ずれ(例えば左右方向の電極位置ずれ)やワイヤ4の位置ずれをなくし、蛇行や融合不良のない良好な裏ビード幅を特定値の適正範囲に形成できる。ここでは少量のワイヤ送りを示したが、このワイヤ送りを停止(ワイヤなし)にして初層裏波溶接を実施することも可能である。また、ここでは開先継手部材1,2の開先底部中央にインサート材19を設ける溶接例を示したが、インサート材19なしの開先継手であっても、例えば、下向き姿勢や立向き上進姿勢で初層裏波溶接を実施すれば、裏面側に目標としている溶融プール幅及び裏ビード幅を適正範囲に形成でき、凸形状でほぼ均一な裏ビード幅を良好に得ることが可能である。次に、初層裏波溶接の終了後に行う2層目の溶接では、オーステナイト系ワイヤを使用すると共に、図7(4)に示すように、少なくとも初層溶接時に形成した前記裏ビード15を再溶融させない入熱条件に抑制した溶接条件(例えば、初層溶接条件の1/2〜2/3の入熱条件)に変更して、非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うようにしている。このように2層目溶接の入熱を抑制して溶接することにより、裏ビードの再溶融が確実に防止できると共に、表面側に積層するビード高さを増すことができる。また、累計の積層ビード高さHbが3層目の溶接以降に到達するまで積層する溶接施工では、図7(5)に示すように、少なくとも初層の溶接条件、2層目の溶接条件と異なる積層条件であって、溶接パスに該当する複数の適正な溶接条件(例えば、4kJ/cm〜12kJ/cmの低い入熱条件又は平均溶接電流が約120A〜220Aのアーク条件)に変更して1層1パスずつ積層溶接するように、前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うようにしている。又はほぼ一定の適正な溶接条件(例えば、約4kJ/cmか約6kJ/cmか約8kJ/cmか約10kJ/cmか約12kJ/cmに特定した低い入熱条件)に設定して積層溶接するように、前記非消耗電極方式のパルスアーク溶接又は直流アーク溶接を行うこともできる。ワイヤ送り量については、溶入熱条件に適した溶融可能なワイヤ量であり、例えば、形成すべきビード高さが0.5〜2.0mmの範囲内になるように送給するとよい。また、溶接中は、図6に示した第2の映像モニタ装置37に画面表示する表面側の溶接状態の監視結果に基づいて、電極6の位置又はこの電極位置及びワイヤ4位置を調整又は制御するとよい。このように第1の積層溶接を施工することにより、開先裏面から所定の積層ビード高さHbまでオーステナイト系ワイヤによる溶接金属で満たすことができる。   Thus, by performing the pulse arc welding or the direct current arc welding so that the melt pool width and the back bead width on the back surface side are formed within the appropriate range of the specific value, the welder operating the welding apparatus is replaced. Even if there is no influence of individual differences, the target melt pool width and back bead width can be reliably formed within the appropriate range of the specified value on the back side, and a substantially uniform back bead width is achieved with a convex shape without a dent. Obtainable. In particular, it is suitable for all-position welding of pipes that require advanced welding techniques, welding in the horizontal orientation of pipe materials, and first layer back-wave welding in the upward orientation of flat plates. Further, the one or more condition values are adjusted or controlled, and the position of the electrode 6 on the front surface side or the position of the electrode 6 and the position of the wire 4 are adjusted or controlled to thereby adjust the position of the electrode 6 (for example, in the left-right direction). Electrode position deviation) and wire 4 position deviation can be eliminated, and a good back bead width without meandering or poor fusion can be formed within an appropriate range of a specific value. Although a small amount of wire feed is shown here, it is also possible to stop the wire feed (no wire) and perform first layer backside welding. Further, here, the welding example in which the insert material 19 is provided at the center of the groove bottom portion of the groove joint members 1 and 2 is shown. However, even in the case of a groove joint without the insert material 19, for example, a downward posture or a standing up If the first layer back wave welding is performed in an advanced posture, the target melt pool width and back bead width can be formed in the appropriate range on the back side, and it is possible to obtain a substantially uniform back bead width with a convex shape. is there. Next, in the second layer welding performed after the first layer back wave welding is completed, an austenitic wire is used, and at least the back bead 15 formed at the time of the first layer welding is reused as shown in FIG. Change to welding conditions that are suppressed to heat input conditions that do not melt (for example, heat input conditions that are 1/2 to 2/3 of the first layer welding conditions), and perform non-consumable pulse arc welding or DC arc welding. I have to. Thus, by suppressing the heat input of the second layer welding and performing welding, remelting of the back bead can be surely prevented, and the height of the beads stacked on the surface side can be increased. In addition, in the welding construction in which the accumulated laminated bead height Hb reaches after the third layer welding, as shown in FIG. 7 (5), at least the first layer welding condition, the second layer welding condition, Change to a plurality of appropriate welding conditions (for example, low heat input conditions of 4 kJ / cm to 12 kJ / cm or arc conditions of an average welding current of about 120 A to 220 A) which are different lamination conditions and correspond to the welding pass. The non-consumable electrode type pulse arc welding or direct current arc welding is performed so as to carry out layer welding one layer at a time. Or, laminar welding is performed by setting the welding conditions to be substantially constant (for example, low heat input conditions specified at about 4 kJ / cm, about 6 kJ / cm, about 8 kJ / cm, about 10 kJ / cm, or about 12 kJ / cm). Thus, the non-consumable electrode type pulse arc welding or DC arc welding can also be performed. The wire feed amount is a meltable wire amount suitable for the heat-injection conditions. For example, the wire feed amount may be fed so that the bead height to be formed is in the range of 0.5 to 2.0 mm. Further, during welding, the position of the electrode 6 or the position of the electrode 6 and the position of the wire 4 are adjusted or controlled based on the monitoring result of the welding state on the surface side displayed on the second video monitor device 37 shown in FIG. Good. Thus, by performing the 1st lamination welding, it can be filled with the weld metal by the austenite type wire from the groove back to predetermined lamination bead height Hb.

そして、その後に開先上面部の最終層まで積層する溶接施工では、マルテンサイト変態を有するマルテンサイト系ワイヤに交換し、図7(6)に示すように、継続すべき開先内3の残りの溶接部分26から開先上面部の最終層まで1層1パスずつ積層溶接するようにしている。また、図2に示したように1層1パスずつ積層する途中で開先左右に振分けて1層2パスずつ積層溶接できる。さらに、最終層の溶接パスを3パスに増して溶接することにより、最終層の累計ビード幅をより広くでき、最終層の溶接表面部及びその近傍に残留する引張応力をさらに小さくできる。   Then, in the welding construction in which the groove is laminated up to the final layer on the upper surface of the groove, the wire is replaced with a martensitic wire having martensitic transformation, and as shown in FIG. From the welded portion 26 to the final layer on the groove upper surface, lamination welding is performed one layer at a time. Further, as shown in FIG. 2, it is possible to perform lamination welding by one layer and two passes by distributing the groove left and right in the course of laminating one layer and one pass. Furthermore, by increasing the number of welding passes of the final layer to 3 passes, the cumulative bead width of the final layer can be increased, and the tensile stress remaining on the weld surface portion of the final layer and in the vicinity thereof can be further reduced.

マルテンサイト系ワイヤを使用する積層溶接では、この積層溶接の以前にオーステナイト系ワイヤを使用して積層溶接した時の最後の溶接条件又はこの最後前の溶接条件よりも小さい入熱量の適正な溶接条件に変更して溶接することにより、開先上面部まで良好な溶接結果を得ることができるばかりでなく、溶接による収縮変形やたわみ変形、熱影響部の領域を小さくできる。あるいは前記最後の溶接条件又はこの最後前の溶接条件と同等の適正な溶接条件を再使用して溶接することにより、少ないパス数で積層できると共に、開先上面部まで良好な溶接結果を得ることができる。最終層の溶接(P=N)では、図7(6)に示したように開先表面1a,2aより少し盛り上る(例えは1mm程度の余盛り高さ)ように仕上げている。この最終層の溶接又は最終層の前層の溶接及び最終層の溶接では、溶接トーチ4を左右に揺動させるウィービング溶接を行うとよい。このウィービング溶接によって溶接ビードの両止端部の溶け込みを良くし、貝殻模様のような波目を有する良好な溶接ビード外観を得ることができる。   In laminate welding using martensite wire, the last welding condition when laminate welding was performed using austenite wire before this lamination welding, or appropriate welding conditions with a smaller heat input than this last welding condition By welding with changing to, it is possible not only to obtain a good welding result up to the groove upper surface portion, but also to reduce the shrinkage deformation, deflection deformation, and heat affected zone region due to welding. Alternatively, by reusing and welding the last welding condition or an appropriate welding condition equivalent to the last welding condition, it is possible to stack with a small number of passes and obtain a good welding result up to the groove upper surface. Can do. In the final layer welding (P = N), as shown in FIG. 7 (6), it is finished so that it slightly rises above the groove surfaces 1a and 2a (for example, an extra height of about 1 mm). In the final layer welding or the previous layer welding and the final layer welding, weaving welding in which the welding torch 4 is swung left and right may be performed. By this weaving welding, it is possible to improve the penetration of both toe ends of the weld bead and to obtain a good weld bead appearance having a wave pattern like a shell pattern.

このように2種類のワイヤを使い分けて各々積層溶接することにより、原子力発電プラント,火力発電プラントなどで使用される厚板の容器や配管などの管部材や平板部材の開先継手の完全溶け込み溶接及び残留応力低減が要求される溶接製品であっても、開先裏面部から開先上面部まで欠陥のない良好な溶接結果を得ることかできるばかりでなく、上述したように、マルテンサイト系ワイヤによるマルテンサイト変態及び膨張効果によって、室温時の溶接金属部に膨張作用及び張力が生じ、重要な開先底面側の溶接裏面部及びその近傍に残留する応力を圧縮応力に改善できる。同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。また、溶接パス毎の入熱量を小さく抑制した溶接条件を用いることにより、パス毎の溶接及び累計の積層溶接で生じる溶接金属部及びこの周辺部の収縮変形やたわみ変形,熱影響部の領域を小さくできる。なお、溶接継手の引張強度試験,曲げ強度試験を行った結果、母材破断による母材以上の高強度,ミクロ割れもない延性強度を有する良好な結果であった。   In this way, two types of wires are properly used and each is laminated and welded, so that complete penetration welding of pipe members such as thick plate containers and pipes used in nuclear power plants and thermal power plants, and groove joints of flat plate members In addition, it is possible not only to obtain a good welding result without defects from the groove back surface portion to the groove top surface portion even in a welded product that requires a reduction in residual stress. Due to the martensitic transformation and expansion effect caused by the above, expansion action and tension are generated in the weld metal portion at room temperature, and the stress remaining in the weld back surface portion near the groove bottom surface side and the vicinity thereof can be improved to compressive stress. At the same time, the tensile stress remaining in the weld surface portion of the final layer and the vicinity thereof can be reduced. In addition, by using welding conditions in which the heat input for each welding pass is suppressed to a small level, the weld metal part generated by welding for each pass and cumulative lamination welding and the area of shrinkage deformation, deflection deformation, and heat affected zone of this peripheral part can be reduced. Can be small. In addition, as a result of conducting a tensile strength test and a bending strength test of the welded joint, it was a good result having a higher strength than the base material due to the base material fracture and a ductile strength without micro cracks.

最後に、残留応力の測定結果について述べる。図8は、本発明の狭開先継手の多層盛溶接方法で施工した多層盛溶接構造物の1つである配管内面の残留応力測定結果の一例である。同様に、図9は、多層盛溶接構造物の1つである配管外面の残留応力測定結果の一例である。配管の材質がSUS316L系、外径が314mm、板厚が29.5mm 、開先深さが28mmである。溶接施工は、図1(3)及び図7で説明したように示したように、配管と同質系のオーステナイト系ワイヤ(SUS316L系)を用いて開先板厚Tの2/5程度の浅い高さまで積層溶接し、その後に、マルテンサイト変態を有するマルテンサイト系のステンレスワイヤに交換して残りの深い部分から開先上面部まで低入熱条件で積層溶接している。また、残留応力測定は、X線回折測定法より精度の良いひずみゲージ開放法
(配管内外面の測定箇所にひずみゲージを貼り付け、短冊切りの1次切断開放の工程から最終スリット切りの3次開放の工程を経て、周方向の開放ひずみ値εθと軸方向の開放ひずみ値εzとの測定結果より、周方向の残留応力σθ,軸方向の残留応力を算出)を用いて測定した結果である。
Finally, the measurement results of residual stress will be described. FIG. 8 is an example of a measurement result of residual stress on the inner surface of a pipe, which is one of the multi-layered welded structures constructed by the multi-pass welding method for the narrow groove joint of the present invention. Similarly, FIG. 9 is an example of a residual stress measurement result on the outer surface of a pipe that is one of the multi-layer welded structures. The material of the pipe is SUS316L, the outer diameter is 314 mm, the plate thickness is 29.5 mm, and the groove depth is 28 mm. As shown in FIG. 1 (3) and FIG. 7, the welding work is performed using austenite wire (SUS316L system) of the same quality as the piping, and a shallow height of about 2/5 of the groove plate thickness T. Lamination welding is then performed, and then, martensitic stainless wire having martensitic transformation is exchanged and lamination welding is performed under low heat input conditions from the remaining deep portion to the groove upper surface portion. In addition, the residual stress measurement is more accurate than the X-ray diffraction measurement method (the strain gauge opening method (a strain gauge is attached to the measurement location on the inner and outer surfaces of the pipe, and the process of stripping the primary cut to the final slit cutting) This is a result of measurement using the opening step, calculating the circumferential residual stress σθ and the axial residual stress from the measurement result of the circumferential opening strain value εθ and the axial opening strain value εz. .

配管内面側の溶接裏面部及びその周辺部の残留応力は、図8に示したように、溶接線直角方向の軸方向残留応力σz(〇印の線)及び溶接線方向の周方向残留応力σθ(◆印の線)の両方ともに、約−100MPa以下の圧縮応力になっている。一方、配管外面側の溶接表面部及びその周辺部の残留応力については、図9に示したように、溶接部に隣接する部分の周方向残留応力σθ(◆印の線)が最大約170MPaの引張応力になっている。これに対して、溶接線直角方向の軸方向残留応力σz(〇印の線)は、溶接部に隣接する部分及び溶接中央部分で約−100MPaの圧縮応力になっている。   As shown in FIG. 8, the residual stress at the weld back surface on the inner surface side of the pipe and its peripheral portion is the axial residual stress σz in the direction perpendicular to the weld line (circled line) and the circumferential residual stress σθ in the weld line direction. Both (the lines marked with ◆) have a compressive stress of about −100 MPa or less. On the other hand, as shown in FIG. 9, the circumferential residual stress σθ (line marked with ◆) in the portion adjacent to the welded portion is about 170 MPa at the maximum, as shown in FIG. Tensile stress. On the other hand, the axial residual stress σz in the direction perpendicular to the weld line (circled line) is a compressive stress of about −100 MPa in the portion adjacent to the weld and the center of the weld.

比較のために、初層裏波溶接から最終層の溶接まで全て前記オーステナイト系ワイヤを用いて溶接施工した配管内面の残留応力測定結果の一例を図10に示す。配管の材質やサイズ,開先形状,溶接条件及び溶接の施工法はほぼ同じあり、マルテンサイト系ワイヤを使用せずに、開先継手材と同質系のオーステナイト系ワイヤのみを使用していることが異なっている。この場合には、周方向残留応力σθが約−100MPa以下の圧縮応力であるのに対して、重要な軸方向残留応力σzが最大で約100MPaの引張応力に変化している。開先継手の開先幅を狭くし、しかも、低入熱の溶接条件で積層溶接することによって、重要な溶接裏面部及びその周辺部の残留応力を低減できるが、図10に示したように、最大で約100MPaの引張応力が残っている。これに対して、本発明の多層盛溶接方法を施工することにより、図8に示したように、重要な溶接裏面部及びその周辺部の残留応力を圧縮応力に改善できる。この改善の結果、溶接完了後に、残留応力を除去するための高価な加熱処理装置を設けたり、加熱処理を行ったりする必要がなくなり、コスト低減を図ることもできる。   For comparison, FIG. 10 shows an example of a residual stress measurement result on the inner surface of a pipe welded using the austenitic wire from the first layer backside welding to the final layer welding. The piping material and size, groove shape, welding conditions and welding method are almost the same, and only martensitic wire is used and only austenitic wire of the same quality as groove joint material is used. Is different. In this case, while the circumferential residual stress σθ is a compressive stress of about −100 MPa or less, the important axial residual stress σz changes to a tensile stress of about 100 MPa at the maximum. By reducing the groove width of the groove joint and performing lamination welding under low heat input welding conditions, it is possible to reduce the residual stress at the important weld back surface and its peripheral part, as shown in FIG. A maximum tensile stress of about 100 MPa remains. On the other hand, by applying the multi-layer welding method of the present invention, as shown in FIG. 8, the residual stress at the important welding back surface portion and its peripheral portion can be improved to compressive stress. As a result of this improvement, it is not necessary to provide an expensive heat treatment apparatus for removing residual stress or perform heat treatment after the completion of welding, and cost can be reduced.

以上述べたように、本発明の狭開先継手の多層盛溶接方法によれば、開先継手の多層盛溶接及び残留応力低減が必要な厚板の容器や配管などの管部材又は平板部材であっても、開先底部から初層裏波溶接から開先上面部の最終層溶接まで良好に積層溶接できる。また、2種類のオーステナイト系ワイヤ及びマルテンサイトを使い分けて積層溶接することより、マルテンサイト変態の溶接金属部に膨張作用及び張力が生じ、底面側の溶接裏面部及びその近傍に残留する引張応力を圧縮応力に変えることができ、同時に、最終層の溶接表面部及びその近傍に残留する引張応力を低減できる。また、溶接パス毎の入熱量,溶接による収縮変形やたわみ変形,熱影響部の領域を小さくできるばかりでなく、溶接すべき開先断面積を小さくでき、ワイヤの使用量の削減,溶接工数の低減を図ることができる。さらに、残留応力を改善できる結果、溶接完了後に、残留応力を除去するための高価な加熱処理装置を設けたり、加熱処理を行ったりする必要がなくなり、コスト低減を図ることができるばかりでなく、原子力発電プラントなどの実機適用稼働における残留応力腐食割れ防止,長寿命化に寄与することができる。   As described above, according to the multi-layer prime welding method of the narrow groove joint of the present invention, the pipe joint or the flat plate member such as the thick plate container or the pipe which requires the multi-layer prime welding of the groove joint and the residual stress reduction. Even if it exists, lamination welding can be favorably performed from the groove bottom portion to the final layer welding of the groove upper surface portion from the initial layer backside welding. Also, by laminating and welding two types of austenitic wire and martensite separately, expansion action and tension are generated in the weld metal part of the martensite transformation, and tensile stress remaining in the bottom side of the weld back surface and in the vicinity thereof is generated. The compressive stress can be changed, and at the same time, the tensile stress remaining on the weld surface portion of the final layer and in the vicinity thereof can be reduced. In addition, not only can the heat input per welding pass, shrinkage deformation or deflection deformation due to welding, and the heat affected zone be reduced, but the groove cross-sectional area to be welded can be reduced, reducing the amount of wire used and reducing the number of welding processes. Reduction can be achieved. Furthermore, as a result of improving the residual stress, it is not necessary to provide an expensive heat treatment apparatus for removing the residual stress after the completion of welding, or to perform the heat treatment, and not only can the cost be reduced, This contributes to the prevention of residual stress corrosion cracking and the extension of service life when operating in actual equipment such as nuclear power plants.

本発明の狭開先継手の多層盛溶接方法の概要を示す一実施例の溶接断面である。It is a welding cross section of one Example which shows the outline | summary of the multilayer pile welding method of the narrow groove joint of this invention. 本発明の狭開先継手の多層盛溶接方法の概要を示す他の一実施例の溶接断面である。It is a welding cross section of another Example which shows the outline | summary of the multilayer pile welding method of the narrow gap joint of this invention. 本発明の狭開先継手の多層盛溶接方法の概要を示すもう一つ別の一実施例の溶接断面である。It is a welding cross section of another one Example which shows the outline | summary of the multilayer pile welding method of the narrow gap joint of this invention. 図1及び図2に示した多層盛溶接方法に使用するマルテンサイト系ワイヤと、オーステナイト系ワイヤ(又はこのワイヤと同質係の開先継手材)とにおける温度と伸び(1mm長さ当りの伸び)との関係を模式的に示す説明図である。Temperature and elongation (elongation per 1 mm length) of martensitic wire and austenitic wire (or a groove joint material of the same quality as this wire) used in the multi-layer welding method shown in FIGS. It is explanatory drawing which shows typically the relationship. マルテンサイト系ワイヤで積層溶接した溶接断面の上位部分に生じる膨張効果による張力とオーステナイト系ワイヤで積層溶接した溶接断面の裏面部分に生じる圧縮応力との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the tension | tensile_strength by the expansion | swelling effect which arises in the upper part of the weld cross section welded by the martensitic wire, and the compressive stress which arises in the back surface part of the weld cross section welded by the austenitic wire. 本発明の狭開先継手の多層盛溶接方法に係わる溶接装置の一実施を示す概略構成図である。It is a schematic block diagram which shows one implementation of the welding apparatus concerning the multi-layer welding method of the narrow groove joint of this invention. 狭開先継手の溶接施工の概要を示す溶接前と積層溶接後の断面である。It is a section before welding and after lamination welding which shows the outline of welding construction of a narrow gap joint. 本発明の狭開先継手の多層盛溶接方法で施工した多層盛溶接構造物の1つである配管内面の残留応力測定結果の一例である。It is an example of the residual stress measurement result of the piping inner surface which is one of the multilayer prime-welded structures constructed with the multilayer prime welding method of the narrow groove joint of the present invention. 本発明の狭開先継手の多層盛溶接方法で施工した多層盛溶接構造物の1つである配管外面の残留応力測定結果の一例である。It is an example of the residual stress measurement result of the pipe outer surface which is one of the multilayer weld structures constructed by the multilayer prime welding method of the narrow groove joint of the present invention. 初層裏波溶接から最終層の溶接まで全て前記オーステナイト系ワイヤを用いて溶接施工した配管内面の残留応力測定結果の一例である。It is an example of the residual stress measurement result of the inner surface of the pipe welded using the austenitic wire from the first layer backside welding to the final layer welding.

符号の説明Explanation of symbols

1,2…開先継手部材、1b,2b…開先裏面、3…開先内、4…ワイヤ、5…溶接台車、6…電極、7…溶接トーチ、8…TIG溶接電源、9a…溶接制御装置、9b…操作ペンダント、10…アーク、11…第1のカメラ、12…カメラ制御器、13…第1の映像モニタ装置、14…裏ビード幅Bの特定値、15…裏ビード、16…裏面側の溶融プール、17…裏面側監視装置、18…表面側の溶融プール、19…インサート材、20…仮付け溶接のビード断面、21…初層裏波溶接のビード断面、22…2パス目溶接のビード断面、23…3パス目溶接のビード断面、30…最終層のビード断面、32…照明手段、33…シールドガス、34…バックガス、35…第2のカメラ、36…カメラ制御器、
37…第2の映像モニタ装置、38…画像処理装置、39…表面側の溶融プール、41…オーステナイ系ワイヤで積層溶接、42…マルテンサイト系ワイヤで積層溶接、Hb…累計の積層ビード高さ、H…残存開先深さ、w…開先底部幅、f…ルートフェイス、θ…片面角度。
1, 2 ... groove joint member, 1b, 2b ... groove back surface, 3 ... inside groove, 4 ... wire, 5 ... welding carriage, 6 ... electrode, 7 ... welding torch, 8 ... TIG welding power source, 9a ... welding Control device, 9b ... operation pendant, 10 ... arc, 11 ... first camera, 12 ... camera controller, 13 ... first video monitor device, 14 ... specific value of back bead width B, 15 ... back bead, 16 DESCRIPTION OF SYMBOLS ... Melting pool of back side, 17 ... Monitoring apparatus of back side, 18 ... Molten pool of surface side, 19 ... Insert material, 20 ... Bead cross section of tack welding, 21 ... Bead cross section of first layer back wave welding, 22 ... 2 Bead cross section of pass weld, 23 ... Bead cross section of third pass weld, 30 ... Bead cross section of final layer, 32 ... Illuminating means, 33 ... Shield gas, 34 ... Back gas, 35 ... Second camera, 36 ... Camera Controller,
37 ... second image monitor device, 38 ... image processing device, 39 ... surface side molten pool, 41 ... lamination welding with austenitic wire, 42 ... lamination welding with martensite wire, Hb ... total laminated bead height , H: remaining groove depth, w: groove bottom width, f: root face, θ: single-sided angle.

Claims (7)

管部材又は平板部材を相互に突き合せた開先を片面から積層溶接する狭開先継手の多層盛溶接方法において、
前記積層溶接は積層溶接の開始より部材厚さの1/5以上4/5以下の範囲に前記管部材又は平板部材と同種のワイヤを用いて行う第一の溶接工程と、前記第一の溶接工程後に残存部より溶接最終層までの範囲に前記管部材又は平板部材より小さい線膨張係数を有するワイヤを用いて行う第二の溶接工程とを有することを特徴とする多層盛溶接方法。
In the multi-layer prime welding method for narrow groove joints in which the groove formed by mutually abutting tube members or flat plate members is laminated and welded from one side,
The first welding step is performed by using the same kind of wire as the pipe member or the flat plate member in the range of 1/5 to 4/5 of the member thickness from the start of the lamination welding, and the first welding. And a second welding step using a wire having a smaller linear expansion coefficient than the tube member or flat plate member in a range from the remaining portion to the final weld layer after the step.
請求項1に記載の多層盛溶接方法であって、前記第一の溶接工程または前記第二の溶接工程は、非消耗電極方式のパルスアーク溶接又は直流アーク溶接により行うことを特徴とする多層盛溶接方法。   2. The multi-layer welding method according to claim 1, wherein the first welding step or the second welding step is performed by non-consumable electrode type pulse arc welding or DC arc welding. Welding method. 請求項1に記載の多層盛溶接方法であって、
前記狭開先の底部の開先幅を4mm以上8mm以下とし、前記開先を形成する部材の片面の角度は10°以下とすることを特徴とする多層盛溶接方法。
The multilayer overlay welding method according to claim 1,
A multi-layer welding method, wherein a groove width of a bottom portion of the narrow groove is 4 mm or more and 8 mm or less, and an angle of one side of a member forming the groove is 10 ° or less.
請求項1に記載の多層盛溶接方法であって、
硫黄分を0.008〜0.15%含有したオーステナイト系インサート材を前記狭開先継手底部の中央部に、表面側及び裏面側に各々突き出すよう設けることを特徴とする多層盛溶接方法。
The multilayer overlay welding method according to claim 1,
A multilayer overlay welding method comprising providing an austenitic insert material containing 0.008 to 0.15% of a sulfur content at the center of the bottom of the narrow groove joint so as to protrude from the front side and the back side, respectively.
請求項1に記載の多層盛溶接方法であって、
前記第一の溶接工程に用いられるワイヤはオーステナイト系ワイヤであり、
前記第二の溶接工程に用いられるワイヤはマルテンサイト系ワイヤ,インコネル系ワイヤ,オーステナイト系ワイヤのいずれかであることを特徴とする多層盛溶接方法。
The multilayer overlay welding method according to claim 1,
The wire used in the first welding process is an austenitic wire,
The multi-layer welding method, wherein the wire used in the second welding step is one of a martensite wire, an inconel wire, and an austenite wire.
請求項1に記載の多層盛溶接方法であって、
前記第一の溶接工程に用いられるワイヤはオーステナイト系ワイヤであり、
前記第二の溶接工程に用いられるワイヤはマルテンサイト系ワイヤであり、
前記マルテンサイト系ワイヤはNiを8〜12重量%、Crを8〜12重量%含有し、マルテンサイト変態開始温度が100℃以上300℃以下であるワイヤを用いることを特徴とする多層盛溶接方法。
The multilayer overlay welding method according to claim 1,
The wire used in the first welding process is an austenitic wire,
The wire used in the second welding process is a martensitic wire,
The martensitic wire uses a wire containing 8 to 12 wt% of Ni and 8 to 12 wt% of Cr and having a martensite transformation start temperature of 100 ° C to 300 ° C. .
請求項4に記載されている多層盛溶接方法において、
前記第一の溶接工程前に前記開先底部の表面側の継ぎ部と前記インサート材の突き出し部とを溶融接合する仮付け溶接工程を有することを特徴とする狭開先継手の多層盛溶接方法。

In the multilayer overlay welding method according to claim 4,
A multi-layer prime welding method for narrow groove joints, comprising a tack welding step in which a joint portion on a surface side of the groove bottom portion and a protruding portion of the insert material are melt-bonded before the first welding step. .

JP2005003298A 2005-01-11 2005-01-11 Multi-layered welding method of narrow bevel joint Pending JP2006192438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003298A JP2006192438A (en) 2005-01-11 2005-01-11 Multi-layered welding method of narrow bevel joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003298A JP2006192438A (en) 2005-01-11 2005-01-11 Multi-layered welding method of narrow bevel joint

Publications (1)

Publication Number Publication Date
JP2006192438A true JP2006192438A (en) 2006-07-27

Family

ID=36798907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003298A Pending JP2006192438A (en) 2005-01-11 2005-01-11 Multi-layered welding method of narrow bevel joint

Country Status (1)

Country Link
JP (1) JP2006192438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061483A (en) * 2007-09-07 2009-03-26 Hitachi-Ge Nuclear Energy Ltd Two sided welding method and two sided welded structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108838A (en) * 1977-03-07 1978-09-22 Hitachi Ltd Austenitic stainless steel welded joint
JPS5847574A (en) * 1981-09-14 1983-03-19 Toshiba Corp Welding method for metal
JPH06226449A (en) * 1993-01-29 1994-08-16 Hitachi Seiko Ltd Butt welding method for stainless steel with sulfur content of <=0.003%
JPH07100644A (en) * 1993-10-05 1995-04-18 Ishikawajima Harima Heavy Ind Co Ltd Inspect member for welding
JPH0976062A (en) * 1995-09-12 1997-03-25 Hitachi Plant Eng & Constr Co Ltd First layer welding method
JPH1177299A (en) * 1997-09-12 1999-03-23 Ishikawajima Harima Heavy Ind Co Ltd Method for welding metallic tube
JP2000094182A (en) * 1998-09-24 2000-04-04 Sumitomo Metal Ind Ltd Welding material for martensitic stainless steel
JP2000158183A (en) * 1998-11-30 2000-06-13 Sumikin Welding Ind Ltd Welding material of martensite system stainless steel, welding joint, and manufacture thereof
JP2004025304A (en) * 2002-03-26 2004-01-29 Jfe Steel Kk Weld joint and welding material for steel structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108838A (en) * 1977-03-07 1978-09-22 Hitachi Ltd Austenitic stainless steel welded joint
JPS5847574A (en) * 1981-09-14 1983-03-19 Toshiba Corp Welding method for metal
JPH06226449A (en) * 1993-01-29 1994-08-16 Hitachi Seiko Ltd Butt welding method for stainless steel with sulfur content of <=0.003%
JPH07100644A (en) * 1993-10-05 1995-04-18 Ishikawajima Harima Heavy Ind Co Ltd Inspect member for welding
JPH0976062A (en) * 1995-09-12 1997-03-25 Hitachi Plant Eng & Constr Co Ltd First layer welding method
JPH1177299A (en) * 1997-09-12 1999-03-23 Ishikawajima Harima Heavy Ind Co Ltd Method for welding metallic tube
JP2000094182A (en) * 1998-09-24 2000-04-04 Sumitomo Metal Ind Ltd Welding material for martensitic stainless steel
JP2000158183A (en) * 1998-11-30 2000-06-13 Sumikin Welding Ind Ltd Welding material of martensite system stainless steel, welding joint, and manufacture thereof
JP2004025304A (en) * 2002-03-26 2004-01-29 Jfe Steel Kk Weld joint and welding material for steel structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061483A (en) * 2007-09-07 2009-03-26 Hitachi-Ge Nuclear Energy Ltd Two sided welding method and two sided welded structure

Similar Documents

Publication Publication Date Title
JP2006247673A (en) Method of welding procedure for pipe
Meng et al. High speed TIG–MAG hybrid arc welding of mild steel plate
JP5602458B2 (en) Method for joining two metal parts by a tungsten-inert gas welding method and apparatus for carrying out the method
JP4951448B2 (en) Double-side welding method and double-side welded structure
CN106488825B (en) Vertical narrow groove gas-shielded arc welding method
JP4415863B2 (en) Multilayer prime welding method and multilayer prime welded structure
JP5088920B2 (en) Manufacturing method for building components
JP2016075586A (en) Method for repairing poor weld zone of metal cask weld structure and metal cask provided with heat transfer copper fins
CN109641306A (en) Vertical narrow groove gas-shielded arc welding method
JP6322561B2 (en) Temporary welding construction method for metal cask welded structure and metal cask with heat transfer fin
CN108367376B (en) Vertical narrow groove gas shielded arc welding method
Latifi Jr Advanced orbital pipe welding
JP4528683B2 (en) Narrow groove welding method, welded structure, and welding apparatus therefor
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP5473171B2 (en) Manufacturing method for building components
US8110772B1 (en) System and method for multi-pass computer controlled narrow-gap electroslag welding applications
JP2006159226A (en) Back-bead welding method
Wordofa et al. Gas metal arc welding input parameters impacts on weld quality characteristics of steel materials a comprehensive exploration
JP2006192438A (en) Multi-layered welding method of narrow bevel joint
JP4538394B2 (en) Residual stress improvement welding method and welded structure
JP2006192437A (en) Welding equipment
JP2006205183A (en) Multi-layer welding structure of stainless steel
JP4038003B2 (en) Column-welding method for extra-thick H-section steel
JP2021154298A (en) Gas shield arc-welding method and gas shield arc-welding device
JP7548875B2 (en) Ni alloy overlay welding method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222