JP2006078964A - Zoom lens and image pickup device having the same - Google Patents
Zoom lens and image pickup device having the same Download PDFInfo
- Publication number
- JP2006078964A JP2006078964A JP2004265375A JP2004265375A JP2006078964A JP 2006078964 A JP2006078964 A JP 2006078964A JP 2004265375 A JP2004265375 A JP 2004265375A JP 2004265375 A JP2004265375 A JP 2004265375A JP 2006078964 A JP2006078964 A JP 2006078964A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- group
- refractive power
- zoom lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/144—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
- G02B15/1441—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
- G02B15/144113—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1451—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
- G02B15/145129—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
本発明はズームレンズ及びそれを有する撮像装置に関し、例えばビデオカメラやデジタルスチルカメラ等の固体撮像素子を用いた撮像装置に好適なものである。 The present invention relates to a zoom lens and an image pickup apparatus having the same, and is suitable for an image pickup apparatus using a solid-state image pickup device such as a video camera or a digital still camera.
最近、ホームビデオカメラ等の小型軽量化に伴い、撮像用のズームレンズの小型化にも目覚しい進歩が見られ、特にレンズ全長の短縮化や前玉径の小型化、レンズ構成の簡略化に力が注がれている。 Recently, along with the reduction in size and weight of home video cameras and the like, remarkable progress has been made in reducing the size of zoom lenses for imaging, particularly in reducing the overall lens length, reducing the front lens diameter, and simplifying the lens configuration. Has been poured.
これらの目的を達成する1つの手段として、物体側の第1レンズ群以外のレンズ群を移動させてフォーカスを行う、所謂リアフォーカス式のズームレンズが知られている。 As one means for achieving these objects, a so-called rear focus type zoom lens that performs focusing by moving a lens group other than the first lens group on the object side is known.
一般にリアフォーカス式のズームレンズは第1レンズ群を移動させてフォーカスを行うズームレンズに比べて第1レンズ群の有効径が小さくなり、レンズ系全体の小型化が容易になる。また近接撮影、特に極至近撮影が容易となり、さらに小型軽量のレンズ群を移動させてフォーカスを行っているので、レンズ群の駆動力が小さくて済み迅速な焦点合わせができる等の特徴がある。 In general, a rear focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens that moves the first lens group to perform focusing, and the entire lens system can be easily downsized. Further, close-up photography, particularly close-up photography is facilitated, and focusing is performed by moving a small and lightweight lens group, so that there is a feature that the driving force of the lens group is small and quick focusing is possible.
リアフォーカス式のズームレンズとして物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群の4つのレンズ群を有し、第2レンズ群を移動させて変倍を行い、第4レンズ群を移動させて変倍に伴う像面変動の補償とフォーカスを行うズームレンズが知られている(特許文献1,2)。 As a rear focus type zoom lens, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens having a positive refractive power. A zoom lens having four lens groups of the fourth lens group, performing zooming by moving the second lens group, and compensating for and focusing on image plane variation accompanying zooming by moving the fourth lens group Known (Patent Documents 1 and 2).
一方、撮像装置として、CCD等の固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ等のカメラでは、レンズ最後部と撮像素子との間に、ローパスフィルター、色補正フィルターが配置されている。 On the other hand, in a video camera using a solid-state image pickup device such as a CCD or a digital still camera as an image pickup device, a low-pass filter and a color correction filter are arranged between the last lens portion and the image pickup device.
それ以外にもカメラの仕様により3CCD用の色分解プリズム、TTLファインダー系に光束を分岐させる為のプリズムなどの各種光学部材も配置される。特に色分解プリズムや光路分割プリズムを用いる光学系では、比較的バックフォーカスの長い撮影レンズ系が要求されている。 In addition to this, various optical members such as a color separation prism for 3CCD and a prism for splitting a light beam into a TTL finder system are also arranged according to the specifications of the camera. In particular, in an optical system using a color separation prism or an optical path splitting prism, a photographing lens system having a relatively long back focus is required.
一般にビデオカメラ等のCCDを用いた撮像装置に、使用されるズームレンズとして、最も物体側の第1レンズ群がズーミング中固定された、正、負、正、正の屈折力のレンズ群より成り、バックフォーカスの長い4群ズームレンズが知られている(特許文献3)。 In general, an image pickup apparatus using a CCD such as a video camera is composed of a positive, negative, positive, and positive refractive power lens group in which the first lens group closest to the object is fixed during zooming. A four-group zoom lens with a long back focus is known (Patent Document 3).
また撮像素子の高画素化に伴って色収差を良好に補正したズームレンズが要望されている。色収差特に、2次スペクトルの補正には異常分散性を有する硝材を使用するのが効果的であり、それらに関するズームレンズが知られている(特許文献4)。 Further, there is a demand for a zoom lens in which chromatic aberration is favorably corrected as the number of pixels of the image sensor increases. It is effective to use a glass material having anomalous dispersion for correcting chromatic aberration, especially the secondary spectrum, and a zoom lens related to these is known (Patent Document 4).
特許文献4では、物体側より像側へ順に、正、負、負、正、負、正の屈折力のレンズ群より成る6群ズームレンズにおいて、最も物体側のレンズ群に異常分散硝材より成るレンズを使用することで望遠端のズーム位置付近での軸上色収差を補正し、又最も像面側のレンズ群に異常分散硝材より成るレンズを用いることで広角端のズーム位置における倍率色収差を補正している。
前述の4群ズームレンズにおいてズーミングの際に、第1レンズ群が固定のズームレンズは、変倍作用を主に第2レンズ群の移動により行っている。このため、第1レンズ群と第3レンズ群の間隔は第2レンズ群で所望の変倍を行うために必要な移動ストローク以上を確保する必要がある。 During zooming in the above-described four-group zoom lens, the zoom lens in which the first lens group is fixed performs zooming mainly by moving the second lens group. For this reason, the distance between the first lens group and the third lens group needs to be at least a movement stroke necessary for performing desired zooming in the second lens group.
このようなレンズ構成では第3レンズ群の近傍に配置された開口絞りと第1レンズ群の間隔を短縮するのが困難なため、特に大型の固体撮像素子を用いた場合にはレンズ全長が長くなり、又、前玉径が大型化してくる。特にレンズ系を広角化した場合、前玉径の増加が著しくなるという問題があった。 In such a lens configuration, it is difficult to shorten the distance between the aperture stop arranged in the vicinity of the third lens group and the first lens group, and therefore, when using a large solid-state imaging device, the total lens length is long. In addition, the diameter of the front lens becomes larger. In particular, when the lens system is widened, there has been a problem that the front lens diameter is remarkably increased.
また特許文献4はレンズ群が全体として6つあるため、ズーミングのためのメカ構造が複雑になる傾向がある。 Further, since Patent Document 4 has six lens groups as a whole, the mechanical structure for zooming tends to be complicated.
本発明は、レンズ系全体を小型化し、ズーム範囲全体にわたり高い光学性能を有したズームレンズ及びそれを有する撮像装置の提供を目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens having a small lens system and high optical performance over the entire zoom range, and an image pickup apparatus having the zoom lens.
本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、後群を有し、後群は1以上のレンズ群を有し、かつ最も像側のレンズ群が正の屈折力のレンズ群であり、ズーミングに際して、第1〜第3レンズ群がそれぞれ移動するズームレンズである。 The zoom lens of the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a rear group. The rear group has one or more lens groups, and the lens group closest to the image side is a lens group having a positive refractive power, and the zoom lens is such that the first to third lens groups move during zooming.
このようなズームレンズにおいて、後群に含まれる最も像側のレンズ群が、アッベ数をνd,部分分散比をθdfとするとき、
νd >75
0.53< θgf <0.545
なる条件を満足する正レンズを有し、
また、全系の広角端と望遠端における焦点距離を各々fw、ft、第2レンズ群の焦点距離をf2とするとき、
1.1 <|f2/fw|< 1.8
ft/fw > 4.0
なる条件を満足することを特徴としている。
In such a zoom lens, when the most image side lens group included in the rear group has an Abbe number of νd and a partial dispersion ratio of θdf,
νd> 75
0.53 <θgf <0.545
A positive lens that satisfies the following conditions:
When the focal lengths at the wide-angle end and the telephoto end of the entire system are fw and ft, respectively, and the focal length of the second lens group is f2.
1.1 <| f2 / fw | <1.8
ft / fw> 4.0
It is characterized by satisfying the following conditions.
なお、アッベ数νdと部分分散比θgfは、g線、d線、F線、C線に対するその材料の屈折率を各々Ng,Nd,NF,NCとするとき、 Note that the Abbe number νd and the partial dispersion ratio θgf are Ng, Nd, NF, and NC when the refractive indexes of the materials for the g-line, d-line, F-line, and C-line are Ng, Nd, NF, and NC, respectively.
で定義される値である。 It is a value defined by.
本発明によれば、レンズ系全体を小型化し、ズーム範囲全体にわたり高い光学性能を有したズームレンズが得られる。 According to the present invention, a zoom lens having a high optical performance over the entire zoom range can be obtained by downsizing the entire lens system.
以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。 Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.
図1は、本発明の実施例1のズームレンズのレンズ断面図、図2〜図4は本発明の実施例1のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 FIG. 1 is a lens cross-sectional view of a zoom lens according to Embodiment 1 of the present invention, and FIGS. 2 to 4 are aberration diagrams at the wide angle end, intermediate focal length, and telephoto end of the zoom lens according to Embodiment 1 of the present invention.
図5〜図7は本発明の実施例2のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 5 to 7 are aberration diagrams at the wide-angle end, the intermediate focal length, and the telephoto end of the zoom lens according to the second embodiment of the present invention.
尚、実施例2のズームレンズのレンズ断面図は図1と略同じであるので省略している。 Note that the lens cross-sectional view of the zoom lens of Example 2 is omitted because it is substantially the same as FIG.
図8は本発明の実施例3のレンズ断面図、図9〜図11は本発明の実施例3のズームレンズの広角端、中間焦点距離、望遠端における収差図である。 FIG. 8 is a lens cross-sectional view of Embodiment 3 of the present invention, and FIGS. 9 to 11 are aberration diagrams of the zoom lens of Embodiment 3 of the present invention at the wide-angle end, intermediate focal length, and telephoto end.
尚、収差図において、d,gはd線及びg線、ΔM,ΔSはメリジオナル像面,サジタル像面、倍率色収差はg線によって表している。 In the aberration diagrams, d and g are represented by d-line and g-line, ΔM and ΔS are represented by meridional image surface and sagittal image surface, and lateral chromatic aberration is represented by g-line.
図12は本発明の撮像装置の概略図である。 FIG. 12 is a schematic diagram of the imaging apparatus of the present invention.
まず図1の実施例1について説明する。尚、実施例2は実施例1と略同様である。 First, Example 1 of FIG. 1 will be described. The second embodiment is substantially the same as the first embodiment.
図1のレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群、L5は正の屈折力の第5レンズ群である。第4レンズ群L4と第5レンズ群L5は後群BGを構成している。SPは開口絞りであり、第3レンズ群L3の前方(物体側)に位置し、ズーミングに際して、第3レンズ群L3とともに移動している。 In the lens cross-sectional view of FIG. 1, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a negative refractive power. The fourth lens unit L5 is a fifth lens unit having a positive refractive power. The fourth lens group L4 and the fifth lens group L5 constitute a rear group BG. SP is an aperture stop, which is located in front of the third lens unit L3 (on the object side) and moves together with the third lens unit L3 during zooming.
尚、開口絞りSPは、第3レンズ群L3中又は第3レンズ群L3の後方(像側)に配置しても良い。 Note that the aperture stop SP may be arranged in the third lens unit L3 or behind the third lens unit L3 (image side).
Gは光学フィルター、フェースプレート等に相当し、設計上設けられた光学ブロックである。IPは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が位置している。 G corresponds to an optical filter, a face plate, etc., and is an optical block provided by design. IP is an image plane on which an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is located.
実施例1では、広角端から望遠端へのズーミングに際して矢印のように、開口絞りSPと各レンズ群L1〜L5を移動させている。 In Example 1, the aperture stop SP and the lens units L1 to L5 are moved as indicated by arrows during zooming from the wide-angle end to the telephoto end.
尚、広角端と望遠端とは変倍用のレンズ群(第2レンズ群L2)が機構上、光軸方向に移動可能な範囲の両端に位置した時のズーム位置をいう。 Note that the wide-angle end and the telephoto end refer to zoom positions when the zooming lens unit (second lens unit L2) is positioned at both ends of a range that can move in the optical axis direction due to the mechanism.
実施例1では、広角端から望遠端へのズーミングに際して、第1レンズ群L1を物体側へ、第2レンズ群L2を像側へ移動させている。又、第3レンズ群L3を開口絞りSPと一体的に移動させている。第4レンズ群L4を像側へ、第5レンズ群を物体側へ移動させている。 In Example 1, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 is moved to the object side, and the second lens unit L2 is moved to the image side. Further, the third lens unit L3 is moved integrally with the aperture stop SP. The fourth lens unit L4 is moved to the image side, and the fifth lens unit is moved to the object side.
実施例1では、第5レンズ群L5を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。望遠端において無限遠物体から近距離物体へフォーカスを行う場合には同図矢印5cに示すように第5レンズ群L5を前方に繰り出すことによって行っている。第5レンズ群L5の実線の曲線5aと点線の曲線5bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正するための移動軌跡を示している。 The first embodiment employs a rear focus type in which the fifth lens unit L5 is moved on the optical axis to perform focusing. When focusing from an infinitely distant object to a close object at the telephoto end, the fifth lens unit L5 is extended forward as indicated by an arrow 5c in the figure. A solid line curve 5a and a dotted line curve 5b of the fifth lens unit L5 correct image plane variations caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and a short-distance object, respectively. The movement locus for this is shown.
実施例1では、軽量な第5レンズ群L5をフォーカスに用いることで迅速な自動焦点検出を容易にしている。 In the first embodiment, the use of the lightweight fifth lens unit L5 for focusing facilitates quick automatic focus detection.
なお、実施例2のズームレンズもズーム動作やレンズ構成等の基本構成は図1の実施例1と同じである。 The basic configuration of the zoom lens of the second embodiment is the same as that of the first embodiment of FIG.
実施例1では第5レンズ群L5をフォーカスのために用いることで無限遠物体から数cmの至近距離物体まで連続的にフォーカスを行うことを可能としている。 In Example 1, the fifth lens unit L5 is used for focusing, so that it is possible to focus continuously from an object at infinity to an object at a short distance of several centimeters.
ズーミングに際して第1レンズ群L1と第3レンズ群L3を物体側へ、第4レンズ群L4を像側へ移動させる事で変倍に必要な第2レンズ群L2の移動量を小さくすることができて第1レンズ群L1と絞りSPまでの距離を短縮することができる。これによって前玉径の小型化を達成している。 By moving the first lens unit L1 and the third lens unit L3 to the object side and the fourth lens unit L4 to the image side during zooming, the amount of movement of the second lens unit L2 necessary for zooming can be reduced. Thus, the distance from the first lens unit L1 to the stop SP can be shortened. This achieves a reduction in the diameter of the front lens.
また実施例1では、ズーミングに際して開口絞りSPを第3レンズ群L3と一体で移動させることでメカ構造の簡素化を図っている。 In the first embodiment, the mechanical structure is simplified by moving the aperture stop SP integrally with the third lens unit L3 during zooming.
実施例1の第1レンズ群L1は、物体側から像側に順に、像側が凹面でメニスカス形状の負レンズと正レンズの貼合せレンズ、物体側が凸面でメニスカス形状の正レンズで構成している。 The first lens unit L1 according to the first exemplary embodiment includes, in order from the object side to the image side, a cemented lens having a concave meniscus lens and a positive lens on the image side, and a meniscus positive lens having a convex surface on the object side. .
第1レンズ群L1に負レンズを配置することで、特に、望遠側のズーム位置で発生する球面収差やコマ収差、軸上色収差等を良好に補正している。 By disposing a negative lens in the first lens unit L1, in particular, spherical aberration, coma, axial chromatic aberration, and the like that occur at the zoom position on the telephoto side are corrected well.
第2レンズ群L2は、物体側から像側に順に、像側が凹面でメニスカス形状の負レンズ、両レンズ面が凹形状の負レンズ、物体側の面が凸形状の正レンズ、そして両レンズ面が凹形状の負レンズで構成している。 The second lens unit L2 includes, in order from the object side to the image side, a negative meniscus lens having a concave surface on the image side, a negative lens having a concave surface on both lens surfaces, a positive lens having a convex surface on the object side, and both lens surfaces Is composed of a negative negative lens.
特に像側に負レンズを配置する構成とすることで、第2レンズ群L2の非対称性を緩めて主点の色収差の色消し効果を高めることでズーミングに伴う色収差の変動を低減している。第2レンズ群L2の面に非球面形状を導入すると広角端のズーム位置での歪曲収差と中間領域のズーム位置でのコマ収差を更に良好に補正することができる。 In particular, by adopting a configuration in which a negative lens is disposed on the image side, the asymmetry of the second lens unit L2 is relaxed to enhance the achromatic effect of the chromatic aberration at the principal point, thereby reducing variations in chromatic aberration due to zooming. If an aspherical shape is introduced into the surface of the second lens unit L2, distortion at the zoom position at the wide angle end and coma at the zoom position in the intermediate region can be corrected more satisfactorily.
第3レンズ群L3は、物体側から像側に順に、像側が凹面でメニスカス形状の負レンズと正レンズの貼合せレンズ、正レンズで構成している。 The third lens unit L3 includes, in order from the object side to the image side, a cemented lens of a meniscus negative lens having a concave surface on the image side and a positive lens, and a positive lens.
第3レンズ群L3を負の屈折力のレンズが先行する負先行型のレトロフォーカス型のレンズ配置とすることで十分長いバックフォーカスを確保し、プリズム等の光学部品の挿入を可能としている。 By making the third lens unit L3 a negative leading type retrofocus type lens arrangement preceded by a lens having a negative refractive power, a sufficiently long back focus is secured, and an optical component such as a prism can be inserted.
また、第3レンズ群L3の正レンズ成分を二つ以上に分割することで、大口径としながら球面収差の発生を抑制している。第3レンズ群L3の面に非球面形状を導入すれば更に球面収差を補正することができて、更なる大口径化も容易となる。 In addition, by dividing the positive lens component of the third lens unit L3 into two or more, generation of spherical aberration is suppressed while maintaining a large aperture. If an aspherical shape is introduced into the surface of the third lens unit L3, the spherical aberration can be further corrected, and further enlargement of the aperture becomes easy.
第4レンズ群L4は、物体側から像側に順に、像側の面が凸形状の正レンズと両レンズ面が凹形状の負レンズで構成している。 The fourth lens unit L4 includes, in order from the object side to the image side, a positive lens having a convex surface on the image side and a negative lens having concave surfaces on both lens surfaces.
正レンズを有する構成とすることでズーミングに伴う軸上色収差や球面収差の変動を良好に補正している。第4レンズ群L4の面に非球面形状を導入すれば更に球面収差の変動を改善することができて大口径化も容易となる。 By using a configuration having a positive lens, fluctuations in axial chromatic aberration and spherical aberration due to zooming are corrected well. If an aspherical shape is introduced into the surface of the fourth lens unit L4, the variation in spherical aberration can be further improved, and an increase in the diameter becomes easy.
第5レンズ群L5は物体側から像側に順に、像側の面が凸形状の正レンズと、両レンズ面が凹形状の負レンズと、両レンズ面が凸形状の正レンズからなる貼合せレンズ、そして正レンズで構成している。 The fifth lens unit L5 is composed of a positive lens having a convex surface on the image side, a negative lens having a concave shape on both lens surfaces, and a positive lens having a convex shape on both lens surfaces in order from the object side to the image side. It consists of a lens and a positive lens.
特に最も物体側の正レンズの面を非球面形状とすることで、非点収差を良好に補正している。さらに接合レンズを構成する正レンズの材料に低分散な硝材を用いることで広角端のズーム位置における倍率色収差を良好に補正している。 In particular, the astigmatism is satisfactorily corrected by making the surface of the positive lens closest to the object side into an aspherical shape. Further, by using a low-dispersion glass material for the positive lens material constituting the cemented lens, the lateral chromatic aberration at the zoom position at the wide-angle end is corrected well.
次に図8の実施例3について説明する。 Next, Example 3 in FIG. 8 will be described.
図8のレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。第4レンズ群L4は単独で後群BGを構成している。SPは開口絞りであり、第3レンズ群L3の前方に位置している。 In the lens cross-sectional view of FIG. 8, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a positive refractive power. 4th lens group. The fourth lens unit L4 alone constitutes the rear group BG. SP is an aperture stop, which is located in front of the third lens unit L3.
Gは光学フィルター、フェースプレート等に相当する光学ブロックである。IPは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が位置している。 G is an optical block corresponding to an optical filter, a face plate, or the like. IP is an image plane on which an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is located.
実施例3では、広角端から望遠端へのズーミングに際して矢印のように、開口絞りSPと各レンズ群L1〜L4を移動させている。 In Example 3, the aperture stop SP and the lens groups L1 to L4 are moved as indicated by arrows during zooming from the wide-angle end to the telephoto end.
実施例3では、広角端から望遠端へのズーミングに際して、第1レンズ群L1を物体側へ、第2レンズ群L2を像側へ移動させている。又、第3レンズ群L3を物体側に移動させている。又、第4レンズ群L4を物体側へ凸状の軌跡に沿って移動させている。 In Example 3, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 is moved to the object side, and the second lens unit L2 is moved to the image side. Further, the third lens unit L3 is moved to the object side. Further, the fourth lens unit L4 is moved along a convex locus toward the object side.
実施例3では、第4レンズ群L4を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。望遠端において無限遠物体から近距離物体へフォーカスを行う場合には、同図矢印4cに示すように第4レンズ群L4を前方に繰り出すことによって行っている。第4レンズ群L4の実線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正するための移動軌跡を示している。実施例3では、軽量な第4レンズ群L4をフォーカスに使うことで迅速な自動焦点検出を容易にしている。 The third embodiment employs a rear focus type in which the fourth lens unit L4 is moved on the optical axis to perform focusing. When focusing from an infinitely distant object to a close object at the telephoto end, the fourth lens unit L4 is moved forward as indicated by an arrow 4c in the figure. A solid line curve 4a and a dotted line curve 4b of the fourth lens unit L4 correct the image plane variation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and a short-distance object, respectively. The movement locus for this is shown. In the third embodiment, the automatic focusing detection can be quickly performed by using the lightweight fourth lens unit L4 for focusing.
第4レンズ群L4をフォーカスのために用いることで、無限遠物体から数cmの至近距離物体まで連続的にフォーカスを行うことが可能となっている。 By using the fourth lens unit L4 for focusing, it is possible to continuously focus from an object at infinity to an object at a close distance of several centimeters.
実施例3では、第3レンズ群L3を、物体側から順に、物体側が凹面でメニスカス形状の負レンズと正レンズとを貼り合せた全体として負の屈折力の接合レンズ、両レンズ面が凸形状の正レンズとメニスカス形状の負レンズとを貼り合せた全体として正の屈折力の接合レンズ、像側の面が凸形状の正レンズで構成している。第3レンズ群L3の最も物体側のレンズ面を凹形状として、第3レンズ群L3を負の屈折力のレンズが先行する負先行型のレトロフォーカス型のレンズ配置とすることで十分長いバックフォーカスを確保し、プリズム等の光学部品の挿入を可能としている。 In the third embodiment, the third lens unit L3 is composed of, in order from the object side, a cemented lens having a negative refractive power as a whole by bonding a negative meniscus lens and a positive lens having a concave surface on the object side, and both lens surfaces are convex. The positive lens and the meniscus negative lens are bonded together to form a cemented lens having a positive refractive power as a whole, and a positive lens having a convex surface on the image side. The lens surface closest to the object side of the third lens unit L3 has a concave shape, and the third lens unit L3 has a negative leading type retrofocus type lens arrangement preceded by a lens having a negative refractive power. And optical parts such as prisms can be inserted.
なお、第3レンズ群L3の正レンズ成分を二つ以上に分割することで、大口径としながら球面収差の発生を抑制している。さらに第3レンズ群L3の最も像側のレンズ面は像側に凸形状とし、球面収差の発生を抑えている。 In addition, by dividing the positive lens component of the third lens unit L3 into two or more, generation of spherical aberration is suppressed while maintaining a large aperture. Further, the most image side lens surface of the third lens unit L3 has a convex shape on the image side to suppress the occurrence of spherical aberration.
また第3レンズ群L3の最も像側の面を非球面形状とすることにより、第3レンズ群L3で発生する球面収差をさらに良好に補正するとともに、軸外のコマ収差の補正を良好に行っている。 Further, by making the most image side surface of the third lens unit L3 an aspherical shape, the spherical aberration generated in the third lens unit L3 can be corrected more satisfactorily, and the off-axis coma can be corrected well. ing.
また第3レンズ群L3を、全体として負の屈折力の接合レンズと、全体として正の屈折力の接合レンズで構成することで、色収差を良好に補正している。第3レンズ群L3をこのように構成することで軸上色収差を良好に補正しながら、バックフォーカスを十分長く確保することができるレトロフォーカス配置としての負、正の屈折力のレンズ群配置を強めている。 Further, the third lens unit L3 is composed of a cemented lens having a negative refractive power as a whole and a cemented lens having a positive refractive power as a whole, so that chromatic aberration is corrected well. By constructing the third lens unit L3 in this way, the lens unit arrangement with negative and positive refractive power is strengthened as a retrofocus arrangement that can secure a sufficiently long back focus while satisfactorily correcting axial chromatic aberration. ing.
また第4レンズ群L4を、物体側から順に、正レンズ、負レンズ、正レンズで構成することにより、比較的少ないレンズ構成にて色収差の補正と、像面の補正を良好に行っている。 In addition, the fourth lens unit L4 is composed of a positive lens, a negative lens, and a positive lens in order from the object side, so that correction of chromatic aberration and correction of the image plane are performed satisfactorily with a relatively small lens configuration.
特に最も物体側の正レンズの面を非球面形状とすることにより、像面湾曲を良好に補正している。さらに最も像側の正レンズの材料に低分散な硝材を用いることで倍率色収差を良好に補正している。 In particular, the curvature of field is favorably corrected by making the surface of the positive lens closest to the object side into an aspherical shape. Further, the lateral chromatic aberration is corrected well by using a low-dispersion glass material for the positive lens on the most image side.
このように各実施例では、物体側より像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3、1以上のレンズ群で構成され、最も像側のレンズ群が正の屈折力のレンズ群である後群を有し、ズーミングに際して、第1〜第3レンズ群L1〜L3がそれぞれ移動する基本構成の基で、次の条件式の1以上を満足させており、これにより各条件式に相当する効果を得ている。 Thus, in each embodiment, in order from the object side to the image side, the first lens unit L1 having a positive refractive power, the second lens unit L2 having a negative refractive power, and the third lens unit L3, 1 having a positive refractive power. The above-described lens group includes a rear group in which the most image side lens group is a lens group having a positive refractive power, and the first to third lens groups L1 to L3 move respectively during zooming. Therefore, one or more of the following conditional expressions are satisfied, thereby obtaining an effect corresponding to each conditional expression.
すなわち、後群中の最も像側のレンズ群(実施例1,2では第5レンズ群L5、実施例3では第4レンズ群L4)が、g線,d線,F線,C線に対する材料の屈折率を各々Ng,Nd,NF,NCとし、 That is, the most image side lens group in the rear group (the fifth lens group L5 in Examples 1 and 2 and the fourth lens group L4 in Example 3) is a material for the g-line, d-line, F-line, and C-line. And Ng, Nd, NF, NC, respectively,
とするとき、アッベ数νdと部分分散比θgfとが、
νd >75 (1)
0.53< θgf <0.545 (2)
なる条件を満足する正レンズを有している。
When the Abbe number νd and the partial dispersion ratio θgf are
νd> 75 (1)
0.53 <θgf <0.545 (2)
A positive lens that satisfies the following condition.
また、全系の広角端と望遠端における焦点距離を各々fw,ft、第2レンズ群L2の焦点距離をf2とするとき、
1.1 <|f2/fw|< 1.8 (3)
ft/fw > 4.0 (4)
なる条件を満足している。
When the focal lengths at the wide-angle end and the telephoto end of the entire system are fw and ft, respectively, and the focal length of the second lens unit L2 is f2.
1.1 <| f2 / fw | <1.8 (3)
ft / fw> 4.0 (4)
Is satisfied.
また、広角端から望遠端へのズーム位置へのズーミングに際して、第1レンズ群L1と第3レンズ群L3の光軸方向の最大の移動量を各々M1,M3とするとき(符号は像側へ向かう移動量を正)、
0.1<|M3|/fw< 1.0 (5)
1.1 <|M1|/fw< 2.5 (6)
なる条件を満足している。
Further, when zooming from the wide-angle end to the telephoto end to the zoom position, the maximum movement amounts in the optical axis direction of the first lens unit L1 and the third lens unit L3 are M1 and M3, respectively (the sign is toward the image side). Positive travel)
0.1 <| M3 | / fw <1.0 (5)
1.1 <| M1 | / fw <2.5 (6)
Is satisfied.
また、後群に含まれる最も像側のレンズ群(実施例1,2では第5レンズ群L5、実施例3では第4レンズ群L4)の焦点距離をfRとするとき、
2.0<fR/fw<4.8 (7)
なる条件を満足している。
When the focal length of the most image side lens group included in the rear group (the fifth lens group L5 in Examples 1 and 2 and the fourth lens group L4 in Example 3) is fR,
2.0 <fR / fw <4.8 (7)
Is satisfied.
次に前述の各条件式の技術的な意味について説明する。 Next, the technical meaning of each conditional expression described above will be described.
条件式(1),(2)は、各実施例において広角端での倍率色収差を良好に補正するためのものである。 Conditional expressions (1) and (2) are for satisfactorily correcting the lateral chromatic aberration at the wide angle end in each embodiment.
条件式(1)の下限を超えてしまうと、広角端で倍率色収差を補正するために各レンズの屈折力が強くなりすぎて高次の球面収差が発生して良くない。 If the lower limit of conditional expression (1) is exceeded, the refractive power of each lens becomes too strong to correct lateral chromatic aberration at the wide-angle end, and higher-order spherical aberration may not occur.
また条件式(2)の下限を超えると、広角端付近で倍率色収差の2次スペクトルが大きくなりすぎて、短波長側と長波長側の倍率色収差をバランスよく補正することが困難になる。又上限を超えようとすると分散を大きくしないと硝材の選択が無くなってしまう。 When the lower limit of conditional expression (2) is exceeded, the secondary spectrum of lateral chromatic aberration becomes too large near the wide-angle end, and it becomes difficult to correct lateral chromatic aberration on the short wavelength side and long wavelength side in a balanced manner. If the upper limit is exceeded, selection of the glass material is lost unless the dispersion is increased.
条件式(3),(4)は、ズーム全域に渡って良好な光学性能を達成するためのものである。 Conditional expressions (3) and (4) are for achieving good optical performance over the entire zoom range.
条件式(4)のズーム比を維持した状態で、条件式(3)の下限を超えて第2レンズ群L2の屈折力が強くなり過ぎると、ズーミングに伴う歪曲収差や非点収差の補正が困難になる。また条件式(3)の上限を超えて第2レンズ群L2の屈折力が弱くなりすぎると、変倍に必要な第2レンズ群L2の移動量が大きくなりすぎて、レンズ系全体の小型化が難しくなる。 If the refractive power of the second lens unit L2 exceeds the lower limit of the conditional expression (3) while maintaining the zoom ratio of the conditional expression (4), the distortion and astigmatism associated with zooming are corrected. It becomes difficult. If the upper limit of conditional expression (3) is exceeded and the refractive power of the second lens unit L2 becomes too weak, the amount of movement of the second lens unit L2 necessary for zooming becomes too large, and the entire lens system is reduced in size. Becomes difficult.
条件式(5),(6)は、ズーミングに際して、第1,第3レンズ群L1,L3の移動量を適切に設定するためのものである。 Conditional expressions (5) and (6) are for appropriately setting the movement amounts of the first and third lens units L1 and L3 during zooming.
条件式(5)の下限を超えて第3レンズ群L3の移動量が小さくなると、前玉径の小型化が難しくなる。又上限を超えてしまうとズーミングに伴う球面収差の補正が困難になる。 If the amount of movement of the third lens unit L3 becomes smaller than the lower limit of conditional expression (5), it will be difficult to reduce the front lens diameter. If the upper limit is exceeded, it becomes difficult to correct spherical aberration associated with zooming.
条件式(6)の上限を超えて第1レンズ群L1の移動量M1が大きすぎると、第1レンズ群L1の移動軌跡を決めるカム環の光軸方向の寸法が大きくなり、メカ部材の大型化を招くのがよくない。特に非撮影時に各レンズ群を沈胴させて全長方向の小型化を図るのが難しくなってくる。 If the movement amount M1 of the first lens unit L1 exceeds the upper limit of the conditional expression (6), the dimension of the cam ring that determines the movement locus of the first lens unit L1 increases, and the size of the mechanical member increases. It is not good to invite. In particular, it is difficult to reduce the size of the entire lens group by retracting each lens group during non-photographing.
また下限を越えて第1レンズ群L1の移動量が小さすぎる場合、所望のズーム比を確保するには第2レンズ群L2の移動量を大きくする必要がある。このようにすると結果的に広角端のズーム位置における第1レンズ群L1の移動軌跡を決めるカム環の光軸方向の寸法が大きくなり、メカ部材の大型化を招くのがよくない。特に非撮影時に各レンズ群を沈胴させて全長方向の小型化を図るのが難しくなってくる。 If the movement amount of the first lens unit L1 is too small beyond the lower limit, it is necessary to increase the movement amount of the second lens unit L2 in order to ensure a desired zoom ratio. As a result, the dimension in the optical axis direction of the cam ring that determines the movement locus of the first lens unit L1 at the zoom position at the wide-angle end becomes large, and the size of the mechanical member should not be increased. In particular, it is difficult to reduce the size of the entire lens group by retracting each lens group during non-photographing.
この他下限を越えて第1レンズ群L1の移動量が小さすぎる場合、所望のズーム比を確保するには第2レンズ群L2の移動量を大きくする必要がある。このようにすると結果的に広角端のズーム位置における第1レンズ群L1と第3レンズ群L3の間隔が大きくなる。開口絞りSPが第3レンズ群L3の近傍にある場合は広角端のズーム位置における第1レンズ群L1と開口絞りSPとの間隔が増大するため前玉径の大型化を招くためよくない。 In addition, when the amount of movement of the first lens unit L1 is too small beyond the lower limit, it is necessary to increase the amount of movement of the second lens unit L2 in order to secure a desired zoom ratio. As a result, the distance between the first lens unit L1 and the third lens unit L3 at the zoom position at the wide-angle end is increased. When the aperture stop SP is in the vicinity of the third lens unit L3, the distance between the first lens unit L1 and the aperture stop SP at the zoom position at the wide-angle end increases, leading to an increase in the diameter of the front lens.
条件式(7)は各実施例で後群に含まれる最も像側のレンズ群でフォーカスを行なっているときの、最も像側のレンズ群の焦点距離fRを規定するものである。 Conditional expression (7) defines the focal length fR of the most image-side lens unit when focusing is performed with the most image-side lens unit included in the rear group in each embodiment.
条件式(7)の下限を超えてフォーカス用のレンズ群の屈折力が大きくなってしまうと、フォーカスの際の歪曲収差や非点収差の変動が補正しきれなくなる。逆に上限を超えてフォーカス用のレンズ群の屈折力が弱くなりすぎるとフォーカスに必要なレンズ群の移動量が大きくなりすぎて望ましくない。 If the refractive power of the focusing lens group exceeds the lower limit of conditional expression (7), the distortion and astigmatism fluctuations during focusing cannot be corrected. On the other hand, if the upper limit is exceeded and the refractive power of the focusing lens group becomes too weak, the amount of movement of the lens group necessary for focusing becomes too large, which is not desirable.
各実施例において更に好ましくは、条件式(1)〜(7)の数値範囲を次の如く設定するのが良い。 In each embodiment, it is more preferable to set the numerical ranges of the conditional expressions (1) to (7) as follows.
νd >80 (1a)
0.532< θgf <0.54 (2a)
1.2 <|f2/fw|< 1.6 (3a)
ft/fw > 4.3 (4a)
0.15<|M3|/fw< 0.7 (5a)
1.4 <|M1|/fw< 2.0 (6a)
2.5<fR/fW<4.1 (7a)
以上のように各実施例によれば、3CCD用の色分解プリズムやTTLファインダー用に光束を分岐させるためのプリズム等の光学部材を挿入することのできる長いバックフォーカスを有し、かつ広角端のズーム位置においてレンズ全長および前玉径の小型化を図るとともに、高画素のデジタルカメラ、ビデオカメラに対応可能な高性能なズームレンズを達成している。
νd> 80 (1a)
0.532 <θgf <0.54 (2a)
1.2 <| f2 / fw | <1.6 (3a)
ft / fw> 4.3 (4a)
0.15 <| M3 | / fw <0.7 (5a)
1.4 <| M1 | / fw <2.0 (6a)
2.5 <fR / fW <4.1 (7a)
As described above, each embodiment has a long back focus into which an optical member such as a color separation prism for 3CCD or a prism for splitting a light beam for a TTL finder can be inserted, and at the wide-angle end. In addition to reducing the overall lens length and diameter of the front lens at the zoom position, a high-performance zoom lens compatible with high-pixel digital cameras and video cameras has been achieved.
次に、本発明の数値実施例1〜3を示す。各数値実施例においてiは物体側からの光学面の順序を示し、Riは第i番目の光学面(第i面)の曲率半径、Diは第i面と第i+1面との間の間隔、Niとνiはそれぞれd線に対する第i番目の光学部材の材料の屈折率、アッベ数を示す。 Next, numerical examples 1 to 3 of the present invention will be shown. In each numerical example, i indicates the order of the optical surfaces from the object side, Ri is the radius of curvature of the i-th optical surface (i-th surface), Di is the distance between the i-th surface and the i + 1-th surface, Ni and νi indicate the refractive index and Abbe number of the material of the i-th optical member with respect to the d-line, respectively.
またkを離心率、B,C,D,Eを非球面係数、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、非球面形状は、
x=(h2/R)/[1+[1−(1+k)(h/R)2]1/2]
+Bh4+Ch4+Dh8+Eh10
で表わされる。
In addition, when k is an eccentricity, B, C, D, and E are aspherical coefficients, and the displacement in the optical axis direction at a height h from the optical axis is x with respect to the surface vertex, the aspherical shape is ,
x = (h 2 / R) / [1+ [1− (1 + k) (h / R) 2 ] 1/2 ]
+ Bh 4 + Ch 4 + Dh 8 + Eh 10
It is represented by
但しRは曲率半径である。また例えば「e−Z」の表示は「10−Z」を意味する。また、各数値実施例における上述した条件式との対応を表1に示す。fは焦点距離、FnoはFナンバー、ωは半画角を示す。 Where R is the radius of curvature. Further, for example, the display of “e-Z” means “10 −Z ”. Table 1 shows the correspondence with the above-described conditional expressions in each numerical example. f indicates a focal length, Fno indicates an F number, and ω indicates a half angle of view.
数値実施例1〜3において、R30,R31は光学ブロックGを構成する面である。 In Numerical Examples 1 to 3, R30 and R31 are surfaces constituting the optical block G.
数値実施例 1
f= 7.36 〜 33.32 Fno= 2.47 〜 3.05 2ω=73.6゜〜 18.7゜
R 1 = 69.304 D 1 = 1.51 N 1 = 1.846660 ν 1 = 23.9
R 2 = 45.156 D 2 = 4.26 N 2 = 1.487490 ν 2 = 70.2
R 3 = 487.781 D 3 = 0.14
R 4 = 41.864 D 4 = 2.61 N 3 = 1.696797 ν 3 = 55.5
R 5 = 116.231 D 5 = 可変
R 6 = 41.387 D 6 = 1.03 N 4 = 1.743997 ν 4 = 44.8
R 7 = 8.717 D 7 = 5.27
R 8 = -46.431 D 8 = 0.82 N 5 = 1.696797 ν 5 = 55.5
R 9 = 26.937 D 9 = 0.14
R10 = 14.566 D10 = 3.85 N 6 = 1.805181 ν 6 = 25.4
R11 = -361.891 D11 = 0.48
R12 = -49.961 D12 = 0.72 N 7 = 1.603420 ν 7 = 38.0
R13 = 26.174 D13 = 可変
R14 = 絞り D14 = 0.96
R15 = -141.268 D15 = 0.48 N 8 = 1.806100 ν 8 = 33.3
R16 = 10.185 D16 = 2.61 N 9 = 1.693501 ν 9 = 53.2
R17 = -24.560 D17 = 0.08
R18 = 19.394 D18 = 2.20 N10 = 1.719995 ν10 = 50.2
R19 = -33.434 D19 = 可変
R20 = -20.682 D20 = 1.41 N11 = 1.846660 ν11 = 23.9
R21 = -10.347 D21 = 0.52 N12 = 1.638539 ν12 = 55.4
R22 = 33.636 D22 = 可変
R23 =102.024(非球面) D23 = 2.75 N13 = 1.583126 ν13 = 59.4
R24 = -21.152 D24 = 0.10
R25 = -17.585 D25 = 0.62 N14 = 1.761821 ν14 = 26.5
R26 = 29.256 D26 = 3.30 N15 = 1.496999 ν15 = 81.5
R27 = -15.034 D27 = 0.14
R28 = -90.592 D28 = 1.51 N16 = 1.696797 ν16 = 55.5
R29 = -19.083 D29 = 可変
R30 = ∞ D30 = 18.56 N17 = 1.516330 ν17 = 64.1
R31 = ∞
\焦点距離 7.36 20.95 33.32
可変間隔\
D 5 0.87 22.46 31.24
D13 22.17 6.63 2.75
D19 1.66 5.95 7.88
D22 9.72 4.57 1.85
D29 0.50 2.75 3.42
非球面係数
R23 k=-2.70471e+02 B=-7.22077e-05 C=-8.98595e-08 D=-2.50692e-09
E=7.64238e-11
数値実施例 2
f= 7.36 〜 33.32 Fno= 2.47 〜 3.18 2ω=73.6゜〜 18.7゜
R 1 = 63.035 D 1 = 1.51 N 1 = 1.846660 ν 1 = 23.9
R 2 = 41.982 D 2 = 4.26 N 2 = 1.487490 ν 2 = 70.2
R 3 = 316.274 D 3 = 0.14
R 4 = 36.774 D 4 = 2.75 N 3 = 1.696797 ν 3 = 55.5
R 5 = 84.125 D 5 = 可変
R 6 = 36.711 D 6 = 1.03 N 4 = 1.743997 ν 4 = 44.8
R 7 = 8.336 D 7 = 5.13
R 8 = -46.858 D 8 = 0.82 N 5 = 1.696797 ν 5 = 55.5
R 9 = 23.149 D 9 = 0.14
R10 = 13.733 D10 = 3.71 N 6 = 1.805181 ν 6 = 25.4
R11 = 150.998 D11 = 0.48
R12 = -69.647 D12 = 0.72 N 7 = 1.603420 ν 7 = 38.0
R13 = 27.846 D13 = 可変
R14 = 絞り D14 = 0.96
R15 = -212.096 D15 = 0.48 N 8 = 1.806100 ν 8 = 33.3
R16 = 10.899 D16 = 2.61 N 9 = 1.693501 ν 9 = 53.2
R17 = -23.514 D17 = 0.08
R18 = 20.460 D18 = 2.20 N10 = 1.719995 ν10 = 50.2
R19 = -35.018 D19 = 可変
R20 = -20.526 D20 = 1.41 N11 = 1.846660 ν11 = 23.8
R21 = -10.552 D21 = 0.52 N12 = 1.638539 ν12 = 55.4
R22 = 34.046 D22 = 可変
R23 =294.400(非球面) D23 = 2.54 N13 = 1.583126 ν13 = 59.4
R24 = -20.473 D24 = 0.10
R25 = -21.284 D25 = 0.62 N14 = 1.761821 ν14 = 26.5
R26 = 21.726 D26 = 3.30 N15 = 1.438750 ν15 = 95.0
R27 = -20.656 D27 = 0.14
R28 = 95.350 D28 = 3.09 N16 = 1.696797 ν16 = 55.5
R29 = -18.840 D29 = 可変
R30 = ∞ D30 = 18.56 N17 = 1.516330 ν17 = 64.1
R31 = ∞
\焦点距離 7.36 20.69 33.31
可変間隔\
D 5 0.89 21.52 30.25
D13 20.23 6.36 2.75
D19 1.66 7.04 9.65
D22 10.72 5.09 2.07
D29 1.00 2.56 3.03
非球面係数
R23 k=-4.54515e+01 B=-8.57589e-05 C=1.38659e-08 D=1.37270e-09
E=-1.34690e-12
数値実施例3
f=9.17〜52.31 Fno= 2.06 〜2.55 2ω=61.9°〜12.0°
R 1 = 91.824 D 1 = 1.86 N 1 = 1.846660 ν 1 = 23.9
R 2 = 52.464 D 2 = 0.14
R 3 = 52.464 D 3 = 7.01 N 2 = 1.438750 ν 2 = 95.0
R 4 = -153.137 D 4 = 0.14
R 5 = 40.506 D 5 = 4.12 N 3 = 1.712995 ν 3 = 53.9
R 6 = 104.531 D 6 = 可変
R 7 = 61.479 D 7 = 1.24 N 4 = 1.712995 ν 4 = 53.9
R 8 = 11.379 D 8 = 6.05
R 9 = -34.960 D 9 = 0.96 N 5 = 1.603112 ν 5 = 60.6
R10 = 19.777 D10 = 0.21
R11 = 16.630 D11 = 5.16 N 6 = 1.800999 ν 6 = 35.0
R12 = -28.759 D12 = 0.96
R13 = -19.772 D13 = 0.89 N 7 = 1.696797 ν 7 = 55.5
R14 = 85.090 D14 = 可変
R15 = 絞り D15 = 2.18
R16 = -12.997 D16 = 0.76 N 8 = 1.516330 ν 8 = 64.1
R17 = -96.803 D17 = 2.20 N 9 = 1.805181 ν 9 = 25.4
R18 = -31.520 D18 = 0.14
R19 = 57.143 D19 = 3.44 N10 = 1.487490 ν10 = 70.2
R20 = -22.054 D20 = 0.89 N11 = 1.805181 ν11 = 25.4
R21 = -45.181 D21 = 0.14
R22 = 126.882 D22 = 2.61 N12 = 1.583126 ν12 = 59.4
R23 =-28.042(非球面) D23 = 可変
R24 = 30.351(非球面) D24 = 3.44 N13 = 1.583126 ν13 = 59.4
R25 = -130.364 D25 = 0.14
R26 = 47.961 D26 = 0.96 N14 = 1.846660 ν14 = 23.9
R27 = 19.626 D27 = 0.14
R28 = 19.626 D28 = 4.12 N15 = 1.438750 ν15 = 95.0
R29 = -53.414 D29 = 可変
R30 = ∞ D30 = 20.63 N16 = 1.516330 ν16 = 64.1
R31 = ∞
\焦点距離 9.17 29.10 52.31
可変間隔\
D 6 1.09 24.82 34.64
D14 26.39 7.28 2.06
D23 7.50 7.96 10.82
D29 2.75 6.30 4.40
非球面係数
R23 K=-2.01645 B=-3.82429e-06 C=6.08325e-08 D=-1.82298e-10
E=-1.21333e-12
R24 K=-5.07410 B=2.44222e-06 C=9.56324e-09 D=-2.18449e-10
E=3.76684e-13
Numerical example 1
f = 7.36 to 33.32 Fno = 2.47 to 3.05 2ω = 73.6 ° to 18.7 °
R 1 = 69.304 D 1 = 1.51 N 1 = 1.846660 ν 1 = 23.9
R 2 = 45.156 D 2 = 4.26 N 2 = 1.487490 ν 2 = 70.2
R 3 = 487.781 D 3 = 0.14
R 4 = 41.864 D 4 = 2.61 N 3 = 1.696797 ν 3 = 55.5
R 5 = 116.231 D 5 = variable
R 6 = 41.387 D 6 = 1.03 N 4 = 1.743997 ν 4 = 44.8
R 7 = 8.717 D 7 = 5.27
R 8 = -46.431 D 8 = 0.82 N 5 = 1.696797 ν 5 = 55.5
R 9 = 26.937 D 9 = 0.14
R10 = 14.566 D10 = 3.85 N 6 = 1.805181 ν 6 = 25.4
R11 = -361.891 D11 = 0.48
R12 = -49.961 D12 = 0.72 N 7 = 1.603420 ν 7 = 38.0
R13 = 26.174 D13 = variable
R14 = Aperture D14 = 0.96
R15 = -141.268 D15 = 0.48 N 8 = 1.806100 ν 8 = 33.3
R16 = 10.185 D16 = 2.61 N 9 = 1.693501 ν 9 = 53.2
R17 = -24.560 D17 = 0.08
R18 = 19.394 D18 = 2.20 N10 = 1.719995 ν10 = 50.2
R19 = -33.434 D19 = variable
R20 = -20.682 D20 = 1.41 N11 = 1.846660 ν11 = 23.9
R21 = -10.347 D21 = 0.52 N12 = 1.638539 ν12 = 55.4
R22 = 33.636 D22 = variable
R23 = 102.024 (Aspherical) D23 = 2.75 N13 = 1.583126 ν13 = 59.4
R24 = -21.152 D24 = 0.10
R25 = -17.585 D25 = 0.62 N14 = 1.761821 ν14 = 26.5
R26 = 29.256 D26 = 3.30 N15 = 1.496999 ν15 = 81.5
R27 = -15.034 D27 = 0.14
R28 = -90.592 D28 = 1.51 N16 = 1.696797 ν16 = 55.5
R29 = -19.083 D29 = variable
R30 = ∞ D30 = 18.56 N17 = 1.516330 ν17 = 64.1
R31 = ∞
\ Focal length 7.36 20.95 33.32
Variable interval \
D 5 0.87 22.46 31.24
D13 22.17 6.63 2.75
D19 1.66 5.95 7.88
D22 9.72 4.57 1.85
D29 0.50 2.75 3.42
Aspheric coefficient
R23 k = -2.70471e + 02 B = -7.22077e-05 C = -8.98595e-08 D = -2.50692e-09
E = 7.64238e-11
Numerical example 2
f = 7.36 to 33.32 Fno = 2.47 to 3.18 2ω = 73.6 ° to 18.7 °
R 1 = 63.035 D 1 = 1.51 N 1 = 1.846660 ν 1 = 23.9
R 2 = 41.982 D 2 = 4.26 N 2 = 1.487490 ν 2 = 70.2
R 3 = 316.274 D 3 = 0.14
R 4 = 36.774 D 4 = 2.75 N 3 = 1.696797 ν 3 = 55.5
R 5 = 84.125 D 5 = variable
R 6 = 36.711 D 6 = 1.03 N 4 = 1.743997 ν 4 = 44.8
R 7 = 8.336 D 7 = 5.13
R 8 = -46.858 D 8 = 0.82 N 5 = 1.696797 ν 5 = 55.5
R 9 = 23.149 D 9 = 0.14
R10 = 13.733 D10 = 3.71 N 6 = 1.805181 ν 6 = 25.4
R11 = 150.998 D11 = 0.48
R12 = -69.647 D12 = 0.72 N 7 = 1.603420 ν 7 = 38.0
R13 = 27.846 D13 = variable
R14 = Aperture D14 = 0.96
R15 = -212.096 D15 = 0.48 N 8 = 1.806100 ν 8 = 33.3
R16 = 10.899 D16 = 2.61 N 9 = 1.693501 ν 9 = 53.2
R17 = -23.514 D17 = 0.08
R18 = 20.460 D18 = 2.20 N10 = 1.719995 ν10 = 50.2
R19 = -35.018 D19 = variable
R20 = -20.526 D20 = 1.41 N11 = 1.846660 ν11 = 23.8
R21 = -10.552 D21 = 0.52 N12 = 1.638539 ν12 = 55.4
R22 = 34.046 D22 = variable
R23 = 294.400 (Aspheric) D23 = 2.54 N13 = 1.583126 ν13 = 59.4
R24 = -20.473 D24 = 0.10
R25 = -21.284 D25 = 0.62 N14 = 1.761821 ν14 = 26.5
R26 = 21.726 D26 = 3.30 N15 = 1.438750 ν15 = 95.0
R27 = -20.656 D27 = 0.14
R28 = 95.350 D28 = 3.09 N16 = 1.696797 ν16 = 55.5
R29 = -18.840 D29 = variable
R30 = ∞ D30 = 18.56 N17 = 1.516330 ν17 = 64.1
R31 = ∞
\ Focal length 7.36 20.69 33.31
Variable interval \
D 5 0.89 21.52 30.25
D13 20.23 6.36 2.75
D19 1.66 7.04 9.65
D22 10.72 5.09 2.07
D29 1.00 2.56 3.03
Aspheric coefficient
R23 k = -4.54515e + 01 B = -8.57589e-05 C = 1.38659e-08 D = 1.37270e-09
E = -1.34690e-12
Numerical Example 3
f = 9.17 to 52.31 Fno = 2.06 to 2.55 2ω = 61.9 ° to 12.0 °
R 1 = 91.824 D 1 = 1.86 N 1 = 1.846660 ν 1 = 23.9
R 2 = 52.464 D 2 = 0.14
R 3 = 52.464 D 3 = 7.01 N 2 = 1.438750 ν 2 = 95.0
R 4 = -153.137 D 4 = 0.14
R 5 = 40.506 D 5 = 4.12 N 3 = 1.712995 ν 3 = 53.9
R 6 = 104.531 D 6 = variable
R 7 = 61.479 D 7 = 1.24 N 4 = 1.712995 ν 4 = 53.9
R 8 = 11.379 D 8 = 6.05
R 9 = -34.960 D 9 = 0.96 N 5 = 1.603112 ν 5 = 60.6
R10 = 19.777 D10 = 0.21
R11 = 16.630 D11 = 5.16 N 6 = 1.800999 ν 6 = 35.0
R12 = -28.759 D12 = 0.96
R13 = -19.772 D13 = 0.89 N 7 = 1.696797 ν 7 = 55.5
R14 = 85.090 D14 = variable
R15 = Aperture D15 = 2.18
R16 = -12.997 D16 = 0.76 N 8 = 1.516330 ν 8 = 64.1
R17 = -96.803 D17 = 2.20 N 9 = 1.805181 ν 9 = 25.4
R18 = -31.520 D18 = 0.14
R19 = 57.143 D19 = 3.44 N10 = 1.487490 ν10 = 70.2
R20 = -22.054 D20 = 0.89 N11 = 1.805181 ν11 = 25.4
R21 = -45.181 D21 = 0.14
R22 = 126.882 D22 = 2.61 N12 = 1.583126 ν12 = 59.4
R23 = -28.042 (Aspherical) D23 = Variable
R24 = 30.351 (Aspherical) D24 = 3.44 N13 = 1.583126 ν13 = 59.4
R25 = -130.364 D25 = 0.14
R26 = 47.961 D26 = 0.96 N14 = 1.846660 ν14 = 23.9
R27 = 19.626 D27 = 0.14
R28 = 19.626 D28 = 4.12 N15 = 1.438750 ν15 = 95.0
R29 = -53.414 D29 = variable
R30 = ∞ D30 = 20.63 N16 = 1.516330 ν16 = 64.1
R31 = ∞
\ Focal length 9.17 29.10 52.31
Variable interval \
D 6 1.09 24.82 34.64
D14 26.39 7.28 2.06
D23 7.50 7.96 10.82
D29 2.75 6.30 4.40
Aspheric coefficient
R23 K = -2.01645 B = -3.82429e-06 C = 6.08325e-08 D = -1.82298e-10
E = -1.21333e-12
R24 K = -5.07410 B = 2.44222e-06 C = 9.56324e-09 D = -2.18449e-10
E = 3.76684e-13
次に本発明のズームレンズを撮影光学系として用いたデジタルスチルカメラの実施形態を図12を用いて説明する。 Next, an embodiment of a digital still camera using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.
図12において、20はカメラ本体、21は本発明のズームレンズによって構成された撮影光学系、22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、23は固体撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリ、24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダである。 In FIG. 12, 20 is a camera body, 21 is a photographing optical system constituted by the zoom lens of the present invention, 22 is a CCD sensor or CMOS sensor incorporated in the camera body and receiving a subject image formed by the photographing optical system 21. A solid-state imaging device (photoelectric conversion device) such as 23, a memory 23 for recording information corresponding to a subject image photoelectrically converted by the solid-state imaging device 22, and a liquid crystal display panel 24 are formed on the solid-state imaging device 22. It is a finder for observing the subject image.
このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置が実現できる。 In this way, by applying the zoom lens of the present invention to an imaging apparatus such as a digital still camera, a compact imaging apparatus having high optical performance can be realized.
L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
SP 絞り
FP フレアー絞り
IP 像面
d d線
g g線
ΔM メリジオナル像面
ΔS サジタル像面
G ガラスブロック
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group SP stop FP flare stop IP image surface d d line g g line ΔM meridional image surface ΔS sagittal image surface G glass block
Claims (11)
該後群中の最も像側のレンズ群は、アッベ数をνd、部分分散比をθgfとするとき、
νd >75
0.53< θgf <0.545
なる条件を満足する正レンズを有し、
全系の広角端と望遠端における焦点距離を各々fw、ft、該第2レンズ群の焦点距離をf2とするとき、
1.1 <|f2/fw|< 1.8
ft/fw > 4.0
なる条件を満足することを特徴とするズームレンズ。 In order from the object side to the image side, there are a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a rear group. In the zoom lens in which the lens group on the most image side is a lens group having a positive refractive power, and the first to third lens groups move during zooming,
The most image-side lens group in the rear group has an Abbe number of νd and a partial dispersion ratio of θgf.
νd> 75
0.53 <θgf <0.545
A positive lens that satisfies the following conditions:
When the focal lengths at the wide-angle end and the telephoto end of the entire system are fw and ft, respectively, and the focal length of the second lens group is f2.
1.1 <| f2 / fw | <1.8
ft / fw> 4.0
A zoom lens characterized by satisfying the following conditions:
0.1<|M3|/fw< 1.0
なる条件を満足することを特徴とする請求項1から4のいずれか1項のズームレンズ。 When zooming from the wide-angle end to the telephoto end, the maximum movement amount in the optical axis direction of the third lens group is M3.
0.1 <| M3 | / fw <1.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
1.1 <|M1|/fw< 2.5
なる条件を満足することを特徴とする請求項1から5のいずれか1項のズームレンズ。 When zooming from the wide-angle end to the telephoto end, the maximum movement amount in the optical axis direction of the first lens group is M1,
1.1 <| M1 | / fw <2.5
The zoom lens according to claim 1, wherein the following condition is satisfied.
2.0<fR/fw<4.8
なる条件を満足することを特徴とする請求項1から8のいずれか1項のズームレンズ。 When the focal length of the most image side lens unit in the rear group is fR,
2.0 <fR / fw <4.8
The zoom lens according to claim 1, wherein the following condition is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004265375A JP4717399B2 (en) | 2004-09-13 | 2004-09-13 | Zoom lens and imaging apparatus having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004265375A JP4717399B2 (en) | 2004-09-13 | 2004-09-13 | Zoom lens and imaging apparatus having the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006078964A true JP2006078964A (en) | 2006-03-23 |
JP2006078964A5 JP2006078964A5 (en) | 2007-10-25 |
JP4717399B2 JP4717399B2 (en) | 2011-07-06 |
Family
ID=36158447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004265375A Expired - Fee Related JP4717399B2 (en) | 2004-09-13 | 2004-09-13 | Zoom lens and imaging apparatus having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4717399B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006133632A (en) * | 2004-11-09 | 2006-05-25 | Olympus Corp | Zoom lens |
JP2009098585A (en) * | 2007-09-25 | 2009-05-07 | Ricoh Co Ltd | Zoom lens, camera and personal digital assistant device |
US7916399B2 (en) | 2008-11-19 | 2011-03-29 | Fujinon Corporation | Zoom lens and imaging apparatus |
CN102033306A (en) * | 2009-10-01 | 2011-04-27 | 索尼公司 | Variable focal length lens system and image pickup device |
JP2011221422A (en) * | 2010-04-14 | 2011-11-04 | Nikon Corp | Zoom optical system, optical apparatus equipped with zoom optical system and method for manufacturing zoom optical system |
JP2012141555A (en) * | 2011-01-06 | 2012-07-26 | Nikon Corp | Variable power optical system, optical device having the variable power optical system, and manufacturing method of the variable power optical system |
JP2017116645A (en) * | 2015-12-22 | 2017-06-29 | 株式会社タムロン | Wide-angle zoom lens and imaging device |
CN112835187A (en) * | 2021-02-25 | 2021-05-25 | 中山联合光电科技股份有限公司 | Zoom lens |
CN112987270A (en) * | 2019-12-02 | 2021-06-18 | 扬明光学股份有限公司 | Optical lens and method for manufacturing the same |
CN113056694A (en) * | 2018-12-26 | 2021-06-29 | 株式会社尼康 | Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system |
CN113777764A (en) * | 2017-03-30 | 2021-12-10 | 株式会社腾龙 | Zoom lens and image pickup apparatus |
CN115616748A (en) * | 2022-09-21 | 2023-01-17 | 福建福光股份有限公司 | High-definition large-image-surface manual zoom lens |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10111457A (en) * | 1996-10-07 | 1998-04-28 | Nikon Corp | Zoom lens |
JP2002062478A (en) * | 2000-08-22 | 2002-02-28 | Olympus Optical Co Ltd | Zoom lens |
JP2003241093A (en) * | 2002-02-15 | 2003-08-27 | Nikon Corp | Zoom lens |
JP2003255228A (en) * | 2001-12-28 | 2003-09-10 | Olympus Optical Co Ltd | Wide-angle high-power zoom lens |
JP2004077801A (en) * | 2002-08-19 | 2004-03-11 | Canon Inc | Zoom lens and optical equipment with same |
JP2005107262A (en) * | 2003-09-30 | 2005-04-21 | Nikon Corp | Zoom lens |
JP2005189670A (en) * | 2003-12-26 | 2005-07-14 | Olympus Corp | Zoom lens and camera equipped with the same |
-
2004
- 2004-09-13 JP JP2004265375A patent/JP4717399B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10111457A (en) * | 1996-10-07 | 1998-04-28 | Nikon Corp | Zoom lens |
JP2002062478A (en) * | 2000-08-22 | 2002-02-28 | Olympus Optical Co Ltd | Zoom lens |
JP2003255228A (en) * | 2001-12-28 | 2003-09-10 | Olympus Optical Co Ltd | Wide-angle high-power zoom lens |
JP2003241093A (en) * | 2002-02-15 | 2003-08-27 | Nikon Corp | Zoom lens |
JP2004077801A (en) * | 2002-08-19 | 2004-03-11 | Canon Inc | Zoom lens and optical equipment with same |
JP2005107262A (en) * | 2003-09-30 | 2005-04-21 | Nikon Corp | Zoom lens |
JP2005189670A (en) * | 2003-12-26 | 2005-07-14 | Olympus Corp | Zoom lens and camera equipped with the same |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006133632A (en) * | 2004-11-09 | 2006-05-25 | Olympus Corp | Zoom lens |
JP2009098585A (en) * | 2007-09-25 | 2009-05-07 | Ricoh Co Ltd | Zoom lens, camera and personal digital assistant device |
US7916399B2 (en) | 2008-11-19 | 2011-03-29 | Fujinon Corporation | Zoom lens and imaging apparatus |
CN102033306A (en) * | 2009-10-01 | 2011-04-27 | 索尼公司 | Variable focal length lens system and image pickup device |
JP2011221422A (en) * | 2010-04-14 | 2011-11-04 | Nikon Corp | Zoom optical system, optical apparatus equipped with zoom optical system and method for manufacturing zoom optical system |
JP2012141555A (en) * | 2011-01-06 | 2012-07-26 | Nikon Corp | Variable power optical system, optical device having the variable power optical system, and manufacturing method of the variable power optical system |
JP2017116645A (en) * | 2015-12-22 | 2017-06-29 | 株式会社タムロン | Wide-angle zoom lens and imaging device |
CN113777764A (en) * | 2017-03-30 | 2021-12-10 | 株式会社腾龙 | Zoom lens and image pickup apparatus |
CN113777764B (en) * | 2017-03-30 | 2023-04-21 | 株式会社腾龙 | Zoom lens and imaging device |
CN113056694A (en) * | 2018-12-26 | 2021-06-29 | 株式会社尼康 | Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system |
CN112987270A (en) * | 2019-12-02 | 2021-06-18 | 扬明光学股份有限公司 | Optical lens and method for manufacturing the same |
CN112835187A (en) * | 2021-02-25 | 2021-05-25 | 中山联合光电科技股份有限公司 | Zoom lens |
CN115616748A (en) * | 2022-09-21 | 2023-01-17 | 福建福光股份有限公司 | High-definition large-image-surface manual zoom lens |
CN115616748B (en) * | 2022-09-21 | 2024-04-05 | 福建福光股份有限公司 | Manual zoom lens with high definition and large image plane |
Also Published As
Publication number | Publication date |
---|---|
JP4717399B2 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5006575B2 (en) | Zoom lens and imaging apparatus using the same | |
JP4794912B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5046740B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4950630B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5053750B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5072474B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5100411B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4989152B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5111007B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4928165B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5893959B2 (en) | Zoom lens | |
JP5072447B2 (en) | Zoom lens and imaging apparatus having the same | |
US20030231388A1 (en) | Zoom lens and optical apparatus having the same | |
JP2006058584A (en) | Zoom lens and imaging device incorporating it | |
JP4794845B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4819414B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4829586B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4717399B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4776936B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5305671B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6164894B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2014202806A5 (en) | ||
JP4971632B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2003262793A (en) | Zoom lens | |
JP3097395B2 (en) | Rear focus zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070910 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110330 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |