JP2006182604A - Method for producing metal oxide sol and metal oxide sol - Google Patents

Method for producing metal oxide sol and metal oxide sol Download PDF

Info

Publication number
JP2006182604A
JP2006182604A JP2004378396A JP2004378396A JP2006182604A JP 2006182604 A JP2006182604 A JP 2006182604A JP 2004378396 A JP2004378396 A JP 2004378396A JP 2004378396 A JP2004378396 A JP 2004378396A JP 2006182604 A JP2006182604 A JP 2006182604A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide sol
dispersion
hydroxide gel
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004378396A
Other languages
Japanese (ja)
Other versions
JP5013671B2 (en
Inventor
Yuji Hiyouhaku
祐二 俵迫
Toshiharu Hirai
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2004378396A priority Critical patent/JP5013671B2/en
Publication of JP2006182604A publication Critical patent/JP2006182604A/en
Application granted granted Critical
Publication of JP5013671B2 publication Critical patent/JP5013671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a metal oxide sol having a uniform particle diameter distribution and excellent stability. <P>SOLUTION: The metal oxide sol in which metal oxide fine particles having an average diameter within a range of 5-150 nm are dispersed, is produced by following steps (a) to (e); (a) a step of preparing any one kind of a dispersion liquid of cerium hydroxide gel, a dispersion liquid of bismuth hydroxide gel, a dispersion liquid of iron hydroxide gel, and a dispersion liquid of yttrium hydroxide gel by adding an alkali aqueous solution to any one kind of a cerium compound aqueous solution, a bismuth compound aqueous solution, an iron compound aqueous solution, and a yttrium compound aqueous solution in the presence of a particle growth regulator; (b) a step of washing the dispersion liquid of the metal hydroxide gel; (c) a step of aging the washed dispersion liquid of the metal hydroxide gel; (d) a step of washing the aged dispersion liquid of the metal hydroxide gel; and (e) a step of hydrothermally treating the aged and washed dispersion liquid of the metal hydroxide gel in the presence of a particle growth regulator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コロイド領域の安定性に優れた金属酸化物ゾルおよび該金属酸化物ゾルを製造する方法に関する。本発明において金属酸化物ゾルには、酸化セリウムゾル、酸化ビスマスゾル、酸化イットリウムゾル、および酸化鉄ゾルを含む。   The present invention relates to a metal oxide sol excellent in stability of a colloidal region and a method for producing the metal oxide sol. In the present invention, the metal oxide sol includes cerium oxide sol, bismuth oxide sol, yttrium oxide sol, and iron oxide sol.

従来、シリカ、アルミナ、チタニア、ジルコニア、酸化亜鉛、五酸化アンチモン、酸化スズ、酸化セリウム、酸化ビスマス、酸化鉄、酸化イットリウム、シリカ・アルミナ、シリカ・ジルコニアなどの金属酸化物のコロイド粒子が溶媒に分散した金属酸化物ゾルが知られている。
これらの金属酸化物ゾルは屈折率調整材、絶縁材料、導電性材料、顔料、紫外線吸収剤、研磨材、半導体材料、光触媒、イオン交換体、各種フィラー等の材料として多くの分野で用いられている。
具体的には、酸化セリウムゾルはガラス基板、アルミナ基板等の研磨材や、紫外線吸収剤として、酸化ビスマスゾルは液晶の陰イオン交換体(イオンゲッター材)として、また、アンチモンをドープした酸化ビスマスゾルは両イオン交換体(イオンゲッター材)として、酸化鉄ゾルは赤色顔料等として、酸化イットリウムゾルはコンデンサー用誘電体あるいは内部電極、蛍光体、光学ガラス用屈折率調整剤、酸素センサー、セラミックスの焼結助剤、耐火物等として用いられている。
Conventionally, metal oxide colloidal particles such as silica, alumina, titania, zirconia, zinc oxide, antimony pentoxide, tin oxide, cerium oxide, bismuth oxide, iron oxide, yttrium oxide, silica-alumina, silica-zirconia, etc. are used as solvents. Dispersed metal oxide sols are known.
These metal oxide sols are used in many fields as materials such as refractive index adjusting materials, insulating materials, conductive materials, pigments, ultraviolet absorbers, abrasives, semiconductor materials, photocatalysts, ion exchangers, and various fillers. Yes.
Specifically, the cerium oxide sol is a polishing material such as a glass substrate or an alumina substrate, an ultraviolet absorber, the bismuth oxide sol is a liquid crystal anion exchanger (ion getter material), and the antimony-doped bismuth oxide sol is both. As an ion exchanger (ion getter material), iron oxide sol is used as a red pigment, yttrium oxide sol is used as a dielectric for capacitors or internal electrodes, phosphors, refractive index regulators for optical glass, oxygen sensors, ceramics sintering aids It is used as a chemical and refractory.

しかしながら、従来、シリカゾルを除いて均一な粒子径分布で、分散性、安定性等に優れた金属酸化物ゾルを得ることは困難であった。例えば、研磨材として用いた場合はスクラッチが発生したり、充分な研磨速度が得られないことがあった。また、顔料として用いた場合は色相、明度、彩度が不充分であったり、ばらつきの原因となることがあった。
また、従来の無機イオン交換体は粒子径が数100nm〜数μオーダーの粉体であり、このような大きな粒子を液晶の配向膜保護層に内填し使用することはできなかった。また、このような大きな粒子を粉砕し微粒子化すると結晶度が低下して著しくイオン交換能が低下したり、粒子径が不均一であるために凝集することがあった。
However, conventionally, it has been difficult to obtain a metal oxide sol having a uniform particle size distribution and excellent dispersibility, stability, etc., excluding silica sol. For example, when used as an abrasive, scratches may occur or a sufficient polishing rate may not be obtained. Further, when used as a pigment, the hue, lightness, and saturation may be insufficient or cause variations.
Further, the conventional inorganic ion exchanger is a powder having a particle diameter of several hundreds nm to several μm, and such large particles cannot be used by being embedded in a protective layer for a liquid crystal alignment film. Further, when such large particles are pulverized to form fine particles, the crystallinity is lowered and the ion exchange ability is remarkably lowered, or the particle diameter is not uniform, and the particles may be aggregated.

本発明は、均一な粒子径分布を有し、安定性に優れた金属酸化物ゾルの製造方法および金属酸化物ゾルを提供することを目的としている。   An object of the present invention is to provide a method for producing a metal oxide sol having a uniform particle size distribution and excellent stability, and a metal oxide sol.

本発明に係る金属酸化物ゾルの製造方法は、下記の工程(a)〜(e)からなることを特徴とし、平均粒子径が5〜150nmの範囲にある金属酸化物微粒子が分散したゾルを製造するものである。
(a)粒子成長調整剤の存在下、セリウム化合物水溶液、ビスマス化合物水溶液、鉄化合物水溶液、イットリウム化合物水溶液のいずれか1種にアルカリ水溶液を加えてセリウム水酸化物ゲルの分散液、ビスマス水酸化物ゲルの分散液、鉄水酸化物ゲルの分散液、イットリウム水酸化物ゲルの分散液のいずれか1種を調製する工程
(b)前記金属水酸化物ゲルの分散液を洗浄する工程
(c)前記洗浄した金属水酸化物ゲルの分散液を熟成する工程
(d)熟成した金属水酸化物ゲルの分散液を洗浄する工程
(e)粒子成長調整剤の存在下、前記洗浄した熟成金属水酸化物ゲルの分散液を水熱処理する工程
The method for producing a metal oxide sol according to the present invention comprises the following steps (a) to (e), and a sol in which metal oxide fine particles having an average particle diameter in the range of 5 to 150 nm are dispersed: To manufacture.
(A) In the presence of a particle growth regulator, an alkaline aqueous solution is added to any one of a cerium compound aqueous solution, a bismuth compound aqueous solution, an iron compound aqueous solution, and an yttrium compound aqueous solution, and a dispersion of cerium hydroxide gel, bismuth hydroxide A step of preparing any one of a gel dispersion, an iron hydroxide gel dispersion, and a yttrium hydroxide gel dispersion (b) a step (c) of washing the metal hydroxide gel dispersion; Aging the washed metal hydroxide gel dispersion (d) washing the aged metal hydroxide gel dispersion (e) washing the aged metal hydroxide in the presence of a particle growth regulator. Hydrothermal treatment of a dispersion of a solid gel

前記工程(e)で得られた金属酸化物微粒子分散ゾルを濃縮または希釈することが好ましい。
前記粒子成長調整剤がカルボン酸またはヒドロキシカルボン酸であることが好ましい。
前記水熱処理を100〜250℃の温度範囲で行うことが好ましい。
前記工程(d)および/または工程(e)を繰り返し行うことが好ましい。
前記工程(b)で金属水酸化物ゲル分散液の電導度を20μS/cm以下とすることが好ましく、前記工程(d)で金属酸化物分散液の電導度を200μS/cm以下とすることが好ましい。
前記工程(e)または前記繰り返し実施した工程(d)および/または工程(e)の後、金属酸化物ゾルを乾燥し、300〜900℃の範囲で焼成し、得られた微粒子を再び分散媒に分散させることが好ましい。
It is preferable to concentrate or dilute the metal oxide fine particle-dispersed sol obtained in the step (e).
The particle growth regulator is preferably a carboxylic acid or a hydroxycarboxylic acid.
The hydrothermal treatment is preferably performed in a temperature range of 100 to 250 ° C.
It is preferable to repeat the step (d) and / or the step (e).
In the step (b), the conductivity of the metal hydroxide gel dispersion is preferably 20 μS / cm or less, and in the step (d), the conductivity of the metal oxide dispersion is 200 μS / cm or less. preferable.
After the step (e) or the repeated step (d) and / or step (e), the metal oxide sol is dried and fired in the range of 300 to 900 ° C., and the obtained fine particles are dispersed again in the dispersion medium. It is preferable to be dispersed.

本発明に係る金属酸化物ゾルは、平均粒子径(Dn)が5〜150nmの範囲にあり、結晶子径(Dx)が5〜50nmの範囲にあることを特徴とする酸化セリウム、酸化ビスマス、酸化鉄、酸化イットリウムから選ばれるいずれか1種の金属酸化物粒子が分散した金属酸化物ゾルである。
前記平均粒子径(Dn)と結晶子径(Dx)との比(Dn/Dx)が1〜2の範囲にあることが好ましい。
前記金属酸化物ゾルは、前記本発明に係る金属酸化物ゾルの製造方法によって得られたものであることが好ましい。
The metal oxide sol according to the present invention has an average particle diameter (Dn) in the range of 5 to 150 nm and a crystallite diameter (Dx) in the range of 5 to 50 nm, cerium oxide, bismuth oxide, A metal oxide sol in which any one metal oxide particle selected from iron oxide and yttrium oxide is dispersed.
The ratio (D n / D x ) of the average particle diameter (D n ) to the crystallite diameter (D x ) is preferably in the range of 1 to 2.
The metal oxide sol is preferably obtained by the method for producing a metal oxide sol according to the present invention.

本発明方法によれば、結晶性が高く、均一な粒子径分布を有し、しかもコロイド領域の安定性に優れた金属酸化物ゾルを製造することができる。
また、本発明方法によって得られる酸化セリウムゾルは、ガラス基板、アルミナ基板等の研磨材、紫外線吸収剤等として、酸化ビスマスゾルはイオン交換体として、酸化鉄ゾルは赤色顔料として、酸化イットリウムゾルはコンデンサー用誘電体、光学ガラス用屈折率調整剤、酸素センサー、あるいは内部電極、蛍光体等として好適に用いることができる。
According to the method of the present invention, a metal oxide sol having high crystallinity, uniform particle size distribution, and excellent colloidal region stability can be produced.
In addition, the cerium oxide sol obtained by the method of the present invention is used for abrasives such as glass substrates and alumina substrates, ultraviolet absorbers, etc., bismuth oxide sol as an ion exchanger, iron oxide sol as a red pigment, and yttrium oxide sol as a capacitor. It can be suitably used as a dielectric, a refractive index adjusting agent for optical glass, an oxygen sensor, an internal electrode, a phosphor, or the like.

以下、本発明に係る金属酸化物ゾルの製造方法を工程順に説明する。
工程(a)
本発明に用いるセリウム化合物としては、硝酸第二セリウムアンモン、硫酸第二セリウムアンモン等が挙げられる。ビスマス化合物としては、硝酸ビスマス5水和物、塩化ビスマス、オキシ塩化ビスマス等が挙げられる。鉄化合物としては、塩化第二鉄6水和物、硝酸第二鉄、硫酸第二鉄、臭化第二鉄等が挙げられる。また、イットリウム化合物としては、硝酸イットリウム6水和物、塩化イットリウム6水和物等が挙げられる。
先ず、前記金属化合物の水溶液を調製する。このときの各金属化合物水溶液の濃度は、酸化物(CeO2、Bi23、Fe23、Y23)に換算して0.1〜5重量%、さらには0.2〜3重量%の範囲にあることが好ましい。該濃度が0.1重量%未満の場合は、収率、生産効率が低く、一方、濃度が5重量%を越えると、得られる金属酸化物ゾルの粒子径が不均一となる傾向がある。
Hereinafter, the method for producing a metal oxide sol according to the present invention will be described in the order of steps.
Step (a)
Examples of the cerium compound used in the present invention include ceric ammonium nitrate and ceric ammonium sulfate. Examples of the bismuth compound include bismuth nitrate pentahydrate, bismuth chloride, and bismuth oxychloride. Examples of the iron compound include ferric chloride hexahydrate, ferric nitrate, ferric sulfate, and ferric bromide. Examples of the yttrium compound include yttrium nitrate hexahydrate and yttrium chloride hexahydrate.
First, an aqueous solution of the metal compound is prepared. At this time, the concentration of each aqueous metal compound solution is 0.1 to 5% by weight in terms of oxides (CeO 2 , Bi 2 O 3 , Fe 2 O 3 , Y 2 O 3 ), and further 0.2 to 0.2%. It is preferably in the range of 3% by weight. When the concentration is less than 0.1% by weight, the yield and production efficiency are low. On the other hand, when the concentration exceeds 5% by weight, the particle diameter of the resulting metal oxide sol tends to be non-uniform.

本発明に用いる粒子成長調整剤としては、カルボン酸またはカルボン酸塩、ヒドロキシカルボン酸、ヒドロキシカルボン酸塩が用いられる。
具体的には、蟻酸、酢酸、蓚酸、アクリル酸(不飽和カルボン酸)、グルコン酸等のモノカルボン酸およびモノカルボン酸塩、リンゴ酸、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、などの多価カルボン酸および多価カルボン酸塩等が挙げられる。
また、α−乳酸、β−乳酸、γ−ヒドロキシ吉草酸、グリセリン酸、酒石酸、クエン酸、トロパ酸、ベンジル酸のヒドロキシカルボン酸およびヒドロキシカルボン酸塩が挙げられる。
As the particle growth regulator used in the present invention, carboxylic acid or carboxylate, hydroxycarboxylic acid, hydroxycarboxylate is used.
Specifically, monocarboxylic acids and monocarboxylic acid salts such as formic acid, acetic acid, succinic acid, acrylic acid (unsaturated carboxylic acid), gluconic acid, malic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid And polyvalent carboxylic acids such as sebacic acid, maleic acid, fumaric acid, and phthalic acid, and polyvalent carboxylic acid salts.
Further, α-lactic acid, β-lactic acid, γ-hydroxyvaleric acid, glyceric acid, tartaric acid, citric acid, tropic acid, hydroxycarboxylic acid and hydroxycarboxylate of benzylic acid can be mentioned.

工程(a)では、金属化合物水溶液に前記粒子成長調整剤または粒子成長調整剤の水溶液を混合する。このときの金属化合物のモル数(Mm)と粒子成長調整剤のモル数(Cm)とのモル比(Cm)/(Mm)は0.01〜1、さらには0.1〜0.5の範囲にあることが好ましい。
前記モル比が0.01未満の場合は、粗大な金属水酸化物ヒドロゲルが生成したり、不均一な金属水酸化物ヒドロゲルが生成し、このため、後述する工程(c)で水熱処理して得られる金属酸化物ゾルの粒子径が不均一であったり、平均粒子径が150nm以下とならないことがある。一方、前記モル比が1を越えてもさらに粒子径を均一にしたり、平均粒子径を小さく抑制する効果がさらに向上することもなく、加えて経済性が低下する問題がある。
In the step (a), the particle growth regulator or the aqueous solution of the particle growth regulator is mixed with the metal compound aqueous solution. At this time, the molar ratio (Cm) / (Mm) of the number of moles of metal compound (Mm) to the number of moles of grain growth regulator (Cm) is 0.01 to 1, more preferably 0.1 to 0.5. It is preferable to be in the range.
When the molar ratio is less than 0.01, a coarse metal hydroxide hydrogel is formed or a heterogeneous metal hydroxide hydrogel is formed. Therefore, hydrothermal treatment is performed in the step (c) described later. The particle diameter of the resulting metal oxide sol may not be uniform or the average particle diameter may not be 150 nm or less. On the other hand, even when the molar ratio exceeds 1, there is a problem that the particle size is not made uniform or the effect of suppressing the average particle size is not further improved, and the economy is lowered.

ついで、粒子成長調整剤を含む金属化合物水溶液を充分に撹拌しながら、これにアルカリ水溶液を加える。
アルカリ水溶液としては、NaOH水溶液、KOH水溶液等のアルカリ金属水溶液の他アンモニア水、有機アミン水溶液などの塩基性化合物水溶液を用いることができる。
アルカリ水溶液は金属化合物水溶液のpHが3〜12、さらには4〜11の範囲となるように添加する。pHが3未満の場合は、金属化合物の加水分解が不充分となったり、後述する工程(b)での洗浄が困難となることがあり、一方、pHが12を越えても後述する工程(b)での洗浄が困難となることがある。
なお、アルカリ水溶液を添加する際の金属化合物水溶液の温度は特に制限はないが、通常10〜50℃、さらには15〜40℃の範囲にあることが好ましい。
Next, the aqueous alkali compound solution is added to the aqueous metal compound solution containing the particle growth regulator while sufficiently stirring.
As the aqueous alkali solution, an aqueous alkali compound solution such as an aqueous NaOH solution, an aqueous KOH solution or the like, or an aqueous basic compound solution such as aqueous ammonia or organic amine can be used.
The alkaline aqueous solution is added so that the pH of the aqueous metal compound solution is in the range of 3 to 12, more preferably 4 to 11. When the pH is less than 3, the hydrolysis of the metal compound may be insufficient, or washing in the step (b) described later may be difficult. On the other hand, even if the pH exceeds 12, the step described later ( Cleaning in b) may be difficult.
The temperature of the aqueous metal compound solution when adding the alkaline aqueous solution is not particularly limited, but is usually in the range of 10 to 50 ° C, more preferably 15 to 40 ° C.

工程(b)
ついで、生成した金属水酸化物ゲルの分散液を洗浄する。
洗浄方法としては、陽イオン、陰イオン、あるいは塩を除去できれば特に制限はなく、従来公知の方法を採用することができ、例えば、限外濾過膜法、濾過分離法、遠心分離濾過法、イオン交換樹脂法等が挙げられる。
なかでもイオン交換樹脂法は洗浄後のイオン濃度を効果的に低下させることができるので好ましい。この場合、予め限外濾過膜法で洗浄した後、イオン交換樹脂法で洗浄すると効率的である。イオン交換樹脂としては、両イオン交換樹脂を用いるか、陽イオン交換樹脂と陰イオン交換樹脂とを順次用いることができる。
Step (b)
Next, the produced metal hydroxide gel dispersion is washed.
The washing method is not particularly limited as long as it can remove cations, anions, or salts, and a conventionally known method can be adopted. For example, an ultrafiltration membrane method, a filtration separation method, a centrifugal filtration method, an ion Examples include the exchange resin method.
Among these, the ion exchange resin method is preferable because the ion concentration after washing can be effectively reduced. In this case, it is efficient to wash with an ion exchange resin method after washing with an ultrafiltration membrane method in advance. As the ion exchange resin, both ion exchange resins can be used, or a cation exchange resin and an anion exchange resin can be sequentially used.

洗浄後の電導度は20μS/cm以下、さらには10μS/cm以下であることが好ましい。洗浄後の電導度が20μS/cmを越えると、粒子成長調整剤の効果が充分得られないか、得られる金属酸化物ゾルの粒子径分布が不均一となる傾向がある。
また、このときの洗浄金属水酸化物ヒドロゲル分散液のpHは概ね5〜10の範囲である。
なお、洗浄したヒドロゲル分散液には、必要に応じて酸化剤を添加して酸化しても良い。例えば、セリウム化合物を加水分解して得られるヒドロゲルは3価のセリウムが残存することがあり、酸素、オゾン、過酸化水素等の酸化剤で酸化して4価とすることが好ましい。
The conductivity after washing is preferably 20 μS / cm or less, more preferably 10 μS / cm or less. When the electric conductivity after washing exceeds 20 μS / cm, the effect of the particle growth regulator cannot be obtained sufficiently, or the particle size distribution of the obtained metal oxide sol tends to be non-uniform.
Moreover, the pH of the cleaning metal hydroxide hydrogel dispersion at this time is generally in the range of 5 to 10.
The washed hydrogel dispersion may be oxidized by adding an oxidizing agent as necessary. For example, a hydrogel obtained by hydrolyzing a cerium compound may retain trivalent cerium, and is preferably made tetravalent by oxidation with an oxidizing agent such as oxygen, ozone, or hydrogen peroxide.

工程(c)
ついで、前記洗浄した金属水酸化物ゲルの分散液を熟成する。
工程(b)で得た洗浄金属水酸化物ゲル分散液の濃度を酸化物に換算して0.1〜20重量%、さらには0.2〜15重量%、特に0.5〜10重量%の範囲に調整することが好ましい。この濃度が0.1重量%未満の場合は、粒子径分布は均一になるものの収率、生産効率が低下する問題がある。一方、濃度が20重量%を越えると、得られる金属酸化物ゾルに凝集体が生成することがある。
この濃度調整した金属水酸化物ゲル分散液を充分に撹拌しながら昇温して熟成する。該分散液は、昇温する前または昇温中に超音波を照射するなどして金属水酸化物ゲルの凝集体をできるだけ分散させておくことが好ましい。金属水酸化物ゲルの凝集体を分散させておくと、得られる金属酸化物ゾルに粗大粒子が存在することがなく、また粒子径分布がより均一な金属酸化物ゾルが得られる傾向がある。
Step (c)
Next, the dispersion of the washed metal hydroxide gel is aged.
The concentration of the washed metal hydroxide gel dispersion obtained in step (b) is 0.1 to 20% by weight, further 0.2 to 15% by weight, especially 0.5 to 10% by weight, in terms of oxide. It is preferable to adjust to the range. When this concentration is less than 0.1% by weight, the particle size distribution becomes uniform, but there is a problem that the yield and production efficiency are lowered. On the other hand, if the concentration exceeds 20% by weight, aggregates may be formed in the resulting metal oxide sol.
This concentration-adjusted metal hydroxide gel dispersion is heated and aged with sufficient stirring. In the dispersion, it is preferable to disperse the metal hydroxide gel aggregate as much as possible by irradiating ultrasonic waves before or during the temperature rise. When the metal hydroxide gel aggregates are dispersed, coarse particles are not present in the obtained metal oxide sol, and a metal oxide sol having a more uniform particle size distribution tends to be obtained.

熟成温度は100〜250℃、さらには120〜200℃の範囲にあることが好ましい。熟成温度が100℃未満の場合は、粒子成長に長時間を要したり、分散が不十分で凝集した粒子が残存したり、所望の粒子径の金属酸化物ゾルを得ることが困難であったり、さらに、結晶化が不十分なために光触媒性能、半導体性能、センサー機能等に優れた金属酸化物ゾルが得られないことがある。熟成温度が250℃を越えても粒子成長時間がさらに短くなる効果は小さく、場合によっては粒子径分布が不均一になったり、粗大な粒子が生成することがある。
なお、熟成時間は特に制限はなく、処理温度によって異なるが、通常0.5〜12時間である。
The aging temperature is preferably 100 to 250 ° C, more preferably 120 to 200 ° C. When the aging temperature is less than 100 ° C., it takes a long time to grow the particles, or the aggregated particles remain insufficiently dispersed, or it is difficult to obtain a metal oxide sol having a desired particle size. Furthermore, since the crystallization is insufficient, a metal oxide sol excellent in photocatalytic performance, semiconductor performance, sensor function and the like may not be obtained. Even if the aging temperature exceeds 250 ° C., the effect of further shortening the particle growth time is small, and in some cases, the particle size distribution may be non-uniform or coarse particles may be generated.
The aging time is not particularly limited and is usually 0.5 to 12 hours, although it varies depending on the treatment temperature.

工程(d)
ついで、工程(c)で得られた熟成した金属水酸化物ゲル分散液を洗浄する。
洗浄方法としては、限外濾過膜法、イオン交換樹脂法等を採用することができる。好適な例として、限外濾過膜法による洗浄の前および/または後にイオン交換樹脂による洗浄を行うこともできる。イオン交換樹脂法は洗浄後のイオン濃度を効果的に低下させることができるので好ましい。
ここで得られる金属酸化物ゲル分散液の電導度は概ね200μS/cm以下であることが好ましい。また、金属酸化物ゲル分散液のpHは概ね6〜9の範囲であることが好ましい。金属酸化物ゲル分散液の電導度およびpHが前記範囲にあると金属酸化物ゲル分散液は安定性に優れている。
Step (d)
Next, the aged metal hydroxide gel dispersion obtained in step (c) is washed.
As a cleaning method, an ultrafiltration membrane method, an ion exchange resin method, or the like can be employed. As a preferred example, washing with an ion exchange resin can be performed before and / or after washing by an ultrafiltration membrane method. The ion exchange resin method is preferable because the ion concentration after washing can be effectively reduced.
The conductivity of the metal oxide gel dispersion obtained here is preferably about 200 μS / cm or less. The pH of the metal oxide gel dispersion is preferably in the range of 6-9. When the conductivity and pH of the metal oxide gel dispersion are in the above ranges, the metal oxide gel dispersion is excellent in stability.

工程(e)
ついで、粒子成長調整剤の存在下、前記洗浄した熟成金属水酸化物ゲルの分散液を水熱処理する。
洗浄した熟成金属水酸化物ゲル分散液に粒子成長調整剤または粒子成長調整剤の水溶液を添加する。粒子成長調整剤としては前記したと同様のものを用いることができる。
このときの粒子成長調整剤の添加量は、金属水酸化物ゲル分散液中の換算金属酸化物MO(CeO2、Bi23、Fe23、Y23)のモル数(Mmc)と粒子成長調整剤のモル数(Cmc)とのモル比Cmc/Mmcが、0.05〜0.8、さらには0.1〜0.5の範囲にあることが好ましい。前記モル比Cmc/Mmcが0.05未満の場合は、得られる金属酸化物ゾル中に凝集体が生成したり、平均粒子径が150nm以下の金属酸化物ゾルを得るのが困難となることがある。前記モル比Cmc/Mmcが0.8を越えると、粒子成長あるいは結晶化が大きく抑制されるために所望の粒子径に成長させるのに長時間を要したり、結晶化(結晶子径の成長)が不充分なためか所望の屈折率あるいは所望の粒子径の金属酸化物ゾルを得ることが困難となることがある。
Step (e)
Next, the washed aged metal hydroxide gel dispersion is hydrothermally treated in the presence of a particle growth regulator.
A particle growth regulator or an aqueous solution of a particle growth regulator is added to the washed aged metal hydroxide gel dispersion. As the particle growth regulator, the same ones as described above can be used.
The amount of the particle growth regulator added at this time is the number of moles (Mmc) of the converted metal oxide MO (CeO 2 , Bi 2 O 3 , Fe 2 O 3 , Y 2 O 3 ) in the metal hydroxide gel dispersion. ) And the number of moles (Cmc) of the grain growth regulator is preferably in the range of 0.05 to 0.8, more preferably 0.1 to 0.5. When the molar ratio Cmc / Mmc is less than 0.05, aggregates may be generated in the obtained metal oxide sol, or it may be difficult to obtain a metal oxide sol having an average particle size of 150 nm or less. is there. If the molar ratio Cmc / Mmc exceeds 0.8, particle growth or crystallization is greatly suppressed, so that it takes a long time to grow to a desired particle size or crystallization (growth of crystallite size). ) Is insufficient, it may be difficult to obtain a metal oxide sol having a desired refractive index or a desired particle size.

ついで、粒子成長調整剤を含む金属水酸化物ゲル分散液を充分に撹拌しながら昇温して、水熱処理をする。
水熱処理温度は100〜250℃、さらには120〜200℃の範囲にあることが好ましい。水熱処理温度が100℃未満の場合は、結晶化および粒子成長に長時間を要したり、屈折率の高い金属酸化物粒子の分散したゾルを得ることが困難となることがある。水熱処理温度が250℃を越えても結晶化および粒子成長時間がさらに短くなる効果は小さく、場合によっては粒子径分布が不均一になったり、粗大な粒子が生成することがある。
なお、水熱処理時間は特に制限はなく、処理温度によって異なるが、通常0.5〜12時間である。
Next, the metal hydroxide gel dispersion containing the particle growth regulator is heated with sufficient stirring and subjected to hydrothermal treatment.
The hydrothermal treatment temperature is preferably in the range of 100 to 250 ° C, more preferably 120 to 200 ° C. When the hydrothermal treatment temperature is less than 100 ° C., it may take a long time for crystallization and particle growth, or it may be difficult to obtain a sol in which metal oxide particles having a high refractive index are dispersed. Even if the hydrothermal treatment temperature exceeds 250 ° C., the effect of further shortening the crystallization and particle growth time is small, and in some cases, the particle size distribution may be non-uniform or coarse particles may be generated.
The hydrothermal treatment time is not particularly limited and is usually 0.5 to 12 hours, although it varies depending on the treatment temperature.

工程(e)で得られた金属酸化物ゾルは、そのまま用いることもできるが、必要に応じて、濃縮または希釈して用いることができる。
濃縮する方法として、従来公知の方法を採用することができ、例えば、ロータリーエバポレーター等で加熱濃縮してもよく、さらには減圧下で加熱濃縮してもよく、限外濾過膜法で濃縮することもできる。
このようにして得られた金属酸化物ゾルの電導度は500μS/cm以下、さらには300μS/cm以下であることが好ましい。金属酸化物ゾルの電導度が500μS/cmを越えると、安定性が不充分となることがある。また、このときの金属酸化物ゾルのpHは概ね2〜8の範囲である。
Although the metal oxide sol obtained in the step (e) can be used as it is, it can be concentrated or diluted as necessary.
As a method of concentration, a conventionally known method can be employed. For example, it may be concentrated by heating with a rotary evaporator or the like, or further concentrated under reduced pressure, or concentrated by an ultrafiltration membrane method. You can also.
The electric conductivity of the metal oxide sol thus obtained is preferably 500 μS / cm or less, more preferably 300 μS / cm or less. If the conductivity of the metal oxide sol exceeds 500 μS / cm, the stability may be insufficient. Further, the pH of the metal oxide sol at this time is approximately in the range of 2-8.

このときの金属酸化物ゾルの安定なpH範囲はゾルの種類によって異なり、酸化セリウムゾルのpHは概ね3〜5の範囲である。酸化ビスマスゾルのpHは概ね7〜8の範囲にあることが好ましい。酸化イットリウム、酸化鉄ゾルについては酸性側で粒子の安定性が低下する傾向にあるため、得られたゾルを電導度が200μS/cm以下となるまで洗浄した後、アンモニア等のアルカリ性物質でpH調整することが好ましい。この場合、電導度が500を超えることがあり、このときの酸化イットリウム、 酸化鉄ゾルのpHは概ね7〜11の範囲となることがある。
また、得られた金属酸化物ゾルは、使用に際し、必要に応じて電導度、pHを調整して用いることができる。例えば、酸化セリウムゾルは研磨材としても用いられることがあり、この場合、アルカリ側で使用するためにKOH等のアルカリ性物質でpH調整することができ、この場合の酸化セリウムゾルの電導度は500μS/cm以下、pHは概ね7〜11の範囲である。
The stable pH range of the metal oxide sol at this time varies depending on the type of sol, and the pH of the cerium oxide sol is generally in the range of 3 to 5. The pH of the bismuth oxide sol is preferably approximately in the range of 7-8. For yttrium oxide and iron oxide sols, the stability of the particles tends to decrease on the acidic side, so the obtained sol is washed until the conductivity becomes 200 μS / cm or less, and then adjusted with an alkaline substance such as ammonia. It is preferable to do. In this case, the electrical conductivity may exceed 500, and the pH of the yttrium oxide and iron oxide sol at this time may be approximately in the range of 7-11.
In addition, the obtained metal oxide sol can be used by adjusting the conductivity and pH as necessary. For example, cerium oxide sol may be used as an abrasive, and in this case, pH can be adjusted with an alkaline substance such as KOH for use on the alkali side. In this case, the conductivity of cerium oxide sol is 500 μS / cm. Hereinafter, the pH is generally in the range of 7-11.

本発明の金属酸化物ゾルの製造方法では、前記工程(e)の後、工程(d)および/または工程(e)を繰り返し実施することができる。
繰り返し行う工程(d)の洗浄方法と工程(e)の熟成方法とは、前記したと同様に行うことができる。工程(d)を繰り返し行うことによって安定性が向上し、工程(e)を繰り返し行うことによって結晶性の向上、結晶子径の成長効果が得られる。
前記工程(d)および/または(e)工程を繰り返し実施した後の金属酸化物ゾルの電導度は100μS/cm以下、pHは概ね3〜8の範囲であることが好ましい。金属酸化物ゾルの電導度およびpHがこの範囲にあると金属酸化物ゾルはさらに安定性に優れている。
In the method for producing a metal oxide sol of the present invention, the step (d) and / or the step (e) can be repeatedly performed after the step (e).
The washing method in the repeated step (d) and the aging method in the step (e) can be performed in the same manner as described above. By repeating the step (d), the stability is improved, and by repeating the step (e), the crystallinity is improved and the effect of growing the crystallite diameter is obtained.
It is preferable that the electric conductivity of the metal oxide sol after repeating the step (d) and / or the step (e) is 100 μS / cm or less, and the pH is in the range of 3 to 8. When the conductivity and pH of the metal oxide sol are in this range, the metal oxide sol is further excellent in stability.

さらに、本発明の金属酸化物ゾルの製造方法では、前記工程(e)または前記繰り返し実施した工程(d)および/または工程(e)の後、金属酸化物ゾルを乾燥し、金属酸化物ゾルの種類によっても異なるが300〜900℃、より好ましくは500〜800℃の範囲で焼成し、焼成して得た微粉末を再び分散液に分散させて金属酸化物ゾルとすることができる。   Furthermore, in the method for producing a metal oxide sol of the present invention, the metal oxide sol is dried after the step (e) or the step (d) and / or the step (e), which are repeatedly performed, Although it depends on the type, the powder is calcined in the range of 300 to 900 ° C., more preferably 500 to 800 ° C., and the fine powder obtained by calcining can be dispersed again in the dispersion to obtain a metal oxide sol.

乾燥方法としては従来公知の方法を採用することができ、例えば、ロータリーエバポレーターを用いて、あるいは加熱して濃縮し、通常100℃〜200℃で乾燥して分散媒を除去する。
乾燥した金属酸化物微粉末の焼成温度が300℃未満の場合は、前記工程(e)、必要に応じて工程(e)を繰り返した場合と結晶度があまり変わらない。焼成温度が900℃を超えると、結晶度は高くなるが粒子径、結晶子径が大きくなり過ぎたり、粒子が凝集することがあり、用途が限定されることがある。例えば、分散安定性、透明性等が低下し、被膜の強度あるいは透明性を必要とする被膜の形成には不向きである。
As a drying method, a conventionally known method can be employed. For example, the solution is concentrated by using a rotary evaporator or by heating, and usually dried at 100 ° C. to 200 ° C. to remove the dispersion medium.
When the firing temperature of the dried metal oxide fine powder is less than 300 ° C., the crystallinity is not much different from that when the step (e) and the step (e) are repeated as necessary. When the firing temperature exceeds 900 ° C., the crystallinity increases, but the particle diameter and crystallite diameter may become too large, and the particles may aggregate, limiting the application. For example, the dispersion stability, transparency and the like are lowered, and it is not suitable for forming a film that requires the strength or transparency of the film.

焼成した金属酸化物微粉末は分散媒に分散させ、必要に応じて分散機にて分散させて、金属酸化物ゾルを得ることができる。
分散媒としては、水および/または有機溶媒を用いることができ、有機溶媒としてはアルコール類、グリコール類、エステル類、エーテル類、ケトン類等が挙げられる。
焼成した金属酸化物微粉末の分散液の濃度は所望の濃度に調整することができるが、通常5〜30重量%の範囲で用いられる。
また、必要に応じて分散機にて分散させる場合、金属酸化物微粉末の分散液の濃度は、分散機の種類によっても異なるが、5〜30重量%、さらには10〜25重量%の範囲にあることが好ましい。分散液の濃度が5重量%未満の場合は、分散効率が悪くなり、場合によっては未分散の凝集物が残ることがある。一方、分散液の濃度が30重量%を超えると、分散した粒子が再凝集を起こすことがあり、高分散の金属酸化物ゾルが得られない場合がある。
さらに、得られた金属酸化物ゾルは、必要に応じて前記工程(d)と同様にして洗浄してもよい。
The fired metal oxide fine powder can be dispersed in a dispersion medium and dispersed with a disperser as necessary to obtain a metal oxide sol.
As the dispersion medium, water and / or an organic solvent can be used. Examples of the organic solvent include alcohols, glycols, esters, ethers, and ketones.
Although the density | concentration of the dispersion liquid of the baked metal oxide fine powder can be adjusted to a desired density | concentration, it is normally used in 5-30 weight%.
In addition, when dispersed with a disperser as required, the concentration of the metal oxide fine powder dispersion varies depending on the type of the disperser, but is in the range of 5 to 30% by weight, more preferably 10 to 25% by weight. It is preferable that it exists in. When the concentration of the dispersion is less than 5% by weight, the dispersion efficiency is deteriorated, and in some cases, undispersed aggregates may remain. On the other hand, if the concentration of the dispersion exceeds 30% by weight, the dispersed particles may reaggregate, and a highly dispersed metal oxide sol may not be obtained.
Further, the obtained metal oxide sol may be washed in the same manner as in the step (d) as necessary.

このようにして得られた金属酸化物ゾルの平均粒子径(Dn)は5〜150nm、さらには10〜50nmの範囲にあることが好ましい。平均粒子径(Dn)が5nm未満の場合は、金属酸化物の結晶化が不充分なためか目的とする機能が発現しない傾向にある。平均粒子径(Dn)が150nmを越えるものは得られたとしても、金属酸化物ゾルが白濁したり透明性が低く、用途に制限がある。
なお、上記金属酸化物ゾルの平均粒子径(Dn)は、数平均粒子径を意味しており、例えば動的光散乱法粒度測定装置(大塚電子(株)PAR-III)によって測定することができる。
The average particle size (D n ) of the metal oxide sol thus obtained is preferably in the range of 5 to 150 nm, more preferably 10 to 50 nm. When the average particle diameter (D n ) is less than 5 nm, the target function tends not to be exhibited because the crystallization of the metal oxide is insufficient. Even if an average particle diameter (D n ) exceeding 150 nm is obtained, the metal oxide sol becomes cloudy or has low transparency, and there is a limit to applications.
The average particle diameter of the metal oxide sol (D n) is meant the number average particle size, for example, be measured by dynamic light scattering particle size measuring apparatus (Otsuka Electronics (Ltd.) PAR-III) Can do.

金属酸化物ゾルの分散質である金属酸化物粒子の結晶子径(Dx)は5〜50nm、さらには10〜30nmの範囲にあることが好ましい。結晶子径(Dx)が5nm未満の場合は、結晶化、屈折率共に不充分であり、また、分散安定性も不充分となることがある。結晶子径(Dx)が50nmを超えるものは、得られるゾルの透明性が低下し、用途に制限がある。 The crystallite diameter (D x ) of the metal oxide particles as the dispersoid of the metal oxide sol is preferably in the range of 5 to 50 nm, more preferably 10 to 30 nm. When the crystallite diameter (D x ) is less than 5 nm, both crystallization and refractive index are insufficient, and dispersion stability may be insufficient. When the crystallite diameter (D x ) exceeds 50 nm, the transparency of the obtained sol is lowered, and the application is limited.

なお、結晶子径(Dx)は、X線回折により、メインピークの半価幅(β)より、Scherrerの式D=λ/βcosθ(D:結晶子径(Å)、λ=X線波長(Å)、θ=反射角)より求めることができる。
各金属酸化物ゾルのメインピークのミラー指数(h、k、l)は以下の通りである。
CeO2:ミラー指数(h=1、k=1、l=1)
Bi23:ミラー指数(h=1、k=2、l=0)
Fe23:ミラー指数(h=1、k=0、l=4)
23:ミラー指数(h=2、k=2、l=2)
The crystallite diameter (D x ) is determined by X-ray diffraction from the half-value width (β) of the main peak. Scherrer's formula D = λ / βcos θ (D: crystallite diameter (Å), λ = X-ray wavelength (Å), θ = reflection angle).
The Miller index (h, k, l) of the main peak of each metal oxide sol is as follows.
CeO 2 : Miller index (h = 1, k = 1, l = 1)
Bi 2 O 3 : Miller index (h = 1, k = 2, l = 0)
Fe 2 O 3 : Miller index (h = 1, k = 0, l = 4)
Y 2 O 3 : Miller index (h = 2, k = 2, l = 2)

本発明で得られた上記水を分散媒とする金属酸化物ゾルは、必要に応じてアルコール、グリコール、エステル、エーテル、ケトン等の有機溶媒に置換して金属酸化物オルガノゾルとすることもできる。このような金属酸化物オルガノゾルは、例えば、樹脂基材あるいは光学材料としての樹脂レンズ基材等のハードコート膜の屈折率調整剤、反射防止膜等に好適に用いることができる。
本発明に係る金属酸化物ゾルの製造方法で得られた金属酸化物ゾルは、標準屈折率液法で測定した屈折率が1.7〜2.2の範囲にある。
The metal oxide sol obtained with the present invention using water as a dispersion medium can be replaced with an organic solvent such as alcohol, glycol, ester, ether, ketone, or the like, if necessary, to obtain a metal oxide organosol. Such a metal oxide organosol can be suitably used, for example, as a refractive index adjusting agent for a hard coat film such as a resin substrate or a resin lens substrate as an optical material, an antireflection film, or the like.
The metal oxide sol obtained by the method for producing a metal oxide sol according to the present invention has a refractive index measured by a standard refractive index liquid method in the range of 1.7 to 2.2.

つぎに、本発明に係る金属酸化物ゾルは、平均粒子径(Dn)が5〜150nmの範囲にあり、結晶子径(Dx)が5〜50nmの範囲にある金属酸化物粒子が分散したものである。金属酸化物粒子の平均粒子径および結晶子径が前記範囲にあれば、金属酸化物粒子の粒子径分布が均一で、分散安定性に優れ、結晶性が高く高屈折率である。
平均粒子径のより好ましい範囲は10〜50nmであり、結晶子径のより好ましい範囲は10〜30nmである。
また、前記平均粒子径(Dn)と結晶子径(Dx)との比(Dn/Dx)が1〜2、さらには1〜1.6の範囲にあることが好ましい。該比(Dn/Dx)が1未満となることはなく、比(Dn/Dx)が2を超えると、粒子の凝集が進んでいることを示し、前記した目的とする性能を充分発揮できないことがある。
Next, in the metal oxide sol according to the present invention, metal oxide particles having an average particle diameter (D n ) in the range of 5 to 150 nm and a crystallite diameter (D x ) in the range of 5 to 50 nm are dispersed. It is a thing. When the average particle diameter and crystallite diameter of the metal oxide particles are in the above ranges, the particle size distribution of the metal oxide particles is uniform, excellent in dispersion stability, high in crystallinity, and high in refractive index.
A more preferable range of the average particle diameter is 10 to 50 nm, and a more preferable range of the crystallite diameter is 10 to 30 nm.
Further, the ratio of the average particle diameter and (D n) and crystallite size (D x) (D n / D x) is 1-2, more preferably in the range of 1 to 1.6. The ratio (D n / D x) is never less than 1, the ratio (D n / D x) is more than 2, indicates that progressed agglomeration of the particles, the performance of the above objects It may not be able to fully demonstrate.

例えば、酸化セリウムゾルの場合は、光学用途において均一な被膜を得ることが困難となることがあり、研磨用途の場合、充分な研磨レートが得られない場合や傷が発生ずることがある。また、酸化ビスマスゾルの場合、液晶配向膜の保護層に内填した場合保護膜に凹凸が発生したり、配向膜を損傷する場合がある。さらに、酸化イットリウムゾルの場合、均一な被膜が得られないため光学用途、その他の用途に制限が生じることがある。酸化鉄ゾルの場合はヘーズが高くなったり、色調が劣る傾向にある。
このような金属酸化物ゾルは、前記した本発明に係る金属酸化物ゾルの製造方法により得られる。
For example, in the case of cerium oxide sol, it may be difficult to obtain a uniform film in optical applications, and in the case of polishing applications, a sufficient polishing rate may not be obtained or scratches may not occur. In the case of bismuth oxide sol, when the protective layer of the liquid crystal alignment film is embedded, the protective film may be uneven, or the alignment film may be damaged. Furthermore, in the case of an yttrium oxide sol, a uniform film cannot be obtained, so that there may be limitations in optical applications and other applications. In the case of iron oxide sol, the haze tends to be high or the color tone tends to be inferior.
Such a metal oxide sol can be obtained by the above-described method for producing a metal oxide sol according to the present invention.

金属酸化物ゾル(1)の調製
純水1742gにリンゴ酸1.34g(Cm=0.01)を溶解し、これに硝酸第二セリウムアンモン(Ce(NO34・2NH4NO3)57.3g(Mm=0.1)を溶解させた。(Cm/Mm=0.1)
ついで濃度10重量%のKOH水溶液365gを添加してセリウム水酸化物ヒドロゲル分散液(CeO2濃度1重量%)を調製した。このときの分散液のpHは11.7、温度は28℃であった。
ついで、これを静置、沈降させ上澄み液を除き、純水にて1%濃度に調整した。
ついで、限外ろ過膜で電導度が280μS/cmになるまで洗浄した。
次に、このセリウム水酸化物ヒドロゲル分散液(CeO2濃度1重量%)に陽イオン交換脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。
ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株):SANUPC)50gを加え脱イオンした。このようにして洗浄したセリウム水酸化物ヒドロゲル分散液(CeO2濃度1重量%)の電導度は1μS/cm、pH=7であった。
ついでセリウム水酸化物ヒドロゲル分散液に濃度35重量%の過酸化水素水1.4gを加え80℃で30分間酸化処理を行った。
Preparation of metal oxide sol (1) 1.34 g of malic acid (Cm = 0.01) was dissolved in 1742 g of pure water, and ceric ammonium nitrate (Ce (NO 3 ) 4 .2NH 4 NO 3 ) 57 was dissolved therein. .3 g (Mm = 0.1) was dissolved. (Cm / Mm = 0.1)
Subsequently, a cerium hydroxide hydrogel dispersion (CeO 2 concentration 1 wt%) was prepared by adding 365 g of a 10 wt% KOH aqueous solution. At this time, the pH of the dispersion was 11.7, and the temperature was 28 ° C.
Subsequently, this was left still and settled, the supernatant was removed, and the concentration was adjusted to 1% with pure water.
Subsequently, it was washed with an ultrafiltration membrane until the electric conductivity reached 280 μS / cm.
Next, 95 g of cation exchange fat (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the cerium hydroxide hydrogel dispersion (CeO 2 concentration 1 wt%) to deionize.
Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the cerium hydroxide hydrogel dispersion thus washed (CeO 2 concentration 1% by weight) was 1 μS / cm and pH = 7.
Next, 1.4 g of hydrogen peroxide solution having a concentration of 35% by weight was added to the cerium hydroxide hydrogel dispersion, followed by oxidation at 80 ° C. for 30 minutes.

ついで純水1742gを加え、オートクレーブに充填し、200℃で2時間熟成した。このとき、電導度は22μS/cm、pHは9であった。
ついで陽イオン交換樹脂(三菱化学(株):SK1−BH)95gを加え脱イオンし、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンし、陰イオン交換樹脂を分離した。このときの電導度は1μS/cm、pHは8であった。
Next, 1742 g of pure water was added, the autoclave was filled and aged at 200 ° C. for 2 hours. At this time, the conductivity was 22 μS / cm and the pH was 9.
Next, 95 g of a cation exchange resin (Mitsubishi Chemical Corporation: SK1-BH) was added for deionization, and after separating the cation exchange resin, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. Ionized and separated the anion exchange resin. At this time, the conductivity was 1 μS / cm and the pH was 8.

次に、上記熟成し洗浄した分散液に濃度2重量%のリンゴ酸67g(Cm/Mm=0.1)を加え、超音波を1時間照射して分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。この時の電導度は360μS/cm、pHは2.9であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)95gを加え脱イオンを行い、陰イオン交換樹脂を分離した後、純水3750gを供給しながら限外濾過膜法で洗浄し、濃縮して濃度15重量%の金属酸化物ゾル(1)を調製した。
金属酸化物ゾル(1)の電導度は35μS/cm、pHは3.8であり、微粒子の平均粒子径は22nm、結晶子径は18.5nm、Dn/Dxは1.2であった。
また、以下のようにして屈折率を測定し、金属酸化物ゾル(1)の調製条件と測定結果を表1〜3に示した。
Next, 67 g (Cm / Mm = 0.1) of malic acid having a concentration of 2% by weight was added to the above-mentioned aged and washed dispersion, and after ultrasonic treatment for 1 hour, the autoclave was filled. Hydrothermal treatment was performed at 200 ° C. for 2 hours. At this time, the electric conductivity was 360 μS / cm and the pH was 2.9.
95 g of anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) is added to the hydrothermally treated dispersion and deionized to separate the anion exchange resin. Then, 3750 g of pure water is supplied and an ultrafiltration membrane method is used. It was washed and concentrated to prepare a metal oxide sol (1) having a concentration of 15% by weight.
The conductivity of the metal oxide sol (1) was 35 μS / cm, the pH was 3.8, the average particle size of the fine particles was 22 nm, the crystallite size was 18.5 nm, and Dn / Dx was 1.2.
Further, the refractive index was measured as follows, and the preparation conditions and measurement results of the metal oxide sol (1) are shown in Tables 1 to 3.

屈折率の測定
(1)金属酸化物ゾル(1)をエバポレーターに採り、分散媒を蒸発させる。
(2)120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折率液を2,3滴ガラス基板状に滴下し、これに金属酸化物粉末を混合する。
(4)上記(3)の操作を種々の標準屈折率液で行い、混合液が透明になったときの標準屈折率液の屈折率を金属酸化物粒子の屈折率とする。
Measurement of Refractive Index (1) The metal oxide sol (1) is taken in an evaporator and the dispersion medium is evaporated.
(2) Dry at 120 ° C. to obtain a powder.
(3) A standard refractive index liquid with a known refractive index is dropped into a glass substrate shape in a few drops, and a metal oxide powder is mixed therewith.
(4) The operation of (3) above is performed with various standard refractive index liquids, and the refractive index of the standard refractive index liquid when the mixed liquid becomes transparent is used as the refractive index of the metal oxide particles.

金属酸化物ゾル(2)の調製
実施例1と同様にして水熱処理し、洗浄した分散液を100℃で15時間乾燥した後、800℃で2時間焼成して酸化セリウムの結晶粉末を得た。
次に、純水266gに酒石酸4.1gを溶解し、酸化セリウム結晶粉末46.9gを添加し、これに濃度48重量%のNaOH水溶液4.5gを添加した分散液をサンドミルに充填し、ジルコニアビーズ1713gを加えて60分間粉砕を行った。
ついでジルコニアビーズを分離し酸化セリウムの分散液を得た。このとき、濃度は15重量%、電導度は9.5mS/cm、pHは10.6であった。
ついで、酸化セリウムの分散液に陽イオン交換樹脂(三菱化学(株):SK1−BH)95gを加え脱イオンし、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。さらに、上記陽イオン交換樹脂および陰イオン交換樹脂による脱イオン工程を繰り返し行い、濃度15重量%の金属酸化物ゾル(2)を調製した。金属酸化物ゾル(2)の電導度は200μS/cm、pHは6であり、平均粒子径は50nm、結晶子径は33nm、Dn/Dxは1.5であった。また、屈折率を測定し、測定結果を表3に示した。
Preparation of Metal Oxide Sol (2) Hydrothermally treated in the same manner as in Example 1. The washed dispersion was dried at 100 ° C. for 15 hours and then calcined at 800 ° C. for 2 hours to obtain a cerium oxide crystal powder. .
Next, 4.1 g of tartaric acid was dissolved in 266 g of pure water, 46.9 g of cerium oxide crystal powder was added, and a dispersion obtained by adding 4.5 g of NaOH aqueous solution having a concentration of 48 wt% was charged in a sand mill, and zirconia was added. 1713 g of beads were added and pulverized for 60 minutes.
Next, zirconia beads were separated to obtain a dispersion of cerium oxide. At this time, the concentration was 15% by weight, the conductivity was 9.5 mS / cm, and the pH was 10.6.
Next, 95 g of a cation exchange resin (Mitsubishi Chemical Corporation: SK1-BH) was added to the cerium oxide dispersion to deionize the cation exchange resin, and then the anion exchange resin (Mitsubishi Chemical Corporation) : SANUPC) was added and deionized. Further, the deionization step using the cation exchange resin and the anion exchange resin was repeated to prepare a metal oxide sol (2) having a concentration of 15% by weight. The conductivity of the metal oxide sol (2) was 200 μS / cm, the pH was 6, the average particle size was 50 nm, the crystallite size was 33 nm, and Dn / Dx was 1.5. Further, the refractive index was measured, and the measurement results are shown in Table 3.

比較例1Comparative Example 1

(特徴:実施例1で水熱処理なし)
金属酸化物ゾル(R1)の調製
実施例1と同様に熟成し、イオン交換樹脂で洗浄した後、水熱処理を行わずに限外濾過膜で濃縮して濃度15重量%の金属酸化物ゾル(R1)を調製した。
金属酸化物ゾル(R1)の電導度は1μS/cm、pHは8であり、平均粒子径は16nm、結晶子径は7nm、Dn/Dxは2.3であった。また、屈折率を測定し、測定結果を表3に示した。
(Feature: No hydrothermal treatment in Example 1)
Preparation of Metal Oxide Sol (R1) Aged as in Example 1, washed with ion exchange resin, concentrated with an ultrafiltration membrane without hydrothermal treatment, and a metal oxide sol having a concentration of 15% by weight ( R1) was prepared.
The conductivity of the metal oxide sol (R1) was 1 μS / cm, pH was 8, the average particle size was 16 nm, the crystallite size was 7 nm, and Dn / Dx was 2.3. Further, the refractive index was measured, and the measurement results are shown in Table 3.

比較例2Comparative Example 2

(特徴:実施例2で水熱処理なし)
金属酸化物ゾル(R2)の調製
実施例1と同様にして熟成、洗浄した分散液(水熱処理を行わなかった。)を100℃で15時間乾燥した後、800℃で2時間焼成して酸化セリウムの結晶粉末を得た。
次に、純水266gに酒石酸4.1gを溶解し、酸化セリウム結晶粉末46.9gを添加し、これに濃度48重量%のNaOH水溶液4.5gを添加した分散液をサンドミルに充填し、ジルコニアビーズ1713gを加えて60分間粉砕を行った。
ついでジルコニアビーズを分離し酸化セリウムの分散液を得た。このとき、濃度は15重量%、電導度は7mS/cm、pHは9.5であった。
ついで、酸化セリウムの分散液に陽イオン交換樹脂(三菱化学(株):SK1−BH)95gを加え脱イオンし、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。さらに、上記陽イオン交換樹脂および陰イオン交換樹脂による脱イオン工程を繰り返し行い、濃度15重量%の金属酸化物ゾル(R2)を調製した。金属酸化物ゾル(R2)の電導度は150μS/cm、pHは6.5であり、平均粒子径は58nm、結晶子径は29nm、Dn/Dxは2.0であった。また、屈折率を測定し、測定結果を表3に示した。
(Feature: No hydrothermal treatment in Example 2)
Preparation of Metal Oxide Sol (R2) A dispersion liquid which was aged and washed in the same manner as in Example 1 (no hydrothermal treatment was performed) was dried at 100 ° C. for 15 hours and then calcined at 800 ° C. for 2 hours to oxidize. A cerium crystal powder was obtained.
Next, 4.1 g of tartaric acid was dissolved in 266 g of pure water, 46.9 g of cerium oxide crystal powder was added, and a dispersion obtained by adding 4.5 g of NaOH aqueous solution having a concentration of 48 wt% was charged in a sand mill, and zirconia was added. 1713 g of beads were added and pulverized for 60 minutes.
Next, zirconia beads were separated to obtain a dispersion of cerium oxide. At this time, the concentration was 15% by weight, the conductivity was 7 mS / cm, and the pH was 9.5.
Next, 95 g of a cation exchange resin (Mitsubishi Chemical Corporation: SK1-BH) was added to the cerium oxide dispersion to deionize the cation exchange resin, and then the anion exchange resin (Mitsubishi Chemical Corporation) : SANUPC) was added and deionized. Further, the deionization step using the cation exchange resin and the anion exchange resin was repeated to prepare a metal oxide sol (R2) having a concentration of 15% by weight. The conductivity of the metal oxide sol (R2) was 150 μS / cm, pH was 6.5, the average particle size was 58 nm, the crystallite size was 29 nm, and Dn / Dx was 2.0. Further, the refractive index was measured, and the measurement results are shown in Table 3.

比較例3Comparative Example 3

(特徴:実施例2で熟成、水熱処理なし)
金属酸化物ゾル(R3)の調製
実施例1と同様にして調合、洗浄したヒドロゲル分散液を100℃で15時間乾燥した後、800℃で2時間焼成して酸化セリウムの結晶粉末を得た。
次に、純水266gに酒石酸4.1gを溶解し、酸化セリウム結晶粉末46.9gを添加し、これに濃度48重量%のNaOH水溶液4.5gを添加した分散液をサンドミルに充填し、ジルコニアビーズ1713gを加えて60分間粉砕を行った。
ついでジルコニアビーズを分離し酸化セリウムの分散液を得た。このとき、濃度は15重量%、電導度は6mS/cm、pHは8.9であった。
ついで、酸化セリウムの分散液に陽イオン交換樹脂(三菱化学(株):SK1−BH)95gを加え脱イオンし、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。さらに、上記陽イオン交換樹脂および陰イオン交換樹脂による脱イオン工程を繰り返し行い、濃度15重量%の金属酸化物ゾル(R3)を調製した。金属酸化物ゾル(R3)の電導度は100μS/cm、pHは6.6であり、平均粒子径は78nm、結晶子径は28nm、Dn/Dxは2.8であった。また、屈折率を測定し、測定結果を表3に示した。
(Feature: Aging in Example 2, no hydrothermal treatment)
Preparation of Metal Oxide Sol (R3) A hydrogel dispersion prepared and washed in the same manner as in Example 1 was dried at 100 ° C. for 15 hours and then calcined at 800 ° C. for 2 hours to obtain a cerium oxide crystal powder.
Next, 4.1 g of tartaric acid was dissolved in 266 g of pure water, 46.9 g of cerium oxide crystal powder was added, and a dispersion obtained by adding 4.5 g of NaOH aqueous solution having a concentration of 48 wt% was charged in a sand mill, and zirconia was added. 1713 g of beads were added and pulverized for 60 minutes.
Next, zirconia beads were separated to obtain a dispersion of cerium oxide. At this time, the concentration was 15% by weight, the conductivity was 6 mS / cm, and the pH was 8.9.
Next, 95 g of a cation exchange resin (Mitsubishi Chemical Corporation: SK1-BH) was added to the cerium oxide dispersion to deionize the cation exchange resin, and then the anion exchange resin (Mitsubishi Chemical Corporation) : SANUPC) was added and deionized. Further, the deionization step using the cation exchange resin and the anion exchange resin was repeated to prepare a metal oxide sol (R3) having a concentration of 15% by weight. The conductivity of the metal oxide sol (R3) was 100 μS / cm, pH was 6.6, the average particle size was 78 nm, the crystallite size was 28 nm, and Dn / Dx was 2.8. Further, the refractive index was measured, and the measurement results are shown in Table 3.

金属酸化物ゾル(3)の調製
純水4493gに酒石酸3.2g(Cm=0.021)を溶解し、これに硝酸ビスマス5水和物(Bi(NO33・5H2O)104.15g(Mm=0.107)を添加した。(Cm/Mm=0.2)
ついで濃度61重量%の硝酸400gを添加して硝酸ビスマスを溶解させた後、濃度10重量%のKOH水溶液2636gを添加してビスマス水酸化物ヒドロゲル分散液(Bi23濃度1重量%)を調製した。このときの分散液のpHは12.3、温度は30℃であった。ついで、これを静置、沈降させ上澄み液を除き、純水にて濃度を1重量%に調整し、限外ろ過膜で電導度が280μS/cmになるまで洗浄した。
次に、ビスマス水酸化物ヒドロゲル分散液(Bi23濃度1重量%)に陽イオン交換脂(三菱化学(株):SK1−BH)150gを加え脱イオンし、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)100gを加え脱イオンし、ついで陰イオン交換樹脂を分離した後、陽イオン交換樹脂(三菱化学(株):SK1−BH)95gを加え脱イオンし、陽イオン交換樹脂を分離した。
このようにして得られた洗浄ビスマス水酸化物ヒドロゲル分散液(Bi23濃度1重量%)の電導度は15μS/cm、pH=9.3であった。
Preparation of Metal Oxide Sol (3) 3.2 g (Cm = 0.021) of tartaric acid was dissolved in 4493 g of pure water, and bismuth nitrate pentahydrate (Bi (NO 3 ) 3 .5H 2 O) 104. 15 g (Mm = 0.107) was added. (Cm / Mm = 0.2)
Next, 400 g of nitric acid having a concentration of 61% by weight was added to dissolve bismuth nitrate, and 2636 g of a 10% by weight aqueous KOH solution was added to prepare a bismuth hydroxide hydrogel dispersion (Bi 2 O 3 concentration 1% by weight). Prepared. At this time, the pH of the dispersion was 12.3 and the temperature was 30 ° C. Subsequently, this was allowed to stand and settle, the supernatant was removed, the concentration was adjusted to 1% by weight with pure water, and the mixture was washed with an ultrafiltration membrane until the conductivity reached 280 μS / cm.
Next, 150 g of cation exchange fat (Mitsubishi Chemical Corporation: SK1-BH) was added to the bismuth hydroxide hydrogel dispersion (Bi 2 O 3 concentration 1% by weight) and deionized to separate the cation exchange resin. Thereafter, 100 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization, and after the anion exchange resin was separated, 95 g of a cation exchange resin (Mitsubishi Chemical Corporation: SK1-BH) was added. In addition, deionization was performed to separate the cation exchange resin.
The conductivity of the thus obtained washed bismuth hydroxide hydrogel dispersion (Bi 2 O 3 concentration 1% by weight) was 15 μS / cm and pH = 9.3.

ついでオートクレーブに充填し、150℃で2時間熟成した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)100gを加え脱イオンし、陰イオン交換樹脂を分離後、陽イオン交換樹脂(三菱化学(株)製:SK1−BH)80gを加え脱イオンし、陽イオン交換樹脂を分離した。このときの電導度は2.3μS/cm、pHは9であった。
次に、上記熟成し洗浄した分散液に濃度2重量%の酒石酸80g(Cm/Mm=0.1)を加え、超音波を1時間照射して分散処理をした後、オートクレーブに充填し、150℃で2時間水熱処理をした。この時の電導度は500μS/cm、pHは2.6であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)95gを加え脱イオンを行い、陰イオン交換樹脂を分離後、陽イオン交換樹脂(三菱化学(株)製:SK1−BH)80gを加え脱イオンし、陽イオン交換樹脂を分離した。このときの電導度は50μS/cm、pHは8であった。
ついで純水4500gを供給しながら限外濾過膜法で洗浄し、その後濃縮し、濃度15重量%の金属酸化物ゾル(3)を調製した。
金属酸化物ゾル(3)の電導度は35μS/cm、pHは7.7であり、平均粒子径は22nm、結晶子径は12nm、Dn/Dxは1.8であった。
Next, after filling in an autoclave and aging at 150 ° C. for 2 hours, 100 g of anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to deionize, and after separating the anion exchange resin, the cation exchange resin (Mitsubishi) 80 g of Chemical Co., Ltd. (SK1-BH) was added and deionized to separate the cation exchange resin. At this time, the electric conductivity was 2.3 μS / cm and the pH was 9.
Next, 80 g of tartaric acid having a concentration of 2 wt% (Cm / Mm = 0.1) is added to the above-mentioned dispersion that has been aged and washed, and subjected to dispersion treatment by irradiating with ultrasonic waves for 1 hour, and then filled into an autoclave. Hydrothermal treatment was carried out at 2 ° C. for 2 hours. The electric conductivity at this time was 500 μS / cm, and the pH was 2.6.
95 g of an anion exchange resin (Mitsubishi Chemical Corp .: SANUPC) is added to the hydrothermally treated dispersion to perform deionization, and after the anion exchange resin is separated, a cation exchange resin (Mitsubishi Chemical Corp .: SK1- BH) 80 g was added and deionized to separate the cation exchange resin. At this time, the conductivity was 50 μS / cm and the pH was 8.
Next, 4500 g of pure water was supplied and washed with an ultrafiltration membrane method, followed by concentration to prepare a metal oxide sol (3) having a concentration of 15% by weight.
The conductivity of the metal oxide sol (3) was 35 μS / cm, pH was 7.7, the average particle size was 22 nm, the crystallite size was 12 nm, and Dn / Dx was 1.8.

金属酸化物ゾル(4)の調製
実施例3と同様にして水熱処理し、洗浄した分散液を100℃で15時間乾燥した後、600℃で2時間焼成して酸化ビスマスの結晶粉末を得た。この酸化ビスマス結晶粉末12gをエタノール216gに添加した分散液をサンドミルに充填し、ガラスビーズ628gを加えて210分間粉砕を行った。
ついでガラスビーズを分離し、ロータリーエバポレーターにて15重量%まで濃縮して金属酸化物ゾル(4)を調製した。金属酸化物ゾル(4)中の微粒子の平均粒子径は56nm、結晶子径は28nm、Dn/Dxは2.0であった。
Preparation of Metal Oxide Sol (4) Hydrothermally treated in the same manner as in Example 3. The washed dispersion was dried at 100 ° C. for 15 hours and then calcined at 600 ° C. for 2 hours to obtain bismuth oxide crystal powder. . A dispersion obtained by adding 12 g of this bismuth oxide crystal powder to 216 g of ethanol was filled in a sand mill, and 628 g of glass beads were added and pulverized for 210 minutes.
Next, the glass beads were separated and concentrated to 15% by weight with a rotary evaporator to prepare a metal oxide sol (4). The average particle size of the fine particles in the metal oxide sol (4) was 56 nm, the crystallite size was 28 nm, and Dn / Dx was 2.0.

比較例4Comparative Example 4

(特徴:実施例3で水熱処理なし)
金属酸化物ゾル(R4)の調製
実施例3と同様に熟成、洗浄した分散液を限外濾過膜法で濃縮し濃度15重量%の金属酸化物ゾル(R4)を調製した。
金属酸化物ゾル(R4)の電導度は30μS/cm、pHは8.6であり、平均粒子径は36nm、結晶子径は15nm、Dn/Dxは2.4であった。
(Feature: No hydrothermal treatment in Example 3)
Preparation of Metal Oxide Sol (R4) A dispersion aged and washed in the same manner as in Example 3 was concentrated by an ultrafiltration membrane method to prepare a metal oxide sol (R4) having a concentration of 15% by weight.
The conductivity of the metal oxide sol (R4) was 30 μS / cm, pH was 8.6, the average particle size was 36 nm, the crystallite size was 15 nm, and Dn / Dx was 2.4.

比較例5Comparative Example 5

(特徴:実施例4で水熱処理なし)
金属酸化物ゾル(R5)の調製
実施例3と同様にして熟成し、洗浄した分散液を100℃で15時間乾燥した後、600℃で2時間焼成して酸化ビスマスの結晶粉末を得た。
次に、エタノール216gに濃度1重量%のアンチモン酸12gを添加し、これに酸化ビスマス結晶粉末12gを添加した分散液をサンドミルに充填し、ガラスビーズ628gを加えて210分間粉砕を行った。
ついでガラスビーズを分離し、ロータリーエバポレーターにて15重量%まで濃縮して金属酸化物ゾル(R5)を調製した。金属酸化物ゾル(R5)の平均粒子径は42nm、結晶子径は19nm、Dn/Dxは2.2であった。
(Feature: No hydrothermal treatment in Example 4)
Preparation of Metal Oxide Sol (R5) Aged and washed in the same manner as in Example 3, the dried dispersion was dried at 100 ° C. for 15 hours and then calcined at 600 ° C. for 2 hours to obtain bismuth oxide crystal powder.
Next, 12 g of antimonic acid having a concentration of 1% by weight was added to 216 g of ethanol, and a dispersion obtained by adding 12 g of bismuth oxide crystal powder to this was filled in a sand mill, and 628 g of glass beads were added and pulverized for 210 minutes.
Subsequently, the glass beads were separated and concentrated to 15% by weight with a rotary evaporator to prepare a metal oxide sol (R5). The average particle size of the metal oxide sol (R5) was 42 nm, the crystallite size was 19 nm, and Dn / Dx was 2.2.

比較例6Comparative Example 6

(特徴:実施例4で熟成、水熱処理なし)
金属酸化物ゾル(R6)の調製
実施例4と同様にして調合、洗浄したヒドロゲル分散液を100℃で15時間乾燥した後、600℃で2時間焼成して酸化ビスマスの結晶粉末を得た。
次に、エタノール216gに濃度1重量%のアンチモン酸12gを添加し、これに酸化ビスマス結晶粉末12gを添加した分散液をサンドミルに充填し、ガラスビーズ628gを加えて210分間粉砕を行った。
ついでガラスビーズを分離し、ロータリーエバポレーターにて15重量%まで濃縮して金属酸化物ゾル(R6)を調製した。金属酸化物ゾル(R6)の平均粒子径は45nm、結晶子径は16nm、Dn/Dxは2.8であった。
(Feature: Aging in Example 4, no hydrothermal treatment)
Preparation of Metal Oxide Sol (R6) A hydrogel dispersion prepared and washed in the same manner as in Example 4 was dried at 100 ° C. for 15 hours and then calcined at 600 ° C. for 2 hours to obtain a bismuth oxide crystal powder.
Next, 12 g of antimonic acid having a concentration of 1% by weight was added to 216 g of ethanol, and a dispersion obtained by adding 12 g of bismuth oxide crystal powder to this was filled in a sand mill, and 628 g of glass beads were added and pulverized for 210 minutes.
Next, the glass beads were separated and concentrated to 15% by weight with a rotary evaporator to prepare a metal oxide sol (R6). The metal oxide sol (R6) had an average particle size of 45 nm, a crystallite size of 16 nm, and Dn / Dx of 2.8.

金属酸化物ゾル(5)の調製
純水2843gにクエン酸一水和物5.48g(Cm=0.026)を溶解し、これに硝酸イットリウム6水和物(Y(NO33・6H2O)100g(Mm=0.26)を溶解させた(Cm/Mm=0.1)。
ついで濃度10重量%のKOH水溶液465gを添加してイットリウム水酸化物ヒドロゲル分散液(Y23濃度2重量%)を調製した。このときの分散液のpHは12.0、温度は20℃であった。
ついで、これを静置、沈降させ上澄み液を除き、純水にて2%濃度に調整した。
次に、このイットリウム水酸化物ヒドロゲル分散液(Y23濃度2重量%)に陽イオン交換脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。
ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株):SANUPC)50gを加え脱イオンした。このようにして洗浄したイットリウム水酸化物ヒドロゲル分散液(Y23濃度2重量%)の電導度は7.5μS/cm、pH=10であった。
Preparation of metal oxide sol (5) 5.48 g (Cm = 0.026) of citric acid monohydrate was dissolved in 2843 g of pure water, and yttrium nitrate hexahydrate (Y (NO 3 ) 3 · 6H) was dissolved therein. 2 O) 100 g (Mm = 0.26) was dissolved (Cm / Mm = 0. 1).
Then, 465 g of a 10 wt% KOH aqueous solution was added to prepare a yttrium hydroxide hydrogel dispersion (Y 2 O 3 concentration 2 wt%). At this time, the pH of the dispersion was 12.0, and the temperature was 20 ° C.
Subsequently, this was left still and settled, the supernatant was removed, and the concentration was adjusted to 2% with pure water.
Next, 95 g of cation exchange fat (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the yttrium hydroxide hydrogel dispersion (Y 2 O 3 concentration 2% by weight) to deionize.
Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the yttrium hydroxide hydrogel dispersion (Y 2 O 3 concentration 2% by weight) thus washed was 7.5 μS / cm and pH = 10.

ついでオートクレーブに充填し、200℃で2時間熟成した。このとき、電導度は47.5μS/cm、pHは7.5であった。
ついで陰イオン交換樹脂(三菱化学(株):SANUPC)50gを加え脱イオンし、陰イオン交換樹脂を分離した。
このときの電導度は7.6μS/cm、pHは9であった。
次に、上記熟成し洗浄した分散液に濃度2重量%のクエン酸274g(Cm/Mm=0.1)を加え、超音波を1時間照射して分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。この時の電導度は500μS/cm、pHは2.6であった。水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)95gを加え脱イオンを行い、陰イオン交換樹脂を分離した後、陽イオン交換樹脂(三菱化学(株):SK1−BH)50gを加え脱イオンし、限外濾過膜法で濃縮して濃度10重量%の金属酸化物ゾル(5)を調製した。金属酸化物ゾル(5)の電導度は45μS/cm、pHは8であり、平均粒子径は18nm、結晶子径は12nm、Dn/Dxは1.5であった。また、屈折率を測定し、測定結果を表3に示した。
Next, the autoclave was filled and aged at 200 ° C. for 2 hours. At this time, the conductivity was 47.5 μS / cm and the pH was 7.5.
Subsequently, 50 g of an anion exchange resin (Mitsubishi Chemical Corporation: SANUPC) was added and deionized to separate the anion exchange resin.
At this time, the conductivity was 7.6 μS / cm and the pH was 9.
Next, 274 g of citric acid having a concentration of 2% by weight (Cm / Mm = 0.1) was added to the above ripened and washed dispersion, and after ultrasonic treatment for 1 hour, the dispersion was treated, and then filled into an autoclave. Hydrothermal treatment was performed at 200 ° C. for 2 hours. The electric conductivity at this time was 500 μS / cm, and the pH was 2.6. 95 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) is added to the hydrothermally treated dispersion to perform deionization, and the anion exchange resin is separated, and then the cation exchange resin (Mitsubishi Chemical Corporation: SK1- BH) 50 g was added, deionized, and concentrated by an ultrafiltration membrane method to prepare a metal oxide sol (5) having a concentration of 10% by weight. The conductivity of the metal oxide sol (5) was 45 μS / cm, the pH was 8, the average particle size was 18 nm, the crystallite size was 12 nm, and Dn / Dx was 1.5. Further, the refractive index was measured, and the measurement results are shown in Table 3.

金属酸化物ゾル(6)の調製
実施例5と同様にして水熱処理し、洗浄した分散液を100℃で15時間乾燥した後、700℃で2時間焼成して酸化イットリウムの結晶粉末を得た。
次に、純水409gにクエン酸4.2gを溶解し、酸化イットリウム結晶粉末23gを添加し、これに濃度28.8重量%のアンモニア18gを添加した分散液をサンドミルに充填し、ガラスビーズ999gを加えて180分間粉砕を行った。
ついでガラスビーズを分離し酸化イットリウムの分散液を得た。このとき、濃度は5重量%、電導度は0.95mS/cm、pHは11.5であった。
ついで濃度28.8重量%のアンモニア水にてpHを10に調整した水3600gを供給しながら限外濾過膜法で洗浄し、その後濃縮し濃度10重量%の金属酸化物ゾル(6)を調整した。金属酸化物ゾル(6)の電導度は0.5mS/cm、pHは10であり、平均粒子径は22nm、結晶子径は18nm、Dn/Dxは1.2であった。また、屈折率を測定し、測定結果を表3に示した。
Preparation of Metal Oxide Sol (6) Hydrothermally treated in the same manner as in Example 5. The washed dispersion was dried at 100 ° C. for 15 hours and then calcined at 700 ° C. for 2 hours to obtain yttrium oxide crystal powder. .
Next, 4.2 g of citric acid was dissolved in 409 g of pure water, 23 g of yttrium oxide crystal powder was added, and a dispersion obtained by adding 18 g of ammonia having a concentration of 28.8 wt% was charged into a sand mill, and 999 g of glass beads were added. And pulverized for 180 minutes.
Then, the glass beads were separated to obtain a dispersion of yttrium oxide. At this time, the concentration was 5% by weight, the conductivity was 0.95 mS / cm, and the pH was 11.5.
Next, it was washed by ultrafiltration membrane method while supplying 3600 g of water adjusted to pH 10 with ammonia water having a concentration of 28.8 wt%, and then concentrated to prepare a metal oxide sol (6) having a concentration of 10 wt%. did. The electric conductivity of the metal oxide sol (6) was 0.5 mS / cm, pH was 10, the average particle size was 22 nm, the crystallite size was 18 nm, and Dn / Dx was 1.2. Further, the refractive index was measured, and the measurement results are shown in Table 3.

比較例7Comparative Example 7

(特徴:実施例5で水熱処理なし)
金属酸化物ゾル(R7)の調製
実施例5と同様に熟成、洗浄し、限外濾過膜法で濃縮して濃度10重量%の金属酸化物ゾル(R7)を調製した。金属酸化物ゾル(R7)の電導度は30μS/cm、pHは9、であり、平均粒子径は17nm、結晶子径は7nm、Dn/Dxは2.4であった。また、屈折率を測定し、測定結果を表3に示した。
(Feature: No hydrothermal treatment in Example 5)
Preparation of Metal Oxide Sol (R7) Aged, washed and concentrated by the ultrafiltration membrane method in the same manner as in Example 5 to prepare a metal oxide sol (R7) having a concentration of 10% by weight. The conductivity of the metal oxide sol (R7) was 30 μS / cm, the pH was 9, the average particle size was 17 nm, the crystallite size was 7 nm, and Dn / Dx was 2.4. Further, the refractive index was measured, and the measurement results are shown in Table 3.

比較例8Comparative Example 8

(特徴:実施例6で水熱処理なし)
金属酸化物ゾル(R8)の調製
実施例6と同様にして熟成、洗浄した分散液を100℃で15時間乾燥した後、700℃で2時間焼成して酸化イットリウムの結晶粉末を得た。
次に、純水409gにクエン酸4.2gを溶解し、酸化イットリウム結晶粉末23gを添加し、これに濃度28.8重量%のアンモニア18gを添加した分散液をサンドミルに充填し、ガラスビーズ999gを加えて180分間粉砕を行った。
ついでガラスビーズを分離し酸化イットリウムの分散液を得た。このときの濃度は5重量%、電導度は0.63mS/cm、pHは11であった。
ついで濃度28.8重量%のアンモニアにてpHを10に調整した純水3600gを供給しながら限外濾過膜法で洗浄し、その後濃縮して濃度10重量%の金属酸化物ゾル(R8)を調製した。金属酸化物ゾル(R8)の電導度は0.4mS/cm、pHは10であり、平均粒子径は42nm、結晶子径は19nm、Dn/Dxは2.2であった。また、屈折率を測定し、測定結果を表3に示した。
(Feature: No hydrothermal treatment in Example 6)
Preparation of Metal Oxide Sol (R8) A dispersion which was aged and washed in the same manner as in Example 6 was dried at 100 ° C. for 15 hours and then calcined at 700 ° C. for 2 hours to obtain a crystalline powder of yttrium oxide.
Next, 4.2 g of citric acid was dissolved in 409 g of pure water, 23 g of yttrium oxide crystal powder was added, and a dispersion obtained by adding 18 g of ammonia having a concentration of 28.8 wt% was charged into a sand mill, and 999 g of glass beads were added. And pulverized for 180 minutes.
Then, the glass beads were separated to obtain a dispersion of yttrium oxide. The concentration at this time was 5% by weight, the conductivity was 0.63 mS / cm, and the pH was 11.
Next, 3600 g of pure water whose pH was adjusted to 10 with ammonia having a concentration of 28.8% by weight was supplied, washed with an ultrafiltration membrane method, and then concentrated to obtain a metal oxide sol (R8) having a concentration of 10% by weight. Prepared. The conductivity of the metal oxide sol (R8) was 0.4 mS / cm, the pH was 10, the average particle size was 42 nm, the crystallite size was 19 nm, and Dn / Dx was 2.2. Further, the refractive index was measured, and the measurement results are shown in Table 3.

比較例9Comparative Example 9

(特徴:実施例6で熟成、水熱処理なし)
金属酸化物ゾル(R9)の調製
実施例6と同様にして調合、洗浄したヒドロゲル分散液を100℃で15時間乾燥した後、700℃で2時間焼成して酸化イットリウムの結晶粉末を得た。
次に、純水409gにクエン酸4.2gを溶解し、酸化イットリウム結晶粉末23gを添加し、これに濃度28.8重量%のアンモニア18gを添加した分散液をサンドミルに充填し、ガラスビーズ999gを加えて180分間粉砕を行った。
ついでガラスビーズを分離し酸化イットリウムの分散液を得た。このときの濃度は5重量%、電導度は0.5mS/cm、pHは10.5であった。
ついで濃度28.8重量%のアンモニアにてpHを10に調整した純水3600gを供給しながら限外濾過膜法で洗浄し、その後濃縮し濃度10重量%の金属酸化物ゾル(R9)を調製した。金属酸化物ゾル(R9)の電導度は0.42mS/cm、pHは10であり、平均粒子径は40nm、結晶子径は15nm、Dn/Dxは2.7であった。また、屈折率を測定し、測定結果を表3に示した。
(Feature: Aging in Example 6, no hydrothermal treatment)
Preparation of Metal Oxide Sol (R9) A hydrogel dispersion prepared and washed in the same manner as in Example 6 was dried at 100 ° C. for 15 hours and then calcined at 700 ° C. for 2 hours to obtain a crystalline powder of yttrium oxide.
Next, 4.2 g of citric acid was dissolved in 409 g of pure water, 23 g of yttrium oxide crystal powder was added, and a dispersion obtained by adding 18 g of ammonia having a concentration of 28.8 wt% was charged into a sand mill, and 999 g of glass beads were added. And pulverized for 180 minutes.
Then, the glass beads were separated to obtain a dispersion of yttrium oxide. The concentration at this time was 5% by weight, the conductivity was 0.5 mS / cm, and the pH was 10.5.
Next, 3600 g of pure water whose pH was adjusted to 10 with ammonia having a concentration of 28.8% by weight was supplied, washed with an ultrafiltration membrane method, and then concentrated to prepare a metal oxide sol (R9) having a concentration of 10% by weight. did. The conductivity of the metal oxide sol (R9) was 0.42 mS / cm, pH was 10, the average particle size was 40 nm, the crystallite size was 15 nm, and Dn / Dx was 2.7. Further, the refractive index was measured, and the measurement results are shown in Table 3.

金属酸化物ゾル(7)の調製
純水2458gにクエン酸一水和物4.97g(Cm=0.024)を溶解し、これに塩化第二鉄6水和物(FeCl3・6H20)64g(Mm=0.24)を溶解させた。(Cm/Mm=0.1)
ついで濃度10重量%のKOH水溶液434gを添加して鉄水酸化物ヒドロゲル分散液(Fe23濃度1.5重量%)を調製した。このときの分散液のpHは10.6、温度は28℃であった。
ついで、これを静置、沈降させ上澄み液を除き、純水にて1.5%濃度に調整した。
ついで、限外ろ過膜で電導度が280μS/cmになるまで洗浄した。
次に、この鉄水酸化物ヒドロゲル分散液(Fe23濃度1.5重量%)に陽イオン交換脂(三菱化学(株)製:SK1−BH)150gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株):SANUPC)100gを加え脱イオンした。このようにして洗浄した鉄水酸化物ヒドロゲル分散液(Fe23濃度1.5重量%)の電導度は1.1μS/cm、pH=8であった。
Preparation of metal oxide sol (7) 4.97 g of citric acid monohydrate (Cm = 0.024) was dissolved in 2458 g of pure water, and ferric chloride hexahydrate (FeCl 3 .6H 2 0) was dissolved therein. ) 64 g (Mm = 0.24) was dissolved. (Cm / Mm = 0.1)
Subsequently, 434 g of 10% by weight KOH aqueous solution was added to prepare an iron hydroxide hydrogel dispersion (Fe 2 O 3 concentration 1.5% by weight). At this time, the pH of the dispersion was 10.6 and the temperature was 28 ° C.
Subsequently, this was left still and settled, the supernatant was removed, and the concentration was adjusted to 1.5% with pure water.
Subsequently, it was washed with an ultrafiltration membrane until the electric conductivity reached 280 μS / cm.
Next, 150 g of cation exchange fat (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the iron hydroxide hydrogel dispersion (Fe 2 O 3 concentration 1.5 wt%) to deionize. Next, after separating the cation exchange resin, 100 g of an anion exchange resin (Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the iron hydroxide hydrogel dispersion thus washed (Fe 2 O 3 concentration 1.5 wt%) was 1.1 μS / cm and pH = 8.

ついでオートクレーブに充填し、200℃で2時間熟成した。このとき、電導度は90μS/cm、pHは4.1であった。
ついで陰イオン交換樹脂(三菱化学(株):SANUPC)95gを加え脱イオンし、陰イオン交換樹脂を分離した後、陽イオン交換樹脂(三菱化学(株)製:SK1−BH)50gを加え脱イオンし、陰イオン交換樹脂を分離した。このときの電導度は2μS/cm、pHは6であった。
Next, the autoclave was filled and aged at 200 ° C. for 2 hours. At this time, the conductivity was 90 μS / cm and the pH was 4.1.
Next, 95 g of anion exchange resin (Mitsubishi Chemical Corporation: SANUPC) was added and deionized to separate the anion exchange resin, and then 50 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added for deionization. Ionized and separated the anion exchange resin. At this time, the conductivity was 2 μS / cm and the pH was 6.

次に、上記熟成し洗浄した分散液に濃度2重量%のクエン酸249g(Cm/Mm=0.1)を加え、超音波を1時間照射して分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。この時の電導度は480μS/cm、pHは2.4であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)95gを加え脱イオンし、陰イオン交換樹脂を分離した後、陽イオン交換樹脂(三菱化学(株)製:SK1−BH)50gを加え脱イオンし、陽イオン交換樹脂を分離し、限外濾過膜法で濃縮し濃度10重量%の金属酸化物ゾル(7)を調製した。金属酸化物ゾル(7)の電導度は25μS/cm、pHは7であり、平均粒子径は77nm、結晶子径は39nm、Dn/Dxは2.0であった。
Next, 249 g of citric acid having a concentration of 2% by weight (Cm / Mm = 0.1) was added to the above ripened and washed dispersion, and after ultrasonic treatment for 1 hour, the autoclave was filled. Hydrothermal treatment was performed at 200 ° C. for 2 hours. The electric conductivity at this time was 480 μS / cm, and the pH was 2.4.
95 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion to deionize it, and the anion exchange resin was separated. BH) 50 g was added to deionize, the cation exchange resin was separated, and concentrated by an ultrafiltration membrane method to prepare a metal oxide sol (7) having a concentration of 10% by weight. The conductivity of the metal oxide sol (7) was 25 μS / cm, pH was 7, the average particle size was 77 nm, the crystallite size was 39 nm, and Dn / Dx was 2.0.

比較例10Comparative Example 10

(特徴:実施例7で水熱処理なし)
金属酸化物ゾル(R10)の調製
実施例7と同様にして熟成、洗浄し、ついで限外濾過膜法で濃縮し濃度10重量%の金属酸化物ゾル(R10)を調製した。金属酸化物ゾル(R10)の電導度は13μS/cm、pHは7であり、平均粒子径は63nm、結晶子径は25nm、Dn/Dxは2.5であった。
(Feature: No hydrothermal treatment in Example 7)
Preparation of Metal Oxide Sol (R10) Aged and washed in the same manner as in Example 7, and then concentrated by an ultrafiltration membrane method to prepare a metal oxide sol (R10) having a concentration of 10% by weight. The conductivity of the metal oxide sol (R10) was 13 μS / cm, pH was 7, the average particle size was 63 nm, the crystallite size was 25 nm, and Dn / Dx was 2.5.

Figure 2006182604
Figure 2006182604

Figure 2006182604
Figure 2006182604

Figure 2006182604
Figure 2006182604

Claims (11)

下記の工程(a)〜(e)からなることを特徴とする、平均粒子径が5〜150nmの範囲にある金属酸化物微粒子が分散したゾルの製造方法。
(a)粒子成長調整剤の存在下、セリウム化合物水溶液、ビスマス化合物水溶液、鉄化合物水溶液、イットリウム化合物水溶液のいずれか1種にアルカリ水溶液を加えてセリウム水酸化物ゲルの分散液、ビスマス水酸化物ゲルの分散液、鉄水酸化物ゲルの分散液、イットリウム水酸化物ゲルの分散液のいずれか1種を調製する工程
(b)前記金属水酸化物ゲルの分散液を洗浄する工程
(c)前記洗浄した金属水酸化物ゲルの分散液を熟成する工程
(d)熟成した金属水酸化物ゲルの分散液を洗浄する工程
(e)粒子成長調整剤の存在下、前記洗浄した熟成金属水酸化物ゲルの分散液を水熱処理する工程
A method for producing a sol in which metal oxide fine particles having an average particle diameter in the range of 5 to 150 nm are dispersed, comprising the following steps (a) to (e).
(A) In the presence of a particle growth regulator, an alkaline aqueous solution is added to any one of a cerium compound aqueous solution, a bismuth compound aqueous solution, an iron compound aqueous solution, and an yttrium compound aqueous solution, and a dispersion of cerium hydroxide gel, bismuth hydroxide A step of preparing any one of a gel dispersion, an iron hydroxide gel dispersion, and a yttrium hydroxide gel dispersion (b) a step (c) of washing the metal hydroxide gel dispersion; Aging the washed metal hydroxide gel dispersion (d) washing the aged metal hydroxide gel dispersion (e) washing the aged metal hydroxide in the presence of a particle growth regulator. Hydrothermal treatment of a dispersion of a solid gel
前記工程(e)で得られた金属酸化物微粒子分散ゾルを濃縮または希釈することを特徴とする請求項1に記載の金属酸化物ゾルの製造方法。
The method for producing a metal oxide sol according to claim 1, wherein the metal oxide fine particle-dispersed sol obtained in the step (e) is concentrated or diluted.
前記粒子成長調整剤がカルボン酸またはヒドロキシカルボン酸であることを特徴とする請求項1または2に記載の金属酸化物ゾルの製造方法。
The method for producing a metal oxide sol according to claim 1 or 2, wherein the particle growth regulator is a carboxylic acid or a hydroxycarboxylic acid.
前記水熱処理を100〜250℃の温度範囲で行うことを特徴とする請求項1〜3のいずれかに記載の金属酸化物ゾルの製造方法。
The method for producing a metal oxide sol according to any one of claims 1 to 3, wherein the hydrothermal treatment is performed in a temperature range of 100 to 250 ° C.
前記工程(d)および/または工程(e)を繰り返し行うことを特徴とする請求項1〜4のいずれかに記載のジルコニアゾルの製造方法。
The method for producing a zirconia sol according to any one of claims 1 to 4, wherein the step (d) and / or the step (e) are repeated.
前記工程(b)で金属水酸化物ゲル分散液の電導度を20μS/cm以下とする請求項1〜5のいずれかに記載の金属酸化物ゾルの製造方法。
The method for producing a metal oxide sol according to any one of claims 1 to 5, wherein the conductivity of the metal hydroxide gel dispersion is set to 20 µS / cm or less in the step (b).
前記工程(d)で金属酸化物分散液の電導度を200μS/cm以下とする請求項1〜6のいずれかに記載の金属酸化物ゾルの製造方法。
The method for producing a metal oxide sol according to any one of claims 1 to 6, wherein the conductivity of the metal oxide dispersion is set to 200 µS / cm or less in the step (d).
前記工程(e)または前記繰り返し実施した工程(d)および/または工程(e)の後、金属酸化物ゾルを乾燥し、300〜900℃の範囲で焼成し、得られた微粒子を再び分散媒に分散させることを特徴とする請求項1〜7のいずれかに記載の金属酸化物ゾルの製造方法。
After the step (e) or the repeated step (d) and / or step (e), the metal oxide sol is dried and fired in the range of 300 to 900 ° C., and the obtained fine particles are dispersed again in the dispersion medium. The method for producing a metal oxide sol according to claim 1, wherein the metal oxide sol is dispersed in a metal oxide sol.
平均粒子径(Dn)が5〜150nmの範囲にあり、結晶子径(Dx)が5〜50nmの範囲にあることを特徴とする酸化セリウム、酸化ビスマス、酸化鉄、酸化イットリウムから選ばれるいずれか1種の金属酸化物粒子が分散した金属酸化物ゾル。
Any one selected from cerium oxide, bismuth oxide, iron oxide and yttrium oxide, wherein the average particle size (Dn) is in the range of 5 to 150 nm and the crystallite size (Dx) is in the range of 5 to 50 nm. A metal oxide sol in which one kind of metal oxide particles is dispersed.
前記平均粒子径(Dn)と結晶子径(Dx)との比(Dn/Dx)が1〜2の範囲にあることを特徴とする請求項9に記載の金属酸化物ゾル。
10. The metal oxide sol according to claim 9, wherein a ratio (D n / D x ) of the average particle diameter (D n ) to the crystallite diameter (D x ) is in a range of 1 to 2.
請求項1〜8のいずれかに記載の金属酸化物ゾルの製造方法によって得られたことを特徴とする請求項9または10に記載の金属酸化物ゾル。
The metal oxide sol according to claim 9 or 10, obtained by the method for producing a metal oxide sol according to any one of claims 1 to 8.
JP2004378396A 2004-12-28 2004-12-28 Method for producing metal oxide sol and metal oxide sol Expired - Fee Related JP5013671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378396A JP5013671B2 (en) 2004-12-28 2004-12-28 Method for producing metal oxide sol and metal oxide sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378396A JP5013671B2 (en) 2004-12-28 2004-12-28 Method for producing metal oxide sol and metal oxide sol

Publications (2)

Publication Number Publication Date
JP2006182604A true JP2006182604A (en) 2006-07-13
JP5013671B2 JP5013671B2 (en) 2012-08-29

Family

ID=36735996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378396A Expired - Fee Related JP5013671B2 (en) 2004-12-28 2004-12-28 Method for producing metal oxide sol and metal oxide sol

Country Status (1)

Country Link
JP (1) JP5013671B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335635A (en) * 2005-06-01 2006-12-14 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing ceria sol
JP2007290959A (en) * 2006-04-25 2007-11-08 Samsung Corning Co Ltd Yttrium oxide composition, method of preparing the same, and method of forming yttrium oxide layer using the same
JP2008081378A (en) * 2006-09-28 2008-04-10 Catalysts & Chem Ind Co Ltd Method for producing niobium-based oxide fine particle
JP2009132819A (en) * 2007-11-30 2009-06-18 Jgc Catalysts & Chemicals Ltd Process for producing modified zirconia fine particles, coating liquid for forming transparent film containing modified zirconia fine particles and substrate with transparent film
JP2010090001A (en) * 2008-10-09 2010-04-22 Tayca Corp Ultraviolet ray shielding dispersion and ultraviolet ray shielding coating composition
JP2010090002A (en) * 2008-10-09 2010-04-22 Tayca Corp Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
JP2011051836A (en) * 2009-09-02 2011-03-17 Taki Chem Co Ltd Iron oxyhydroxide sol and method for producing the same
WO2011090085A1 (en) * 2010-01-19 2011-07-28 日産化学工業株式会社 Modified cerium oxide colloid particles and manufacturing method for same
JP2011195384A (en) * 2010-03-19 2011-10-06 Fujifilm Corp Method for producing fine metal hydroxide particles
JP2011246331A (en) * 2010-05-31 2011-12-08 Gifu Univ Method for producing yttrium oxide precursor aqueous sol and yttrium oxide precursor aqueous sol
JP2013211569A (en) * 2010-11-22 2013-10-10 Hitachi Chemical Co Ltd Manufacturing method of abrasive grains, manufacturing method of slurry, and manufacturing method of polishing solution
JP2014505253A (en) * 2011-01-25 2014-02-27 メディカル リサーチ カウンシル Oxygen sensor and use thereof
JP2014105132A (en) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center Ceria-zirconia composite oxide material and production method thereof
JP2014139127A (en) * 2006-09-05 2014-07-31 Cerion Technology Inc Method for manufacturing cerium dioxide nanoparticles
US9303223B2 (en) 2006-09-05 2016-04-05 Cerion, Llc Method of making cerium oxide nanoparticles
US9881801B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US9982177B2 (en) 2010-03-12 2018-05-29 Hitachi Chemical Company, Ltd Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US9988573B2 (en) 2010-11-22 2018-06-05 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
KR20180063203A (en) 2015-10-09 2018-06-11 닛뽕소다 가부시키가이샤 Oxy iron hydroxide nano dispersion
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
US10435639B2 (en) 2006-09-05 2019-10-08 Cerion, Llc Fuel additive containing lattice engineered cerium dioxide nanoparticles
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557058B2 (en) 2012-02-21 2020-02-11 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set, and substrate polishing method
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
WO2021171724A1 (en) * 2020-02-28 2021-09-02 株式会社村田製作所 Metal double salt liquid dispersion, method for producing metal double salt liquid dispersion, metal oxide nanoparticle liquid dispersion, and method for producing metal oxide nanoparticle liquid dispersion

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029646B2 (en) * 1981-01-20 1985-07-11 堺化学工業株式会社 Method for producing magnetic iron oxide powder
JPH01148710A (en) * 1987-12-02 1989-06-12 Taki Chem Co Ltd Crystalline cerium(iv) oxide sol and its production
JPH0426528A (en) * 1990-05-22 1992-01-29 Nippon Shokubai Co Ltd Production of cerium oxide sol
JPH07223822A (en) * 1994-02-14 1995-08-22 Sakai Chem Ind Co Ltd Acicular alpha-ferric oxide and production thereof
JPH0881218A (en) * 1994-07-11 1996-03-26 Nissan Chem Ind Ltd Production of crystalline ceric oxide
JPH09142840A (en) * 1995-11-20 1997-06-03 Mitsui Mining & Smelting Co Ltd Ultrafine particle of cerium oxide and its production
JP2000239654A (en) * 1998-12-21 2000-09-05 Showa Denko Kk Cerium oxide slurry for polishing, preparation thereof, and polishing method
JP2003514744A (en) * 1999-11-19 2003-04-22 ロディア テレ ラレ Colloidal dispersion of cerium compound containing cerium III, method for producing the same and use thereof
JP2003206475A (en) * 2001-09-26 2003-07-22 Hitachi Maxell Ltd Nonmagnetic platy particle, method for producing the same and abrasive, polishing material and polishing liquid using the particle
JP2003301167A (en) * 2002-02-07 2003-10-21 Nihon University Process for producing sol and method for water repellent treatment of base material
JP2003327428A (en) * 2002-05-08 2003-11-19 Catalysts & Chem Ind Co Ltd Indium based oxide fine particle, manufacturing method thereof, coating liquid for forming transparent conductive film containing indium based oxide fine particle, base material with transparent conductive coating film, and display apparatus
JP2005119939A (en) * 2003-06-04 2005-05-12 Murata Mfg Co Ltd Method for producing ceramic composition
JP2005519845A (en) * 2002-04-15 2005-07-07 エルジー ケミカル エルティーディー. Method for producing single crystal cerium oxide powder
JP2006143535A (en) * 2004-11-19 2006-06-08 Catalysts & Chem Ind Co Ltd Zirconia sol and its manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029646B2 (en) * 1981-01-20 1985-07-11 堺化学工業株式会社 Method for producing magnetic iron oxide powder
JPH01148710A (en) * 1987-12-02 1989-06-12 Taki Chem Co Ltd Crystalline cerium(iv) oxide sol and its production
JPH0426528A (en) * 1990-05-22 1992-01-29 Nippon Shokubai Co Ltd Production of cerium oxide sol
JPH07223822A (en) * 1994-02-14 1995-08-22 Sakai Chem Ind Co Ltd Acicular alpha-ferric oxide and production thereof
JPH0881218A (en) * 1994-07-11 1996-03-26 Nissan Chem Ind Ltd Production of crystalline ceric oxide
JPH09142840A (en) * 1995-11-20 1997-06-03 Mitsui Mining & Smelting Co Ltd Ultrafine particle of cerium oxide and its production
JP2000239654A (en) * 1998-12-21 2000-09-05 Showa Denko Kk Cerium oxide slurry for polishing, preparation thereof, and polishing method
JP2003514744A (en) * 1999-11-19 2003-04-22 ロディア テレ ラレ Colloidal dispersion of cerium compound containing cerium III, method for producing the same and use thereof
JP2003206475A (en) * 2001-09-26 2003-07-22 Hitachi Maxell Ltd Nonmagnetic platy particle, method for producing the same and abrasive, polishing material and polishing liquid using the particle
JP2003301167A (en) * 2002-02-07 2003-10-21 Nihon University Process for producing sol and method for water repellent treatment of base material
JP2005519845A (en) * 2002-04-15 2005-07-07 エルジー ケミカル エルティーディー. Method for producing single crystal cerium oxide powder
JP2003327428A (en) * 2002-05-08 2003-11-19 Catalysts & Chem Ind Co Ltd Indium based oxide fine particle, manufacturing method thereof, coating liquid for forming transparent conductive film containing indium based oxide fine particle, base material with transparent conductive coating film, and display apparatus
JP2005119939A (en) * 2003-06-04 2005-05-12 Murata Mfg Co Ltd Method for producing ceramic composition
JP2006143535A (en) * 2004-11-19 2006-06-08 Catalysts & Chem Ind Co Ltd Zirconia sol and its manufacturing method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335635A (en) * 2005-06-01 2006-12-14 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing ceria sol
JP2007290959A (en) * 2006-04-25 2007-11-08 Samsung Corning Co Ltd Yttrium oxide composition, method of preparing the same, and method of forming yttrium oxide layer using the same
US10435639B2 (en) 2006-09-05 2019-10-08 Cerion, Llc Fuel additive containing lattice engineered cerium dioxide nanoparticles
US9340738B2 (en) 2006-09-05 2016-05-17 Cerion, Llc Method of making cerium oxide nanoparticles
US9303223B2 (en) 2006-09-05 2016-04-05 Cerion, Llc Method of making cerium oxide nanoparticles
US9221032B2 (en) 2006-09-05 2015-12-29 Cerion, Llc Process for making cerium dioxide nanoparticles
JP2014139127A (en) * 2006-09-05 2014-07-31 Cerion Technology Inc Method for manufacturing cerium dioxide nanoparticles
US9993803B2 (en) 2006-09-05 2018-06-12 Cerion, Llc Method of preparing cerium dioxide nanoparticles
JP2008081378A (en) * 2006-09-28 2008-04-10 Catalysts & Chem Ind Co Ltd Method for producing niobium-based oxide fine particle
JP2009132819A (en) * 2007-11-30 2009-06-18 Jgc Catalysts & Chemicals Ltd Process for producing modified zirconia fine particles, coating liquid for forming transparent film containing modified zirconia fine particles and substrate with transparent film
JP2010090001A (en) * 2008-10-09 2010-04-22 Tayca Corp Ultraviolet ray shielding dispersion and ultraviolet ray shielding coating composition
JP2010090002A (en) * 2008-10-09 2010-04-22 Tayca Corp Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
JP2011051836A (en) * 2009-09-02 2011-03-17 Taki Chem Co Ltd Iron oxyhydroxide sol and method for producing the same
WO2011090085A1 (en) * 2010-01-19 2011-07-28 日産化学工業株式会社 Modified cerium oxide colloid particles and manufacturing method for same
US10703947B2 (en) 2010-03-12 2020-07-07 Hitachi Chemical Company, Ltd. Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US9982177B2 (en) 2010-03-12 2018-05-29 Hitachi Chemical Company, Ltd Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
JP2011195384A (en) * 2010-03-19 2011-10-06 Fujifilm Corp Method for producing fine metal hydroxide particles
JP2011246331A (en) * 2010-05-31 2011-12-08 Gifu Univ Method for producing yttrium oxide precursor aqueous sol and yttrium oxide precursor aqueous sol
US9881801B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US10825687B2 (en) 2010-11-22 2020-11-03 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9988573B2 (en) 2010-11-22 2018-06-05 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9881802B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
JP2013211570A (en) * 2010-11-22 2013-10-10 Hitachi Chemical Co Ltd Abrasive grains, slurry, and polishing solution
JP2013211569A (en) * 2010-11-22 2013-10-10 Hitachi Chemical Co Ltd Manufacturing method of abrasive grains, manufacturing method of slurry, and manufacturing method of polishing solution
JP2014505253A (en) * 2011-01-25 2014-02-27 メディカル リサーチ カウンシル Oxygen sensor and use thereof
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
US10557058B2 (en) 2012-02-21 2020-02-11 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set, and substrate polishing method
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
JP2014105132A (en) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center Ceria-zirconia composite oxide material and production method thereof
KR20180063203A (en) 2015-10-09 2018-06-11 닛뽕소다 가부시키가이샤 Oxy iron hydroxide nano dispersion
US10781109B2 (en) 2015-10-09 2020-09-22 Nippon Soda Co., Ltd. Iron oxyhydroxide nanodispersion liquid
WO2021171724A1 (en) * 2020-02-28 2021-09-02 株式会社村田製作所 Metal double salt liquid dispersion, method for producing metal double salt liquid dispersion, metal oxide nanoparticle liquid dispersion, and method for producing metal oxide nanoparticle liquid dispersion
JPWO2021171724A1 (en) * 2020-02-28 2021-09-02
JP7355215B2 (en) 2020-02-28 2023-10-03 株式会社村田製作所 Metal double salt dispersion, method for producing metal double salt dispersion, and method for producing metal oxide nanoparticle dispersion

Also Published As

Publication number Publication date
JP5013671B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5013671B2 (en) Method for producing metal oxide sol and metal oxide sol
JP4705361B2 (en) Method for producing zirconia sol
JP5253095B2 (en) Method for producing zirconia sol
JP5019826B2 (en) Zirconia sol and method for producing the same
JP5881394B2 (en) Silica-based composite particles and method for producing the same
JP6607407B2 (en) Fine particle titanium oxide and method for producing the same
JP5356665B2 (en) Zirconia sintered body
JP4891021B2 (en) Method for producing niobium oxide fine particles
JP5787745B2 (en) Method for producing silica-based composite particles
JP2005179111A (en) Method for manufacturing zirconia sol
JP5223828B2 (en) Anatase type ultrafine particle titanium oxide, dispersion containing anatase type ultrafine particle titanium oxide, and method for producing the titanium oxide
JP5356639B2 (en) Zirconia fine powder and method for producing the same
JP6198379B2 (en) Modified zirconia fine particle powder, modified zirconia fine particle dispersed sol and method for producing the same
KR101517369B1 (en) Process for preparing zirconia sol
JP2005170700A (en) Zirconium oxide particle and method for producing the same
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JP2024519796A (en) Liquid dispersions and powders of cerium-based core-shell particles, methods for producing same and their use in polishing
KR102578964B1 (en) Titanium oxide particles and method for producing the same
KR102019698B1 (en) Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method
JP2003095657A (en) Titanium oxide sol dispersed in organic solvent and method of manufacturing it
JP2015067469A (en) Rare earth titanate powder and production method thereof, and fluid dispersion containing the same
JP2006176392A (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
JP2007015898A (en) Method for manufacturing zirconium oxide powder and zirconium oxide powder
TWI568677B (en) Modified zirconia fine particle powder, modified zirconia fine particle powder dispersion gel and manufacturing method thereof
JP2010132493A (en) Composite powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5013671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees