JP2006152846A - Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine - Google Patents

Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine Download PDF

Info

Publication number
JP2006152846A
JP2006152846A JP2004341545A JP2004341545A JP2006152846A JP 2006152846 A JP2006152846 A JP 2006152846A JP 2004341545 A JP2004341545 A JP 2004341545A JP 2004341545 A JP2004341545 A JP 2004341545A JP 2006152846 A JP2006152846 A JP 2006152846A
Authority
JP
Japan
Prior art keywords
cylinder
air
fuel ratio
internal combustion
ratio estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004341545A
Other languages
Japanese (ja)
Inventor
Akihiro Okamoto
明浩 岡本
Keiji Wakahara
啓二 若原
Masayuki Kita
正之 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004341545A priority Critical patent/JP2006152846A/en
Priority to DE200510003009 priority patent/DE102005003009A1/en
Priority to US11/038,037 priority patent/US7243644B2/en
Publication of JP2006152846A publication Critical patent/JP2006152846A/en
Priority to US11/783,012 priority patent/US7409284B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately estimate the air-fuel ratio of each cylinder of an engine even if combustion intervals are unequal to each other or the exhaust pipe length of each cylinder is not equal to each other in the exhaust system of the engine. <P>SOLUTION: In the engine in which the combustion intervals of each cylinder of each bank are not equal to each other or the exhaust pipe length of each cylinder is not equal to each other as in a V-type 8-cylinder engine 11, a relation between the air-fuel ratio of each cylinder and the detected values of air-fuel ratio sensors 16 is modeled for each cylinder by using model parameters different from each other for each cylinder to prepare a plurality of air-fuel ratio estimating models for each cylinder in order to estimate the air-fuel ratio of each cylinder by using the different air-fuel ratio estimating models for each cylinder. The air-fuel ratio estimating models for each cylinder is formed to use, a model input, the combination of the air-fuel ratio of a prescribed cylinder for which the air-fuel ratio is estimated with a disturbance element, and to express the disturbance element by the averaged value of the air-fuel ratios of those cylinders other than the prescribed cylinder for which the air-fuel ratio is estimated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の複数気筒の排気マニホールドが接続された集合排気管に設置した空燃比センサで検出したガスの空燃比に基づいて各気筒の空燃比を推定する内燃機関の気筒別空燃比推定装置及び気筒別空燃比制御装置に関する発明である。   The present invention relates to an air-fuel ratio for each cylinder of an internal combustion engine that estimates the air-fuel ratio of each cylinder based on the air-fuel ratio of a gas detected by an air-fuel ratio sensor installed in a collective exhaust pipe connected to an exhaust manifold of a plurality of cylinders of the internal combustion engine. The invention relates to an estimation device and a cylinder-by-cylinder air-fuel ratio control device.

近年、内燃機関の気筒間の空燃比ばらつきを少なくして空燃比制御精度を向上させるために、特許文献1(特許第2717744号公報)に記載されているように、内燃機関の排気系の挙動を記述するモデルを設定して、集合排気管に設置した1つの空燃比センサの検出値(集合排気管を流れるガスの空燃比)を該モデルに入力し、その内部状態を観測するオブザーバによって各気筒の空燃比(気筒別空燃比)を推定すると共に、その推定値に基づいて各気筒の空燃比を目標値にフィードバック制御するようにしたものがある。
特許第2717744号公報(第1頁〜第2頁等)
In recent years, as described in Patent Document 1 (Japanese Patent No. 2717744), the behavior of the exhaust system of an internal combustion engine has been described in order to reduce air-fuel ratio variation between cylinders of the internal combustion engine and improve air-fuel ratio control accuracy. Is set, a detection value of one air-fuel ratio sensor installed in the collective exhaust pipe (the air-fuel ratio of the gas flowing through the collective exhaust pipe) is input to the model, and each observer observes its internal state. There are some which estimate the air-fuel ratio of each cylinder (air-fuel ratio for each cylinder) and feedback control the air-fuel ratio of each cylinder to a target value based on the estimated value.
Japanese Patent No. 2717744 (first page to second page, etc.)

例えば、V型エンジンのように、複数のバンク(気筒グループ)からなる内燃機関においては、各バンク毎にそれぞれ集合排気管を設け、各集合排気管にそれぞれ空燃比センサを設置したものがある。この構成では、各バンク毎に空燃比センサの検出値に基づいて気筒別空燃比を推定することになるが、1つのバンクに設けられた複数の気筒の燃焼間隔(排気行程の間隔)は等間隔とはならない。この理由を、V型8気筒エンジンを例にして説明する。V型8気筒エンジンは、2つのバンクからなり、各バンクにそれぞれ4気筒ずつ設けられている。エンジン全体(8気筒全体)で見れば、燃焼間隔は等間隔(90℃A間隔)であるが、図2に示すように、片方のバンクの4つの気筒#1,#3,#5,#7についてのみ見れば、燃焼間隔(排気行程の間隔)が90℃A、180℃A、270℃Aの3通りに変化するため、燃焼間隔が不等間隔になる。燃焼間隔が長い場合(270℃Aの場合)は、空燃比センサの位置に到達するガスの中に、他の燃焼気筒から排出されるガスが混じっていないが、燃焼間隔が短い場合(90℃Aの場合)は、空燃比センサの位置に到達するガスの中に他の燃焼気筒から排出されるガスが混じり込んで空燃比が変化しているものと思われる。   For example, in an internal combustion engine composed of a plurality of banks (cylinder groups) such as a V-type engine, there is one in which a collective exhaust pipe is provided for each bank, and an air-fuel ratio sensor is installed in each collective exhaust pipe. In this configuration, the air-fuel ratio for each cylinder is estimated for each bank based on the detected value of the air-fuel ratio sensor, but the combustion intervals (exhaust stroke intervals) of a plurality of cylinders provided in one bank are equal. It is not an interval. The reason for this will be described using a V-type 8-cylinder engine as an example. The V-type 8-cylinder engine is composed of two banks, each having four cylinders. The combustion interval is equal (90 ° C. A interval) when viewed from the entire engine (8 cylinders as a whole), but as shown in FIG. 2, the four cylinders # 1, # 3, # 5, # in one bank are shown. If only 7 is seen, since the combustion interval (exhaust stroke interval) changes in three ways of 90 ° C. A, 180 ° C. A, and 270 ° C., the combustion interval becomes unequal. When the combustion interval is long (270 ° C. A), the gas that reaches the position of the air-fuel ratio sensor is not mixed with the gas discharged from the other combustion cylinders, but the combustion interval is short (90 ° C.). In the case of A), it is considered that the gas reaching the position of the air-fuel ratio sensor is mixed with the gas discharged from the other combustion cylinders and the air-fuel ratio is changed.

しかし、従来の気筒別空燃比推定モデルは、排気系が1系統のエンジンのように、燃焼間隔が等間隔になるエンジンの排気系の挙動をモデル化したものであるため、このモデルを燃焼間隔が不等間隔になるV型8気筒エンジン等に適用しても、気筒別空燃比を精度良く推定できないという問題があった。   However, since the conventional cylinder-by-cylinder air-fuel ratio estimation model models the behavior of the exhaust system of an engine in which the combustion intervals are equal, like an engine with one exhaust system, this model is used as the combustion interval. Even when applied to a V-type 8-cylinder engine or the like having unequal intervals, there is a problem in that the cylinder-by-cylinder air-fuel ratio cannot be accurately estimated.

また、図3に示すように、各気筒の排気マニホールド12の長さ(以下「排気管長」という)が不等長の排気系の場合、各気筒の排出ガスが空燃比センサ16に到達するまでの移動距離が異なるために、各気筒の排出ガスが燃焼順に空燃比センサ16に到達しない可能性がある。しかし、従来の気筒別空燃比推定モデルは、各気筒の排気管長が同一の排気系についてモデル化されているため、各気筒の排気管長が不等長の排気系の場合には、気筒別空燃比を精度良く推定できないという問題があった。   Further, as shown in FIG. 3, in the case of an exhaust system in which the length of the exhaust manifold 12 of each cylinder (hereinafter referred to as “exhaust pipe length”) is an unequal length, the exhaust gas of each cylinder reaches the air-fuel ratio sensor 16. Therefore, the exhaust gas from each cylinder may not reach the air-fuel ratio sensor 16 in the order of combustion. However, since the conventional cylinder-by-cylinder air-fuel ratio estimation model is modeled for an exhaust system in which the exhaust pipe length of each cylinder is the same, in the case of an exhaust system in which the exhaust pipe length of each cylinder is unequal, There was a problem that the fuel ratio could not be accurately estimated.

そこで、本発明の第1の目的は、燃焼間隔が不等間隔であったり、各気筒の排気管長が不等長の排気系の場合でも、各気筒の空燃比を精度良く推定できる内燃機関の気筒別空燃比推定装置を提供することであり、また、本発明の第2の目的は、燃焼間隔が不等間隔であったり、各気筒の排気管長が不等長の排気系の場合でも、気筒別空燃比制御を精度良く実施することができる内燃機関の気筒別空燃比制御装置を提供することである。   Accordingly, a first object of the present invention is an internal combustion engine that can accurately estimate the air-fuel ratio of each cylinder even in the case of an exhaust system in which the combustion interval is unequal or the exhaust pipe length of each cylinder is unequal. A cylinder-by-cylinder air-fuel ratio estimation device is provided, and a second object of the present invention is to provide an exhaust system in which the combustion intervals are unequal and the exhaust pipe length of each cylinder is unequal. An object of the present invention is to provide a cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine that can accurately perform cylinder-by-cylinder air-fuel ratio control.

上記第1の目的を達成するために、請求項1に係る発明は、内燃機関の複数気筒の排気マニホールドが接続された集合排気管に、各気筒から排出されたガスの空燃比を検出する空燃比センサを設置し、この空燃比センサで検出したガスの空燃比に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段を備えた内燃機関の気筒別空燃比推定装置において、各気筒の空燃比と前記空燃比センサの検出値との関係を気筒毎に別々にモデル化して複数の気筒別空燃比推定モデルを作成し、気筒毎に異なる気筒別空燃比推定モデルを用いて各気筒の空燃比を推定するようにしたものである。このようにすれば、燃焼間隔が不等間隔であったり(以下「不等間隔燃焼」という)、各気筒の排気管長が不等長の排気系(以下「不等長排気系」という)の場合でも、各気筒の空燃比を推定するための気筒別空燃比推定モデルを不等間隔燃焼や不等長排気系の影響を考慮して気筒毎に別々にモデル化できるため、不等間隔燃焼や不等長排気系の場合でも、各気筒の空燃比を精度良く推定することができる。   In order to achieve the first object, according to a first aspect of the present invention, an air-fuel ratio for detecting an air-fuel ratio of gas discharged from each cylinder is connected to a collective exhaust pipe connected to an exhaust manifold of a plurality of cylinders of an internal combustion engine. In the cylinder-by-cylinder air-fuel ratio estimation apparatus for an internal combustion engine, the cylinder-by-cylinder air-fuel ratio estimation unit includes a cylinder-by-cylinder air-fuel ratio estimation unit that installs a fuel ratio sensor and estimates the air-fuel ratio of each cylinder based on the air-fuel ratio detected by the air-fuel ratio sensor. The relationship between the air-fuel ratio of the engine and the detected value of the air-fuel ratio sensor is modeled separately for each cylinder to create a plurality of cylinder-by-cylinder air-fuel ratio estimation models. The air-fuel ratio is estimated. In this way, the combustion intervals are unequal (hereinafter referred to as “unequal interval combustion”), or the exhaust pipe length of each cylinder is unequal (hereinafter referred to as “unequal length exhaust system”). Even in this case, the cylinder-by-cylinder air-fuel ratio estimation model for estimating the air-fuel ratio of each cylinder can be modeled separately for each cylinder in consideration of the effects of unequal-interval combustion and unequal-length exhaust systems. Even in the case of an unequal length exhaust system, the air-fuel ratio of each cylinder can be accurately estimated.

本発明で使用する各気筒の気筒別空燃比推定モデルは、請求項2のように、空燃比推定の対象となる所定気筒の空燃比と外乱要素との組み合わせを該モデルの入力とするように構成すると良い。このようにすれば、不等間隔燃焼や不等長排気系の影響を外乱要素に含ませてモデル化することができて、気筒毎に異なる気筒別空燃比推定モデルを比較的簡単に作成することができる。   The cylinder-by-cylinder air-fuel ratio estimation model used in the present invention is such that a combination of an air-fuel ratio and a disturbance element of a predetermined cylinder which is an object of air-fuel ratio estimation is input to the model as in claim 2. It is good to configure. In this way, the effects of unequal interval combustion and unequal length exhaust systems can be included in the disturbance element for modeling, and a cylinder-by-cylinder air-fuel ratio estimation model that differs for each cylinder can be created relatively easily. be able to.

この場合、請求項3のように、外乱要素を全気筒の空燃比の平均値で表すようにしたり、或は、請求項4のように、外乱要素を空燃比推定の対象となる所定気筒以外の気筒の空燃比の平均値で表すようにしても良い。いずれの場合も、外乱要素(不等間隔燃焼や不等長排気系の影響)を簡単に演算することができる利点がある。   In this case, as in claim 3, the disturbance element is expressed by an average value of the air-fuel ratios of all the cylinders, or as in claim 4, the disturbance element is other than a predetermined cylinder which is an object of air-fuel ratio estimation. It may be expressed by the average value of the air-fuel ratio of the cylinders. In either case, there is an advantage that disturbance elements (influence of unequal interval combustion and unequal length exhaust system) can be easily calculated.

また、気筒別空燃比推定モデルは、請求項5のように、気筒毎に別々のモデルパラメータを用いることで気筒毎に別々にモデル化するようにすると良い。このようにすれば、気筒毎に異なる気筒別空燃比推定モデルを簡単に作成することができる。   The cylinder-by-cylinder air-fuel ratio estimation model is preferably modeled separately for each cylinder by using different model parameters for each cylinder. In this way, a cylinder-by-cylinder air-fuel ratio estimation model that differs for each cylinder can be easily created.

本発明は、請求項6のように、複数の気筒グループからなる内燃機関であって、各気筒グループ毎にそれぞれ燃焼間隔が不等間隔な複数気筒の排気マニホールドが接続された集合排気管が設けられていると共に、各集合排気管にそれぞれ空燃比センサが設置されたシステムにおいて、各気筒グループの気筒毎に異なる気筒別空燃比推定モデルを用いて各気筒の空燃比を推定するようにすると良い。複数の気筒グループからなる内燃機関では、1つの気筒グループについてのみ見れば、燃焼間隔が不等間隔になるため、従来の気筒別空燃比推定方法では、各気筒の空燃比を精度良く推定できないが、本発明を適用すれば、燃焼間隔が不等間隔になる気筒グループの各気筒の空燃比を精度良く推定でき、勿論、不等長排気系の場合でも、各気筒の空燃比を精度良く推定できる。   According to a sixth aspect of the present invention, there is provided an internal combustion engine comprising a plurality of cylinder groups, wherein a collective exhaust pipe connected to a plurality of cylinders having unequal combustion intervals is provided for each cylinder group. In addition, in a system in which an air-fuel ratio sensor is installed in each collective exhaust pipe, the air-fuel ratio of each cylinder may be estimated using a cylinder-specific air-fuel ratio estimation model that is different for each cylinder in each cylinder group. . In an internal combustion engine composed of a plurality of cylinder groups, the combustion interval becomes unequal when viewed from only one cylinder group. Therefore, the conventional air-fuel ratio estimation method for each cylinder cannot accurately estimate the air-fuel ratio of each cylinder. By applying the present invention, it is possible to accurately estimate the air-fuel ratio of each cylinder in a cylinder group with unequal combustion intervals, and of course, even in the case of an unequal length exhaust system, the air-fuel ratio of each cylinder is accurately estimated. it can.

また、前記第2の目的を達成するために、請求項7のように、請求項1乃至6のいずれかに記載の内燃機関の気筒別空燃比推定装置と、この気筒別空燃比推定装置により推定した気筒別空燃比の気筒間ばらつきを小さくする方向に各気筒の空燃比を制御する気筒別空燃比制御手段を備える構成としても良い。このようにすれば、不等間隔燃焼や不等長排気系の場合でも、気筒別空燃比制御を精度良く実施することができる。   In order to achieve the second object, as in claim 7, according to any one of claims 1 to 6, the cylinder-by-cylinder air-fuel ratio estimation apparatus and the cylinder-by-cylinder air-fuel ratio estimation apparatus A configuration may be provided with cylinder-by-cylinder air-fuel ratio control means for controlling the air-fuel ratio of each cylinder in a direction to reduce the estimated cylinder-by-cylinder variation of the air-fuel ratio. In this way, the cylinder-by-cylinder air-fuel ratio control can be performed with high precision even in the case of unequal interval combustion and unequal length exhaust systems.

以下、本発明を例えばV型8気筒エンジンに適用した一実施例を説明する。
まず、図1に基づいてV型8気筒エンジンの排気系の構成を説明する。V型8気筒エンジン11は、2つの気筒グループを構成する2つのバンク(AバンクとBバンク)をV字型に配置し、Aバンクには、4つの気筒#1,#3,#5,#7を直列に配置し、Bバンクには、残りの4つの気筒#2,#4,#6,#8を直列に配置した構成となっている。AバンクとBバンクには、それぞれ別々の排気系が構成され、各バンクの4本の排気マニホールド12は、それぞれ別々の集合排気管14に接続されている。各バンクの集合排気管14には、それぞれ排出ガスの空燃比を検出する空燃比センサ16が設置され、各空燃比センサ16の下流側に排出ガス浄化用の触媒18が設置されている。
Hereinafter, an embodiment in which the present invention is applied to, for example, a V-type 8-cylinder engine will be described.
First, the configuration of the exhaust system of the V-type 8-cylinder engine will be described with reference to FIG. In the V-type 8-cylinder engine 11, two banks (A bank and B bank) constituting two cylinder groups are arranged in a V shape, and four cylinders # 1, # 3, # 5 are arranged in the A bank. # 7 is arranged in series, and the remaining four cylinders # 2, # 4, # 6, and # 8 are arranged in series in the B bank. Separate exhaust systems are configured in the A bank and the B bank, and the four exhaust manifolds 12 in each bank are connected to separate collective exhaust pipes 14 respectively. An air-fuel ratio sensor 16 for detecting the air-fuel ratio of the exhaust gas is installed in the collective exhaust pipe 14 of each bank, and an exhaust gas purification catalyst 18 is installed on the downstream side of each air-fuel ratio sensor 16.

上記空燃比センサ16等の各種センサの出力は、エンジン制御回路(ECU)20に入力される。このECU20は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて各気筒の燃料噴射量や点火時期を制御する。   Outputs of various sensors such as the air-fuel ratio sensor 16 are input to an engine control circuit (ECU) 20. The ECU 20 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and ignition timing of each cylinder according to the engine operating state. To control.

本実施例では、ECU20は、後述する気筒別空燃比制御用の各ルーチンを実行することで、後述する気筒毎に異なる気筒別空燃比推定モデルを用いて各バンクの空燃比センサ16の検出値(各バンクの集合排気管14を流れる排出ガスの実空燃比)に基づいて各バンク毎に各気筒の空燃比(以下「気筒別空燃比」という)を推定し、各バンク毎に気筒別空燃比推定値の平均値を算出して、その平均値を基準空燃比(各バンクの目標空燃比)に設定する。そして、各バンク毎に気筒別空燃比推定値と基準空燃比との偏差を各気筒毎に算出して、その偏差(気筒間の空燃比ばらつき)が小さくなるように気筒別補正量(各気筒の燃料補正量)を算出し、その算出結果に基づいて気筒別燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する(以下、この制御を「気筒別空燃比制御」という)。   In the present embodiment, the ECU 20 executes each routine for cylinder-by-cylinder air-fuel ratio control, which will be described later, so that the detected value of the air-fuel ratio sensor 16 in each bank using a cylinder-by-cylinder air-fuel ratio estimation model that differs for each cylinder to be described later. The air-fuel ratio of each cylinder (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio”) is estimated for each bank based on (the actual air-fuel ratio of the exhaust gas flowing through the collective exhaust pipe 14 of each bank). An average value of the estimated fuel ratio is calculated, and the average value is set as a reference air-fuel ratio (target air-fuel ratio of each bank). Then, for each bank, a deviation between the estimated value of the air-fuel ratio for each cylinder and the reference air-fuel ratio is calculated for each cylinder, and the correction amount for each cylinder (each cylinder) so that the deviation (air-fuel ratio variation between cylinders) is reduced. And the fuel injection amount for each cylinder is corrected based on the calculation result, thereby correcting the air-fuel ratio of the air-fuel mixture supplied to each cylinder for each cylinder, thereby varying the air-fuel ratio among the cylinders. (Hereinafter, this control is referred to as “cylinder-by-cylinder air-fuel ratio control”).

ここで、各バンクの空燃比センサ16の検出値(各バンクの集合排気管14を流れる排出ガスの実空燃比)に基づいて各バンクの気筒別空燃比を推定する方法を説明する。   Here, a method of estimating the air-fuel ratio of each bank in each bank based on the detected value of the air-fuel ratio sensor 16 in each bank (actual air-fuel ratio of exhaust gas flowing through the collective exhaust pipe 14 in each bank) will be described.

V型8気筒エンジン11は、エンジン全体(8気筒全体)で見れば、隣接する燃焼気筒の間隔(以下「燃焼間隔」という)は、等間隔(90℃A間隔)であるが、図2に示すように、片方のバンク(Aバンク)の4つの気筒#1,#3,#5,#7についてのみ見れば、燃焼間隔(排気行程の間隔)が90℃A、180℃A、270℃Aの3通りに変化するため、燃焼間隔が不等間隔になる。燃焼間隔が長い場合(270℃Aの場合)は、空燃比センサ16の位置に到達するガスの中に、他の燃焼気筒から排出されるガスが混じっていないが、燃焼間隔が短い場合(90℃Aの場合)は、空燃比センサ16の位置に到達するガスの中に他の燃焼気筒から排出されるガスが混じり込んで空燃比が変化しているものと思われる。   When the V-type 8-cylinder engine 11 is viewed as a whole engine (8 cylinders as a whole), the interval between adjacent combustion cylinders (hereinafter referred to as “combustion interval”) is equal (90 ° C. A interval). As shown, when only the four cylinders # 1, # 3, # 5, and # 7 in one bank (A bank) are viewed, the combustion intervals (intervals of the exhaust stroke) are 90 ° C. A, 180 ° C. A, 270 ° C. Since A changes in three ways, the combustion interval becomes unequal. When the combustion interval is long (270 ° C. A), the gas reaching the position of the air-fuel ratio sensor 16 is not mixed with the gas discharged from the other combustion cylinders, but the combustion interval is short (90 In the case of the temperature A), it is considered that the gas that reaches the position of the air-fuel ratio sensor 16 is mixed with the gas discharged from the other combustion cylinders and the air-fuel ratio is changed.

また、図3に示すように、各気筒の排気マニホールド12の長さ(以下「排気管長」という)が不等長の排気系の場合、各気筒の排出ガスが空燃比センサ16に到達するまでの移動距離が異なるために、各気筒の排出ガスが燃焼順に空燃比センサ16に到達しない可能性がある。   Further, as shown in FIG. 3, in the case of an exhaust system in which the length of the exhaust manifold 12 of each cylinder (hereinafter referred to as “exhaust pipe length”) is an unequal length, the exhaust gas of each cylinder reaches the air-fuel ratio sensor 16. Therefore, the exhaust gas from each cylinder may not reach the air-fuel ratio sensor 16 in the order of combustion.

そこで、本実施例では、各気筒の空燃比と空燃比センサ16の検出値との関係を気筒毎に別々のモデルパラメータ(重み付け係数)を用いて気筒毎にモデル化して複数の気筒別空燃比推定モデルを作成している。従って、V型8気筒エンジン11では、1つのバンク(4気筒)当たり4種類の気筒別空燃比推定モデルを作成し、気筒毎に異なる気筒別空燃比推定モデルを用いて各気筒の空燃比を推定するようにしている。   Therefore, in the present embodiment, the relationship between the air-fuel ratio of each cylinder and the detected value of the air-fuel ratio sensor 16 is modeled for each cylinder using different model parameters (weighting coefficients) for each cylinder, and a plurality of air-fuel ratios for each cylinder are modeled. An estimation model is being created. Therefore, in the V-type 8-cylinder engine 11, four types of cylinder-by-cylinder air-fuel ratio estimation models are created per bank (four cylinders), and the cylinder-by-cylinder air-fuel ratio estimation models are used to determine the air-fuel ratio of each cylinder. I try to estimate.

各気筒の気筒別空燃比推定モデルは、各気筒の空燃比と空燃比センサ16の検出値との関係を表すモデルであり、気筒毎に別々のモデルパラメータを用いることで気筒毎に別々にモデル化されている。例えば、Aバンクの4つの気筒#1,#3,#5,#7の気筒別空燃比推定モデルは、それぞれ次式で与えられる。   The cylinder-by-cylinder air-fuel ratio estimation model for each cylinder is a model that represents the relationship between the air-fuel ratio of each cylinder and the detected value of the air-fuel ratio sensor 16, and is modeled separately for each cylinder by using different model parameters for each cylinder. It has become. For example, the cylinder-by-cylinder air-fuel ratio estimation models of the four cylinders # 1, # 3, # 5, and # 7 of the A bank are respectively given by the following equations.

Figure 2006152846
Figure 2006152846

Figure 2006152846
Figure 2006152846

Figure 2006152846
Figure 2006152846

Figure 2006152846
Figure 2006152846

ここで、ys は空燃比センサ16の検出値、uは各気筒の入力空燃比(u1 は気筒#1の入力空燃比、u3 は気筒#3の入力空燃比、u5 は気筒#5の入力空燃比、u7 は気筒#7の入力空燃比)である。a1j〜a7j,b1j〜b7jはモデルパラメータ(重み付け係数)e1 〜e7 は外乱要素である。iは現在の演算タイミングを表し、jは現在の演算タイミングiから何回前の演算タイミングであるかを表している。本実施例では、演算間隔が燃焼間隔(180℃A)の1/2の間隔(90℃A)に設定されているため、1サイクル(720℃A)当たりjは1から8まで変化する。
jの最大値=720℃A/90℃A=8
Here, y s is the detected value of the air-fuel ratio sensor 16, u is the input air-fuel ratio (u 1 is input air-fuel ratio of the cylinders # 1 of each cylinder, u 3 is the input air-fuel ratio of the cylinder # 3, u 5 is cylinder # 5 is an input air-fuel ratio, and u 7 is an input air-fuel ratio of cylinder # 7). a 1j to a 7j and b 1j to b 7j are model parameters (weighting coefficients) e 1 to e 7 are disturbance elements. i represents the current calculation timing, and j represents the number of calculation timings before the current calculation timing i. In this embodiment, since the calculation interval is set to a half interval (90 ° C. A) of the combustion interval (180 ° C. A), j changes from 1 to 8 per cycle (720 ° C. A).
Maximum value of j = 720 ° C. A / 90 ° C. A = 8

このように、各気筒の気筒別空燃比推定モデルは、空燃比推定の対象となる所定気筒の空燃比と外乱要素との組み合わせを該モデルの入力とするように構成され、外乱要素は、所定気筒以外の気筒の空燃比の平均値で表される。   As described above, the cylinder-by-cylinder air-fuel ratio estimation model of each cylinder is configured so that a combination of the air-fuel ratio and the disturbance element of a predetermined cylinder that is an object of air-fuel ratio estimation is input to the model. It is represented by an average value of air-fuel ratios of cylinders other than the cylinder.

具体的には、気筒#1の気筒別空燃比推定モデルの外乱要素e1 は、気筒#1を除く3つの気筒#3,#5,#7の空燃比の平均値で表される。
1 =(u3 +u5 +u7 )/3
Specifically, the disturbance element e 1 of the cylinder-by-cylinder air-fuel ratio estimation model of cylinder # 1 is represented by the average value of the air-fuel ratios of the three cylinders # 3, # 5, and # 7 excluding cylinder # 1.
e 1 = (u 3 + u 5 + u 7 ) / 3

気筒#3の気筒別空燃比推定モデルの外乱要素e3 は、気筒#3を除く3つの気筒#1,#5,#7の空燃比の平均値で表される。
3 =(u1 +u5 +u7 )/3
Disturbance element e 3 of the cylinder-by-cylinder air-fuel ratio estimation model of cylinder # 3 is represented by the average value of the air-fuel ratios of the three cylinders # 1, # 5, and # 7 excluding cylinder # 3.
e 3 = (u 1 + u 5 + u 7 ) / 3

気筒#5の気筒別空燃比推定モデルの外乱要素e5 は、気筒#5を除く3つの気筒#1,#3,#7の空燃比の平均値で表される。
5 =(u1 +u3 +u7 )/3
The disturbance element e 5 of the cylinder-by-cylinder air-fuel ratio estimation model of cylinder # 5 is represented by the average value of the air-fuel ratios of the three cylinders # 1, # 3, and # 7 excluding cylinder # 5.
e 5 = (u 1 + u 3 + u 7 ) / 3

気筒#7の気筒別空燃比推定モデルの外乱要素e7 は、気筒#7を除く3つの気筒#1,#3,#5の空燃比の平均値で表される。
7 =(u1 +u3 +u5 )/3
The disturbance element e 7 of the cylinder-by-cylinder air-fuel ratio estimation model of the cylinder # 7 is represented by the average value of the air-fuel ratios of the three cylinders # 1, # 3, and # 5 excluding the cylinder # 7.
u 7 = (u 1 + u 3 + u 5 ) / 3

或は、各外乱要素e1 〜e7 をバンクAの全気筒の空燃比#1,#3,#5,#7の平均値で表すようにしても良い。
1 =e3 =e5 =u7 =(u1 +u3 +u5 +u7 )/4
このようにすれば、各気筒の気筒別空燃比推定モデルの外乱要素e1 〜e7 が全て同じになるため、演算処理が容易になる利点がある。
Alternatively, the air-fuel ratio # 1 for all the cylinders of each disturbance factor e 1 to e 7 Bank A, # 3, # 5, it may be represented by an average value of # 7.
e 1 = e 3 = e 5 = u 7 = (u 1 + u 3 + u 5 + u 7 ) / 4
In this way, all the disturbance elements e 1 to e 7 of the cylinder-by-cylinder air-fuel ratio estimation model of each cylinder are the same, and there is an advantage that the arithmetic processing becomes easy.

尚、他方のバンクBについても、各気筒#2,#4,#6,#8の気筒別空燃比推定モデルを同様の方法で作成すれば良い。
各気筒#n(n=1〜8)の気筒別空燃比推定モデルの式を状態空間モデルに変換すると、次の(1)、(2)式が導き出される。
X(i+1) =An ・X(i) +Bn ・u(i) +Wn (i) ……(1)
Y(i) =Cn ・X(i) +Dn ・u(i) ……(2)
ここで、An ,Bn ,Cn ,Dn は、各気筒#nの気筒別空燃比推定モデルのパラメータ(重み付け係数)、Yは空燃比センサ16の検出値、Xは状態変数としての気筒別空燃比の影響の総和、Wはノイズである。
For the other bank B, the cylinder-by-cylinder air-fuel ratio estimation model for each cylinder # 2, # 4, # 6, and # 8 may be created by the same method.
When the formula of the cylinder-by-cylinder air-fuel ratio estimation model for each cylinder #n (n = 1 to 8) is converted into a state space model, the following formulas (1) and (2) are derived.
X (i + 1) = A n · X (i) + B n · u (i) + W n (i) ...... (1)
Y (i) = C n · X (i) + D n · u (i) ...... (2)
Here, A n , B n , C n , and D n are parameters (weighting coefficients) of the cylinder-by-cylinder air-fuel ratio estimation model of each cylinder #n, Y is a detected value of the air-fuel ratio sensor 16, and X is a state variable. The sum of the effects of the cylinder-by-cylinder air-fuel ratio, W is noise.

更に、上記(1)、(2)式によりカルマンフィルタを設計すると、次式が得られる。
X^(k+1|k)=An ・X^(k|k-1)+Kn {Y(k) −Cn ・An ・X^(k|k-1)}
……(3)
ここで、X^(エックスハット)は気筒別空燃比の影響の総和の推定値、Kn はカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により時間(k+1) の推定値を求めることを表す。
Furthermore, when the Kalman filter is designed by the above formulas (1) and (2), the following formula is obtained.
X ^ (k + 1 | k ) = A n · X ^ (k | k-1) + K n {Y (k) -C n · A n · X ^ (k | k-1)}
...... (3)
Here, X ^ (X hat) is the estimate of the sum of the effects of the cylinder-by-cylinder air-fuel ratio, K n is a Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、各気筒の気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴い気筒別空燃比の影響の総和を順次推定することができる。尚、空燃比偏差を入力とする場合は、上記式(3)において出力Yが空燃比偏差に置き換えられる。   As described above, by configuring the cylinder-by-cylinder air-fuel ratio estimation model of each cylinder by the Kalman filter type observer, it is possible to sequentially estimate the sum of the effects of the cylinder-by-cylinder air-fuel ratio as the combustion cycle progresses. When the air-fuel ratio deviation is input, the output Y is replaced with the air-fuel ratio deviation in the above equation (3).

ECU20は、図4乃至図6に示す気筒別空燃比制御用の各ルーチンを実行することで、気筒毎に異なる気筒別空燃比推定モデルを用いて各バンクの空燃比センサ16の検出値に基づいて各バンクの気筒別空燃比を推定し、各バンク毎に気筒間の空燃比ばらつきを少なくするように各気筒の燃料噴射量を補正する気筒別空燃比制御を実行する。以下、各ルーチンの処理内容を説明する。   The ECU 20 executes the routines for cylinder-by-cylinder air-fuel ratio control shown in FIGS. 4 to 6, and uses the cylinder-by-cylinder air-fuel ratio estimation model that is different for each cylinder, based on the detection value of the air-fuel ratio sensor 16 in each bank. Then, the cylinder-by-cylinder air-fuel ratio of each bank is estimated, and the cylinder-by-cylinder air-fuel ratio control is executed to correct the fuel injection amount of each cylinder so as to reduce the air-fuel ratio variation between the cylinders for each bank. The processing contents of each routine will be described below.

[気筒別空燃比制御メインルーチン]
図4の気筒別空燃比制御メインルーチンは、クランク角センサ(図示せず)の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動される。本ルーチンが起動されると、まずステップ101で、後述する図5の実行条件判定ルーチンを実行して、気筒別空燃比制御の実行条件が成立しているか否かを判定する。この後、ステップ102に進み、図5の実行条件判定ルーチンでセットされた実行フラグがONであるか否かで、気筒別空燃比制御の実行条件が成立しているか否かを判定する。その結果、実行フラグがOFF(実行条件が不成立)と判定された場合は、以降の処理を行うことなく、本ルーチンを終了する。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control main routine of FIG. 4 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with an output pulse of a crank angle sensor (not shown). When this routine is started, first, in step 101, an execution condition determination routine of FIG. 5 described later is executed to determine whether or not an execution condition for cylinder-by-cylinder air-fuel ratio control is satisfied. Thereafter, the process proceeds to step 102, where it is determined whether or not the execution condition for the cylinder-by-cylinder air-fuel ratio control is satisfied depending on whether or not the execution flag set in the execution condition determination routine of FIG. As a result, when it is determined that the execution flag is OFF (execution condition is not satisfied), this routine is terminated without performing the subsequent processing.

一方、実行フラグがON(実行条件成立)と判定された場合は、ステップ103に進み、現在のクランク角が各気筒の空燃比検出タイミング(空燃比センサ16の出力のサンプルタイミング)であるか否かを判定し、空燃比検出タイミングでなければ、以降の処理を行うことなく、本ルーチンを終了する。   On the other hand, if it is determined that the execution flag is ON (execution condition is established), the process proceeds to step 103, and whether or not the current crank angle is the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 16). If it is not the air-fuel ratio detection timing, this routine is terminated without performing the subsequent processing.

これに対して、現在のクランク角が空燃比検出タイミングであれば、ステップ104に進み、後述する図6の気筒別空燃比制御実行ルーチンを起動して、気筒別空燃比制御を実行する。   On the other hand, if the current crank angle is the air-fuel ratio detection timing, the routine proceeds to step 104, where a cylinder-by-cylinder air-fuel ratio control execution routine of FIG.

[実行条件判定ルーチン]
図5の実行条件判定ルーチンは、図4の気筒別空燃比制御メインルーチンのステップ101で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ201で、空燃比センサ16が使用可能な状態であるか否かを判定する。ここで、使用可能な状態とは、例えば、空燃比センサ16が活性状態で、且つ、故障していない状態であることである。空燃比センサ16が使用可能な状態でなければ、以降の処理をを行うことなく、本ルーチンを終了する。
[Execution condition judgment routine]
The execution condition determination routine of FIG. 5 is a subroutine executed in step 101 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. When this routine is started, first, at step 201, it is determined whether or not the air-fuel ratio sensor 16 is in a usable state. Here, the usable state is, for example, a state in which the air-fuel ratio sensor 16 is in an active state and has not failed. If the air-fuel ratio sensor 16 is not usable, this routine is terminated without performing the subsequent processing.

一方、空燃比センサ16が使用可能な状態であれば、ステップ202に進み、冷却水温が所定温度以上(エンジン11が暖機状態)であるか否かを判定し、所定温度未満であれば、以降の処理をを行うことなく、本ルーチンを終了する。冷却水温が所定温度以上であれば、ステップ203に進み、エンジン回転速度と負荷(例えば吸気管圧力)とをパラメータとする運転領域マップを参照して、現在のエンジン運転領域が気筒別空燃比制御の実行領域であるか否かを判定する。高回転域や低負荷域では、気筒別空燃比の推定精度が悪化されるため、気筒別空燃比制御が禁止される。   On the other hand, if the air-fuel ratio sensor 16 is in a usable state, the process proceeds to step 202, where it is determined whether or not the coolant temperature is equal to or higher than a predetermined temperature (the engine 11 is warmed up). This routine is terminated without performing the subsequent processing. If the cooling water temperature is equal to or higher than the predetermined temperature, the process proceeds to step 203, and the current engine operation region is controlled by cylinder-by-cylinder air-fuel ratio control with reference to the operation region map using the engine speed and load (for example, intake pipe pressure) as parameters. It is determined whether or not it is an execution region. In the high speed range and the low load range, the estimation accuracy of the cylinder-by-cylinder air-fuel ratio is deteriorated, so that the cylinder-by-cylinder air-fuel ratio control is prohibited.

現在のエンジン運転領域が気筒別空燃比制御の実行領域であれば、ステップ204に進み、実行フラグをONにセットし、気筒別空燃比制御の実行領域でなければ、ステップ205に進み、実行フラグをOFFにセットする。   If the current engine operating region is the execution region of the cylinder-by-cylinder air-fuel ratio control, the process proceeds to step 204, the execution flag is set to ON, and if it is not the execution region of the cylinder-by-cylinder air-fuel ratio control, the process proceeds to step 205 Set to OFF.

[気筒別空燃比制御実行ルーチン]
図6の気筒別空燃比制御実行ルーチンは、図4の気筒別空燃比制御メインルーチンのステップ104で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ301で、空燃比センサ16の出力(空燃比検出値)を読み込み、次のステップ302で、気筒毎に異なる気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ16の検出値に基づいて推定する。このステップ302の処理が特許請求の範囲でいう気筒別空燃比推定手段としての役割を果たす。この後、ステップ303に進み、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定する。
[Cylinder-specific air-fuel ratio control execution routine]
The cylinder-by-cylinder air-fuel ratio control execution routine of FIG. 6 is a subroutine executed in step 104 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. When this routine is started, first, in step 301, the output of the air-fuel ratio sensor 16 (air-fuel ratio detection value) is read. In the next step 302, the current air-fuel ratio estimation model that differs for each cylinder is used. The air-fuel ratio of the cylinder to be estimated for the fuel ratio is estimated based on the detection value of the air-fuel ratio sensor 16. The processing of step 302 serves as cylinder-by-cylinder air-fuel ratio estimating means in the claims. Thereafter, the process proceeds to step 303, where an average value of estimated air-fuel ratios of all cylinders is calculated, and the average value is set as a reference air-fuel ratio (target air-fuel ratio of all cylinders).

この後、ステップ304に進み、各気筒の推定空燃比と基準空燃比との偏差を算出して、その偏差が小さくなるように気筒別補正量を算出した後、ステップ305に進み、気筒別補正量に基づいて気筒別燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する。これらステップ303〜305の処理が特許請求の範囲でいう気筒別空燃比制御手段としての役割を果たす。   Thereafter, the routine proceeds to step 304, where the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is calculated, and the cylinder-specific correction amount is calculated so that the deviation becomes small, and then the routine proceeds to step 305, where the cylinder-specific correction is performed. By correcting the fuel injection amount for each cylinder based on the amount, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder so as to reduce the variation in air-fuel ratio among the cylinders. The processes in steps 303 to 305 serve as cylinder-by-cylinder air-fuel ratio control means.

以上説明した本実施例では、各気筒の空燃比と空燃比センサ16の検出値との関係を気筒毎に別々のモデルパラメータを用いて気筒毎にモデル化して複数の気筒別空燃比推定モデルを作成し、気筒毎に異なる気筒別空燃比推定モデルを用いて各気筒の空燃比を推定するようにしたので、不等間隔燃焼や不等長排気系の場合でも、不等間隔燃焼や不等長排気系の影響を考慮した気筒別空燃比推定モデルを用いて各気筒の空燃比を精度良く推定することができる。   In the present embodiment described above, the relationship between the air-fuel ratio of each cylinder and the detected value of the air-fuel ratio sensor 16 is modeled for each cylinder using different model parameters for each cylinder, and a plurality of cylinder-specific air-fuel ratio estimation models are obtained. Because the air-fuel ratio of each cylinder is estimated using a cylinder-by-cylinder air-fuel ratio estimation model that is created for each cylinder, even in the case of unequal interval combustion and unequal length exhaust systems, unequal interval combustion and unequal The air-fuel ratio of each cylinder can be accurately estimated using a cylinder-by-cylinder air-fuel ratio estimation model that takes into account the influence of the long exhaust system.

しかも、本実施例では、各気筒の気筒別空燃比推定モデルを、空燃比推定の対象となる所定気筒の空燃比と外乱要素との組み合わせを該モデルの入力とするように構成したので、不等間隔燃焼や不等長排気系の影響を外乱要素に含ませてモデル化することができて、気筒毎に異なる気筒別空燃比推定モデルを比較的簡単に作成することができる利点がある。   In addition, in this embodiment, the cylinder-by-cylinder air-fuel ratio estimation model of each cylinder is configured so that the combination of the air-fuel ratio of the predetermined cylinder, which is the target of air-fuel ratio estimation, and the disturbance element are input to the model. The effects of equal-interval combustion and unequal-length exhaust systems can be included in the disturbance element for modeling, and there is an advantage that a cylinder-by-cylinder air-fuel ratio estimation model that differs for each cylinder can be created relatively easily.

その上、本実施例では、外乱要素を空燃比推定の対象となる所定気筒以外の気筒の空燃比の平均値で表すようにしたり、或は外乱要素を全気筒の空燃比の平均値で表すようにしたので、外乱要素(不等間隔燃焼や不等長排気系の影響)を簡単に演算することができる利点がある。   In addition, in this embodiment, the disturbance element is expressed by the average value of the air-fuel ratios of cylinders other than the predetermined cylinder that is the target of air-fuel ratio estimation, or the disturbance element is expressed by the average value of the air-fuel ratios of all cylinders. Since it did in this way, there exists an advantage which can calculate easily a disturbance element (the influence of non-uniform combustion or an unequal length exhaust system).

尚、本発明は、V型8気筒エンジンに限定されず、これ以外の気筒数のエンジンにも適用することができ、また、直列エンジン、水平対向エンジン等、V型以外の型式のエンジンにも適用することができる。   The present invention is not limited to a V-type 8-cylinder engine, but can be applied to an engine having a number of cylinders other than this, and also to other types of engines such as an inline engine and a horizontally opposed engine. Can be applied.

本発明の一実施例におけるエンジン排気系の概略構成図である。It is a schematic block diagram of the engine exhaust system in one Example of this invention. 隣接する燃焼気筒の排出ガスの重なりを説明する図である。It is a figure explaining the overlap of the exhaust gas of an adjacent combustion cylinder. 不等長の排気系の一例を示す図である。It is a figure which shows an example of an unequal length exhaust system. 気筒別空燃比制御メインルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the cylinder-by-cylinder air-fuel ratio control main routine. 実行条件判定ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an execution condition determination routine. 気筒別空燃比制御実行ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the air-fuel ratio control execution routine classified by cylinder.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…排気マニホールド、14…集合排気管、16…空燃比センサ、18…触媒、20…ECU(気筒別空燃比推定手段,気筒別空燃比制御手段)、22…合流部   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Exhaust manifold, 14 ... Collective exhaust pipe, 16 ... Air-fuel ratio sensor, 18 ... Catalyst, 20 ... ECU (Air-fuel ratio estimation means according to cylinder, Air-fuel ratio control means according to cylinder), 22 ... Junction

Claims (7)

内燃機関の複数気筒の排気マニホールドが接続された集合排気管に、各気筒から排出されたガスの空燃比を検出する空燃比センサを設置し、この空燃比センサで検出したガスの空燃比に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段を備えた内燃機関の気筒別空燃比推定装置において、
各気筒の空燃比と前記空燃比センサの検出値との関係を気筒毎に別々にモデル化して複数の気筒別空燃比推定モデルを作成し、
前記気筒別空燃比推定手段は、気筒毎に異なる気筒別空燃比推定モデルを用いて各気筒の空燃比を推定することを特徴とする内燃機関の気筒別空燃比推定装置。
An air-fuel ratio sensor for detecting the air-fuel ratio of the gas discharged from each cylinder is installed in a collective exhaust pipe to which an exhaust manifold of a plurality of cylinders of the internal combustion engine is connected. Based on the air-fuel ratio of the gas detected by this air-fuel ratio sensor In the cylinder-by-cylinder air-fuel ratio estimation device of the internal combustion engine provided with the cylinder-by-cylinder air-fuel ratio estimation means for estimating the air-fuel ratio of each cylinder,
The relationship between the air-fuel ratio of each cylinder and the detected value of the air-fuel ratio sensor is modeled separately for each cylinder to create a plurality of cylinder-specific air-fuel ratio estimation models,
The cylinder-by-cylinder air-fuel ratio estimation means estimates the air-fuel ratio of each cylinder using a cylinder-by-cylinder air-fuel ratio estimation model that differs for each cylinder.
前記気筒別空燃比推定モデルは、空燃比推定の対象となる所定気筒の空燃比と外乱要素との組み合わせを該モデルの入力とするように構成されていることを特徴とする請求項1に記載の内燃機関の気筒別空燃比推定装置。   2. The cylinder-by-cylinder air-fuel ratio estimation model is configured so that a combination of an air-fuel ratio and a disturbance element of a predetermined cylinder that is an object of air-fuel ratio estimation is input to the model. The cylinder-by-cylinder air-fuel ratio estimation apparatus of the internal combustion engine. 前記外乱要素を全気筒の空燃比の平均値で表すことを特徴とする請求項2に記載の内燃機関の気筒別空燃比推定装置。   3. The cylinder-by-cylinder air-fuel ratio estimation apparatus for an internal combustion engine according to claim 2, wherein the disturbance element is represented by an average value of air-fuel ratios of all cylinders. 前記外乱要素を前記空燃比推定の対象となる所定気筒以外の気筒の空燃比の平均値で表すことを特徴とする請求項2に記載の内燃機関の気筒別空燃比推定装置。   3. The cylinder-by-cylinder air-fuel ratio estimation apparatus for an internal combustion engine according to claim 2, wherein the disturbance element is represented by an average value of air-fuel ratios of cylinders other than the predetermined cylinder to be subjected to the air-fuel ratio estimation. 前記気筒別空燃比推定モデルは、気筒毎に別々のモデルパラメータを用いることで気筒毎に別々にモデル化されていることを特徴とする請求項1乃至4のいずれかに記載の内燃機関の気筒別空燃比推定装置。   The cylinder of the internal combustion engine according to any one of claims 1 to 4, wherein the cylinder-by-cylinder air-fuel ratio estimation model is modeled separately for each cylinder by using different model parameters for each cylinder. Another air-fuel ratio estimation device. 複数の気筒グループからなる内燃機関であって、各気筒グループ毎にそれぞれ燃焼間隔が不等間隔な複数気筒の排気マニホールドが接続された集合排気管が設けられていると共に、各集合排気管にそれぞれ前記空燃比センサが設置され、
前記気筒別空燃比推定手段は、各気筒グループの気筒毎に異なる気筒別空燃比推定モデルを用いて各気筒の空燃比を推定することを特徴とする請求項1乃至5のいずれかに記載の内燃機関の気筒別空燃比推定装置。
The internal combustion engine is composed of a plurality of cylinder groups, and each cylinder group is provided with a collective exhaust pipe to which an exhaust manifold of a plurality of cylinders having unequal combustion intervals is connected. The air-fuel ratio sensor is installed;
6. The cylinder-by-cylinder air-fuel ratio estimation means estimates the air-fuel ratio of each cylinder using a cylinder-by-cylinder air-fuel ratio estimation model that is different for each cylinder in each cylinder group. A cylinder-by-cylinder air-fuel ratio estimation apparatus for an internal combustion engine.
請求項1乃至6のいずれかに記載の内燃機関の気筒別空燃比推定装置と、この気筒別空燃比推定装置により推定した各気筒の空燃比の気筒間ばらつきを小さくする方向に各気筒の空燃比を制御する気筒別空燃比制御手段とを備えていることを特徴とする内燃機関の気筒別空燃比制御装置。   7. The air-fuel ratio estimation apparatus for each cylinder of an internal combustion engine according to claim 1 and the air-fuel ratio estimation of each cylinder in a direction to reduce the inter-cylinder variation in the air-fuel ratio of each cylinder estimated by the cylinder-by-cylinder air-fuel ratio estimation apparatus. A cylinder-by-cylinder air-fuel ratio control device for an internal combustion engine, comprising: a cylinder-by-cylinder air-fuel ratio control means for controlling the fuel ratio.
JP2004341545A 2004-01-23 2004-11-26 Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine Pending JP2006152846A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004341545A JP2006152846A (en) 2004-11-26 2004-11-26 Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine
DE200510003009 DE102005003009A1 (en) 2004-01-23 2005-01-21 Apparatus for estimating air-fuel ratios and apparatus for controlling air-fuel ratios of individual cylinders in an internal combustion engine
US11/038,037 US7243644B2 (en) 2004-01-23 2005-01-21 Apparatus for estimating air-fuel ratios and apparatus for controlling air-fuel ratios of individual cylinders in internal combustion engine
US11/783,012 US7409284B2 (en) 2004-01-23 2007-04-05 Apparatus for estimating air-fuel ratios and apparatus for controlling air-fuel ratios of individual cylinders in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341545A JP2006152846A (en) 2004-11-26 2004-11-26 Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006152846A true JP2006152846A (en) 2006-06-15

Family

ID=36631441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341545A Pending JP2006152846A (en) 2004-01-23 2004-11-26 Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006152846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248769A (en) * 2007-03-30 2008-10-16 Denso Corp Air fuel ratio control device for internal combustion engine
US9863427B2 (en) 2011-01-05 2018-01-09 Hitachi, Ltd. Barrel-type multistage pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248769A (en) * 2007-03-30 2008-10-16 Denso Corp Air fuel ratio control device for internal combustion engine
US9863427B2 (en) 2011-01-05 2018-01-09 Hitachi, Ltd. Barrel-type multistage pump

Similar Documents

Publication Publication Date Title
JP4321411B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2005163696A (en) Misfire detection device of internal combustion engine
JP2009270543A (en) Device for determining imbalance of air fuel ratio among cylinder
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008309065A (en) Abnormality diagnostic device and control system for internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
US20070175462A1 (en) Apparatus for estimating air-fuel ratios and apparatus for controlling air-fuel ratios of individual cylinders in internal combustion engine
US9890726B2 (en) Individual cylinder air-fuel ratio control device of internal combustion engine
JP2001090584A (en) Air/fuel ratio control device for internal combustion engine
US9482171B2 (en) Cylinder-by-cylinder air-fuel-ratio controller for internal combustion engine
JP5660319B2 (en) Control device for internal combustion engine
US10247120B2 (en) Cylinder-by-cylinder air-fuel ratio controller for internal combustion engine
JP6213078B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2004019629A (en) Controller for internal combustion engine
JP2007023917A (en) Air fuel ratio control device for internal combustion engine
JP2005207354A (en) Individual cylinder air fuel ratio estimation device and individual cylinder air fuel ratio control device for internal combustion engine
JP2006138280A (en) Control device for internal combustion engine
JP2006152845A (en) Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine
JP2006152846A (en) Air-fuel ratio estimating device and air-fuel ratio controller for each cylinder of internal combustion engine
JP4600699B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008038784A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
US20140223987A1 (en) Apparatus for detecting cylinder air-fuel ratio imbalance abnormality of multi-cylinder internal combustion engine
JP2008128161A (en) Control device of internal combustion engine
JP2007205219A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP2016041922A (en) Internal combustion engine cylinder-specific air-fuel ratio control unit