JP2006135513A - Imaging apparatus - Google Patents
Imaging apparatus Download PDFInfo
- Publication number
- JP2006135513A JP2006135513A JP2004320777A JP2004320777A JP2006135513A JP 2006135513 A JP2006135513 A JP 2006135513A JP 2004320777 A JP2004320777 A JP 2004320777A JP 2004320777 A JP2004320777 A JP 2004320777A JP 2006135513 A JP2006135513 A JP 2006135513A
- Authority
- JP
- Japan
- Prior art keywords
- focus
- spectral intensity
- lens
- spectral
- intensity distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Automatic Focus Adjustment (AREA)
- Color Television Image Signal Generators (AREA)
- Studio Devices (AREA)
- Focusing (AREA)
Abstract
Description
本発明は焦点検出装置、特にレンズ等が有する色収差によるピントの検出誤差を良好に補正することを可能とする焦点検出装置に係る撮像装置に関するものである。 The present invention relates to a focus detection apparatus, and more particularly to an imaging apparatus related to a focus detection apparatus that can satisfactorily correct a focus detection error due to chromatic aberration of a lens or the like.
撮影レンズを透過した被写体からの一部の光束を受光することにより、焦点位置を検出する焦点検出装置では、撮影レンズが有する残存収差によって撮影ピントズレ量と異なるピントズレ検出結果となる場合がある。このような場合でも撮像素子が受光する波長の分光感度と、焦点検出装置が受光する波長の分光感度が一致していれば、波長に依存した収差による影響は少なくなり、撮像素子で得られる画像は、そのときの被写体波長に応じて、ほぼピントの合った画像となるが、同一波長域における撮影ピントと検出ピントの差を勘案した補正値で補正をすることでより正確なピントを得ることが出来る。 In a focus detection apparatus that detects a focal position by receiving a part of a light beam from a subject that has passed through the photographic lens, there may be a focus shift detection result that differs from the photographic focus shift amount due to residual aberration of the photographic lens. Even in such a case, if the spectral sensitivity of the wavelength received by the image sensor matches the spectral sensitivity of the wavelength received by the focus detection device, the influence of the wavelength-dependent aberration is reduced, and the image obtained by the image sensor Depending on the wavelength of the subject at that time, the image will be almost in focus, but by correcting with a correction value that takes into account the difference between the shooting focus and the detection focus in the same wavelength range, more accurate focus can be obtained. I can do it.
しかしながら、一般に撮像素子の分光感度分布と焦点検出装置の分光感度分布は同一のものではない。一般に撮像素子はカラー画像を取り込むことを目的として微細なシリコンフォトダイオードに3色のカラーフィルターが設置され被写体からの光を受光する。一方焦点検出装置では画像をカラー画像として取り込む必要がないため色フィルターを施すことなく可視領域及び可視領域以外の波長に対して感度を有する受光素子によって構成されている。
このような装置では、レンズに色収差がある場合、焦点検出装置の検出する焦点位置と撮像装置に必要な焦点位置が異なる不具合を生じてしまう。例えば、赤色と青色で焦点位置の異なる撮影レンズでの撮影を考える。 In such an apparatus, when the lens has chromatic aberration, there arises a problem that the focal position detected by the focal point detection apparatus is different from the focal position necessary for the imaging apparatus. For example, consider photographing with photographing lenses having different focal positions in red and blue.
焦点検出装置では主に赤色を受光し、撮像装置は赤色、青色均等な感度を有するとすれば、焦点検出装置の検出結果に従い焦点調節を行えば赤色の合焦位置に撮影レンズは調整されるが、撮像装置は青色にも感度を持つため、そちらに焦点の重心が移動しピントのボケた写真となる。 If the focus detection device mainly receives red light and the imaging device has red and blue equal sensitivity, the photographing lens is adjusted to the red focus position by performing focus adjustment according to the detection result of the focus detection device. However, since the imaging device is also sensitive to blue, the center of gravity of the focus moves there, resulting in a blurred photo.
本来であれば赤色,緑色、青色の感度の割合(分光感度分布)に応じた焦点位置に焦点は調整されるべきものである。また撮影レンズでは撮影に供される波長域の収差補正のみが良好になされている場合が多く、例えば赤外域のように焦点検出系にのみ供される波長域にたいしては、残存する種々の収差により基準波長との検出ピント差が大変大きくなる傾向にあり、撮像装置の分光感度と焦点検出分光感度が異なることは自動焦点調節装置にとって大きな問題となっている。 Originally, the focal point should be adjusted to a focal position corresponding to the ratio of red, green, and blue sensitivities (spectral sensitivity distribution). In many cases, the photographic lens only corrects aberrations in the wavelength range used for taking pictures. For example, the wavelength range used only for the focus detection system, such as the infrared range, is caused by various remaining aberrations. The difference in detection focus from the reference wavelength tends to be very large, and the difference between the spectral sensitivity and the focus detection spectral sensitivity of the image pickup device is a big problem for the automatic focus adjustment device.
この色収差と焦点検出誤差の発生との関係について詳細に説明する。 The relationship between this chromatic aberration and the occurrence of a focus detection error will be described in detail.
図1は、被写体を照明する各種光源の相対分光分布と波長との関係を示す。縦軸は相対分光分布を示し、横軸は波長を示す。グラフAは螢光灯の光、グラフBはタングステンランプ、グラフCは日中太陽の光をそれぞれ示す。 FIG. 1 shows the relationship between the relative spectral distribution and wavelength of various light sources that illuminate a subject. The vertical axis represents the relative spectral distribution, and the horizontal axis represents the wavelength. Graph A shows the light of the fluorescent lamp, graph B shows the tungsten lamp, and graph C shows the sunlight of the daytime.
図2は、焦点検出装置受光素子の分光感度を示す。同図の実線で示すAFセンサーAの感度はAFセンサー単体のものであり、波長700nm近辺をピークとして赤外まで感度を有している。同図点線で示すAFセンサーBのグラフはAFセンサーAで示したものに赤外カットフィルターを組み合わせた総合分光感度を示している。 FIG. 2 shows the spectral sensitivity of the light receiving element of the focus detection device. The sensitivity of the AF sensor A shown by the solid line in FIG. 4 is that of the AF sensor alone, and has sensitivity up to infrared with a peak at around the wavelength of 700 nm. A graph of the AF sensor B indicated by a dotted line in the figure indicates the total spectral sensitivity obtained by combining the infrared sensor with the one indicated by the AF sensor A.
図3は撮像素子の分光感度分布を示している。撮像素子ではカラー情報を得るため可視域をB,G,Rの領域に3分割している。 FIG. 3 shows the spectral sensitivity distribution of the image sensor. In order to obtain color information, the imaging device divides the visible region into B, G, and R regions.
図4は撮影レンズの色収差と波長の関係を示す。同図の縦軸は基準と成る波長の合焦位置に対するピントのズレ量を示し、横軸は波長を示している。同図の実線は焦点検出系(AF)の検出する基準波長に対するピント位置であり、点線は撮影像の基準波長に対するピント位置である。一般に焦点検出系の取り込む光束は撮影光束の一部であるため撮影レンズに残存する各種の収差により撮影光束全体で決まる焦点位置と若干の差を生じることがある。 FIG. 4 shows the relationship between chromatic aberration and wavelength of the taking lens. The vertical axis in the figure indicates the amount of focus shift with respect to the reference wavelength focusing position, and the horizontal axis indicates the wavelength. The solid line in the figure is the focus position with respect to the reference wavelength detected by the focus detection system (AF), and the dotted line is the focus position with respect to the reference wavelength of the captured image. In general, the light beam captured by the focus detection system is a part of the photographic light beam, so that there may be a slight difference from the focal position determined by the entire photographic light beam due to various aberrations remaining in the photographic lens.
図2、図3から分かるように、撮像素子の分光感度と焦点検出装置の分光感度が異なるため、焦点検出装置の検出結果と撮影焦点位置は被写体の分光分布により異なることになる。色収差やその他の残存収差が小さなレンズであれば図4のグラフ中にある二つのデータは一致し、分光分布によらず焦点検出装置の検出結果と撮影焦点位置差は小さいものとなるが、望遠レンズのように比較的色収差の大きなレンズではその差が大きくなる場合がある。 As can be seen from FIGS. 2 and 3, since the spectral sensitivity of the image sensor and the spectral sensitivity of the focus detection device are different, the detection result of the focus detection device and the photographing focus position differ depending on the spectral distribution of the subject. If the lens has small chromatic aberration and other residual aberrations, the two data in the graph of FIG. 4 match, and the detection result of the focus detection device and the photographing focus position difference are small regardless of the spectral distribution, but the telephoto In a lens having a relatively large chromatic aberration such as a lens, the difference may be large.
本発明は、検出可能な波長領域や撮像素子の分光感度分布を制限することなく、撮影レンズの残存収差による焦点検出誤差を除去する撮像装置を提供することを目的とする。 An object of the present invention is to provide an imaging apparatus that removes a focus detection error due to residual aberration of a photographing lens without limiting the detectable wavelength region or the spectral sensitivity distribution of the imaging element.
本発明は、撮影レンズとカラー撮像装置と被写体光の分光強度分布を判定する分光強度分布判定装置を具備することの出来るカメラであって、前記撮影レンズを通過した被写体光を受光する焦点検出装置と、分光強度分布判定装置の判定結果に基づいて撮影レンズの波長別のピントに関する情報および焦点検出装置とカラー撮像装置の分光分布感度情報からピント調節量のズレを補正する補正値を演算し、その補正値により補正する補正手段とを有し、前記焦点検出装置の出力に基づいて前記撮影レンズの焦点調節状態を検出した結果を前記補正手段により補正した値に基づいて前記撮影レンズを駆動するレンズ駆動手段とを具備したことを特徴とする。 The present invention is a camera that can include a photographing lens, a color imaging device, and a spectral intensity distribution determining device that determines a spectral intensity distribution of subject light, and a focus detection device that receives subject light that has passed through the photographing lens. And, based on the determination result of the spectral intensity distribution determination device, calculates a correction value for correcting the shift of the focus adjustment amount from the information on the focus for each wavelength of the photographing lens and the spectral distribution sensitivity information of the focus detection device and the color imaging device, A correction unit that corrects based on the correction value, and drives the photographic lens based on a value obtained by correcting the focus adjustment state of the photographic lens based on an output of the focus detection device and a value corrected by the correction unit. And a lens driving means.
本発明によれば、レンズ固有の収差に起因するピントズレ補正値を最小限必要なデータを記憶することにより、波長毎に演算し正確なピント調節を可能とした。 According to the present invention, it is possible to perform accurate focus adjustment by calculating for each wavelength by storing data that requires a minimum defocus correction value due to lens-specific aberration.
以下に、添付図面を参照して本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
本発明の実施による撮像装置の主要部概略を図5に示す。1は撮影レンズであり2のカメラ本体から着脱が可能である。3は撮影光学系で4の焦点調節装置により焦点位置の調整を行う事が出来る。4の焦点調節装置は5のマイクロコンピュータにより制御される。6は記憶装置であり撮影レンズ1に固有の情報が記憶されている。6に記憶される固有情報は基準波長に対する各波長の撮影ピント差に関する情報、基準波長に対する各波長における焦点検出位置の差に関する情報、焦点調節装置の駆動敏感度に関する情報、レンズF値、焦点距離などがある。6に記憶された情報の一部は7の接点を介してカメラ本体のマイクロコンピュータ14に転送される。 FIG. 5 shows an outline of the main part of the imaging apparatus according to the embodiment of the present invention. Reference numeral 1 denotes a photographic lens, which can be attached and detached from the camera body 2. Reference numeral 3 denotes a photographing optical system, and the focal position can be adjusted by the focus adjustment device 4. Four focusing devices are controlled by five microcomputers. Reference numeral 6 denotes a storage device that stores information unique to the photographing lens 1. The unique information stored in 6 is information on the imaging focus difference of each wavelength with respect to the reference wavelength, information on the difference in focus detection position at each wavelength with respect to the reference wavelength, information on drive sensitivity of the focus adjustment device, lens F value, focal length and so on. A part of the information stored in 6 is transferred to the microcomputer 14 of the camera body via 7 contacts.
2はカメラ本体であり接点7を介して情報の伝達を行うと共にレンズ1と物理的な接触による着脱が可能な機構を有している。被写体からの光束は撮影レンズ3により撮像素子16上へ結像する。撮影レンズ3から撮像素子16へ至る光束は途中に配置された挿退出可能なハーフミラー8により、その光束の一部が焦点版9へ導かれる。透過した一方の光束は反射ミラー12により焦点検出装置13へと導光される。 Reference numeral 2 denotes a camera body that has a mechanism that transmits and receives information through the contact 7 and that can be attached and detached by physical contact with the lens 1. The light flux from the subject forms an image on the image sensor 16 by the photographing lens 3. A part of the light beam from the photographic lens 3 to the image pickup device 16 is guided to the focal plate 9 by the half mirror 8 which is disposed in the middle of the light beam. One transmitted light beam is guided to the focus detection device 13 by the reflection mirror 12.
カメラ内のマイクロコンピュータ14は、焦点検出装置13の出力からピントズレ量を計算する。その際、記憶装置15に記憶された撮像素子16および焦点検出装置の分光感度分布や、レンズ1から送られるレンズ色収差に関する情報、また被写体からレンズ3を通過してくる光束の分光分布を判定する分光強度分布判定装置17の出力を元に検出したピントズレ量に対する補正量を計算し補正した値でレンズ1のマイコンにフォーカス変位量を指示する。 The microcomputer 14 in the camera calculates the amount of focus shift from the output of the focus detection device 13. At that time, the spectral sensitivity distribution of the imaging device 16 and the focus detection device stored in the storage device 15, information on the lens chromatic aberration sent from the lens 1, and the spectral distribution of the light beam passing through the lens 3 from the subject are determined. The focus displacement amount is instructed to the microcomputer of the lens 1 by calculating the correction amount for the focus shift amount detected based on the output of the spectral intensity distribution determination device 17 and correcting the correction amount.
ハーフミラー8により焦点板9へ導かれた光束は拡散作用を受け、像反転作用を有するペンタダハプリズム10を介して接眼レンズ11によって撮影者にファインダー像の観察を可能なものとし、また分光強度分布判定手段17へも一部の光束が入射する。 The light beam guided to the focusing screen 9 by the half mirror 8 is subjected to a diffusing action, and the finder image can be observed by the photographer by the eyepiece 11 through the penta roof prism 10 having an image inverting action, and the spectral intensity distribution. A part of the light beam also enters the determination means 17.
分光強度分布判定手段の一例を図6、図7を用いて説明する。図6の17−1は結像レンズでありピント板上に出来た撮影レンズ3による像をセンサー17−2へ結像する作用を有している。センサー17−2は図7で示すように分割された多数の受光素子からなりそれぞれにカラーフィルターが装着されている。このカラーフィルターは撮像素子などに用いるRGBなど三色のものでも良いし、より細かく波長分割されたものでもよい。いずれにせよ異なる特性のカラーフィルター毎の出力強度比から入射した光束の分光強度が分かる。 An example of the spectral intensity distribution determining means will be described with reference to FIGS. Reference numeral 17-1 in FIG. 6 denotes an imaging lens, which has an effect of forming an image by the photographing lens 3 formed on the focusing plate on the sensor 17-2. The sensor 17-2 is composed of a number of light receiving elements divided as shown in FIG. 7, and a color filter is attached to each of the light receiving elements. This color filter may be of three colors such as RGB used for an image sensor or the like, or may be a finer wavelength-divided one. In any case, the spectral intensity of the incident light beam can be found from the output intensity ratio of each color filter having different characteristics.
この分光強度分布の波長分解能力は、カラーフィルターの特性の数に依存、すなわち透過する波長の種類に依存する。波長を細かく分割することによりより細かな波長毎のピント補正計算が可能となるが、RGBの三点で行ったとしても従来に比して焦点調節の正確さは増す。また撮像素子と焦点検出系の感度分布か極端に異なる波長域(例えば近赤外領域)の強度分布測定が出来ることが望ましい。 The wavelength resolving power of this spectral intensity distribution depends on the number of characteristics of the color filter, that is, depends on the type of wavelength to be transmitted. By finely dividing the wavelength, it becomes possible to perform finer focus correction calculation for each wavelength. However, even if the calculation is performed with three points of RGB, the accuracy of the focus adjustment is increased as compared with the conventional case. It is also desirable that the sensitivity distribution between the image sensor and the focus detection system can measure the intensity distribution in an extremely different wavelength region (for example, near infrared region).
このような領域では感度を持つ一方のピントにだけ影響を与えるため被写体の分光強度分布によっては補正値が大きくなる可能があるためである。少ない分光強度比からより細かな分光強度比を得るため、あらかじめ記憶した光源データから分光強度比を推定する方法も考えられる。 This is because, in such a region, only one focus having sensitivity is affected, so that the correction value may be increased depending on the spectral intensity distribution of the subject. In order to obtain a finer spectral intensity ratio from a small spectral intensity ratio, a method of estimating the spectral intensity ratio from previously stored light source data is also conceivable.
図1で示したように光源の種類によりその分光分布強度比は特徴的である。得られた少ない強度比のデータが可視域で大きくばらつく場合離散的な分光分布を持つ蛍光灯であると想定したり、長波長側で強度比が大きくなる場合はフラッドランプと想定するなど、少ない強度比から光源の特定を行う事は容易である。光源の特定が出来れば光源の分光強度比に関するデータを記憶装置15に用意しておくことにより補正値の演算に使用できる。 As shown in FIG. 1, the spectral distribution intensity ratio is characteristic depending on the type of light source. When the obtained small intensity ratio data varies greatly in the visible range, it is assumed that the fluorescent lamp has a discrete spectral distribution, and when the intensity ratio increases on the long wavelength side, it is assumed that it is a flood lamp. It is easy to specify the light source from the intensity ratio. If the light source can be specified, data relating to the spectral intensity ratio of the light source can be used for calculation of the correction value by preparing in the storage device 15.
次に一連の動作を図8のフローに沿って説明する。番号は図5に示したものと一致している。レンズ1がカメラ2に装着された時点で、補正値演算や合焦動作に必要な情報が接点7を介してレンズ2からカメラ1へ伝達される。補正値演算に必要なレンズデータとしては図4に示す色収差に関する情報、すなわち基準波長に対する波長毎の撮影焦点位置のズレ量と、基準波長に対する波長毎の検出焦点位置のズレ量である。このとき撮影焦点位置のズレ量と検出焦点位置のズレ量の差が少ないレンズであればどちらか一方をカメラに伝達すればよい。 Next, a series of operations will be described along the flow of FIG. The numbers correspond to those shown in FIG. When the lens 1 is mounted on the camera 2, information necessary for correction value calculation and focusing operation is transmitted from the lens 2 to the camera 1 via the contact 7. The lens data necessary for calculating the correction value includes information on chromatic aberration shown in FIG. 4, that is, the shift amount of the photographing focus position for each wavelength with respect to the reference wavelength and the shift amount of the detection focus position for each wavelength with respect to the reference wavelength. At this time, if the difference between the deviation amount of the photographing focal position and the deviation amount of the detection focal position is small, either one may be transmitted to the camera.
ここで波長毎の撮影焦点位置のズレ量をP(λ)、波長毎の検出焦点位置のズレ量AFP(λ)と定義する。 Here, the shift amount of the photographing focus position for each wavelength is defined as P (λ), and the shift amount AF P (λ) of the detection focus position for each wavelength is defined.
ステップ101で撮影者の操作によりレリーズ動作が行われる。ステップ102で被写体の分光強度比の測定が行われる。次にステップ103で合焦位置補正情報の演算が行われる。ステップ103の合焦位置補正演算について説明する。 In step 101, a release operation is performed by a photographer's operation. In step 102, the spectral intensity ratio of the subject is measured. Next, in step 103, calculation of in-focus position correction information is performed. The focus position correction calculation in step 103 will be described.
最終的な焦点調節動作を行うピントのズレ量を P
焦点検出系により検出されるピントのズレ量 AF
演算にて得られる合焦位置補正量を BP とし、
次の式を満足するものとする P=AF+BP ・・・(1)式
Set the amount of focus deviation for the final focus adjustment operation to P
AF amount of focus detected by the focus detection system AF
The in-focus position correction amount obtained by calculation is BP,
It is assumed that the following expression is satisfied: P = AF + BP (1)
これは検出されるピントズレ量に補正値を加えることにより正しいピントズレ量が得られその量だけフォーカス駆動を行う事で合焦が得られることを意味している。 This means that a correct focus shift amount is obtained by adding a correction value to the detected focus shift amount, and focusing is obtained by performing focus driving by that amount.
ステップ103ではこの BP をマイクロコンピュータ14で計算する。 In step 103, the BP is calculated by the microcomputer 14.
補正値BPは以下の式で得ることが出来る。 The correction value BP can be obtained by the following equation.
ここで
ES(λ):撮像素子の分光感度分布(カメラ2の記憶装置15に記憶されている)
EAF(λ):焦点検出系の分光感度分布(カメラ2の記憶装置15に記憶されている)
P(λ):撮影レンズの基準波長に対する波長毎の焦点位置ズレ量(レンズ1の記憶装置6に記憶されている)
AFP(λ):撮影レンズの基準波長に対する波長毎の焦点検出位置ズレ量(レンズ1の記憶装置6に記憶されている)
S(λ):被写体の分光強度分布(ステップ102にて決定される)
Where E S (λ): spectral sensitivity distribution of the image sensor (stored in the storage device 15 of the camera 2)
E AF (λ): spectral sensitivity distribution of the focus detection system (stored in the storage device 15 of the camera 2)
P (λ): Focal position shift amount for each wavelength with respect to the reference wavelength of the photographing lens (stored in the storage device 6 of the lens 1)
AF P (lambda): focus detecting position deviation amount for each wavelength with respect to the reference wavelength of the taking lens (stored in the storage device 6 of the lens 1)
S (λ): spectral intensity distribution of the subject (determined in step 102)
ここでは数列の総和をとる範囲を可視域の波長をカバー示す350nm〜800nmとしたが、もちろんこの範囲は撮影に使用する波長領域に応じて変化させればよい。感度分布やピントズレ量の値は波長λを変数として各関数を表現し必要な波長での値を計算しても良いし、有限な個数のデータを波長毎に記憶しておいてもよい。 Here, the range in which the sum of several sequences is taken is 350 nm to 800 nm that covers the wavelength in the visible range, but of course this range may be changed according to the wavelength range used for imaging. The sensitivity distribution and the amount of defocus amount may be calculated by expressing each function using the wavelength λ as a variable and calculating a value at a necessary wavelength, or a finite number of data may be stored for each wavelength.
いずれにせよ、ステップ102で検出可能な分光強度分布の波長ポイントを基に計算することになる。ステップ102で検出した波長の分光強度分布をそのままS(λ)として使用するのではなく、その分光強度比から光源を判別し補正値計算を行うのであれば、より多くのポイントでの計算が可能になる。 In any case, the calculation is performed based on the wavelength points of the spectral intensity distribution detectable in step 102. If the spectral intensity distribution of the wavelength detected in step 102 is not used as S (λ) as it is, but the light source is identified from the spectral intensity ratio and the correction value is calculated, the calculation at more points is possible. become.
(2)式は撮像素子と焦点検出系のセンサー分光感度比率に応じたピントズレ補正値の各波長に対する寄与分を演算し波長λの関数の形で表している。これはレンズ1がカメラ2に装着された時点で計算可能なため、レリーズ動作101の前に行う事が可能である。計算に用いるレンズ情報がレンズのズーミングやフォーカシングで変化するのであれば変化した時点で逐次計算しても良い。 The expression (2) expresses the contribution of each focus correction value corresponding to the sensor spectral sensitivity ratio between the image sensor and the focus detection system to each wavelength, and represents it in the form of a function of the wavelength λ. Since this can be calculated when the lens 1 is attached to the camera 2, it can be performed before the release operation 101. If the lens information used for the calculation changes due to the zooming or focusing of the lens, the calculation may be performed sequentially when the lens information changes.
(3)式では被写体光束の分光強度分布に応じた補正値を(2)式で得られた値から算出している。 In equation (3), a correction value corresponding to the spectral intensity distribution of the subject luminous flux is calculated from the value obtained in equation (2).
次にステップ104で焦点検出動作を行って焦点検出系13の検出するピントズレ量を測定する。ステップ105ではステップ104の結果をステップ103で算出した補正値で補正するため(1)式に基づき撮影ピントのズレ量をマイクロコンピュータ14で演算し、レンズのマイクロコンピュータ5に伝達する。ステップ106ではステップ105で演算されたピントズレ量に基づきピント調節を行い合焦させる。ステップ107で撮像素子への露光を行う。その際ミラー8,12は退出する。 Next, in step 104, a focus detection operation is performed to measure the amount of focus shift detected by the focus detection system 13. In step 105, in order to correct the result of step 104 with the correction value calculated in step 103, the amount of photographing focus shift is calculated by the microcomputer 14 based on the equation (1) and transmitted to the lens microcomputer 5. In step 106, focus adjustment is performed based on the amount of focus shift calculated in step 105, and the image is focused. In step 107, the image sensor is exposed. At that time, the mirrors 8 and 12 exit.
1 レンズ
2 カメラ
5、14 マイクロコンピュータ
6、15 記憶手段
17 分光強度分布測定手段
DESCRIPTION OF SYMBOLS 1 Lens 2 Camera 5, 14 Microcomputer 6, 15 Memory | storage means 17 Spectral intensity distribution measuring means
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004320777A JP2006135513A (en) | 2004-11-04 | 2004-11-04 | Imaging apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004320777A JP2006135513A (en) | 2004-11-04 | 2004-11-04 | Imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006135513A true JP2006135513A (en) | 2006-05-25 |
Family
ID=36728676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004320777A Withdrawn JP2006135513A (en) | 2004-11-04 | 2004-11-04 | Imaging apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006135513A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008129467A (en) * | 2006-11-22 | 2008-06-05 | Canon Inc | Imaging apparatus and imaging system |
JP2015138200A (en) * | 2014-01-23 | 2015-07-30 | キヤノン株式会社 | Image capturing device and image capturing method |
US10015386B2 (en) | 2014-09-09 | 2018-07-03 | Canon Kabushiki Kaisha | Focus control apparatus, image capturing apparatus, interchangeable lens, focus control method, and storage medium storing focus control program |
JP2019053315A (en) * | 2018-11-19 | 2019-04-04 | 株式会社ニコン | Focus adjustment device and imaging device |
JP2019095803A (en) * | 2019-02-06 | 2019-06-20 | キヤノン株式会社 | Focus detection device, imaging device, and focus detection method |
JP2020074022A (en) * | 2020-01-14 | 2020-05-14 | キヤノン株式会社 | Lens, transmitter, and receiver |
-
2004
- 2004-11-04 JP JP2004320777A patent/JP2006135513A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008129467A (en) * | 2006-11-22 | 2008-06-05 | Canon Inc | Imaging apparatus and imaging system |
JP2015138200A (en) * | 2014-01-23 | 2015-07-30 | キヤノン株式会社 | Image capturing device and image capturing method |
US10015386B2 (en) | 2014-09-09 | 2018-07-03 | Canon Kabushiki Kaisha | Focus control apparatus, image capturing apparatus, interchangeable lens, focus control method, and storage medium storing focus control program |
JP2019053315A (en) * | 2018-11-19 | 2019-04-04 | 株式会社ニコン | Focus adjustment device and imaging device |
JP2019095803A (en) * | 2019-02-06 | 2019-06-20 | キヤノン株式会社 | Focus detection device, imaging device, and focus detection method |
JP2020074022A (en) * | 2020-01-14 | 2020-05-14 | キヤノン株式会社 | Lens, transmitter, and receiver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5020651B2 (en) | Imaging apparatus and imaging system | |
JP5424708B2 (en) | Focus detection device | |
JP4986764B2 (en) | Imaging apparatus and control method thereof | |
KR20100084819A (en) | Wavelength detecting apparatus and focus detecting apparatus having the same | |
JP2008275712A (en) | Imaging apparatus | |
JP6372109B2 (en) | Imaging device with AF function | |
US9921454B2 (en) | Imaging apparatus capable of generating an image with a weight of a signal corresponding to each type of spectral sensitivity characteristics and method of controlling the apparatus | |
JP2006254413A (en) | Imaging apparatus and camera body | |
JP2006135513A (en) | Imaging apparatus | |
JP5794665B2 (en) | Imaging device | |
JP4950634B2 (en) | Imaging apparatus and imaging system | |
JP5170266B2 (en) | Imaging device and camera body | |
JP2006317595A (en) | Optical apparatus and its control method | |
JP4938922B2 (en) | Camera system | |
JP6529214B2 (en) | Imaging device | |
US10873707B2 (en) | Image pickup apparatus and method, for ensuring correct color temperature based on first or second preliminary light emission of a flash device | |
JP4525023B2 (en) | Focus detection apparatus and imaging apparatus | |
JP7387265B2 (en) | Imaging element, imaging device, control method, and program | |
JP2006072084A (en) | Automatic focus detecting device and camera system | |
JP4928236B2 (en) | Imaging apparatus and imaging system | |
JP4933274B2 (en) | FOCUS ADJUSTMENT DEVICE, ITS CONTROL METHOD, AND IMAGING DEVICE | |
JP2007033653A (en) | Focus detection device and imaging apparatus using the same | |
JP2006146081A (en) | Ranging device and imaging apparatus | |
JP2008203407A (en) | Imaging apparatus, lens device and imaging system | |
JP2016142777A (en) | Imaging apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080108 |