JP2006041494A - Cleaning composition for semiconductor component, and manufacturing method of semiconductor device - Google Patents

Cleaning composition for semiconductor component, and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2006041494A
JP2006041494A JP2005179493A JP2005179493A JP2006041494A JP 2006041494 A JP2006041494 A JP 2006041494A JP 2005179493 A JP2005179493 A JP 2005179493A JP 2005179493 A JP2005179493 A JP 2005179493A JP 2006041494 A JP2006041494 A JP 2006041494A
Authority
JP
Japan
Prior art keywords
cleaning
semiconductor component
composition
acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005179493A
Other languages
Japanese (ja)
Other versions
JP4600169B2 (en
Inventor
Masayuki Hattori
雅幸 服部
Yuji Namie
祐司 浪江
Nobuo Kawahashi
信夫 川橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2005179493A priority Critical patent/JP4600169B2/en
Publication of JP2006041494A publication Critical patent/JP2006041494A/en
Application granted granted Critical
Publication of JP4600169B2 publication Critical patent/JP4600169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Detergent Compositions (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning composition for semiconductor component which has superior cleaning properties with respect to impurities remaining on a to-be-polished surface of a semiconductor component after chemical mechanical polishing, and further reduces burden on environment, and to provide a method for manufacturing a semiconductor device comprising a step for cleaning, by using the cleaning composition for semiconductor component. <P>SOLUTION: The cleaning composition for semiconductor component comprises a water-soluble polymer (a), having a specific molecular weight and a compound (b) represented by a formula (1): NR<SB>4</SB>OH, wherein each R is independently a hydrogen atom or an alkyl group of 1 to 6 carbon atoms. The method for manufacturing the semiconductor device comprises a step of chemical mechanical polishing the semiconductor component, and then cleaning with the cleaning composition for semiconductor component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体部品洗浄用組成物および半導体装置の製造方法に関する。より詳しくは、本発明は、特定の水溶性ポリマーおよび特定の化合物を含む半導体部品洗浄用組成物、および上記半導体部品洗浄用組成物で洗浄する工程を含む半導体装置の製造方法に関する。   The present invention relates to a semiconductor component cleaning composition and a method for manufacturing a semiconductor device. More specifically, the present invention relates to a semiconductor component cleaning composition containing a specific water-soluble polymer and a specific compound, and a method of manufacturing a semiconductor device including a step of cleaning with the semiconductor component cleaning composition.

半導体装置の製造プロセスにおいて、化学的機械研磨(CMP)が注目されている。化学的機械研磨は、従来のRIE(反応性イオンエッチング)等のエッチバック技術、リフロー技術などに比べて平坦化工程を短縮することができるという利点がある。また、化学的機械研磨は、パターン依存性を受けにくく、良好な平坦化が実現できるという利点も有する。このような化学的機械研磨は、たとえば、多層化配線基板における金属配線の平坦化、層間絶縁膜の平坦化などに適用されている。   In the manufacturing process of a semiconductor device, chemical mechanical polishing (CMP) has attracted attention. Chemical mechanical polishing has an advantage that the planarization process can be shortened as compared with the conventional RIE (reactive ion etching) or other etch-back technique or reflow technique. Further, chemical mechanical polishing is less susceptible to pattern dependence and has the advantage that good planarization can be realized. Such chemical mechanical polishing is applied to, for example, planarization of metal wirings and interlayer insulation films in a multilayer wiring board.

しかしながら、化学的機械研磨によって半導体装置に用いる半導体部品を平坦化した場合、化学的機械研磨後に、化学的機械研磨に使用した研磨用水系分散体に含まれていた研磨粒子、ナトリウムイオン、カリウムイオンなどの不純物が、半導体部品の被研磨面に残留することが知られている。これらの不純物は、半導体装置の特性に悪影響を与えるため、洗浄によって除去する必要がある。   However, when a semiconductor component used in a semiconductor device is planarized by chemical mechanical polishing, the abrasive particles, sodium ions, potassium ions contained in the polishing aqueous dispersion used for chemical mechanical polishing after chemical mechanical polishing. It is known that impurities such as these remain on the polished surface of the semiconductor component. Since these impurities adversely affect the characteristics of the semiconductor device, they must be removed by cleaning.

このような中、金属配線を有する基板を洗浄するために、以下のような洗浄液が提案されている。たとえば、シュウ酸、シュウ酸アンモニウムまたはポリアミノカルボン酸を含んだ洗浄液(特許文献1参照)、クエン酸等の有機酸とヘキサメタリン酸等の錯化剤とを含んだ洗浄処理剤(特許文献2参照)、アルキル基およびエチレンオキサイド構造を有する界面活性剤を含んだ洗浄剤(特許文献3参照)、エチレンジアミンテトラキスメチルホスホン酸と酢酸との組み合わせのように、2種類の錯化剤を組み合わせて用いた洗浄剤(特許文献4参照)、スルホン酸基および/またはカルボキシル基を必須構成成分とする水溶性(共)重合体を含む半導体部品用洗浄液(特許文献5参照)などが開示されている。   Under such circumstances, in order to clean a substrate having metal wiring, the following cleaning liquid has been proposed. For example, a cleaning liquid containing oxalic acid, ammonium oxalate or polyaminocarboxylic acid (see Patent Document 1), a cleaning treatment containing an organic acid such as citric acid and a complexing agent such as hexametaphosphoric acid (see Patent Document 2) , A detergent containing a surfactant having an alkyl group and an ethylene oxide structure (see Patent Document 3), and a detergent using a combination of two complexing agents such as a combination of ethylenediaminetetrakismethylphosphonic acid and acetic acid (See Patent Document 4), semiconductor component cleaning liquids containing a water-soluble (co) polymer having sulfonic acid groups and / or carboxyl groups as essential components (see Patent Document 5), and the like.

しかしながら、上記のような洗浄液を用いた場合は、化学的機械研磨後に基板上に残った研磨粒子、研磨くず、ナトリウムイオン、カリウムイオンなどの不純物を充分に除去することは困難であるという問題があった。また、洗浄効果を発揮させるために、高濃度の洗浄液を使用する必要があり、廃液処理など環境への負担が大きいという問題もあった。
特開平11−131093号公報 特許第3219020号明細書 特開平11−121418号公報 特開平9−157692号公報 特開2001−64689号公報
However, when the cleaning liquid as described above is used, it is difficult to sufficiently remove impurities such as abrasive particles, polishing waste, sodium ions and potassium ions remaining on the substrate after chemical mechanical polishing. there were. In addition, in order to exert the cleaning effect, it is necessary to use a high concentration cleaning liquid, and there is a problem that a burden on the environment such as waste liquid treatment is large.
Japanese Patent Application Laid-Open No. 11-131093 Japanese Patent No. 3219020 JP-A-11-112418 JP-A-9-157692 JP 2001-64689 A

本発明の目的は、上記のような従来技術を解決しようとするものであって、化学的機械研磨後の半導体部品の被研磨面に残留した不純物に対する洗浄効果が高く、かつ環境への負荷が少ない半導体部品洗浄用組成物を提供することにある。   An object of the present invention is to solve the above-described conventional technique, which has a high cleaning effect on impurities remaining on a polished surface of a semiconductor component after chemical mechanical polishing and has a load on the environment. An object of the present invention is to provide a composition for cleaning semiconductor components with a small amount.

本発明の別の目的は、上記の半導体部品洗浄用組成物で洗浄する工程を含む半導体装置の製造方法を提供することにある。   Another object of the present invention is to provide a method of manufacturing a semiconductor device including a step of cleaning with the above-described semiconductor component cleaning composition.

本発明者らは、上記課題を解決すべく鋭意研究した結果、特定の分子量を有する水溶性ポリマーおよびアンモニウムヒドロキシドを含む半導体部品洗浄用組成物は、不純物に対する洗浄効果が高く、かつ環境への負荷が少ないことを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a composition for cleaning a semiconductor component containing a water-soluble polymer having a specific molecular weight and ammonium hydroxide has a high cleaning effect against impurities and is effective for the environment. The inventors have found that the load is small and have completed the present invention.

すなわち、本発明に係る半導体部品洗浄用組成物は、
ゲルパーミエーションクロマトグラフィーで測定したポリスチレンスルホン酸ナトリウム換算の重量平均分子量が1,000〜100,000である水溶性ポリマー(a)、および下記式(1)で表される化合物(b)が配合されてなることを特徴とする。
NR4OH (1)
(式(1)中、Rは、それぞれ独立に、水素原子または炭素数1〜6のアルキル基を表す。)
上記水溶性ポリマー(a)および化合物(b)のうちの少なくとも1種が、解離した状態および解離してカウンターイオンと再結合した状態のうちの少なくとも1つの状態で存在していてもよい。
That is, the composition for cleaning semiconductor components according to the present invention is:
Formulated with a water-soluble polymer (a) having a weight average molecular weight of 1,000 to 100,000 in terms of sodium polystyrene sulfonate measured by gel permeation chromatography, and a compound (b) represented by the following formula (1) It is characterized by being made.
NR 4 OH (1)
(In Formula (1), R represents a hydrogen atom or a C1-C6 alkyl group each independently.)
At least one of the water-soluble polymer (a) and the compound (b) may exist in at least one of a dissociated state and a dissociated state and recombined with a counter ion.

上記水溶性ポリマー(a)は、カルボキシル基を有することが好ましい。
上記化合物(b)は、テトラメチルアンモニウムヒドロキシドであることが好ましい。
上記半導体部品洗浄用組成物は、さらに、酸化防止剤(c)および錯化剤(d)からなる群から選択される少なくとも1種を含有することが好ましく、また、上記半導体部品は、銅配線基板であることが好ましい。
The water-soluble polymer (a) preferably has a carboxyl group.
The compound (b) is preferably tetramethylammonium hydroxide.
It is preferable that the composition for cleaning a semiconductor component further contains at least one selected from the group consisting of an antioxidant (c) and a complexing agent (d). A substrate is preferred.

本発明に係る半導体装置の製造方法は、
半導体部品を化学機械研磨し、次いで上記の半導体部品洗浄用組成物で洗浄する工程を含むことを特徴とし、また、上記半導体部品は、銅配線基板であることが好ましい。
A method for manufacturing a semiconductor device according to the present invention includes:
The semiconductor component is characterized by including a step of chemical mechanical polishing and then cleaning with the above semiconductor component cleaning composition, and the semiconductor component is preferably a copper wiring board.

本発明によれば、化学機械研磨後に半導体部品の被研磨面に残留した研磨粒子、ナトリウムイオン、カリウムイオンなどの不純物に対する洗浄効果が高く、かつ環境への負荷が少ない半導体部品洗浄用組成物を提供することができる。   According to the present invention, there is provided a semiconductor component cleaning composition having a high cleaning effect on impurities such as abrasive particles, sodium ions and potassium ions remaining on a polished surface of a semiconductor component after chemical mechanical polishing and having a low environmental impact. Can be provided.

また、上記半導体部品洗浄用組成物を用いて洗浄することによって、半導体装置の特性に悪影響が見られない半導体装置の製造方法を提供することができる。   In addition, by cleaning with the semiconductor component cleaning composition, it is possible to provide a method for manufacturing a semiconductor device in which the characteristics of the semiconductor device are not adversely affected.

以下、本発明について具体的に説明する。
本発明に係る半導体部品洗浄用組成物は、ゲルパーミエーションクロマトグラフィーで測定したポリスチレンスルホン酸ナトリウム換算の重量平均分子量が1,000〜100,000である水溶性ポリマー(a)および下記式(1)
NR4OH (1)
(式(1)中、Rは、それぞれ独立に、水素原子または炭素数1〜6のアルキル基を表す。)
で表される化合物(b)が配合されてなり、これらが適当な溶媒に配合されてなることが好ましい。また、上記組成物は、さらに、酸化防止剤(c)および錯化剤(d)からなる群から選択される少なくとも1種を含有していてもよい。
Hereinafter, the present invention will be specifically described.
The composition for cleaning semiconductor components according to the present invention comprises a water-soluble polymer (a) having a weight average molecular weight in terms of sodium polystyrene sulfonate measured by gel permeation chromatography of 1,000 to 100,000 and the following formula (1): )
NR 4 OH (1)
(In Formula (1), R represents a hydrogen atom or a C1-C6 alkyl group each independently.)
It is preferable that the compound (b) represented by these is mix | blended and these are mix | blended with a suitable solvent. The composition may further contain at least one selected from the group consisting of an antioxidant (c) and a complexing agent (d).

<水溶性ポリマー(a)>
上記水溶性ポリマー(a)は、ゲルパーミエーションクロマトグラフィー(溶媒は水/
アセトニトリル/硫酸ナトリウムの混合溶媒(重量比=2,100/900/15))で測定したポリスチレンスルホン酸ナトリウム換算の重量平均分子量が1,000〜100、000であり、2,000〜30,000であることがより好ましく、3,000〜20,000であることが特に好ましい。この範囲の重量平均分子量を有する水溶性ポリマー(a)を使用することにより、高い洗浄力を有するとともに、取り扱いが容易な半導体部品洗浄用組成物を得ることができる。
<Water-soluble polymer (a)>
The water-soluble polymer (a) is gel permeation chromatography (the solvent is water /
The polystyrene-sulfonate sodium weight average molecular weight measured with a mixed solvent of acetonitrile / sodium sulfate (weight ratio = 2,100 / 900/15) is 1,000 to 100,000, and 2,000 to 30,000. It is more preferable that it is 3,000 to 20,000. By using the water-soluble polymer (a) having a weight average molecular weight in this range, it is possible to obtain a semiconductor component cleaning composition having high detergency and easy handling.

上記水溶性ポリマー(a)は、重量平均分子量が上記範囲にあれば特に限定されるものでないが、カルボキシル基を有することが好ましい。カルボキシル基を有する水溶性ポリマー(a)としては、カルボキシル基を有する単量体の単独重合体、カルボキシル基を有する単量体2種以上からなる共重合体、またはカルボキシル基を有する単量体が1種または2種以上と、その他の単量体が1種または2種以上とからなる共重合体などが挙げられる。   The water-soluble polymer (a) is not particularly limited as long as the weight average molecular weight is in the above range, but preferably has a carboxyl group. Examples of the water-soluble polymer (a) having a carboxyl group include a homopolymer of a monomer having a carboxyl group, a copolymer composed of two or more monomers having a carboxyl group, or a monomer having a carboxyl group. The copolymer etc. which 1 type (s) or 2 or more types and another monomer consists of 1 type (s) or 2 or more types are mentioned.

上記カルボキシル基を有する単量体としては、たとえば、分子中にカルボキシル基および重合性二重結合を同時に有する単量体が挙げられる。上記単量体としては、具体的には、アクリル酸、メタクリル酸、α−ハロアクリル酸、マレイン酸、無水マレイン酸、イタコン酸、ビニル酢酸、アリル酢酸、フマル酸、フォスフィノカルボン酸、β−カルボン酸などが挙げられる。これらのうちで、優れた洗浄力が得られるため、アクリル酸、メタクリル酸、イタコン酸が好ましい。   As a monomer which has the said carboxyl group, the monomer which has a carboxyl group and a polymerizable double bond simultaneously in a molecule | numerator is mentioned, for example. Specific examples of the monomer include acrylic acid, methacrylic acid, α-haloacrylic acid, maleic acid, maleic anhydride, itaconic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, phosphinocarboxylic acid, β- Examples thereof include carboxylic acid. Among these, acrylic acid, methacrylic acid, and itaconic acid are preferable because excellent detergency can be obtained.

上記水溶性ポリマー(a)が、カルボキシル基を有する単量体とその他の単量体との共重合体である場合、その他の単量体としては、たとえば、不飽和アルコール化合物、芳香族ビニル化合物、水酸基含有(メタ)アクリル酸エステル化合物、(メタ)アクリル酸アルキルエステル化合物、脂肪族共役ジエン化合物、ビニルシアン化合物、重合性二重結合を有するアミド化合物、重合性二重結合を有するホスホン酸などが挙げられる。   When the water-soluble polymer (a) is a copolymer of a monomer having a carboxyl group and another monomer, examples of the other monomer include unsaturated alcohol compounds and aromatic vinyl compounds. , Hydroxyl group-containing (meth) acrylic acid ester compounds, (meth) acrylic acid alkyl ester compounds, aliphatic conjugated diene compounds, vinylcyan compounds, amide compounds having a polymerizable double bond, phosphonic acids having a polymerizable double bond, etc. Is mentioned.

上記不飽和アルコール化合物としては、具体的には、ビニルアルコール、アリルアルコール、メチルビニルアルコール、エチルビニルアルコール、ビニルグリコール酸などが挙げられる。上記芳香族ビニル化合物としては、具体的には、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレンなどが挙げられる。上記水酸基含有(メタ)アクリル酸エステル化合物としては、具体的には、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリテトラメチレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ブタンジオール(メタ)アクリレート、ヘキサンジオール(メタ)アクリレートなどが挙げられる。上記(メタ)アクリル酸アルキルエステル化合物としては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸オクチルなどが挙げられる。上記脂肪族共役ジエン化合物としては、具体的には、ブタジエン、イソプレン、2−クロル−1,3−ブタジエン、1−クロル−1,3−ブタジエンなどが挙げられる。上記ビニルシアン化合物としては、具体的には、(メタ)アクリロニトリルなどが挙げられる。上記重合性二重結合を有するアミド化合物としては、具体的には、(メタ)アクリルアミド、アルキル(メタ)アクリルアミドなどが挙げられる。上記重合性二重結合を有するホスホン酸としては、具体的には、ビニルホスホン酸などが挙げられる。なお、上記例示中のアルキル基としては、たとえば、炭素数1〜8の直鎖状または分岐状のアルキル基などが挙げられる。   Specific examples of the unsaturated alcohol compound include vinyl alcohol, allyl alcohol, methyl vinyl alcohol, ethyl vinyl alcohol, and vinyl glycolic acid. Specific examples of the aromatic vinyl compound include styrene, α-methylstyrene, vinyltoluene, and p-methylstyrene. Specific examples of the hydroxyl group-containing (meth) acrylic acid ester compound include hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (Meth) acrylate, glycerol mono (meth) acrylate, glycerol di (meth) acrylate, polytetramethylene glycol mono (meth) acrylate, polytetramethylene glycol di (meth) acrylate, butanediol (meth) acrylate, hexanediol (meta ) Acrylate and the like. Specific examples of the (meth) acrylic acid alkyl ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, octyl (meth) acrylate, and the like. Specific examples of the aliphatic conjugated diene compound include butadiene, isoprene, 2-chloro-1,3-butadiene, 1-chloro-1,3-butadiene, and the like. Specific examples of the vinylcyan compound include (meth) acrylonitrile. Specific examples of the amide compound having a polymerizable double bond include (meth) acrylamide and alkyl (meth) acrylamide. Specific examples of the phosphonic acid having a polymerizable double bond include vinylphosphonic acid. In addition, as an alkyl group in the said illustration, a C1-C8 linear or branched alkyl group etc. are mentioned, for example.

上記水溶性ポリマー(a)が、カルボキシル基を有する単量体とその他の単量体との共重合体である場合、その他の単量体に由来する構造単位の含有量は、全構造単位に対して
30モル%以下であることが好ましい。
When the water-soluble polymer (a) is a copolymer of a monomer having a carboxyl group and another monomer, the content of the structural unit derived from the other monomer is the total structural unit. It is preferable that it is 30 mol% or less.

上記水溶性ポリマー(a)が、上記のカルボキシル基を有する単量体の(共)重合体、またはカルボキシル基を有する単量体とその他の単量体との共重合体である場合、これらの(共)重合体は、たとえば以下の重合方法で得ることができる。   When the water-soluble polymer (a) is a (co) polymer of the above-mentioned monomer having a carboxyl group, or a copolymer of a monomer having a carboxyl group and another monomer, these The (co) polymer can be obtained, for example, by the following polymerization method.

上記単量体成分を用いて、適当な重合開始剤の存在下、20〜120℃、好ましくは40〜100℃において、0.1〜20時間、好ましくは1〜15時間、重合反応を行うことにより、上記(共)重合体を製造することができる。ここでは、重合に使用する単量体成分を逐次添加する逐次重合によって、上記(共)重合体を製造することができる。この逐次重合とは、具体的には、単位時間あたり一定量で、または添加量を変化させて、単量体成分を重合系に所定時間内に投入する重合方法を表す。この方法を用いることにより、再現性よく重合反応を行うことができるため好ましい。   Using the monomer component, the polymerization reaction is carried out in the presence of a suitable polymerization initiator at 20 to 120 ° C., preferably at 40 to 100 ° C., for 0.1 to 20 hours, preferably 1 to 15 hours. Thus, the (co) polymer can be produced. Here, the (co) polymer can be produced by sequential polymerization in which monomer components used for polymerization are sequentially added. Specifically, this sequential polymerization represents a polymerization method in which the monomer component is charged into the polymerization system within a predetermined time by changing the addition amount at a constant amount per unit time. Use of this method is preferable because the polymerization reaction can be performed with good reproducibility.

上記重合反応では、溶媒を共存させることができる。このような重合溶媒としては、水、水および水と混合可能な有機溶剤の混合物などが挙げられる。上記有機溶剤としては、具体的には、テトラヒドロフラン、1,4−ジオキサン、炭素数1〜4のアルコールなどが挙げられる。これらのうちで、上記重合溶媒としては、水が好ましい。   In the polymerization reaction, a solvent can coexist. Examples of such a polymerization solvent include water, water, and a mixture of organic solvents that can be mixed with water. Specific examples of the organic solvent include tetrahydrofuran, 1,4-dioxane, alcohol having 1 to 4 carbon atoms, and the like. Of these, water is preferable as the polymerization solvent.

なお、上記重合反応の際、セッケン類は共存させないことが好ましい。
本発明の半導体部品洗浄用組成物は、上記水溶性ポリマー(a)を、組成物全体に対して、好ましくは0.01〜1質量%、より好ましくは0.02〜0.5質量%配合してなることが望ましい。また、上記水溶性ポリマー(a)は、組成物中に、そのままの状態、解離した状態、解離した水溶性ポリマー(a)がカウンターイオンと再結合した状態のいずれの状態で含まれていてもよい。
In addition, it is preferable not to allow soaps to coexist in the polymerization reaction.
In the semiconductor component cleaning composition of the present invention, the water-soluble polymer (a) is preferably added in an amount of 0.01 to 1% by mass, more preferably 0.02 to 0.5% by mass, based on the entire composition. It is desirable that In addition, the water-soluble polymer (a) may be contained in the composition in any state as it is, in a dissociated state, or in a state where the dissociated water-soluble polymer (a) is recombined with a counter ion. Good.

上記水溶性ポリマー(a)がカルボキシル基を有する場合、このカルボキシル基は、その一部が塩を形成していてもよい。上記塩を形成する対カチオンとしては、たとえば、アンモニウムイオンなどが挙げられる。上記の塩を形成しているカルボキシル基の含有量は、カルボキシル基の総数に対して50モル%以下であることが好ましい。   When the water-soluble polymer (a) has a carboxyl group, a part of the carboxyl group may form a salt. Examples of the counter cation that forms the salt include ammonium ions. The content of carboxyl groups forming the salt is preferably 50 mol% or less with respect to the total number of carboxyl groups.

<化合物(b)>
上記化合物(b)は、上記式(1)で表されるアンモニウムヒドロキシドである。
上記化合物(b)としては、たとえば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトライソプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトライソブチルアンモニウムヒドロキシドなどが挙げられる。これらのうちで、優れた洗浄力が得られるため、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドが好ましく、テトラメチルアンモニウムヒドロキシドが特に好ましい。
<Compound (b)>
The compound (b) is ammonium hydroxide represented by the formula (1).
Examples of the compound (b) include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraisopropylammonium hydroxide, tetrabutylammonium hydroxide, and tetraisobutylammonium hydroxide. Among these, tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferable, and tetramethylammonium hydroxide is particularly preferable because excellent detergency can be obtained.

上記化合物(b)は、単独でまたは2種以上を混合して使用することができる。
上記組成物は、上記化合物(b)を、組成物全体に対して、好ましくは0.01〜1質量%、より好ましくは0.02〜0.5質量%配合してなることが好ましい。また、上記化合物(b)は、組成物中に、そのままの状態、解離した状態、解離した化合物(b)がカウンターイオンと再結合した状態のいずれの状態で含まれていてもよい。
The said compound (b) can be used individually or in mixture of 2 or more types.
The composition is preferably formed by blending the compound (b) with respect to the whole composition, preferably 0.01 to 1% by mass, more preferably 0.02 to 0.5% by mass. Moreover, the said compound (b) may be contained in the composition in any state of the state as it is, the dissociated state, and the state which the dissociated compound (b) recombined with the counter ion.

<酸化防止剤(c)>
上記組成物は、金属配線部の酸化を防止するため、さらに、酸化防止剤(c)を含有することが好ましい。
<Antioxidant (c)>
The composition preferably further contains an antioxidant (c) in order to prevent oxidation of the metal wiring part.

上記酸化防止剤(c)としては、たとえば、ラクトン類、その他の酸化防止剤などが挙げられる。上記ラクトン類としては、具体的には、L−アスコルビン酸、エリソルビン酸、アスコルビン酸ステアリル酸エステルなどが挙げられる。上記その他の酸化防止剤としては、具体的には、没食子酸、クロロゲン酸、シュウ酸、カテキン、ジブチルヒドロキシトルエンなどが挙げられる。   Examples of the antioxidant (c) include lactones and other antioxidants. Specific examples of the lactones include L-ascorbic acid, erythorbic acid, and ascorbic acid stearyl acid ester. Specific examples of the other antioxidants include gallic acid, chlorogenic acid, oxalic acid, catechin, and dibutylhydroxytoluene.

これらのうちで、酸化防止性能に優れる点で、L−アスコルビン酸、エリソルビン酸、没食子酸、シュウ酸が好ましい。
上記酸化防止剤(c)は、一種単独で用いても、二種以上組み合わせて用いてもよい。
Among these, L-ascorbic acid, erythorbic acid, gallic acid, and oxalic acid are preferable in terms of excellent antioxidant performance.
The said antioxidant (c) may be used individually by 1 type, or may be used in combination of 2 or more types.

上記組成物は、上記酸化防止剤(c)を、上記水溶性ポリマー(a)1質量部に対して5質量部以下、より好ましくは0.1〜3.5重量部配合してなることが好ましい。
<錯化剤(d)>
上記組成物は、金属不純物の再付着を防止するため、さらに、錯化剤(d)を含有することが好ましい。
The composition may comprise 5 parts by weight or less, more preferably 0.1 to 3.5 parts by weight of the antioxidant (c) with respect to 1 part by weight of the water-soluble polymer (a). preferable.
<Complexing agent (d)>
The composition preferably further contains a complexing agent (d) in order to prevent re-deposition of metal impurities.

上記錯化剤(d)としては、たとえば、アミノポリカルボン酸類、多塩基酸(シュウ酸を除く)、アミノ酸、その他のアミノ基含有化合物などが挙げられる。上記アミノポリカルボン酸類としては、具体的には、エチレンジアミン四酢酸(EDTA)、トランス−1,2−シクロヘキサンジアミン四酢酸(CyDTA)、ジエチレントリアミンペンタ酢酸(DTPA)、N−(2−ヒドロキシエチル)エチレンジアミン−N,N’,N’−トリ酢酸(EDTA−OH)、ニトリロ三酢酸、ヒドロキシエチルイミノ二酢酸などが挙げられる。上記多塩基酸(シュウ酸を除く)としては、具体的には、マレイン酸、マロン酸、酒石酸、リンゴ酸、コハク酸、クエン酸などが挙げられる。上記アミノ酸としては、具体的には、グリシン、アラニン、アスパラギン酸、メチオニンなどが挙げられる。上記その他のアミノ基含有化合物としては、具体的には、エチレンジアミン、アンモニアなどが挙げられる。   Examples of the complexing agent (d) include aminopolycarboxylic acids, polybasic acids (excluding oxalic acid), amino acids, and other amino group-containing compounds. Specific examples of the aminopolycarboxylic acids include ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediaminetetraacetic acid (CyDTA), diethylenetriaminepentaacetic acid (DTPA), and N- (2-hydroxyethyl) ethylenediamine. -N, N ', N'-triacetic acid (EDTA-OH), nitrilotriacetic acid, hydroxyethyliminodiacetic acid and the like. Specific examples of the polybasic acid (excluding oxalic acid) include maleic acid, malonic acid, tartaric acid, malic acid, succinic acid, and citric acid. Specific examples of the amino acid include glycine, alanine, aspartic acid, methionine and the like. Specific examples of the other amino group-containing compounds include ethylenediamine and ammonia.

これらのうちで、金属不純物の再付着防止性能に優れるため、エチレンジアミン四酢酸、クエン酸、グリシン、アラニン、エチレンジアミン、アンモニアが好ましい。
上記錯化剤(d)は、一種単独で用いても、二種以上組み合わせて用いてもよい。
Among these, ethylenediaminetetraacetic acid, citric acid, glycine, alanine, ethylenediamine, and ammonia are preferable because of excellent anti-redeposition performance of metal impurities.
The complexing agent (d) may be used alone or in combination of two or more.

上記組成物は、上記錯化剤(d)を、上記水溶性ポリマー(a)1質量部に対して、5質量部以下、より好ましくは0.1〜3.5質量部配合してなるすることが好ましい。
<その他の成分>
上記組成物は、洗浄力を向上するため、本発明の目的を損なわない範囲で、さらに、必要に応じてその他の成分を含有することができる。
The composition is formed by blending the complexing agent (d) with 5 parts by mass or less, more preferably 0.1 to 3.5 parts by mass with respect to 1 part by mass of the water-soluble polymer (a). It is preferable.
<Other ingredients>
Since the said composition improves a detergency, in the range which does not impair the objective of this invention, it can contain another component as needed.

上記その他の成分としては、たとえば、その他の洗浄剤成分、界面活性剤成分などが挙げられる。
上記その他の洗浄剤成分としては、たとえば、塩酸、フッ化水素酸等の無機酸、過酸化水素等の過酸化物などが挙げられる。
Examples of the other components include other detergent components and surfactant components.
Examples of the other cleaning agent components include inorganic acids such as hydrochloric acid and hydrofluoric acid, and peroxides such as hydrogen peroxide.

上記その他の洗浄剤成分は、一種単独で用いても、二種以上組み合わせて用いてもよい。
上記組成物は、上記その他の洗浄剤成分を、上記水溶性ポリマー(a)1質量部に対して、好ましくは5質量部以下、より好ましくは0.1〜3.5質量部配合してなることが好ましい。
The above-mentioned other detergent components may be used alone or in combination of two or more.
The above composition is formed by blending the above-mentioned other detergent components with respect to 1 part by mass of the water-soluble polymer (a), preferably 5 parts by mass or less, more preferably 0.1 to 3.5 parts by mass. It is preferable.

上記界面活性剤としては、たとえば、アニオン界面活性剤、ノニオン界面活性剤、カチ
オン界面活性剤などが挙げられる。
上記アニオン界面活性剤としては、具体的には、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α−オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩;アルキルリン酸エステル等のリン酸エステル塩などが挙げられる。
Examples of the surfactant include an anionic surfactant, a nonionic surfactant, and a cationic surfactant.
Specific examples of the anionic surfactant include carboxylates such as fatty acid soaps and alkyl ether carboxylates; sulfonates such as alkylbenzene sulfonates, alkylnaphthalene sulfonates, and α-olefin sulfonates; Examples thereof include sulfate esters such as higher alcohol sulfates and alkyl ether sulfates; and phosphate ester salts such as alkyl phosphates.

上記ノニオン界面活性剤としては、具体的には、ポリオキシエチレンアルキルエーテル等のエーテル型、グリセリンエステルのポリオキシエチレンエーテル等のエーテルエステル型、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステル等のエステル型などが挙げられる。   Specific examples of the nonionic surfactant include ether types such as polyoxyethylene alkyl ether, ether ester types such as glycerin ester polyoxyethylene ether, ester types such as polyethylene glycol fatty acid ester, glycerin ester, and sorbitan ester. Etc.

上記カチオン界面活性剤としては、具体的には、脂肪族アミン塩、脂肪族アンモニウム塩などが挙げられる。
上記界面活性剤は、一種単独で用いても、二種以上組み合わせて用いてもよい。
Specific examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
The above surfactants may be used alone or in combination of two or more.

上記組成物は、上記界面活性剤を、組成物全体に対して、好ましくは1質量%以下、より好ましくは0.5質量%以下配合してなることが望ましい。
<溶媒>
本発明に係る半導体洗浄用組成物に用いられる溶媒としては、たとえば、水、水および水と混合可能な有機溶剤の混合物などが挙げられる。これらのうちでは、環境への負担が少ないことから、水が好ましい。
The composition is preferably formed by blending the surfactant with respect to the entire composition, preferably 1% by mass or less, more preferably 0.5% by mass or less.
<Solvent>
Examples of the solvent used in the semiconductor cleaning composition according to the present invention include water, water, and a mixture of organic solvents that can be mixed with water. Of these, water is preferred because of its low environmental burden.

水と混合可能な有機溶剤としては、上記水溶性ポリマー(a)の重合において用いられる有機溶剤として例示した溶剤が挙げられる。
<半導体部品洗浄用組成物>
本発明に係る半導体部品洗浄用組成物は、組成物中に含有されるナトリウムおよびカリウムの合計量が、好ましくは0.02ppm以下、より好ましくは0.01ppm以下、特に好ましくは0.005ppm以下であることが望ましい。上記ナトリウムおよびカリウムの量は、水溶性ポリマー(a)の重合反応に使用する重合開始剤、重合溶媒、単量体、化合物(b)、酸化防止剤(c)、錯化剤(d)、その他の成分、溶媒等を適宜選択すること、またはこれらを適宜精製することなどにより制御することができる。
Examples of the organic solvent that can be mixed with water include the solvents exemplified as the organic solvent used in the polymerization of the water-soluble polymer (a).
<Semiconductor component cleaning composition>
In the semiconductor component cleaning composition according to the present invention, the total amount of sodium and potassium contained in the composition is preferably 0.02 ppm or less, more preferably 0.01 ppm or less, particularly preferably 0.005 ppm or less. It is desirable to be. The amount of sodium and potassium is a polymerization initiator, polymerization solvent, monomer, compound (b), antioxidant (c), complexing agent (d), used for the polymerization reaction of the water-soluble polymer (a), It can be controlled by appropriately selecting other components, solvents, etc., or purifying them appropriately.

上記重合開始剤としては、たとえば、過酸化水素、過硫酸アンモニウムなどを使用することが好ましく、過硫酸ナトリウム等の対カチオンにナトリウムまたはカリウムを含む開始剤の使用は避けることが好ましい。   As the polymerization initiator, for example, hydrogen peroxide, ammonium persulfate and the like are preferably used, and it is preferable to avoid the use of an initiator containing sodium or potassium as a counter cation such as sodium persulfate.

また、上記精製は、たとえば、その化合物の性質に応じて、蒸留、その化合物とイオン交換樹脂との接触など適切な手段を選択して行うことができる。
本発明に係る半導体部品洗浄用組成物の各成分は、組成物を調製する段階で上記含有量となるように配合してもよい。また、上記の各成分を配合して、組成物を濃縮された状態で調製した後、この組成物を希釈して洗浄工程で使用してもよい。上記組成物を濃縮された状態で調製する場合には、その濃縮度は、上記配合量に対して、2〜500倍であることが好ましく、10〜100倍であることがより好ましい。
Moreover, the said refinement | purification can be performed by selecting suitable means, such as distillation and the contact of the compound and ion exchange resin, according to the property of the compound, for example.
You may mix | blend each component of the composition for semiconductor components cleaning based on this invention so that it may become the said content in the step which prepares a composition. Moreover, after mix | blending each said component and preparing a composition in the state concentrated, this composition may be diluted and used for a washing | cleaning process. When preparing the said composition in the concentrated state, it is preferable that the concentration degree is 2-500 times with respect to the said compounding quantity, and it is more preferable that it is 10-100 times.

本発明に係る組成物は、半導体部品を洗浄するために好ましく用いられる。上記半導体部品のうちで、銅配線基板を洗浄するためにより好ましく用いられる。
<半導体装置の製造方法>
本発明に係る半導体装置の製造方法は、半導体部品を化学機械研磨し、次いで上記半導体部品洗浄用組成物で洗浄する工程を含む。
The composition according to the present invention is preferably used for cleaning semiconductor components. Among the above semiconductor components, it is more preferably used for cleaning a copper wiring board.
<Method for Manufacturing Semiconductor Device>
The method for manufacturing a semiconductor device according to the present invention includes a step of chemically mechanically polishing a semiconductor component, and then cleaning the semiconductor component with the semiconductor component cleaning composition.

上記半導体部品としては、たとえば、配線基板、磁気ヘッド、磁気ディスクなどが挙げられる。上記配線基板としては、具体的には、絶縁膜と配線材料である金属のパターンとからなる配線基板、層間絶縁膜が形成された多層配線基板などを挙げられる。   Examples of the semiconductor component include a wiring board, a magnetic head, and a magnetic disk. Specific examples of the wiring board include a wiring board made of an insulating film and a metal pattern as a wiring material, and a multilayer wiring board on which an interlayer insulating film is formed.

上記絶縁膜と配線材料である金属のパターンとからなる配線基板は、より具体的には、たとえば、シリコンなどからなるウェハと、このウェハ上に形成され、溝などの配線用凹部を有する絶縁膜と、この絶縁膜および上記溝を覆うように形成されたバリアメタル膜と、さらに、上記溝を充填し、かつ上記バリアメタル膜の上に形成された配線材料からなる膜とを備えた基板が挙げられる。このような配線基板は、公知の方法に従って化学機械研磨され、余剰の配線材料およびバリアメタル材料が除去された後に洗浄工程に供される。   More specifically, the wiring substrate comprising the insulating film and a metal pattern as a wiring material is more specifically, for example, a wafer made of silicon or the like, and an insulating film formed on the wafer and having a wiring recess such as a groove. And a substrate comprising a barrier metal film formed so as to cover the insulating film and the groove, and a film made of a wiring material filling the groove and formed on the barrier metal film. Can be mentioned. Such a wiring board is subjected to chemical mechanical polishing according to a known method, and after the excess wiring material and barrier metal material are removed, the wiring board is subjected to a cleaning process.

また、上記層間絶縁膜が形成された多層配線基板は、より具体的には、たとえば、公知の方法に従って化学機械研磨され、さらに洗浄工程を経た配線基板上に、絶縁膜が積層された基板が挙げられる。このような多層配線基板は、さらに公知の方法に従って化学機械研磨され、絶縁膜が平坦化された後に洗浄工程に供される。   More specifically, the multilayer wiring board on which the interlayer insulating film is formed is, for example, a substrate in which an insulating film is laminated on a wiring board that has been subjected to chemical mechanical polishing according to a known method and further subjected to a cleaning process. Can be mentioned. Such a multilayer wiring board is further subjected to chemical mechanical polishing according to a known method, and after the insulating film is planarized, it is subjected to a cleaning process.

上記半導体部品は、配線材料が銅からなる配線基板であることが好ましい。
また、上記絶縁膜としては、たとえば、化学蒸着法等の真空プロセスで形成された膜が挙げられ、具体的には、酸化シリコン膜(PETEOS膜(Plasma Enhanc
ed−TEOS膜)、HDP膜(High Density Plasma Enhanced−TEOS膜)、熱CVD法により得られる酸化シリコン膜等)、SiO2に少量のホウ素およびリンを添加したホウ素リンシリケート膜(BPSG膜)、SiO2にフッ素
をドープしたFSG(Fluorine−doped silicate glass)と呼ばれる絶縁膜、SiON(Silicon oxynitride)と呼ばれる絶縁膜、Silicon nitride、低誘電率の絶縁膜などが挙げられる。
The semiconductor component is preferably a wiring board made of copper as a wiring material.
Examples of the insulating film include a film formed by a vacuum process such as a chemical vapor deposition method. Specifically, a silicon oxide film (a PETEOS film (Plasma Enhanc) is used.
ed-TEOS film), HDP film (High Density Plasma Enhanced-TEOS film), silicon oxide film obtained by a thermal CVD method, etc.), boron phosphorus silicate film (BPSG film) obtained by adding a small amount of boron and phosphorus to SiO 2 , Examples thereof include an insulating film called FSG (Fluorine-doped silicon glass) in which fluorine is doped in SiO 2 , an insulating film called SiON (Silicon Oxide Nitride), a silicon nitride, and a low dielectric constant insulating film.

上記低誘電率の絶縁膜としては、たとえば、酸素、一酸化炭素、二酸化炭素、窒素、アルゴン、H2O、オゾン、アンモニア等の存在下で、アルコキシシラン、シラン、アルキ
ルシラン、アリールシラン、シロキサン、アルキルシロキサン等のケイ素含有化合物をプラズマ重合して得られる重合体からなる層間絶縁膜、ポリシロキサン、ポリシラザン、ポリアリーレンエーテル、ポリベンゾオキサゾール、ポリイミド、シルセスキオキサン等からなる層間絶縁膜、低誘電率の酸化シリコン系絶縁膜などを挙げることができる。
Examples of the low dielectric constant insulating film include alkoxysilane, silane, alkylsilane, arylsilane, and siloxane in the presence of oxygen, carbon monoxide, carbon dioxide, nitrogen, argon, H 2 O, ozone, ammonia, and the like. , Interlayer insulating films made of polymers obtained by plasma polymerization of silicon-containing compounds such as alkylsiloxanes, interlayer insulating films made of polysiloxane, polysilazane, polyarylene ether, polybenzoxazole, polyimide, silsesquioxane, etc. Examples thereof include a silicon oxide insulating film having a dielectric constant.

上記低誘電率の酸化シリコン系絶縁膜は、たとえば、原料を回転塗布法によってウェハ上に塗布した後、酸化性雰囲気中で加熱することにより得ることができる。このようにして得られた低誘電率の酸化シリコン系絶縁膜としては、具体的には、トリエトキシシランを原料とするHSQ膜(Hydrogen Silsesquioxane膜)、テトラエトキシシランおよび少量のメチルトリメトキシシランを原料とするMSQ膜(Methyl Silsesquioxane膜)、その他のシラン化合物を原料とする低誘電率の絶縁膜などが挙げられる。   The low dielectric constant silicon oxide insulating film can be obtained, for example, by applying a raw material on a wafer by a spin coating method and then heating in an oxidizing atmosphere. Specifically, the low dielectric constant silicon oxide-based insulating film thus obtained is composed of HSQ film (Hydrogen Silsesquioxane film) made of triethoxysilane, tetraethoxysilane and a small amount of methyltrimethoxysilane. Examples thereof include an MSQ film (Methyl Silsesquioxane film) used as a raw material and an insulating film having a low dielectric constant using other silane compounds as a raw material.

さらに、上記低誘電率の絶縁膜を製造する際に、適当な有機ポリマー粒子などを原料に混合することによって、より一層の低誘電率化を図った絶縁膜も用いられる。上記絶縁膜では、製造中に、上記有機ポリマーが加熱工程で焼失して空孔が形成されるため、より一層の低誘電率化が図られる。ここで、適当な有機ポリマー粒子としては、たとえば、ニューポールPE61(商品名、三洋化成工業(株)製、ポリエチレンオキシド−ポリプロリレンオキシド−ポリエチレンオキシドブロック共重合体)などが挙げられる。   Furthermore, when the insulating film having a low dielectric constant is manufactured, an insulating film that is further reduced in dielectric constant by mixing appropriate organic polymer particles or the like with the raw material is also used. In the insulating film, the organic polymer is burned off during the heating process to form vacancies during the manufacturing process, so that the dielectric constant can be further reduced. Examples of suitable organic polymer particles include New Pole PE61 (trade name, manufactured by Sanyo Chemical Industries, Ltd., polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer).

上記化学機械研磨(CMP)工程は、公知の研磨用水系分散体を使用して、公知の方法
により行うことができる。上記の研磨用水系分散体として、研磨粒子としてシリカを含有する水系分散体を用いることは、上記化学機械研磨後の洗浄工程において、本発明の効果がより有効に発揮できるため好ましい。
The chemical mechanical polishing (CMP) step can be performed by a known method using a known polishing aqueous dispersion. It is preferable to use an aqueous dispersion containing silica as abrasive particles as the polishing aqueous dispersion because the effects of the present invention can be more effectively exhibited in the cleaning step after chemical mechanical polishing.

上記洗浄工程は、特に制限はなく、公知の洗浄方法により行うことができる。上記洗浄方法としては、たとえば、浸漬法、ブラシスクラブ法、超音波洗浄法などが挙げられる。洗浄温度は、5〜50℃であることが好ましい。洗浄時間は、浸漬法においては、1〜5分であることが好ましく、ブラシスクラブ法においては0.2〜2分であることが好ましい。   There is no restriction | limiting in particular in the said washing | cleaning process, It can carry out by a well-known washing | cleaning method. Examples of the cleaning method include an immersion method, a brush scrub method, and an ultrasonic cleaning method. The washing temperature is preferably 5 to 50 ° C. The washing time is preferably 1 to 5 minutes in the dipping method, and preferably 0.2 to 2 minutes in the brush scrub method.

本発明に係る半導体装置の製造方法は、洗浄後の半導体装置おいて、ナトリウムイオン濃度を5×1010原子/cm2以下、好ましくは5×109原子/cm2以下とすることが
でき、カリウムイオン濃度を5×1011原子/cm2以下、好ましくは5×1010原子/
cm2以下とすることができる。また、上記半導体装置の製造方法は、洗浄後の半導体装
置において、研磨粒子の残留量を1,000個/面以下、好ましくは500個/面以下とすることができる。研磨粒子残留量の値は、直径8インチの基板全面に換算した値である。
In the semiconductor device manufacturing method according to the present invention, the sodium ion concentration in the cleaned semiconductor device can be 5 × 10 10 atoms / cm 2 or less, preferably 5 × 10 9 atoms / cm 2 or less. The potassium ion concentration is 5 × 10 11 atoms / cm 2 or less, preferably 5 × 10 10 atoms / cm 2.
cm 2 or less. In the semiconductor device manufacturing method, the residual amount of abrasive particles in the cleaned semiconductor device can be 1,000 particles / surface or less, preferably 500 particles / surface or less. The value of the residual amount of abrasive particles is a value converted to the entire surface of the 8-inch diameter substrate.

[実施例]
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

本明細書において、水溶性ポリマーの重量平均分子量(Mw)は、以下の条件により測定した値を、ポリスチレンスルホン酸ナトリウムを標準サンプルとして作成した検量線によって換算して求めた。
カラム:G3000PWXL、GMPWXLおよびGMPWXL(いずれも商品名、東ソー(株)製)の3本のカラムを、この順に直列につないで使用した。
検出器:示差屈折計RI−8021(商品名、東ソー(株)製)
溶離液:水/アセトニトリル/硫酸ナトリウム=2,100/900/15(重量比)
流速:1.0mL/分
温度:40℃
サンプル濃度:0.2質量%
サンプル注入量:400μL
[合成例1]水溶性ポリマーの合成(アクリル酸重合体の合成)
イオン交換水1,000gおよび35質量%の過酸化水素水14gを仕込んだ内容積2リットルの容器中に、20質量%のアクリル酸水溶液500gを、還流下で撹拌しながら10時間かけて均等に滴下した。滴下終了後、さらに2時間還流下で保つことにより、Mw=6,000のアクリル酸重合体(1)を得た。
In this specification, the weight average molecular weight (Mw) of the water-soluble polymer was determined by converting a value measured under the following conditions using a calibration curve prepared using sodium polystyrenesulfonate as a standard sample.
Columns: Three columns of G3000PWXL, GMPWXL and GMPWXL (all trade names, manufactured by Tosoh Corporation) were connected in series in this order.
Detector: differential refractometer RI-8021 (trade name, manufactured by Tosoh Corporation)
Eluent: water / acetonitrile / sodium sulfate = 2,100 / 900/15 (weight ratio)
Flow rate: 1.0 mL / min Temperature: 40 ° C
Sample concentration: 0.2% by mass
Sample injection volume: 400 μL
[Synthesis Example 1] Synthesis of water-soluble polymer (synthesis of acrylic acid polymer)
In a 2 liter container charged with 1,000 g of ion-exchanged water and 14 g of 35% by mass hydrogen peroxide solution, 500 g of 20% by mass acrylic acid aqueous solution was evenly added over 10 hours while stirring under reflux. It was dripped. After completion of dropping, the mixture was kept under reflux for 2 hours to obtain an acrylic acid polymer (1) having Mw = 6,000.

また、過酸化水素水の使用量を変更した他は、上記合成と同様にして、それぞれMw=700、2,000および4,000のアクリル酸重合体(2)〜(4)を得た。
[合成例2]水溶性ポリマーの合成(アクリル酸/メタクリル酸共重合体の合成)
イオン交換水400gおよび32質量%の過酸化水素水100gを仕込んだ内容積2リットルの容器中に、50質量%のアクリル酸水溶液1400gおよび50質量%のメタクリル酸水溶液100gの混合物を、還流下で撹拌しながら10時間かけて均等に滴下した。滴下終了後、さらに2時間還流下で保つことにより、Mw=24,000のアクリル酸/メタクリル酸共重合体(1)を得た。なお、得られた共重合体におけるアクリル酸の共重合割合は93質量%であった。
Moreover, except having changed the usage-amount of hydrogen peroxide water, it carried out similarly to the said synthesis | combination, and obtained acrylic acid polymer (2)-(4) of Mw = 700, 2,000, and 4,000, respectively.
[Synthesis Example 2] Synthesis of water-soluble polymer (synthesis of acrylic acid / methacrylic acid copolymer)
A mixture of 1400 g of a 50% by mass aqueous acrylic acid solution and 100 g of a 50% by mass aqueous methacrylic acid solution was refluxed in a container having a volume of 2 liters charged with 400 g of ion-exchanged water and 100 g of 32% by mass of hydrogen peroxide. It was added dropwise over 10 hours with stirring. After completion of dropping, the mixture was kept under reflux for 2 hours to obtain an acrylic acid / methacrylic acid copolymer (1) having Mw = 24,000. The copolymerization ratio of acrylic acid in the obtained copolymer was 93% by mass.

[合成例3]水溶性ポリマーの合成(アクリル酸/アクリルアミド共重合体の合成)
イオン交換水400gおよび35質量%の過酸化水素水100gを仕込んだ内容積2リットルの容器中に、20質量%のアクリル酸水溶液1200gおよび20質量%のアクリル酸アミド水溶液300gの混合物を、還流下で撹拌しながら10時間かけて均等に滴下した。滴下終了後、さらに2時間還流下で保つことにより、Mw=78,000のアクリル酸/アクリルアミド共重合体(1)を得た。なお、得られた共重合体におけるアクリル酸の共重合割合は80質量%であった。
[Synthesis Example 3] Synthesis of water-soluble polymer (Synthesis of acrylic acid / acrylamide copolymer)
A mixture of 1200 g of a 20% by mass acrylic acid aqueous solution and 300 g of a 20% by mass acrylic amide aqueous solution was refluxed in a 2 liter container charged with 400 g of ion-exchanged water and 100 g of 35% by mass hydrogen peroxide. The solution was uniformly added dropwise over 10 hours with stirring. After completion of the dropwise addition, the mixture was further kept under reflux for 2 hours to obtain an acrylic acid / acrylamide copolymer (1) having Mw = 78,000. In addition, the copolymerization ratio of acrylic acid in the obtained copolymer was 80% by mass.

また、過酸化水素水を50g、アクリル酸水溶液を1000g、およびアクリル酸アミド水溶液を500gに変更した他は、上記合成と同様にして、Mw=140,000のアクリル酸/アクリルアミド共重合体(2)を得た。なお、アクリル酸の共重合割合は66質量%であった。   Further, an acrylic acid / acrylamide copolymer (Mw = 140,000) (2) except that the hydrogen peroxide solution was changed to 50 g, the acrylic acid aqueous solution was changed to 1000 g, and the acrylic acid amide aqueous solution was changed to 500 g. ) The copolymerization ratio of acrylic acid was 66% by mass.

[合成例4]水溶性ポリマーの合成(ナトリウムイオンに汚染されたアクリル酸重合体の合成)
過酸化水素水の代わりに5質量%過硫酸ナトリウム水溶液12gを使用した他は、合成例1と同様にして、Mw=6,000のアクリル酸重合体(Na)を得た。ここで、重合後の反応混合物に含有されるナトリウムイオンの総量を水溶性ポリマーあたりに換算した値は、1,200ppmであった。
[Synthesis Example 4] Synthesis of water-soluble polymer (Synthesis of acrylic acid polymer contaminated with sodium ion)
An acrylic acid polymer (Na) having Mw = 6,000 was obtained in the same manner as in Synthesis Example 1 except that 12 g of a 5% by mass sodium persulfate aqueous solution was used in place of the hydrogen peroxide solution. Here, the value which converted the total amount of sodium ion contained in the reaction mixture after superposition | polymerization per water-soluble polymer was 1,200 ppm.

[実施例1]
(半導体部品洗浄用組成物の調製)
合成例1で合成したMw=2,000のアクリル酸重合体(3)を含有する溶液をポリマー換算で10質量%相当量、およびテトラメチルアンモニウムヒドロキシド2質量%相当量をイオン交換水に混合し、半導体部品洗浄用組成物の濃縮品を調製した。
[Example 1]
(Preparation of semiconductor component cleaning composition)
A solution containing the acrylic acid polymer (3) with Mw = 2,000 synthesized in Synthesis Example 1 is mixed with ion-exchanged water in an amount equivalent to 10% by mass in terms of polymer and equivalent to 2% by mass of tetramethylammonium hydroxide. Then, a concentrated product of the semiconductor component cleaning composition was prepared.

上記濃縮品をイオン交換水で50倍に希釈して、半導体部品洗浄用組成物を調製した。
(1)銅のエッチング速度の評価
パターンのない銅膜が積層された直径8インチの基板(Advanced Technology Development Facility,Inc.社製、シリコンウェハ上に膜厚1,500nmのパターンのない銅膜を積層した基板)を30mm×30mmの矩形に切断した。この矩形片を、上記希釈後の半導体部品洗浄用組成物に25℃で24時間浸漬した。浸漬後、銅の膜厚の減少分から銅のエッチング速度を算出した。その結果を表2に示す。
The concentrated product was diluted 50 times with ion-exchanged water to prepare a semiconductor component cleaning composition.
(1) Evaluation of etching rate of copper An 8-inch diameter substrate on which an unpatterned copper film is laminated (Advanced Technology Development Facility, Inc., a copper film having a thickness of 1,500 nm is formed on a silicon wafer. The laminated substrate) was cut into a 30 mm × 30 mm rectangle. This rectangular piece was immersed in the diluted semiconductor component cleaning composition at 25 ° C. for 24 hours. After the immersion, the copper etching rate was calculated from the decrease in the copper film thickness. The results are shown in Table 2.

(2)低誘電率の絶縁膜に対する影響評価
(2−1)低誘電率の絶縁膜の製造
直径8インチの熱酸化膜付きシリコン基板上に、低誘電率の絶縁膜「LKD5109」(商品名、JSR(株)製)をスピンコート法によって塗布し、塗膜を形成した。この基板を、オーブン中で80℃で5分間、次いで200℃で5分間加熱した。続いて真空下において、340℃で30分間、次いで360℃で30分間、その後380℃で30分間加熱し、さらに450度で1時間加熱した。これにより、上記基板上に、厚さ2000Åで、無色透明の低誘電率の被膜を形成した。この被膜の比誘電率は2.2であった。
(2) Evaluation of Influence on Low Dielectric Constant Insulating Film (2-1) Production of Low Dielectric Constant Insulating Film A low dielectric constant insulating film “LKD5109” (trade name) on a silicon substrate with a thermal oxide film having a diameter of 8 inches. , Manufactured by JSR Co., Ltd.) was applied by spin coating to form a coating film. The substrate was heated in an oven at 80 ° C. for 5 minutes and then at 200 ° C. for 5 minutes. Subsequently, under vacuum, it was heated at 340 ° C. for 30 minutes, then at 360 ° C. for 30 minutes, then at 380 ° C. for 30 minutes, and further heated at 450 ° C. for 1 hour. As a result, a colorless and transparent low dielectric constant film having a thickness of 2000 mm was formed on the substrate. The dielectric constant of this film was 2.2.

(2−2)比誘電率変化の評価
上記の被膜を形成した基板を、上記希釈後の半導体部品洗浄用組成物に、25℃で60分間浸漬した後、比誘電率の増加分を測定した。その結果を表2に示す。
(2-2) Evaluation of change in relative dielectric constant The substrate on which the above-mentioned film was formed was immersed in the diluted semiconductor component cleaning composition at 25 ° C. for 60 minutes, and then the increase in relative dielectric constant was measured. . The results are shown in Table 2.

(3)ナトリウム汚染の除去能力の評価
(3−1)ナトリウム汚染基板の調製
直径8インチのPETEOS膜付きシリコン基板(Advanced Technol
ogy Development Facility,Inc.社製、シリコンウェハ上に膜厚1,000nmのPETEOS膜を積層した基板)を化学機械研磨装置「EPO112」((株)荏原製作所製)に装着した。これを下記の条件で1%硫酸ナトリウム水溶液によって処理し、ナトリウムに汚染された絶縁膜を有する基板を得た。この基板のナトリウム汚染量は、9×1014原子/cm2であった。
研磨パッド:IC1000(ローム・アンド・ハース・エレクトロニック・マテリアルズ社製)
硫酸ナトリウム水溶液供給量:200mL/min
定盤回転数:60rpm
ヘッド回転数:63rpm
ヘッド押しつけ圧:3psi
処理時間:1分
(3−2)汚染基板の洗浄
上記の汚染されたPETEOS基板を、EPO112の洗浄ロール部に装着し、上記希釈後の半導体部品洗浄用組成物を使用し、下記の条件で洗浄した。洗浄後の基板のナトリウム汚染量を測定した。その結果を表2に示す。
ロールブラシ回転数:上ロールブラシ 120rpm、下ロールブラシ 120rpm
基板回転数:60rpm
半導体部品洗浄用組成物供給量:基板上下面に各500mL/min
洗浄時間:30秒
(4)残存研磨粒子の除去能力の評価
(4−1)化学機械研磨工程
パターンのない銅膜が積層された直径8インチの基板(Advanced Technology Development Facility,Inc.社製、シリコンウェハ上に膜厚1,500nmのパターンのない銅膜を積層した基板)を化学機械研磨装置「EPO112」((株)荏原製作所製)に装着し、下記の条件で化学機械研磨した。
研磨パッド:IC1000(商品名、ローム・アンド・ハース・エレクトロニック・マテリアルズ社製)
研磨用水系分散体種:「CMS8301」(商品名、JSR(株)製、砥粒としてシリカを含む水系分散体)に、31質量%の過酸化水素水を、純過酸化水素量に換算して、水系分散体全量に対して0.1質量%に相当する量を添加して使用した。
研磨用水系分散体供給量:200mL/min
定盤回転数:93rpm
ヘッド回転数:100rpm
ヘッド押しつけ圧:3psi
研磨時間:1分
化学機械研磨後の残存研磨粒子を、表面欠陥検査装置「KLA2351」(商品名、KLAテンコール社製)を使用し、画素サイズ=0.62μmおよび閾値=90で測定した。化学機械研磨後の基板上に残存していた研磨粒子は、基板全面あたり25個であった。
(3) Evaluation of removal ability of sodium contamination (3-1) Preparation of sodium-contaminated substrate 8 inch diameter silicon substrate with PETEOS film (Advanced Technology)
ogy Development Facility, Inc. A chemical mechanical polishing apparatus “EPO112” (manufactured by Ebara Manufacturing Co., Ltd.) was mounted on a silicon wafer (a substrate made by laminating a PETEOS film having a thickness of 1,000 nm on a silicon wafer). This was treated with a 1% sodium sulfate aqueous solution under the following conditions to obtain a substrate having an insulating film contaminated with sodium. The amount of sodium contamination of this substrate was 9 × 10 14 atoms / cm 2 .
Polishing pad: IC1000 (Rohm and Haas Electronic Materials)
Sodium sulfate aqueous solution supply amount: 200 mL / min
Plate rotation speed: 60rpm
Head rotation speed: 63rpm
Head pressing pressure: 3 psi
Processing time: 1 minute (3-2) Cleaning of contaminated substrate The above-mentioned contaminated PETEOS substrate is mounted on the cleaning roll part of EPO112, and the diluted semiconductor component cleaning composition is used under the following conditions. Washed. The amount of sodium contamination of the substrate after cleaning was measured. The results are shown in Table 2.
Roll brush rotation speed: upper roll brush 120 rpm, lower roll brush 120 rpm
Substrate rotation speed: 60 rpm
Semiconductor component cleaning composition supply amount: 500 mL / min each on the upper and lower surfaces of the substrate
Cleaning time: 30 seconds (4) Evaluation of removal ability of residual abrasive particles (4-1) Chemical mechanical polishing process 8-inch diameter substrate on which a copper film without pattern is laminated (Advanced Technology Development, Inc., A substrate obtained by laminating a copper film having a film thickness of 1,500 nm on a silicon wafer was mounted on a chemical mechanical polishing apparatus “EPO112” (manufactured by Ebara Corporation), and chemical mechanical polishing was performed under the following conditions.
Polishing pad: IC1000 (trade name, manufactured by Rohm and Haas Electronic Materials)
Aqueous dispersion type for polishing: “CMS8301” (trade name, manufactured by JSR Corporation, aqueous dispersion containing silica as abrasive grains), and 31% by mass of hydrogen peroxide solution was converted to the amount of pure hydrogen peroxide. An amount corresponding to 0.1% by mass with respect to the total amount of the aqueous dispersion was added and used.
Abrasive aqueous dispersion supply amount: 200 mL / min
Plate rotation speed: 93rpm
Head rotation speed: 100 rpm
Head pressing pressure: 3 psi
Polishing time: 1 minute The remaining abrasive particles after chemical mechanical polishing were measured with a surface defect inspection apparatus “KLA2351” (trade name, manufactured by KLA Tencor) at a pixel size = 0.62 μm and a threshold = 90. The number of abrasive particles remaining on the substrate after chemical mechanical polishing was 25 per substrate.

(4−2)残存研磨粒子の除去
上記基板について、上記(3−2)の汚染基板の洗浄と同様に洗浄した。洗浄後の基板上の研磨粒子量は、上記(4−1)と同様に測定した。その結果を表2に示す。
(4-2) Removal of residual abrasive particles The substrate was washed in the same manner as the washing of the contaminated substrate in (3-2). The amount of abrasive particles on the substrate after washing was measured in the same manner as in (4-1) above. The results are shown in Table 2.

(5)銅配線のディッシングに対する影響
(5−1)化学機械研磨工程
直径8インチの銅パターン付きテスト用基板「854CMP」(商品名、Advanced Technology Development Facility,Inc.社製)を化学機械研磨装置「EPO112」((株)荏原製作所製)に装着し、上記(4−1)と同様の条件で化学機械研磨した。化学機械研磨後の基板において、配線幅100μ
mの配線部分のディッシング量を測定したところ、30nmであった。
(5) Influence on dishing of copper wiring (5-1) Chemical mechanical polishing process Chemical substrate polishing apparatus with test pattern “854 CMP” (trade name, Advanced Technology Development, Inc.) having a copper pattern of 8 inches in diameter. It was mounted on “EPO112” (manufactured by Ebara Corporation) and subjected to chemical mechanical polishing under the same conditions as in (4-1) above. In the substrate after chemical mechanical polishing, the wiring width is 100 μm.
It was 30 nm when the dishing amount of the wiring part of m was measured.

(5−2)ディッシング変化の評価
上記基板について、上記(3−2)の汚染基板の洗浄と同様に洗浄した。洗浄後の基板について、上記(5−1)と同一の部位におけるディッシング量を測定した。その結果を表2に示す。
(5-2) Evaluation of dishing change About the said board | substrate, it wash | cleaned similarly to the washing | cleaning of the contaminated board | substrate of said (3-2). About the board | substrate after washing | cleaning, the dishing amount in the same site | part as said (5-1) was measured. The results are shown in Table 2.

[実施例2〜15および比較例1〜6]
半導体部品洗浄用組成物の濃縮品の配合を表1のとおりに変更した他は、実施例1と同様にして、半導体部品洗浄用組成物を調製した。この半導体部品洗浄用組成物を実施例1と同様にして評価した。結果を表2に示す。
[Examples 2 to 15 and Comparative Examples 1 to 6]
A composition for cleaning semiconductor parts was prepared in the same manner as in Example 1 except that the composition of the concentrated product for cleaning semiconductor parts was changed as shown in Table 1. This semiconductor component cleaning composition was evaluated in the same manner as in Example 1. The results are shown in Table 2.

[比較例7]
イオン交換水に過酸化水素を1質量%相当量添加して半導体部品洗浄用組成物の調製した。この半導体部品洗浄用組成物を実施例1と同様にして評価した。結果を表2に示す。
[Comparative Example 7]
A composition for cleaning semiconductor components was prepared by adding 1% by mass of hydrogen peroxide to ion-exchanged water. This semiconductor component cleaning composition was evaluated in the same manner as in Example 1. The results are shown in Table 2.

[比較例8]
半導体部品洗浄用組成物の代わりにイオン交換水を実施例1と同様に評価した。結果を表2に示す。
[Comparative Example 8]
Ion exchange water was evaluated in the same manner as in Example 1 instead of the semiconductor component cleaning composition. The results are shown in Table 2.

Figure 2006041494
Figure 2006041494

Figure 2006041494
Figure 2006041494

[実施例16〜25および比較例9〜12]
(半導体部品洗浄用組成物の調製)
半導体部品洗浄用組成物の濃縮品の配合を表3のとおりに変更した他は、実施例1と同様にして、半導体部品洗浄用組成物の濃縮品を調製した。上記濃縮品をイオン交換水で25倍に希釈して、半導体部品洗浄用組成物を調製した。
[Examples 16 to 25 and Comparative Examples 9 to 12]
(Preparation of semiconductor component cleaning composition)
A concentrated product of the semiconductor component cleaning composition was prepared in the same manner as in Example 1 except that the composition of the concentrated product of the semiconductor component cleaning composition was changed as shown in Table 3. The concentrated product was diluted 25 times with ion-exchanged water to prepare a semiconductor component cleaning composition.

なお、表3中、「EDTA」はエチレンジアミン四酢酸を表す。また、「−」は対応する欄に相当する成分を配合しなかったことを示す。
(1)銅のエッチング速度の評価
実施例1に記載の「(1)銅のエッチング速度の評価」と同様にして、銅のエッチング速度を算出した。その結果を表4に示す。
In Table 3, “EDTA” represents ethylenediaminetetraacetic acid. “-” Indicates that the component corresponding to the corresponding column was not blended.
(1) Evaluation of copper etching rate The copper etching rate was calculated in the same manner as in “(1) Evaluation of copper etching rate” described in Example 1. The results are shown in Table 4.

(2)低誘電率の絶縁膜に対する影響評価
低誘電率の絶縁膜が積層されたシリコン基板「000LKD304」(商品名、Advanced Technology Development Facility, Inc.社製。直径8インチのシリコンウェハ上に、膜厚4000Åのパターンなしの低誘電率の絶縁膜「LKD5109」(JSR(株)製、比誘電率=2.2)を形成した基板)を、上記希釈後の半導体部品洗浄用組成物に、25℃で60分間浸漬した後、比誘電率の増加分を測定した。その結果を表4に示す。
(2) Evaluation of Influence on Low Dielectric Constant Insulating Film A silicon substrate “000LKD304” (trade name, Advanced Technology Development, Inc., manufactured by Advanced Technology Development, Inc.) An insulating film “LKD5109” (a substrate having a relative dielectric constant of 2.2 manufactured by JSR Co., Ltd.) without a pattern having a film thickness of 4000 mm is used as the diluted semiconductor component cleaning composition. After immersion for 60 minutes at 25 ° C., the increase in relative dielectric constant was measured. The results are shown in Table 4.

(3)化学機械研磨工程後の洗浄能力の評価
(3−1)化学機械研磨工程
直径8インチの銅パターン付きテスト用基板「854CMP」(商品名、Advanced Technology Development Facility,Inc.社製)を化学機械研磨装置「EPO112」((株)荏原製作所製)に装着し、研磨パッドとして「IC1000」(商品名、ローム・アンド・ハース・エレクトロニック・マテリアルズ社製)を使用し、下記の条件で2段階研磨を行った。
(3) Evaluation of Cleaning Capability after Chemical Mechanical Polishing Process (3-1) Chemical Mechanical Polishing Process A test substrate “854 CMP” (trade name, Advanced Technology Development, Inc.) with a copper pattern of 8 inches in diameter was used. It is mounted on the chemical mechanical polishing equipment “EPO112” (manufactured by Ebara Corporation), and “IC1000” (trade name, manufactured by Rohm and Haas Electronic Materials) is used as a polishing pad under the following conditions. Two-stage polishing was performed.

<第一研磨工程>
研磨用水系分散体種:CMS7401、CMS7452(いずれも商品名、JSR(株)製、砥粒としてシリカを含む水系分散体)、イオン交換水および4質量%の硫酸アンモニウム水溶液を、容量比1:1:2:4で混合して使用した。
研磨用水系分散体供給量:300mL/min
定盤回転数:60rpm
ヘッド回転数:60rpm
ヘッド押し付け圧:3psi
研磨時間:140秒
<第二研磨工程>
研磨用水系分散体種:CMS8401、CMS8452(いずれも商品名、JSR(株)製、砥粒としてシリカを含む水系分散体)、およびイオン交換水を、容量比1:2:3で混合して使用した。
研磨用水系分散体供給量:200mL/min
定盤回転数:50rpm
ヘッド回転数:50rpm
ヘッド押し付け圧:5psi
研磨時間:60秒
この二段階研磨により、「854CMP」の配線部以外の余剰の銅およびバリアメタルを除去した。
<First polishing process>
Abrasive aqueous dispersion types: CMS7401 and CMS7452 (both trade names, manufactured by JSR Corporation, aqueous dispersion containing silica as abrasive grains), ion-exchanged water, and 4% by mass of ammonium sulfate aqueous solution were used at a volume ratio of 1: 1. : 2: 4 mixed and used.
Abrasive aqueous dispersion supply amount: 300 mL / min
Plate rotation speed: 60rpm
Head rotation speed: 60rpm
Head pressing pressure: 3 psi
Polishing time: 140 seconds <Second polishing step>
Aqueous dispersion type for polishing: CMS8401 and CMS8452 (both trade names, manufactured by JSR Corporation, aqueous dispersion containing silica as abrasive grains) and ion-exchanged water were mixed at a volume ratio of 1: 2: 3. used.
Abrasive aqueous dispersion supply amount: 200 mL / min
Plate rotation speed: 50 rpm
Head rotation speed: 50 rpm
Head pressing pressure: 5 psi
Polishing time: 60 seconds Excess copper and barrier metal other than the “854 CMP” wiring portion were removed by this two-stage polishing.

(3−2)研磨後の基板の洗浄
下記の条件で、2段階洗浄を行った。
<定盤上洗浄>
上記化学機械研磨後の基板を、化学機械研磨装置から取り外さずに、研磨用水系分散体の代わりに、上記希釈後の半導体部品洗浄用組成物を使用し、下記の条件で定盤上洗浄を行った。
半導体部品洗浄用組成物供給速度:500mL/min
定盤回転数:50rpm
ヘッド回転数:50rpm
ヘッド押し付け圧:2psi
洗浄時間:30秒
<ロールブラシによる洗浄>
上記定盤上洗浄後の基板を、EPO112の洗浄ロール部に装着し、上記定盤上洗浄と同様の半導体部品洗浄用組成物を用いて、下記の条件でロールブラシによる洗浄を行った。
ロールブラシ回転数:上ロールブラシ 120rpm、下ロールブラシ 120rpm
基板回転数:60rpm
半導体部品洗浄用組成物供給速度:基板上下に各500mL/min
洗浄時間:30秒
(3−3)洗浄後の基板の評価
上記2段階洗浄後の基板について、被洗浄面の残存研磨粒子量、スクラッチ数、小ドット数および面あれを下記の方法により測定した。
(3-2) Cleaning of substrate after polishing Two-step cleaning was performed under the following conditions.
<Washing on the surface plate>
Instead of removing the chemical mechanical polishing substrate from the chemical mechanical polishing apparatus, the diluted semiconductor component cleaning composition is used instead of the polishing aqueous dispersion, and cleaning on the surface plate is performed under the following conditions. went.
Semiconductor component cleaning composition supply rate: 500 mL / min
Plate rotation speed: 50 rpm
Head rotation speed: 50 rpm
Head pressing pressure: 2 psi
Cleaning time: 30 seconds <Washing with a roll brush>
The substrate after cleaning on the surface plate was mounted on a cleaning roll part of EPO112, and cleaning with a roll brush was performed under the following conditions using the same semiconductor component cleaning composition as the surface plate cleaning.
Roll brush rotation speed: upper roll brush 120 rpm, lower roll brush 120 rpm
Substrate rotation speed: 60 rpm
Semiconductor component cleaning composition supply rate: 500 mL / min each above and below the substrate
Cleaning time: 30 seconds (3-3) Evaluation of substrate after cleaning With respect to the substrate after the above-mentioned two-step cleaning, the amount of abrasive particles remaining on the surface to be cleaned, the number of scratches, the number of small dots and surface roughness were measured by the following methods .

表面欠陥検査装置「KLA2351」(商品名、KLAテンコール社製)を用いて、画素サイズ=0.62μmおよび閾値=90で、洗浄後の基板の全面について、総欠陥数を測定した。そのうち、ランダムに抽出した100個の欠陥について、KLA2351のモニタ上でその形状などを確認し、その欠陥がスクラッチである割合と、小ドットである割合とを求めた。その値を総欠陥数に乗ずることにより、被研磨面全面あたりのスクラッチ数および小ドット数をそれぞれ算出した。また、モニタ上に映し出された欠陥近傍の表面状態を観察することにより、面荒れの有無を判断した。   Using a surface defect inspection apparatus “KLA2351” (trade name, manufactured by KLA Tencor), the total number of defects was measured on the entire surface of the substrate after cleaning with a pixel size = 0.62 μm and a threshold = 90. Among them, 100 randomly extracted defects were checked on the KLA2351 monitor, and the ratios of the defects were scratches and small dots were determined. By multiplying the value by the total number of defects, the number of scratches and the number of small dots per entire surface to be polished were calculated. Moreover, the presence or absence of surface roughness was judged by observing the surface state in the vicinity of the defect projected on the monitor.

ここで、「小ドット」とは、上記表面欠陥検査装置「KLA2351」がカウントした表面欠陥のうち、被研磨面にある黒っぽい沈着物のことをいう。これは、化学機械研磨工程中に被研磨面から溶離した酸化銅が、被研磨面に再沈着したものと推測される。   Here, the “small dot” means a dark deposit on the surface to be polished among the surface defects counted by the surface defect inspection apparatus “KLA2351”. This is presumed that the copper oxide eluted from the surface to be polished during the chemical mechanical polishing process re-deposited on the surface to be polished.

その結果を表4に示す。   The results are shown in Table 4.

Figure 2006041494
Figure 2006041494

Figure 2006041494
Figure 2006041494

Claims (8)

ゲルパーミエーションクロマトグラフィーで測定したポリスチレンスルホン酸ナトリウム換算の重量平均分子量が1,000〜100,000である水溶性ポリマー(a)および下記式(1)で表される化合物(b)が配合されてなることを特徴とする半導体部品洗浄用組成物。
NR4OH (1)
(式(1)中、Rは、それぞれ独立に、水素原子または炭素数1〜6のアルキル基を表す。)
The water-soluble polymer (a) whose weight average molecular weight of polystyrene sulfonate conversion measured by the gel permeation chromatography is 1,000-100,000 and the compound (b) represented by the following formula (1) are blended. A composition for cleaning semiconductor parts, comprising:
NR 4 OH (1)
(In Formula (1), R represents a hydrogen atom or a C1-C6 alkyl group each independently.)
前記水溶性ポリマー(a)および化合物(b)のうちの少なくとも1種が、解離した状態および解離してカウンターイオンと再結合した状態のうちの少なくとも1つの状態で存在していることを特徴とする請求項1に記載の半導体部品洗浄用組成物。   At least one of the water-soluble polymer (a) and the compound (b) exists in at least one of a dissociated state and a dissociated state and recombined with a counter ion, The composition for cleaning a semiconductor component according to claim 1. 前記水溶性ポリマー(a)が、カルボキシル基を有することを特徴とする請求項1または2に記載の半導体部品洗浄用組成物。   The composition for cleaning a semiconductor component according to claim 1 or 2, wherein the water-soluble polymer (a) has a carboxyl group. 前記化合物(b)が、テトラメチルアンモニウムヒドロキシドであることを特徴とする請求項1または2に記載の半導体部品洗浄用組成物。   The composition for cleaning a semiconductor component according to claim 1, wherein the compound (b) is tetramethylammonium hydroxide. さらに、酸化防止剤(c)および錯化剤(d)からなる群から選択される少なくとも1種を含有することを特徴とする請求項1〜4のいずれかに記載の半導体部品洗浄用組成物。   5. The composition for cleaning a semiconductor component according to claim 1, further comprising at least one selected from the group consisting of an antioxidant (c) and a complexing agent (d). . 前記半導体部品が、銅配線基板であることを特徴とする請求項1〜5のいずれかに記載の半導体部品洗浄用組成物。   The semiconductor component cleaning composition according to claim 1, wherein the semiconductor component is a copper wiring board. 半導体部品を化学機械研磨し、次いで請求項1〜5のいずれかに記載の半導体部品洗浄用組成物で洗浄する工程を含むことを特徴とする半導体装置の製造方法。   A method for manufacturing a semiconductor device comprising the steps of chemical mechanical polishing a semiconductor component and then cleaning the semiconductor component with the composition for cleaning a semiconductor component according to claim 1. 前記半導体部品が、銅配線基板であることを特徴とする請求項7に記載の半導体装置の製造方法。

The method of manufacturing a semiconductor device according to claim 7, wherein the semiconductor component is a copper wiring board.

JP2005179493A 2004-06-25 2005-06-20 Semiconductor component cleaning composition and method for manufacturing semiconductor device Active JP4600169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179493A JP4600169B2 (en) 2004-06-25 2005-06-20 Semiconductor component cleaning composition and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004187517 2004-06-25
JP2005179493A JP4600169B2 (en) 2004-06-25 2005-06-20 Semiconductor component cleaning composition and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2006041494A true JP2006041494A (en) 2006-02-09
JP4600169B2 JP4600169B2 (en) 2010-12-15

Family

ID=35906099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179493A Active JP4600169B2 (en) 2004-06-25 2005-06-20 Semiconductor component cleaning composition and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP4600169B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040722A (en) * 2009-07-07 2011-02-24 Air Products & Chemicals Inc Formulation and method for post-cmp cleaning
JP2013049753A (en) * 2011-08-30 2013-03-14 Dongwoo Fine-Chem Co Ltd Detergent composition and method of using the same to manufacture array substrate for liquid crystal display device
US8846533B2 (en) 2008-05-26 2014-09-30 Kao Corporation Cleaning solution for substrate for semiconductor device
WO2018055986A1 (en) * 2016-09-23 2018-03-29 株式会社フジミインコーポレーテッド Surface treatment composition, surface treatment method using same, and semiconductor substrate manufacturing method
JP2020004968A (en) * 2018-06-26 2020-01-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Post chemical mechanical planarization (CMP) cleaning
JPWO2021131452A1 (en) * 2019-12-26 2021-07-01
CN113881510A (en) * 2020-07-02 2022-01-04 万华化学集团电子材料有限公司 Chemical mechanical polishing cleaning solution and use method thereof
WO2022024714A1 (en) * 2020-07-30 2022-02-03 富士フイルムエレクトロニクスマテリアルズ株式会社 Semiconductor substrate cleaning solution
WO2024024759A1 (en) * 2022-07-25 2024-02-01 株式会社日本触媒 Semiconductor cleaning agent composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064689A (en) * 1999-06-23 2001-03-13 Jsr Corp Cleaning liquid for semiconductor part
JP2003289060A (en) * 2002-01-28 2003-10-10 Mitsubishi Chemicals Corp Cleaning liquid for substrate for semiconductor device and cleaning method
JP2003297778A (en) * 2002-03-29 2003-10-17 Nippon Chem Ind Co Ltd Composition for polishing and method for modifying the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064689A (en) * 1999-06-23 2001-03-13 Jsr Corp Cleaning liquid for semiconductor part
JP2003289060A (en) * 2002-01-28 2003-10-10 Mitsubishi Chemicals Corp Cleaning liquid for substrate for semiconductor device and cleaning method
JP2003297778A (en) * 2002-03-29 2003-10-17 Nippon Chem Ind Co Ltd Composition for polishing and method for modifying the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846533B2 (en) 2008-05-26 2014-09-30 Kao Corporation Cleaning solution for substrate for semiconductor device
US8765653B2 (en) 2009-07-07 2014-07-01 Air Products And Chemicals, Inc. Formulations and method for post-CMP cleaning
JP2011040722A (en) * 2009-07-07 2011-02-24 Air Products & Chemicals Inc Formulation and method for post-cmp cleaning
JP2013049753A (en) * 2011-08-30 2013-03-14 Dongwoo Fine-Chem Co Ltd Detergent composition and method of using the same to manufacture array substrate for liquid crystal display device
KR102304733B1 (en) 2016-09-23 2021-09-28 가부시키가이샤 후지미인코퍼레이티드 Surface treatment composition, surface treatment method using the same, and method for manufacturing a semiconductor substrate
WO2018055986A1 (en) * 2016-09-23 2018-03-29 株式会社フジミインコーポレーテッド Surface treatment composition, surface treatment method using same, and semiconductor substrate manufacturing method
JP2018049992A (en) * 2016-09-23 2018-03-29 株式会社フジミインコーポレーテッド Surface treatment composition, surface treatment method by use thereof, and method for manufacturing semiconductor substrate
KR20190057294A (en) * 2016-09-23 2019-05-28 가부시키가이샤 후지미인코퍼레이티드 Surface treatment composition, surface treatment method using same, and method of manufacturing semiconductor substrate
JP6999603B2 (en) 2018-06-26 2022-01-18 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Post chemical mechanical flattening (CMP) cleaning
JP2020004968A (en) * 2018-06-26 2020-01-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Post chemical mechanical planarization (CMP) cleaning
WO2021131452A1 (en) * 2019-12-26 2021-07-01 富士フイルムエレクトロニクスマテリアルズ株式会社 Cleaning solution and cleaning method
JPWO2021131452A1 (en) * 2019-12-26 2021-07-01
CN113881510A (en) * 2020-07-02 2022-01-04 万华化学集团电子材料有限公司 Chemical mechanical polishing cleaning solution and use method thereof
WO2022024714A1 (en) * 2020-07-30 2022-02-03 富士フイルムエレクトロニクスマテリアルズ株式会社 Semiconductor substrate cleaning solution
JPWO2022024714A1 (en) * 2020-07-30 2022-02-03
JP7469474B2 (en) 2020-07-30 2024-04-16 富士フイルム株式会社 Semiconductor substrate cleaning solution
WO2024024759A1 (en) * 2022-07-25 2024-02-01 株式会社日本触媒 Semiconductor cleaning agent composition

Also Published As

Publication number Publication date
JP4600169B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
TWI381418B (en) Cleaning composition for semiconductor components, and process for manufacturing semiconductor device
TWI411679B (en) Cleaning composition, cleaning method, and manufacturing method of semiconductor device
KR100775199B1 (en) Cleaning Composition, Method for Cleaning Semiconductor Substrate, and Process for Manufacturing Semiconductor Device
US5981454A (en) Post clean treatment composition comprising an organic acid and hydroxylamine
KR20100074207A (en) Polishing composition and method utilizing abrasive particles treated with an aminosilane
WO2009058274A1 (en) Chemical mechanical polishing and wafer cleaning composition comprising amidoxime compounds and associated method for use
JP2009526099A (en) Low pH post CMP residue removal composition and method of use
TWI356095B (en) Cleaning liquid composition for semiconductor subs
JP4600169B2 (en) Semiconductor component cleaning composition and method for manufacturing semiconductor device
JP4821122B2 (en) Cleaning composition, semiconductor substrate cleaning method, and semiconductor device manufacturing method
JP6849564B2 (en) Surface treatment composition and surface treatment method using the same
TW201638291A (en) Treatment composition for chemical mechanical polishing, chemical mechanical polishing method and cleaning method
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP7330668B2 (en) Surface treatment composition, method for producing surface treatment composition, method for surface treatment, and method for production of semiconductor substrate
JP4963948B2 (en) Cleaning composition
CN116438284A (en) Microelectronic device cleaning compositions
US20240327761A1 (en) Cleaning compositions and methods of use thereof
JP2004022986A (en) Cleaning liquid used after chemomechanical polishing
US11851638B2 (en) Surface treatment composition, method for producing surface treatment composition, surface treatment method, and method for producing semiconductor substrate
KR20200118556A (en) Surface treatment composition and surface treatment method using the same
KR102424063B1 (en) Surface treatment composition and surface treatment method using the same
JP7349897B2 (en) Immersion liquid composition for semiconductor substrates
TW200946675A (en) Washing agent for semiconductor device and method for washing semiconductor device using the same
CN116234893A (en) Chemical Mechanical Planarization (CMP) post-cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4600169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250