JP2006162581A - Capacity measuring device for measuring particulates - Google Patents

Capacity measuring device for measuring particulates Download PDF

Info

Publication number
JP2006162581A
JP2006162581A JP2004382263A JP2004382263A JP2006162581A JP 2006162581 A JP2006162581 A JP 2006162581A JP 2004382263 A JP2004382263 A JP 2004382263A JP 2004382263 A JP2004382263 A JP 2004382263A JP 2006162581 A JP2006162581 A JP 2006162581A
Authority
JP
Japan
Prior art keywords
electrode
powder
measurement
measurement electrode
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004382263A
Other languages
Japanese (ja)
Inventor
Hiroshi Aihara
弘志 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004382263A priority Critical patent/JP2006162581A/en
Publication of JP2006162581A publication Critical patent/JP2006162581A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the precise measurement of the amount of fine particles by eliminating the influence of a relative dielectric constant by a pressure applying to air or gas for transferring the fine particles. <P>SOLUTION: A measurement electrode is mounted on a fine particle transferring pipe with the pressure of air or gas applied thereto and a reference electrode is mounted closely thereto. Both the measuring electrode and reference electrode undergo the changes of the relative dielectric constant by changes in air pressure. Both the measurement electrode and reference electrode are a same length along the passage of the fine particles. The electrode area of the reference electrode is N times as large as the electrode area of the measurement electrode. By increasing a voltage or a current signal obtained from the measurement side by N, a difference between the increased voltage or the current signal and a voltage or a current signal obtained from the reference electrode side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は圧縮空気又は圧縮気体により搬送される粉体の流量を静電容量の変化として測定する粉体計測用静電容量計測装置に関し、特に空気又は気体に加える圧力による空気又は気体の比誘電率変化の影響を除去して正確に粉体量を計測する技術に関するものである。  The present invention relates to a capacitance measuring device for powder measurement that measures the flow rate of powder conveyed by compressed air or compressed gas as a change in capacitance, and in particular, the dielectric constant of air or gas due to pressure applied to air or gas. The present invention relates to a technique for accurately measuring the amount of powder by removing the influence of rate change.

粉体量を電極間に通過させ、その静電容量の変化を測定する粉体計測用静電容量計測装置は、粉体を搬送させる空気又は気体に加える圧力による空気又は気体の比誘電率の変化が大きく、正確に粉体量を計測出来ない問題があり、空気又は気体の圧力に影響されない正確な粉体計測用静電容量計測装置が望まれている。  A capacitance measuring device for measuring powder that passes the amount of powder between electrodes and measures the change in capacitance is the relative permittivity of air or gas due to the pressure applied to the air or gas carrying the powder. There is a problem that the amount of powder cannot be accurately measured because of a large change, and an accurate capacitance measuring device for powder measurement that is not affected by the pressure of air or gas is desired.

粉体量の測定に用いられる静電容量センサーは測定電極と基準電極との静電容量の差を演算する事により粉体量を求めている。図14に示す測定電極と基準電極は交流ブリッジ回路を構成する。測定電極側に粉体が入る事により、静電容量はC+ΔCに変化する。基準電極側の静電容量は変化しない。測定電極と基凖電極の静電容量の差はΔCから粉体量を求める事が出来る。  The capacitance sensor used for measuring the amount of powder obtains the amount of powder by calculating the difference in capacitance between the measurement electrode and the reference electrode. The measurement electrode and reference electrode shown in FIG. 14 constitute an AC bridge circuit. When the powder enters the measurement electrode side, the capacitance changes to C + ΔC. The capacitance on the reference electrode side does not change. The amount of powder can be determined from ΔC for the difference in capacitance between the measurement electrode and the base electrode.

しかしながら、図15に示すように、粉体供給タンクは圧縮空気が導入されており、バルブの開閉により、粉体を搬送する事が多い。その為、基準電極は圧力変化を受けないが、測定電極側には高い空気の圧力が加わり、空気の比誘電率を大きく変化させる。
静電容量センサー内に粉体が入った状態で、粉体の電気分極を考慮して静電容量を厳密に計算するのは非常に困難であり、また、実際的にも厳密な計算は必要としない。
However, as shown in FIG. 15, compressed air is introduced into the powder supply tank, and the powder is often conveyed by opening and closing the valve. For this reason, the reference electrode is not subjected to a pressure change, but a high air pressure is applied to the measurement electrode side, and the relative dielectric constant of the air is greatly changed.
It is very difficult to calculate the capacitance precisely in consideration of the electric polarization of the powder when the powder is in the capacitance sensor. And not.

図16及び図17は簡単に計算する為の測定電極と基準電極を示す。図16は測定電極にtの長さで示す正方形の柱状の粉体が電極に平行にあるとして各々の静電容量に分けて簡単な計算で合成容量を求める。図中、t部分の空気と粉体の各々の静電容量は直列接続になり、t部分以外の空気の静電容量とは並列接続として計算する。
また、測定電極側の空気の比誘電率をεm1、基準電極側の空気の比誘電率をεr1とすると測定電極と基凖電極の静電容量の差Δは

Figure 2006162581
となる。上式の3項と4項は非常に大きな誤差となる。
空気の圧力変化がない時、上式はεm1、=εr1=εなので、以下のようになる。
Figure 2006162581
一般的に粉体による、測定電極の静電容量の変化は数%程度であり、粉体が微小になるとさらに小さい変化となる。16 and 17 show a measurement electrode and a reference electrode for simple calculation. In FIG. 16, assuming that a square columnar powder having a length of t is parallel to the electrode on the measurement electrode, the composite capacitance is obtained by simple calculation by dividing each capacitance. In the figure, the electrostatic capacity of air and powder in the t portion are connected in series, and the electrostatic capacity of air other than the t portion is calculated as parallel connection.
If the relative permittivity of air on the measurement electrode side is ε m1 and the relative permittivity of air on the reference electrode side is ε r1 , the difference Δ in capacitance between the measurement electrode and the base electrode is
Figure 2006162581
It becomes. The terms 3 and 4 in the above formula are very large errors.
When there is no change in pressure of air, the above equation is ε m1 , = ε r1 = ε 1, so that
Figure 2006162581
Generally, the change in the capacitance of the measurement electrode due to the powder is about several percent, and the change becomes smaller as the powder becomes finer.

電磁気学の文献より、気体中での電束密度Dは、真空の誘電率をε、気体分子の電気分極をPとすると
D=εE+P
上式の電気分極Pは

Figure 2006162581
Nは電気双極子密度(気体分子密度)、eは電子の電荷、xは+eと−eの電荷対間の距離
Figure 2006162581
となり、これを、
D=εε
とすると、比誘電率ε
Figure 2006162581
となる。
Figure 2006162581
従って、電気双極子の密度Nが大きいほど比誘電率εは大きくなる。From the literature of electromagnetism, the electric flux density D in a gas, 0 the dielectric constant of vacuum epsilon, the electric polarization of the gas molecules to P D = ε 0 E + P
The electric polarization P in the above equation is
Figure 2006162581
N is the electric dipole density (gas molecule density), e is the electron charge, x is the distance between the + e and -e charge pairs.
Figure 2006162581
And this
D = ε 0 ε r E
Then, the relative dielectric constant ε r is
Figure 2006162581
It becomes.
Figure 2006162581
Therefore, the relative dielectric constant ε r increases as the density N of the electric dipole increases.

次に圧力Pを気体分子運動の関係式で表すと

Figure 2006162581
気体の比誘電率を圧力の関係式で表すと
Figure 2006162581
となり、気体の比誘電率は圧力に比例して変化する。空気の比誘電率は20°C、1気圧で1.0006である。Next, when the pressure P is expressed by a relational expression of gas molecule motion,
Figure 2006162581
When the relative dielectric constant of gas is expressed by the relational expression of pressure,
Figure 2006162581
Thus, the dielectric constant of the gas changes in proportion to the pressure. The relative dielectric constant of air is 1.0006 at 20 ° C. and 1 atmosphere.

測定電極と基準電極とが共に空気の圧力変化による、比誘電率の変化を受ける構成にする。そして、測定電極と基準電極の各々の電極は粉体の流路に沿う長さを同じにする。基準電極の電極面積を測定電極の電極面積の2倍とする。さらに、測定電極側から得られる電圧又は電流信号を2倍にして基凖電極側から得られる電圧又は電流信号との差を求める。これにより、空気の圧力変化を受けないで、粉体による静電容量の変化分のみを得る事が出来る。  Both the measurement electrode and the reference electrode are configured to receive a change in relative dielectric constant due to a change in air pressure. The measurement electrodes and the reference electrodes have the same length along the powder flow path. The electrode area of the reference electrode is set to twice the electrode area of the measurement electrode. Further, the voltage or current signal obtained from the measurement electrode side is doubled to obtain a difference from the voltage or current signal obtained from the base electrode side. As a result, it is possible to obtain only a change in capacitance due to the powder without being subjected to a change in air pressure.

図6を参照して以下に説明する。測定電極のt部分は、空気の誘電率εの容量をC、粉体の誘電率εの容量をCとする。t部分以外の容量をCとすると全体の容量C

Figure 2006162581
This will be described below with reference to FIG. In the t portion of the measurement electrode, the capacity of air with a dielectric constant ε 1 is C 1 , and the capacity of powder with a dielectric constant ε 2 is C 2 . capacitance C 0 of the total and the capacitance other than t parts and C 3 is
Figure 2006162581

測定電極側の全体の容量をCm0とすると

Figure 2006162581
基準電極の電極面積は測定電極の電極面積の2倍である。同様に基準電極側の全体の容量をCr0とすると
Figure 2006162581
となる。If the total capacitance on the measurement electrode side is C m0
Figure 2006162581
The electrode area of the reference electrode is twice the electrode area of the measurement electrode. Similarly, if the total capacitance on the reference electrode side is C r0
Figure 2006162581
It becomes.

測定電極の静電容量Cm0を2倍にして、基準電極の静電容量Cr0との差Δを計算する。
Δ=2Cm0−Cr0

Figure 2006162581
測定電極と基準電極には同じ圧力が加わるので比誘電率εは同じである。従って、圧力変化のない時と同じとなる。The capacitance C m0 of the measurement electrode is doubled, and the difference Δ from the capacitance C r0 of the reference electrode is calculated.
Δ = 2C m0 −C r0
Figure 2006162581
Since the same pressure is applied to the measurement electrode and the reference electrode, the relative dielectric constant ε 1 is the same. Therefore, it is the same as when there is no pressure change.

この発明によれば、粉体を搬送する空気の圧力変化による、比誘電率変化の影響を無くする事ができる為、粉体を高い空気圧力を加えて搬送させても粉体量を安定に測定できる。  According to the present invention, it is possible to eliminate the influence of the change in the dielectric constant due to the change in the pressure of the air that carries the powder. Therefore, even if the powder is conveyed by applying a high air pressure, the amount of the powder can be stabilized. It can be measured.

発明を実施するための最良な形態BEST MODE FOR CARRYING OUT THE INVENTION

図1に示すように、粉体搬送パイプに取り付けている測定電極に隣接して基凖電極を取り付ける。取り付け間隔は近い方が良い。測定電極と基準電極の各々の電極は粉体の流路に沿う長さを同じにする。測定電極に比べて、基準電極の電極面積を2倍にする。次に、測定電極側の電気信号を2倍にする。  As shown in FIG. 1, a base electrode is attached adjacent to the measurement electrode attached to the powder transport pipe. The closer the mounting interval is, the better. The measurement electrode and the reference electrode have the same length along the powder flow path. The electrode area of the reference electrode is doubled compared to the measurement electrode. Next, the electric signal on the measurement electrode side is doubled.

図2は螺旋状に形成した静電容量センサーの概略図である。1が測定電極であり、2が基準電極である。これらは測定電極と基凖電極に形成された測定電極パターン4、基準電極パターン6、ガード電極パターン3、3‘、5、5’及びアース電極7を円筒パイプに構成したものである。基準電極のパターン幅は測定電極のパターン幅の2倍となっている。粉体が通過する方向の長さは同じである。  FIG. 2 is a schematic view of a capacitance sensor formed in a spiral shape. 1 is a measurement electrode and 2 is a reference electrode. In these, the measurement electrode pattern 4, the reference electrode pattern 6, the guard electrode patterns 3, 3 ', 5, 5' and the earth electrode 7 formed on the measurement electrode and the base electrode are formed in a cylindrical pipe. The pattern width of the reference electrode is twice the pattern width of the measurement electrode. The length in the direction that the powder passes is the same.

図3は静電容量センサーの回路の概略図である。本例では、測定電極側の抵抗10を2R、基準電極側の抵抗10‘はRとする事により測定電極側の信号電圧を2倍にしている。これらの信号電圧から、測定電極と基準電極の差を演算して静電容量の差Δを求めている。
図4に示すような螺旋形状の場合、図5に示すように対向する電極パターンは円筒の中心軸を対称にして近似的に菱形の平行平面板コンデンサーが連続的に形成されていると考える事が出来る。また、パターン幅が2倍になると面積も2倍になる事も示す。
FIG. 3 is a schematic diagram of a circuit of the capacitance sensor. In this example, the resistance 10 on the measurement electrode side is 2R, and the resistance 10 ′ on the reference electrode side is R, thereby doubling the signal voltage on the measurement electrode side. From these signal voltages, the difference between the measurement electrode and the reference electrode is calculated to obtain the difference Δ in capacitance.
In the case of a spiral shape as shown in FIG. 4, it is considered that the opposing electrode pattern is formed by continuously forming approximately rhombic parallel plane plate capacitors with the central axis of the cylinder symmetrical as shown in FIG. I can do it. It also shows that when the pattern width is doubled, the area is also doubled.

図6は螺旋形状パターンを近似的に平行平面板コンデンサーに置き換えて電界強度が一様な平行平面板コンデンサーとして計算が簡単に出来るようにしたものである。
静電容量センサーは、円筒パイプに形成する螺旋構造であり、また、一様な電界強度ではない為、正確な静電容量を製作するのは困難であるが測定電極と基凖電極の電極面積の比は概略2倍が得られれば良い。電極面積比の製造バラツキ等の誤差は信号電圧の増幅度を調整すれば良い。
In FIG. 6, the spiral pattern is approximately replaced with a parallel plane plate capacitor so that the calculation can be easily performed as a parallel plane plate capacitor with uniform electric field strength.
Capacitance sensor is a spiral structure formed in a cylindrical pipe, and because it is not uniform electric field strength, it is difficult to produce an accurate capacitance, but the electrode area of the measurement electrode and the base electrode It is sufficient that the ratio is approximately doubled. For errors such as manufacturing variations in the electrode area ratio, the amplification factor of the signal voltage may be adjusted.

また、本例では図2に示す静電容量センサーの外側は図7に示すガード・シールド電極により覆われて、ガード・シールドに接続されている。
ガード・シールド電極3a及び5aを円筒パイプの近傍に構成する事によりガード電極パターン3、3‘及び5、5’は図8に示すように省略する事が出来る。
In this example, the outside of the capacitance sensor shown in FIG. 2 is covered with a guard shield electrode shown in FIG. 7 and connected to the guard shield.
By configuring the guard shield electrodes 3a and 5a in the vicinity of the cylindrical pipe, the guard electrode patterns 3, 3 'and 5, 5' can be omitted as shown in FIG.

次に、図3に示す静電容量センサー回路の動作の概略を説明する。測定電極と基準電極の静電容量は抵抗10と10‘と各々微分回路を構成している。
交流発振器19の出力電圧をeosc=Esinωtとすると測定電極側及び基準電極側の前記抵抗2RとRの電圧降下eとe

Figure 2006162581
Next, an outline of the operation of the capacitance sensor circuit shown in FIG. 3 will be described. The capacitances of the measurement electrode and the reference electrode constitute resistors 10 and 10 ', respectively, and differential circuits.
Voltage drop e m and e r of the resistor 2R and R of the output voltage and the e osc = E m sinωt measuring electrode side and the reference electrode side of the AC oscillator 19
Figure 2006162581

交流発振器19の周波数は1≫jωCm02R、1≫jωCr0Rとなるように設定するので、上式は

Figure 2006162581
となる。交流発振器19から流れる電流は各々の静電容量インピーダンスに比例する。従って、測定電極側の信号電圧は基準電極側の信号電圧の2倍になる。電極面積比の製造バラツキ誤差による静電容量インピーダンスのバラツキ誤差は図示していないが前述の抵抗の1部を可変抵抗にする事により調整出来る。The frequency of the AC oscillator 19 is set to be 1 >> jωC m0 2R, 1 >> jωC r0 R.
Figure 2006162581
It becomes. The current flowing from the AC oscillator 19 is proportional to each capacitance impedance. Therefore, the signal voltage on the measurement electrode side is twice the signal voltage on the reference electrode side. Although the variation error of the capacitance impedance due to the manufacturing variation error of the electrode area ratio is not shown, it can be adjusted by making a part of the aforementioned resistance variable.

信号電圧eとeは非反転増幅器11と11‘で検出する。これらの出力は測定電極と基準電極のガード電極パターン3、3’及び5、5‘に接続される。図示されていないがこれらを接続する同軸ケーブルのシールド側にも接続されている。
非反転増幅器の出力は第1スイッチ回路13に各々接続され、増幅器14にて増幅され、変調器ないしは乗算器15に接続される。変調器ないしは乗算器のもう一方の入力は交流発振器19の交流電圧の位相を90度進める進相回路20を通して接続されている。変調器ないしは乗算器の出力はフィルター&アンプ16により交流発振器19の周波数をカットして増幅される。変調器ないしは乗算器の出力は非反転出力と反転出力を有しているが以下の説明は非反転出力側である。
Signal voltage e m and e r is detected by the non-inverting amplifier 11 and 11 '. These outputs are connected to the guard electrode patterns 3, 3 ′ and 5, 5 ′ of the measurement electrode and the reference electrode. Although not shown, it is also connected to the shield side of the coaxial cable connecting them.
The outputs of the non-inverting amplifier are connected to the first switch circuit 13, amplified by the amplifier 14, and connected to the modulator or multiplier 15. The other input of the modulator or multiplier is connected through a phase advance circuit 20 that advances the phase of the AC voltage of the AC oscillator 19 by 90 degrees. The output of the modulator or multiplier is amplified by the filter & amplifier 16 while cutting the frequency of the AC oscillator 19. The output of the modulator or multiplier has a non-inverted output and an inverted output, but the following description is on the non-inverted output side.

変調器ないしは乗算器の出力は、測定電極側と基準電極側の信号電圧e、eと交流発振

Figure 2006162581
上式、cos2ωtの成分をフィルター&アンプ16でカットすると
Figure 2006162581
The output of the modulator or multiplier, the signal voltage e m of the measuring electrode side and the reference electrode side, the AC oscillator and e r
Figure 2006162581
When the component of cos2ωt is cut by the filter & amplifier 16
Figure 2006162581

第1スイッチ回路13による差信号電圧は上式のeとeの差となる。

Figure 2006162581
−e=(2Cm0−Cr0)K
−e=ΔK
Figure 2006162581
この出力は第2スイッチ回路17とフィルター&アンプ18により同期検波及び増幅されて出力される。第1スイッチ回路13及び第2スイッチ回路17は電源周波数の整数倍の矩形発振器により駆動されている。The difference signal voltage by the first switch circuit 13 is the difference between e M and e R in the above equation.
Figure 2006162581
e M −e R = (2C m0 −C r0 ) K
e M −e R = ΔK
Figure 2006162581
This output is synchronously detected and amplified by the second switch circuit 17 and the filter & amplifier 18 and output. The first switch circuit 13 and the second switch circuit 17 are driven by a rectangular oscillator that is an integral multiple of the power supply frequency.

図9及び図10はスイッチングフィルター回路とその周波数特性を示す。同期検波の動作は図10に示すようにスイッチング周波数の整数倍の周波数において減衰量が無限大となる。一定の減衰曲線はスイッチが無い場合である。
第1スイッチ回路13及び第2スイッチ回路17の周波数は電源周波数に同期させてスイッチング周期は電源周波数の整数倍にする。これにより、最も大きな電源からの誘導雑音及びその整数倍の周波数の雑音を除去する事が出来る。
9 and 10 show the switching filter circuit and its frequency characteristics. As shown in FIG. 10, the synchronous detection operation has an infinite amount of attenuation at a frequency that is an integral multiple of the switching frequency. The constant decay curve is when there is no switch.
The frequency of the first switch circuit 13 and the second switch circuit 17 is synchronized with the power supply frequency, and the switching cycle is an integral multiple of the power supply frequency. As a result, it is possible to remove the induction noise from the largest power source and the noise having an integer multiple of the induced noise.

次に粉体がバルブ31の開閉により、粉体の流れていく状態を図11に示す。図12に測定電極側と基準電極側の粉体の流れによる各動作のタイミング・チャートを示す。
▲1▼のバルブ31が開くと、高い空気圧力が加わる。空気の比誘電率の変化を斜線部に示す。この変化は時間遅れがなく、測定電極と基準電極に同時に起きる。
▲2▼の測定電極の応答は粉体による変化の少し遅れを示す。黒く塗りつぶした部分が粉体による変化を示す。
▲3▼は測定電極の信号電圧を2倍したもので、空気の圧力による比誘電率の変化は基凖電極側と同じになる。粉体による信号電圧2倍となる。
▲4▼基準電極側の応答を示す。
▲5▼は▲3▼と▲4▼の差を示す。空気の比誘電率の変化は測定電極側も基凖電極側も同じなので、その差は零になる。しかし粉体の変化量は測定電極側が基準電極側の2倍となるので、その差は元の1倍の値を得る事が出来る。
▲6▼は測定時間を示す。
Next, FIG. 11 shows a state in which the powder flows as the valve 31 is opened and closed. FIG. 12 shows a timing chart of each operation according to the powder flow on the measurement electrode side and the reference electrode side.
When the valve 31 of (1) is opened, a high air pressure is applied. The change in the relative dielectric constant of air is indicated by the shaded area. This change has no time delay and occurs simultaneously on the measurement electrode and the reference electrode.
The response of measurement electrode (2) shows a slight delay in the change due to powder. The blackened area shows the change due to powder.
(3) is obtained by doubling the signal voltage of the measurement electrode, and the change in the dielectric constant due to the air pressure is the same as that on the base electrode side. The signal voltage due to the powder is doubled.
(4) The response on the reference electrode side is shown.
(5) indicates the difference between (3) and (4). Since the change in the relative permittivity of air is the same on both the measurement electrode side and the base electrode side, the difference is zero. However, since the amount of change in the powder is twice as large as that on the reference electrode side on the measurement electrode side, the difference can obtain the original value of one time.
(6) indicates the measurement time.

次にバルブ31が閉じて、両電極を粉体が通過した後に測定時間を終了させる。空気の比誘電率は元に戻る変化をするが、この変化は測定電極と基準電極に同時に起きるので影響を受けない。
測定電極を通過した粉体の総量と基準電極を通過した粉体の総量は同じなので粉体量を求める事が出来る。
Next, the valve 31 is closed, and the measurement time is ended after the powder passes through both electrodes. The relative permittivity of air changes back, but this change is unaffected because it occurs simultaneously on the measurement and reference electrodes.
Since the total amount of powder that has passed through the measurement electrode and the total amount of powder that has passed through the reference electrode are the same, the amount of powder can be determined.

実際の粉体量は、その流速からも算出しなければならないが、粉体流速の測定方法は本発明には含まない。
本例では測定電極と前記基準電極の電極面積比を2倍が現実的であるが、理論的には1倍以外のN倍とする事ができる。
The actual amount of powder must be calculated from the flow rate, but the method for measuring the powder flow rate is not included in the present invention.
In this example, the electrode area ratio between the measurement electrode and the reference electrode is practically twice, but theoretically, it can be N times other than one.

第2の実施例は、図13に示すように測定電極を第1測定電極と第2測定電極を粉体の搬送パイプに配置して、1個の基準電極で第1と第2の測定電極の差を取り、さらにそれらの出力の差より粉体量を求める。
第1測定電極に対して第2測定電極の電極面積を2倍とする。基準電極の電極面積は第2測定電極の電極面積と同じでよい。
第1測定電極側の電気信号を2倍にして、第2測定電極側の電気信号は1倍として、各々基準電極の電気信号の差をとり、各々の差の差を取る事により、粉体量を求める。
第1測定電極の静電容量をCm1、第1測定電極の静電容量をCm2、基準電極の静電容量をCとすると
In the second embodiment, as shown in FIG. 13, the first and second measurement electrodes are arranged with one reference electrode by arranging the measurement electrode as the first measurement electrode and the second measurement electrode on the powder conveying pipe. The amount of powder is obtained from the difference in output.
The electrode area of the second measurement electrode is doubled with respect to the first measurement electrode. The electrode area of the reference electrode may be the same as the electrode area of the second measurement electrode.
The electric signal on the first measurement electrode side is doubled, the electric signal on the second measurement electrode side is multiplied by 1, and the difference between the electric signals of the reference electrodes is taken. Find the amount.
The capacitance of the first measuring electrode C m1, when the capacitance of the first measuring electrode C m @ 2, the capacitance of the reference electrode and C r

第1測定電極と基準電極との差はΔ=Cm1−C
第2測定電極と基準電極との差はΔ=Cm2−C
ΔとΔの差はΔ=Δ−Δ=(2Cm1−C)−(Cm2−C)=2Cm1−Cm2
となる。Cm1とCm2は同じ空気圧力の環境なので、比誘電率の変化がない時と同じである。
また、本例では測定電極と前記基準電極の電極面積比を2倍が現実的であるが、理論的には1倍以外のN倍とする事ができる。
The difference between the first measurement electrode and the reference electrode is Δ 1 = C m1 −C r
The difference between the second measurement electrode and the reference electrode is Δ 2 = C m2 −C r
The difference between Δ 1 and Δ 2 is Δ 0 = Δ 1 −Δ 2 = (2C m1 −C r ) − (C m2 −C r ) = 2C m1 −C m2
It becomes. Since C m1 and C m2 are environments with the same air pressure, they are the same as when there is no change in the dielectric constant.
In this example, the electrode area ratio between the measurement electrode and the reference electrode is practically twice, but theoretically, it can be N times other than one.

以上、図を参照して実施例を説明したところから明らかのように、本発明によれば、粉体を搬送する空気又は気体の圧力による変化を受けず、微小な粉体量を正確に計測出来る。  As described above, as is apparent from the description of the embodiments with reference to the drawings, according to the present invention, a minute amount of powder is accurately measured without being affected by the pressure of air or gas conveying the powder. I can do it.

本発明の粉体搬送系と測定電極と基準電極を示す概略図である。It is the schematic which shows the powder conveyance system of this invention, a measurement electrode, and a reference electrode. 本発明の静電容量センサーを示す概略図である。It is the schematic which shows the electrostatic capacitance sensor of this invention. 本発明の静電容量センサー回路を示す概略図である。It is the schematic which shows the electrostatic capacitance sensor circuit of this invention. 本発明の測定電極と基準電極を簡単化した概略図である。It is the schematic which simplified the measurement electrode and reference electrode of this invention. 本発明の螺旋構造の対向電極を示す図である。It is a figure which shows the counter electrode of the helical structure of this invention. 本発明の測定電極と基準電極を平行平面板コンデンサーに簡単化した図を示す。The figure which simplified the measurement electrode and reference electrode of this invention to the parallel plane plate capacitor | condenser is shown. 本発明のガード・シールド電極とガード電極パターンを有する構造を示す概略図である。It is the schematic which shows the structure which has the guard shield electrode and guard electrode pattern of this invention. 本発明のガード・シールド電極とガード電極パターンを取り除いたの構造示す概略図である。It is the schematic which shows the structure of having removed the guard shield electrode and guard electrode pattern of this invention. 本発明の同期検波動作を示すスイッチングフィルターの概念図を示す。The conceptual diagram of the switching filter which shows the synchronous detection operation | movement of this invention is shown. スイッチングフィルターの周波数特性を示す。The frequency characteristic of a switching filter is shown. バルブを通して粉体が測定電極と基凖電極を通過する状況を示す図である。It is a figure which shows the condition where powder passes a measurement electrode and a base electrode through a valve | bulb. 本発明のバルブ開閉及び測定電極と基凖電極の信号出力と測定時間の関係を示す図である。It is a figure which shows the relationship between the signal opening and measurement time of the valve opening / closing of this invention, and a measurement electrode and a base electrode. 本発明の第3の実施例を示す概略図である。It is the schematic which shows the 3rd Example of this invention. 従来のブリッジ回路を示す図である。It is a figure which shows the conventional bridge circuit. 従来の粉体搬送系と測定電極と基凖電極を示す概略図である。It is the schematic which shows the conventional powder conveyance system, a measurement electrode, and a base electrode. 測定電極を簡単化した図を示す。The figure which simplified the measurement electrode is shown. 基凖電極を簡単化した図を示す。The figure which simplified the base electrode is shown.

符号の説明Explanation of symbols

1、1‘ 測定電極
1a 第1測定電極
1b 第2測定電極
2、2‘ 基準電極
3a ガード・シールド電極
3、3‘ ガード電極パターン
4 測定電極パターン
5、5’ ガード電極パターン
5a ガード・シールド電極
6 基準電極パターン
7 アース電極
10、10‘ 抵抗
11、11‘ 入力増幅器
12、12‘ ガード・シールド
13 第1スイッチ回路
14 増幅器
15 変調器又は乗算器
16 第1低域濾過回路&増幅器
17 第2スイッチ回路
18 第2低域濾過回路&増幅器
19 交流発振器
20 π/4進相器
21 矩形発振器
30 粉体供給タンク
31 バルブ
32 粉体搬送パイプ
33 粉体搬送受け
34 演算回路1
35 演算回路2
36、36‘ 演算回路3
37 差動増幅器
38 出力
1, 1 ′ measurement electrode 1a first measurement electrode 1b second measurement electrode 2, 2 ′ reference electrode 3a guard shield electrode 3, 3 ′ guard electrode pattern 4 measurement electrode pattern 5, 5 ′ guard electrode pattern 5a guard shield electrode 6 Reference electrode pattern 7 Ground electrode 10, 10 'Resistance 11, 11' Input amplifier 12, 12 'Guard shield 13 First switch circuit 14 Amplifier 15 Modulator or multiplier 16 First low-pass filter & amplifier 17 Second Switch circuit 18 Second low-pass filter circuit & amplifier 19 AC oscillator 20 π / 4 phase advancer 21 Rectangular oscillator 30 Powder supply tank 31 Valve 32 Powder transfer pipe 33 Powder transfer receiver 34 Arithmetic circuit 1
35 Arithmetic Circuit 2
36, 36 'arithmetic circuit 3
37 Differential amplifier 38 output

Claims (6)

被測定体の粉体が気体搬送系により対向する電極間に投入及び通過させて電極間の静電容量変化により粉体量を計測する粉体用静電容量計測装置において、
ガード電極を有する測定電極と、ガード電極を有する基準電極とを有して、粉体の搬送パイプに構成されている事を特徴とする粉体用静電容量計測装置
In a powder capacitance measuring device for measuring the amount of powder by changing the capacitance between electrodes by putting and passing between powders of a measured object between opposed electrodes by a gas conveyance system,
Capacitance measuring device for powder, characterized in that it has a measuring electrode having a guard electrode and a reference electrode having a guard electrode, and is configured as a powder conveying pipe
請求項1記載の粉体用静電容量計測装置において、前記粉体の搬送パイプに接続する前記測定電極と前記基準電極の電極面積比はN倍で、且つ、各々の電極の長さは同一に構成されている事を特徴とする粉体用静電容量計測装置      2. The capacitance measuring device for powder according to claim 1, wherein an electrode area ratio of the measurement electrode connected to the powder conveyance pipe and the reference electrode is N times, and the length of each electrode is the same. Capacitance measuring device for powder, characterized in that it is configured 請求項1及び請求項2記載の粉体用静電容量計測装置において、前記測定電極と基準電極から得られる電圧又は電流信号は測定電極と基準電極の電極面積比のN倍に増幅して、前記電圧又は電流信号の差を得るように構成されている事を特徴とする粉体用静電容量計測装置      In the capacitance measuring apparatus for powder according to claim 1 and claim 2, the voltage or current signal obtained from the measurement electrode and the reference electrode is amplified to N times the electrode area ratio of the measurement electrode and the reference electrode, Capacitance measuring device for powder, characterized in that it is configured to obtain the difference between the voltage or current signals 請求項1から請求項3記載の粉体用静電容量計測装置において、前記測定電極と前記基準電極に接続される交流発振器と、
前記測定電極と前記基準電極から得られる電圧信号は入力側に接続され、さらにガード電極及び接続用同軸ケーブルのシールド側が出力側に接続されたボルテージ・フォロワー構成の非反転増幅器と、
前記測定電極と前記基準電極は測定電極側の交流電圧と基準電極側の交流電圧を交互に切り替える第1スイッチング回路と、
交流発振器の周波数の位相を90度進める進相回路と
前記第1スイッチング回路の出力が増幅回路を通した信号と前記進相回路を通した信号とを変調または乗算する変調回路または乗算回路と
前記変調回路または乗算回路の出力をスイッチング周波数以下の周波数を通過させる第1低域濾過回路と、
前記第1低域濾過回路の出力は増幅器を通して接続される第2スイッチング回路と、
前記第2スイッチング回路の出力が接続され粉体速度に応じた周波数帯域を有する第2低域濾過回路と、
低域濾過回路の出力は計測する粉体の量に応じて増幅する直流増幅器と、所望の直流出力電圧を出力する構成の粉体用静電容量計測装置。
The capacitance measuring device for powder according to claim 1 to 3, wherein an AC oscillator connected to the measurement electrode and the reference electrode;
A voltage signal obtained from the measurement electrode and the reference electrode is connected to the input side, and further, a non-inverting amplifier with a voltage follower configuration in which the shield side of the guard electrode and the coaxial cable for connection is connected to the output side,
The measurement electrode and the reference electrode are a first switching circuit that alternately switches between an AC voltage on the measurement electrode side and an AC voltage on the reference electrode side;
A phase advance circuit that advances the phase of the frequency of the AC oscillator by 90 degrees; a modulation circuit or a multiplier circuit that modulates or multiplies a signal through which the output of the first switching circuit has passed through an amplifier circuit and a signal that has passed through the phase advance circuit; A first low-pass filtering circuit that allows the output of the modulation circuit or the multiplication circuit to pass a frequency equal to or lower than the switching frequency;
An output of the first low-pass filtering circuit; a second switching circuit connected through an amplifier;
A second low-pass filter circuit connected to the output of the second switching circuit and having a frequency band corresponding to the powder speed;
The output of the low-pass filter circuit is a DC amplifier that amplifies the powder according to the amount of powder to be measured, and a powder capacitance measuring device configured to output a desired DC output voltage.
請求項4記載の粉体用静電容量計測装置において、前記スイッチング周波数は電源周波数の整数分の一の周波数である事を特徴とした粉体用静電容量計測装置。      5. The electrostatic capacitance measuring device for powder according to claim 4, wherein the switching frequency is a frequency that is an integral fraction of a power supply frequency. 被測定体の粉体が気体搬送系により対向する電極間に投入及び通過させて電極間の静電容量変化により粉体量を計測する粉体用静電容量計測装置において、
前記粉体の搬送パイプに構成される第1測定電極と第2測定電極を有し、前記第1測定電極と第2測定電極の電極面積比はN倍で、且つ、各々の電極の長さは同一に構成され、
前記第1測定電極と第2測定電極は共通の基準電極で構成されている事を特徴とする粉体用静電容量計測装置
In a powder capacitance measuring device for measuring the amount of powder by changing the capacitance between electrodes by putting and passing between powders of a measured object between opposed electrodes by a gas conveyance system,
It has a first measurement electrode and a second measurement electrode configured in the powder conveying pipe, the electrode area ratio of the first measurement electrode and the second measurement electrode is N times, and the length of each electrode Are configured identically
Capacitance measuring apparatus for powder, wherein the first measurement electrode and the second measurement electrode are constituted by a common reference electrode
JP2004382263A 2004-12-02 2004-12-02 Capacity measuring device for measuring particulates Pending JP2006162581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004382263A JP2006162581A (en) 2004-12-02 2004-12-02 Capacity measuring device for measuring particulates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004382263A JP2006162581A (en) 2004-12-02 2004-12-02 Capacity measuring device for measuring particulates

Publications (1)

Publication Number Publication Date
JP2006162581A true JP2006162581A (en) 2006-06-22

Family

ID=36664753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004382263A Pending JP2006162581A (en) 2004-12-02 2004-12-02 Capacity measuring device for measuring particulates

Country Status (1)

Country Link
JP (1) JP2006162581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025799A (en) * 2010-07-20 2012-02-09 Electric Power Dev Co Ltd Coal gasification furnace system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025799A (en) * 2010-07-20 2012-02-09 Electric Power Dev Co Ltd Coal gasification furnace system

Similar Documents

Publication Publication Date Title
Huang et al. Electronic transducers for industrial measurement of low value capacitances
US8390304B2 (en) Electrical resonance detection of particles and analytes in microfluidic channels
JP3786887B2 (en) Magnetic detector
CN102012464B (en) Micro capacitance measurement method and special device
CN104597328B (en) The capacitance measurement circuit and measuring method of a kind of anti-static electricity interference
CN105806206B (en) Thickness detection apparatus
CN103900661A (en) Segmented liquid level sensor based on capacitance-to-digital conversion technology
CN106771642A (en) A kind of capacitance measurement circuit for capacitance tomography system
JPH08278336A (en) Electrostatic sensor device
CN111693784A (en) Weak capacitance change measuring circuit
Baby et al. A simple analog front-end circuit for grounded capacitive sensors with offset capacitance
JP2006162581A (en) Capacity measuring device for measuring particulates
Huang Capacitance transducers for concentration measurement in multi-component flow processes
CN113514710A (en) Electrostatic detection device
CN109839412A (en) The synchronous measuring device and method for obtaining capacitor and electrostatic signal in Dual-Phrase Distribution of Gas olid
JPH0252220A (en) Signal former
CN212646814U (en) Weak capacitance change measuring circuit
US3775687A (en) Capacitance difference measuring circuit
JP2856521B2 (en) Electromagnetic flow meter
Puentes et al. Planar sensor for permittivity and velocity detection based on metamaterial transmission line resonator
RU2558641C1 (en) Air gap sensor
US20230152346A1 (en) Capacitance sensing method and assembly
US20230384342A1 (en) Capacitance sensing method and assembly
Deabes et al. Analysis, design and application of a capacitance measurement circuit with wide operating frequency range
SU1278908A1 (en) Device for taking account of moving objects