JP2006035710A - Glass processing method using laser and device - Google Patents

Glass processing method using laser and device Download PDF

Info

Publication number
JP2006035710A
JP2006035710A JP2004220922A JP2004220922A JP2006035710A JP 2006035710 A JP2006035710 A JP 2006035710A JP 2004220922 A JP2004220922 A JP 2004220922A JP 2004220922 A JP2004220922 A JP 2004220922A JP 2006035710 A JP2006035710 A JP 2006035710A
Authority
JP
Japan
Prior art keywords
laser
glass
cleaving
workpiece
cutting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004220922A
Other languages
Japanese (ja)
Inventor
Satomi Sumiyoshi
哲実 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyber Laser Inc
Original Assignee
Cyber Laser Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyber Laser Inc filed Critical Cyber Laser Inc
Priority to JP2004220922A priority Critical patent/JP2006035710A/en
Publication of JP2006035710A publication Critical patent/JP2006035710A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser cutting method for cutting a glass for enabling improvement of processing precision and processing speed, in which a first laser is cast along a cutting line for modification by using very high frequency pulse laser and a second laser is cast to a modified part for cutting. <P>SOLUTION: In the cutting and processing method of glass, a crack is generated by a heat source using a processing start point provided on a work made of glass as a starting point, and the crack is extended along a planned cutting line. The first laser is irradiated to the processing start point so as to modify a glass main component of SiO<SB>2</SB>to Si or Si<SB>x</SB>O<SB>y,</SB>or to generate the modified part containing free radicals of B, Na, K, Ca, Zn, Al or Pb from at least one component of glass such as B<SB>2</SB>O<SB>3</SB>, Na<SB>2</SB>O, K<SB>2</SB>O, CaO, B<SB>2</SB>O<SB>2</SB>, ZnO, Al<SB>2</SB>O<SB>3</SB>, PbO or the like. The second laser is cast to the modified part so that the modified part absorbs light energy and discharges thermal stress energy resulting from local thermal expansion so as to cut the glass. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばガラスやセラミックスなどの脆性材料に、レーザ、バーナー、光源、電熱ヒータなどの熱源を局部的に照射して加熱し、その加熱により発生する熱応力を利用して脆性材料を割断する割断加工方法およびその装置、並びにそれらを用いた電子部品の製造方法に関するものである。   The present invention heats a brittle material such as glass or ceramic by locally irradiating a heat source such as a laser, a burner, a light source, or an electric heater, and cleaves the brittle material using thermal stress generated by the heating. The present invention relates to a cleaving method and apparatus therefor, and a method of manufacturing an electronic component using them.

電子部品である液晶装置や有機エレクトロルミネッセンス(以下、「有機EL」と記す)装置などからなるフラットパネルディスプレイの製造、あるいは、半導体材料等のウェハの製造においては、大面積のガラス基板あるいはシリコンなどからなるウェハの上に、複数個分の要素を形成した後、複数個に分割して所要寸法のパネルあるいはチップ(製品)を得るという方法が採用されるため、その製造時にガラス基板またはウェハを所定の切断予定線に沿って割断する工程が不可欠である。   In the manufacture of flat panel displays consisting of electronic components such as liquid crystal devices and organic electroluminescence (hereinafter referred to as “organic EL”) devices, or the manufacture of wafers of semiconductor materials, etc., large-area glass substrates, silicon, etc. After a plurality of elements are formed on a wafer made of the above, a method of obtaining a panel or chip (product) having a required dimension by dividing into a plurality of elements is adopted. A process of cleaving along a predetermined planned cutting line is essential.

このような脆性材料からなるガラス基板などの被加工物を切断する方法としては、(a)ダイヤモンド工具などの超硬工具の尖った先端や鋭い周縁部を被加工物表面に押しつけて移動させることにより、被加工物の表面に切断予定線に沿う溝(スクライブ線)を形成し、その後溝に沿って被加工物に曲げや引っ張りなどの機械的な衝撃力を加える方法や、(b)レーザビームを光学系により集光して被加工物の表面に微小スポットで照射し、被加工物を局部的に溶解もしくは蒸発させ、さらにレーザビームの照射位置を切断予定線上に沿って走査することにより被加工物を割断する方法などがある。   As a method of cutting a workpiece such as a glass substrate made of such a brittle material, (a) a sharp tip or a sharp peripheral edge of a carbide tool such as a diamond tool is pressed against the workpiece surface and moved. To form a groove (scribe line) along the planned cutting line on the surface of the workpiece, and then apply a mechanical impact force such as bending or pulling to the workpiece along the groove, or (b) laser By focusing the beam with an optical system and irradiating the surface of the workpiece with a minute spot, locally melting or evaporating the workpiece, and scanning the irradiation position of the laser beam along the planned cutting line There are methods such as cleaving the workpiece.

しかしながら、上記(a)の方法は、切断に非常に時間がかかるとともに、長い複雑な曲折の割断は困難であった。また、上記(b)の方法は、レーザビームの照射により溶解・蒸発した物質が被加工物や被加工物上の要素に付着して要素の電極部の導電性を劣化させ、また、分離の熱影響によってマイクロクラックが発生して被加工物を劣化させてしまうことがあった。さらに、レーザビームを細く絞ってもそのスポット径を細く絞りきれないため、切り幅をなくすことができず、しかも蒸発等による材料の損失が避けられないなどの問題があった。   However, in the method (a), it takes a very long time to cut, and it is difficult to cleave long and complicated bends. In the method (b), the substance dissolved or evaporated by the laser beam irradiation adheres to the work piece or the element on the work piece and deteriorates the conductivity of the electrode part of the work piece. Microcracks may be generated due to thermal effects, causing the workpiece to deteriorate. Furthermore, since the spot diameter cannot be narrowed down even if the laser beam is narrowed down, there is a problem that the cutting width cannot be eliminated, and loss of material due to evaporation or the like cannot be avoided.

そこで、最近では、被加工物に切り欠きあるいは面取り等の加工始点を形成しておき、その近傍にレーザビームを照射することによって、そのビーム中心に作用する圧縮応力とその周辺に作用する引っ張り応力とによる熱応力で、ビーム中心から加工始点まで延びる亀裂を発生させ、ついでレーザビームを割断すべき方向に沿って移動させることで、そのレーザビームによる熱応力で亀裂を連続して進展させていき、被加工物を割断する方法が提案されている。その一例として特開平1−108006号公報などに開示された発明があげられる。   Therefore, recently, by forming a notch or chamfering starting point on the workpiece and irradiating a laser beam in the vicinity of the starting point, compressive stress acting on the beam center and tensile stress acting on the periphery Cracks that extend from the center of the beam to the processing start point are generated by the thermal stress caused by the laser, and then the laser beam is moved along the direction to be cleaved. A method of cleaving a workpiece has been proposed. One example is the invention disclosed in Japanese Patent Laid-Open No. 1-108006.

なお、加熱する熱源としては、レーザの他にバーナー、光源、電熱ヒータなどを用いることができる。加工物に対して割断を発生させる熱源としてレーザを照射する場合に、加工物が使用するレーザ光に透明な波長である場合は、レーザを吸収する塗料を塗布しレーザの吸収を発生させることが特開平9−253879に開示されている。
特開昭50−114422 特開昭54−106524 特開平1−108006 特開平9−253879 特開2000−61676 特開2003−154517
As a heat source for heating, a burner, a light source, an electric heater, or the like can be used in addition to the laser. When irradiating a laser as a heat source that generates cleaving for the workpiece, if the wavelength of the workpiece is transparent to the laser light used, the laser absorption may be applied to generate laser absorption. It is disclosed in JP-A-9-253879.
JP 50-114422 A JP 54-106524 A JP-A-1-108006 JP-A-9-253879 JP 2000-61676 A JP 2003-154517 A

上記のようなレーザ等の熱源による熱応力を利用した脆性材料の割断加工方法は、被加工物に形成した加工始点をきっかけに発生した亀裂を、加工終点まで連続して進展させるので、亀裂の発生方向を特定の方向、つまり加工終点方向に制御することが重要であり、その亀裂の発生の起点となる加工始点の形成とその精度とが、被加工物に対する割断精度を大きく左右する。この加工始点の形成方法としては、ダイヤモンドガラス切りなどの硬質工具を使用して被加工物の端部に切り欠きを形成する方法、あるいは、被加工物の表面に高出力のレーザビームを集光して孔を加工し、この孔から亀裂を形成する方法などがある。   The cleaving method for brittle materials using thermal stress from a heat source such as a laser as described above causes cracks that have occurred at the processing start point formed on the workpiece to continuously progress to the processing end point. It is important to control the generation direction to a specific direction, that is, the machining end point direction, and the formation and accuracy of the machining start point that is the starting point of the crack generation greatly influences the cleaving accuracy for the workpiece. This starting point can be formed by forming a notch at the end of the workpiece using a hard tool such as diamond glass cutter, or focusing a high-power laser beam on the surface of the workpiece. Then, there is a method of processing a hole and forming a crack from the hole.

しかしながら、上記の方法は、被加工物1の端部に形成された切り欠きの周縁部に、亀裂の発生の起点となりうるマイクロクラックが多数発生してしまい、亀裂の発生方向を特定の方向に制御することが難しく、結果として被加工物に対する高い割断精度が得られないという問題があった。また、切り欠きを形成する際に、硬質工具が被加工物に直接接触するため、例えば硬質工具にゴミなどが付着していた場合は、そのゴミが被加工物を汚染し、そのために切り欠きを精度よく形成することができないという問題もあった。   However, in the above method, a large number of microcracks that can be the starting point of cracks are generated at the peripheral edge of the notch formed at the end of the workpiece 1, and the crack generation direction is set to a specific direction. It was difficult to control, and as a result, there was a problem that high cleaving accuracy for the workpiece could not be obtained. In addition, when forming a notch, the hard tool comes into direct contact with the workpiece. For example, if dust adheres to the hard tool, the dust contaminates the workpiece, and therefore the notch There was also a problem that the film could not be formed accurately.

さらに、切り欠きの形成時に、被加工物1の加工屑が発生するため、加工屑が周辺環境を汚染し、被加工物に付着して被加工物上の要素の電極部等に悪影響を及ぼし、不良品を発生させて歩留まりを低下させてしまうなどの問題もあった。そして、被加工物に付着した加工屑を除去するために、被加工物に対する割断加工工程において、切り欠きの形成後に洗浄工程を加えなければならないなど、割断加工を煩雑にしていた。   Furthermore, since the processing waste of the workpiece 1 is generated when the notch is formed, the processing waste contaminates the surrounding environment, adheres to the workpiece, and adversely affects the electrode portion of the element on the workpiece. There are also problems such as generating defective products and reducing the yield. And in order to remove the processing waste adhering to the workpiece, in the cleaving process for the workpiece, the cleaving process must be added after the formation of the notch, making the cleaving process complicated.

この方法の場合にも、上記と同様に孔の周縁部にマイクロクラックが発生し、加工屑が発生するため、被加工物に対する高い割断精度が得られないという問題があった。さらにガラス板の大きさが液晶パネルの大型化に伴い大きくなるにつれて割断が困難になり、加工成功の歩留まり低下が起きている。   In the case of this method as well, there is a problem that, as described above, micro cracks are generated in the peripheral portion of the hole and processing scraps are generated, so that high cleaving accuracy for the workpiece cannot be obtained. Further, as the size of the glass plate increases with the increase in size of the liquid crystal panel, it becomes difficult to cleave, and the yield of processing success is reduced.

本発明は、上記のような課題を解決するためになされたもので、熱源の加熱による熱応力により亀裂を発生させて割断する技術において、その亀裂の起点となる加工始点を精度よく形成して、被加工物に対する割断精度の向上を図ることのできる割断加工方法およびその装置、並びに電子部品の製造方法を提供することを目的としたものである。従来レーザ割断する位置に予め吸光性の塗料を塗布する方法は切断後の洗浄などの余分な肯定を必要とする問題がある。   The present invention has been made in order to solve the above-described problems, and in a technique for generating and cleaving a crack by thermal stress caused by heating of a heat source, a processing start point that is the starting point of the crack is accurately formed. An object of the present invention is to provide a cleaving method and apparatus capable of improving cleaving accuracy for a workpiece, and a method for manufacturing an electronic component. Conventionally, the method of applying a light-absorbing paint in advance to the position where the laser is to be cleaved has a problem of requiring extra affirmation such as cleaning after cutting.

本発明は、ガラスなどの加工物の割断工程に先立ってガラスに光吸収性のSiO、B、NaO、KO、CaO、B、ZnO、Al、PbOのうちの1つが第1のレーザによりSi(ここでxは1以外、yは2以外)またはB、Na、K、Ca、Zn、Al、Pbなどの遊離基を含む材料改質部を超短パルス照射の改質工程で発生させる。この部分は超短パルス照射だけでは傷などの形状変化は見られない程度のレーザエネルギー照射により行い材料の改質を起こさせる。材料改質はCWレーザや通常の長パルスでは起きないが、超短パルスのレーザ集光点における高電界により材料の改質が瞬時に発生する。 The present invention, SiO 2 of the light-absorbing to the glass prior to the cleaving step of the workpiece, such as glass, B 2 O 3, Na 2 O, K 2 O, CaO, B 2 O 2, ZnO, Al 2 O 3 , PbO is a material containing Si x O y (where x is other than 1 and y is other than 2) or free radicals such as B, Na, K, Ca, Zn, Al, Pb by the first laser. The reforming part is generated in the reforming process of ultrashort pulse irradiation. This portion is subjected to laser energy irradiation to such an extent that no change in shape such as a flaw can be seen only by the ultrashort pulse irradiation, thereby causing a material modification. The material modification does not occur with a CW laser or a normal long pulse, but the material modification occurs instantaneously due to the high electric field at the laser focusing point of the ultrashort pulse.

必要に応じ、ガラス表面を大気以外の雰囲気ガスで構成してもよい。従って割断に先立って従来行っていた、割断工程の開始点としてレーザで切り込みを設ける方法における材料除去は必ずしも起こさなくてもよい。   If necessary, the glass surface may be composed of an atmospheric gas other than the atmosphere. Therefore, the material removal in the method of providing a cut with a laser as a starting point of the cleaving process, which has been conventionally performed prior to cleaving, does not necessarily have to occur.

この成分の改質された部分にはSi(ここでxは1以外、yは2以外)またはB、Na、K、Ca、Zn、Al、Pbなどの遊離基を含み、この成分によって光吸収スペクトル特性に変化が生じるので、改質に用いた超短パルスレーザの波長以外のレーザでも吸収率の増加が得られる。この超短パルス照射で改質部を切断線に沿って発生させて、その線に沿って光吸収率の高い改質部を形成する。次にこの改質線に沿って改質により得られた光吸収を有する波長範囲の第2の長パルスまたはCWレーザからなるレーザを照射すると、改質部で発熱を生じ、熱誘起的な応力がそのレーザ照射された改質部の照射部周辺に生じる。 The modified part of this component contains Si x O y (where x is other than 1 and y is other than 2) or free radicals such as B, Na, K, Ca, Zn, Al, Pb, etc. As a result, a change occurs in the light absorption spectrum characteristics, so that an increase in absorption rate can be obtained even with lasers other than the wavelength of the ultrashort pulse laser used for the modification. By this ultrashort pulse irradiation, a modified portion is generated along the cutting line, and a modified portion having a high light absorption rate is formed along the line. Next, irradiation with a second long-pulse or CW laser having a wavelength range having light absorption obtained by the modification along the modified line generates heat in the modified part and causes heat-induced stress. Occurs around the irradiated portion of the modified portion irradiated with the laser.

レーザ集光点を改質線に沿って移動すれば、応力の分布に従って割断を発生することができる。割断の開始点はガラス端部から発生させるには改質用のビーム照射以外の特段の前処理は必要ない。このため従来は割断熱源として利用できなかったガラスに対する透明な波長であるレーザ光を熱源として利用することが可能になる。このことは、発振効率の低い超短パルスレーザは単に改質用に用い、割断用の熱源は超短パルスの発振効率より遥かに高い発振効率の得られるレーザ発振出力パワーを用いることができる。   If the laser focusing point is moved along the modified line, it is possible to generate cleaving according to the stress distribution. In order to generate the cleaving start point from the edge of the glass, no special pretreatment other than the beam irradiation for modification is required. For this reason, it becomes possible to use the laser beam which is a transparent wavelength with respect to the glass which could not be conventionally used as a split heat insulation source as a heat source. This means that an ultrashort pulse laser with low oscillation efficiency can be used simply for reforming, and a laser source for cutting can use laser oscillation output power that can provide an oscillation efficiency much higher than the oscillation efficiency of ultrashort pulses.

本発明の効果として、この発明では、透明なガラスに超短パルス照射でガラスの材質に局部的な改質部を集光スポットの高電界の下で発生させ、従来は、割断熱源として利用できなかったガラスに対する透明な波長域のレーザ光を割断のための発熱源として利用できるようにした。このことは、発振効率の低い超短パルスレーザは単に改質用に用い、割断用の熱源は超短パルスの発振効率より遥かに高い効率の得られる長パルスレーザやCWレーザを用いることができる。   As an effect of the present invention, in this invention, a locally modified portion of the glass material is generated under the high electric field of the focused spot by irradiating the transparent glass with an ultrashort pulse, and conventionally, it can be used as a split heat insulation source. It was made possible to use the laser light in the transparent wavelength range for the glass that was not used as a heat source for cleaving. This means that an ultrashort pulse laser with a low oscillation efficiency can be used simply for modification, and a heat source for cleaving can be a long pulse laser or a CW laser that can obtain an efficiency much higher than the oscillation efficiency of an ultrashort pulse. .

したがって熱源として従来はCOレーザがもっぱら利用されていたが、この発明の方法によりNd:YAGなどの固体レーザの基本波、高調波、または半導体レーザ、YB、Erなどを添加したファイバーレーザなどを用いることができる。このように光ファイバでパワー伝送の可能なレーザを熱源に用いることが可能になったので大型液晶パネルなどの割断システムを構成する場合の設計の自由度が大きくなった。 Therefore, a CO 2 laser has been used exclusively as a heat source in the past. However, by using the method of the present invention, a fundamental laser of a solid laser such as Nd: YAG, a harmonic, or a fiber laser added with a semiconductor laser, YB, Er, etc. Can be used. As described above, since it is possible to use a laser capable of power transmission with an optical fiber as a heat source, the degree of freedom in designing a cleaving system such as a large liquid crystal panel is increased.

ガラスなどの透明体を切断する方法が、被加工物に設けられた加工始点を起点として、亀裂を熱源により発生させ、さらに割断予定線に沿って進展させて、前記被加工物を割断する割断加工方法であって、前記加工始点を第1のレーザを照射してガラスの主要成分であるSiOをSiまたはSi、その他B、NaO、KO、CaO、B、ZnO、Al、PbOなどのガラス成分のうちの1つが第1のレーザによりB、Na、K、Ca、Zn、Al、Pbなどの遊離基を含む組成に改質し、この改質部に光吸収特性を有する別な発振形態の発振特性を有する第2のレーザの照射により改質部に光エネルギー吸収を起し、局部的な熱膨張に伴う応力エネルギーを放出することにより、ガラス切断することを特徴とするレーザガラス切断方法であり、実施構成を図1により説明する。 A method of cutting a transparent body such as glass, where a crack is generated by using a heat source as a starting point provided on the workpiece, and further progressing along a planned cutting line to cleave the workpiece. It is a processing method, and the processing start point is irradiated with a first laser, and SiO 2 which is a main component of glass is changed to Si or Si x O y , other B 2 O 3 , Na 2 O, K 2 O, CaO, One of the glass components such as B 2 O 2 , ZnO, Al 2 O 3 and PbO is modified by the first laser into a composition containing free radicals such as B, Na, K, Ca, Zn, Al and Pb. Then, the modified portion is irradiated with a second laser having an oscillation characteristic of another oscillation mode having light absorption characteristics, so that the modified portion absorbs light energy and releases stress energy associated with local thermal expansion. To cut the glass. The a laser glass cutting method, wherein, will be described with reference to FIG. 1 the implementation.

本発明の実施例の概略構成を図1に示す。第1のレーザ発振器は超短パルスレーザ発振器であり、ダイオードレーザ励起固体レーザの出力の波長を2倍波にしてTi添加サファイヤ結晶を励起し、このレーザ利得媒体をモード同期レーザ共振器に設置し、超短パルスを発振させる。必要に応じて増幅することで超短パルスレーザビーム3を得る。そのほか周知の超短パルス発振器、たとえばEr添加の光ファイバからモードロックパルスを発振させ、出力を非線形結晶で第2高調波の超短パルスにし、必要に応じて増幅し超短パルスを得るなどの方法も用いることができる。その他周知の超短パルス発振技術を用いる。   FIG. 1 shows a schematic configuration of an embodiment of the present invention. The first laser oscillator is an ultrashort pulse laser oscillator. The output wavelength of the diode laser pumped solid-state laser is doubled to excite the Ti-added sapphire crystal, and this laser gain medium is installed in the mode-locked laser resonator. Oscillates an ultra-short pulse. The ultrashort pulse laser beam 3 is obtained by amplifying as necessary. In addition, a well-known ultrashort pulse oscillator, for example, a mode-locked pulse is oscillated from an Er-doped optical fiber, the output is made into a second harmonic ultrashort pulse with a nonlinear crystal, and amplified as necessary to obtain an ultrashort pulse. Methods can also be used. Other known ultrashort pulse oscillation techniques are used.

このレーザビーム3を反射鏡4で集光レンズ7に向け、集光スポットをガラス加工体14に向けて部分10に照射する。加工体14内にガラスの成分である2酸化ケイ素が超短パルスの集光点域にできる強電界で分解改質してSiのように構成成分が変化し、改質が行われる。その他の成分であるB、NaO、KO、CaO、B、ZnO、Al、PbOなどのガラス成分のうち第1のレーザによりB、Na、K、Ca、Zn、Al、Pbなどの遊離基が改質部に現れることもある。加工物14を移動ステージ13に搭載し、レンズの焦点を加工物の表面に平行に矢印15のように移動することで加工物の部分12が改質される。 The laser beam 3 is directed by the reflecting mirror 4 toward the condensing lens 7, and the condensing spot is directed toward the glass processed body 14 to irradiate the portion 10. In the processed body 14, silicon dioxide, which is a component of glass, is decomposed and modified by a strong electric field that can be formed in the focal point region of an ultrashort pulse, and the constituent components are changed like Si x O y to be modified. . Among the other components such as B 2 O 3 , Na 2 O, K 2 O, CaO, B 2 O 2 , ZnO, Al 2 O 3 , PbO, etc., B, Na, K, Free radicals such as Ca, Zn, Al, and Pb may appear in the modified portion. The workpiece 14 is mounted on the moving stage 13 and the focal point of the lens is moved parallel to the surface of the workpiece as indicated by the arrow 15 to modify the portion 12 of the workpiece.

この照射工程においては必ずしもガラス表面の物質除去は必ずしも必要ではない。この第1のレーザ照射の後、第2のレーザ2からエネルギーのより大きなビーム8が反射鏡5に向け放射され、集光レンズ9で第1のレーザビームの照射が済み、改質が行われた部分に向けて集光するようにレンズ9の集光点16が位置決めされる。即ち、改質部分12が移動ステージで矢印方向に送られると、改質の行われた部分12が第2のレーザの集光点16に移動するように配置されている。第2のレーザは長パルス発振またはCW発振であり、超短パルス発振に比べて一般には平均出力がより高い出力が高発振効率で実現できるレーザである。この平均パワーの大きなレーザビームが改質部分に照射されることで、ガラスの当初の成分のままでは第2のレーザビームの吸収が十分行われない波長でも、第1のレーザで改質されて光吸収率が増加されているので、第1のレーザで改質された部分に効率的に第2の高平均出力ビームが吸収されて微細な発熱源を形成する。   In this irradiation step, it is not always necessary to remove the material on the glass surface. After this first laser irradiation, a beam 8 having a larger energy is emitted from the second laser 2 toward the reflecting mirror 5, and the first laser beam is irradiated by the condenser lens 9, and the modification is performed. The condensing point 16 of the lens 9 is positioned so as to condense toward the part. That is, when the modified portion 12 is sent in the direction of the arrow on the moving stage, the modified portion 12 is arranged to move to the condensing point 16 of the second laser. The second laser is a long pulse oscillation or a CW oscillation, and is generally a laser capable of realizing an output with a higher average output with a higher oscillation efficiency than an ultrashort pulse oscillation. By irradiating the modified portion with the laser beam having a large average power, the first laser is modified even at a wavelength at which the second laser beam is not sufficiently absorbed by the original component of the glass. Since the light absorptance is increased, the second high average output beam is efficiently absorbed in the portion modified by the first laser to form a fine heat source.

この微細な改質部分の熱源は周囲領域に大きな応力分布を形成し、ガラス加工体14の端部から第1と第2のビームが走査されると改質部分に沿ってガラスが割断を開始する。この方向は第1のレーザで形成された切断予定部の改質部分に沿って割断が進行する。割断予定線に沿って第1のレーザで改質部分が形成されていれば第2のレーザビームの集光点のスポットサイズが改質部分の走査線幅より大きな直径であっても第2のレーザの吸収は第1の改質部分に限定されるので、熱源も第1のレーザによる改質部分に形成されることになり、第1と第2の集光点の照射位置精度は第1のレーザの照射位置精度により割断位置精度が決定されることになる。   The heat source of this fine modified portion forms a large stress distribution in the surrounding area, and when the first and second beams are scanned from the end of the glass processed body 14, the glass starts to break along the modified portion. To do. In this direction, the cleaving proceeds along the modified portion of the planned cutting portion formed by the first laser. If the modified portion is formed by the first laser along the planned cutting line, even if the spot size of the condensing point of the second laser beam is larger than the scanning line width of the modified portion, the second portion Since the laser absorption is limited to the first modified portion, the heat source is also formed in the modified portion by the first laser, and the irradiation position accuracy of the first and second condensing points is the first. The cutting position accuracy is determined by the laser irradiation position accuracy.

したがって、超短パルスの照射位置、スポットサイズ、改質に要するレーザパルスエネルギー、それと集光性に優れた集光光学系を用いれば高精度割断が決まり、第2レーザは第1のレーザ照射精度できめられた割断を実行するに十分な大エネルギーを照射すればよい。したがって、第2のレーザの照射位置精度は、割断の位置精度には直接的に影響しないことになり、レーザのビーム品質の選択において集光性能の優れた高性能は必ずしも要求されないで、平均パワーを十分確保すればよい。   Therefore, if the irradiation position of the ultrashort pulse, the spot size, the laser pulse energy required for modification, and a condensing optical system excellent in condensing property are used, high-precision cleaving is determined, and the second laser has the first laser irradiation accuracy. It suffices to irradiate with a large amount of energy sufficient to execute the completed cleavage. Therefore, the irradiation position accuracy of the second laser does not directly affect the cleaving position accuracy, and a high performance with excellent light collection performance is not necessarily required in selecting the laser beam quality. It is sufficient to secure enough.

このことは、従来COレーザを用いた割断においては集光性と照射位置精度が直接的に割段精度に影響したことに比べ、大きな装置製作とガラス切断性能上においてこの発明の方法の有利な点である。なお、第1のレーザは数フェムト秒のパルス幅から500フェムト秒のパルス幅が用いられ、第2のレーザには紫外線レーザ(Nd:YAGレーザのSHG、THG,FHGなど)から赤外線レーザ(Nd:YAGレーザ)の固体レーザやガスレーザが適用できる。 This is because, in the conventional cleaving using a CO 2 laser, the light condensing performance and the irradiation position accuracy directly affect the cleaving accuracy, and the advantages of the method of the present invention in terms of large apparatus production and glass cutting performance. It is a point. The first laser has a pulse width of several femtoseconds to 500 femtoseconds, and the second laser has an ultraviolet laser (such as SHG, THG, FHG, etc. of Nd: YAG laser) to an infrared laser (Nd). : YAG laser) solid-state laser or gas laser can be applied.

上記のレーザ照射は第1の超短パルスレーザの照射に続いて第2のレーザの照射を移動ステージの移動時間間隔を置いて照射する方法を説明したが、第1と第2の2つのレーザを同軸に配置し、時間的には同時的にまたは交互にパルスを重畳してもよい。   The above laser irradiation has been described with respect to the method of irradiating the second laser with the movement time interval of the moving stage following the irradiation with the first ultrashort pulse laser. May be arranged coaxially, and pulses may be superimposed simultaneously or alternately in time.

本発明の実施例として、実施例1、2において、第2レーザを照射する際は、第2のレーザパワーを低減しても効率的にガラスを割断するために、割断線に直角方向にガラスに曲げモーメントを加える移動ステージを採用することは有効である。この場合、割断線に沿って突起状物体を平面移動ステージ上に線状に配置させ、ガラスの活断線の間をステージに押し圧を加える構成は簡単で効果がある。押し圧は移動ステージとガラスの間を真空ポンプで減圧することで割断線に沿って曲げモーメントを印加できる。   As an example of the present invention, when irradiating the second laser in Examples 1 and 2, in order to efficiently cleave the glass even when the second laser power is reduced, the glass is perpendicular to the breaking line. It is effective to adopt a moving stage that applies a bending moment to the surface. In this case, a configuration in which the protruding objects are linearly arranged on the plane moving stage along the breaking line, and a pressing force is applied to the stage between the active lines of glass is simple and effective. The pressing force can apply a bending moment along the breaking line by reducing the pressure between the moving stage and the glass with a vacuum pump.

この他、割断線に沿って裏面にローラを、表面は割断線の両側を2個のローラを配置して割断線に沿ってローラの間にガラス板を移動させて曲げモーメントを印加するなどの周知の機構を併用して割断に要する第2のレーザの平均パワーの低減や割断速度の向上が図れる。   In addition, a roller is provided on the back surface along the breaking line, and two rollers are arranged on both sides of the breaking line on the front surface, and a bending moment is applied by moving the glass plate between the rollers along the breaking line. By using a known mechanism in combination, the average power of the second laser required for cleaving can be reduced and the cleaving speed can be improved.

本発明の活用例として、電子部品である液晶装置や有機エレクトロルミネッセンス、プラズマディスプレーなど装置などからなるフラットパネルディスプレイの製造などの大面積のガラス基板複数個分の要素を形成した後、複数個に分割して所要寸法のパネルを得るという方法に適用できる。   As an application example of the present invention, after forming elements for a plurality of large-sized glass substrates such as manufacturing of flat panel displays composed of liquid crystal devices which are electronic components, devices such as organic electroluminescence, plasma display, etc. It can be applied to a method of dividing and obtaining a panel having a required dimension.

実施例1の概略構成図Schematic configuration diagram of Example 1

符号の説明Explanation of symbols

1.…第1のレーザ発振器、2.…第2のレーザ発振器、3,6.…超短パルスレーザビーム、4.…反射鏡、5.…反射鏡、7.…集光レンズ、8.…長パルスレーザまたはCWレーザ、
9.…集光レンズ、10.…表面改質用集光スポット、11.…割断部分、12.…ガラス改質部分、13.…移動ステージ、14.…加工体、15.…移動ステージ方向(説明のため)、16.…第2のレーザ集光スポット
DESCRIPTION OF SYMBOLS 1 .... 1st laser oscillator, 2 .... 2nd laser oscillator, 3, 6 .... Ultrashort pulse laser beam, 4 .... Reflection mirror, 5 .... Reflection mirror, 7 .... Condensing lens, 8. ... long pulse laser or CW laser,
9 .... Condensing lens, 10 .... Condensing spot for surface modification, 11 .... Cleavage part, 12 .... Glass modification part, 13 .... Moving stage, 14 .... Workpiece, 15 .... Moving stage direction (For explanation), 16 .... second laser focused spot

Claims (11)

熱源により加工物の割断予定線に沿って亀裂を進展させて、前記加工物を割断する割断方法であって、第1のレーザ光の集光スポットを加工物表面に沿って走査して照射し、加工物の主要成分を第1のレーザ光により改質し、この改質部に第2のレーザ光を照射して光エネルギーを選択的に吸収させ、改質部に局部的な熱膨張に伴う熱応力を生じさせ、割断することを特徴とするレーザ切断方法   A cleaving method for cleaving the workpiece by causing cracks to propagate along a planned cleaving line of the workpiece by a heat source, wherein the focused spot of the first laser beam is scanned and irradiated along the surface of the workpiece. The main component of the workpiece is modified by the first laser beam, and the modified laser is irradiated with the second laser beam to selectively absorb the light energy, and the modified unit is subjected to local thermal expansion. Laser cutting method characterized by causing thermal stress accompanying it and cleaving 前記第1のレーザ光が超短パルスレーザ光であることを特徴とする請求項1記載のレーザ切断方法。   The laser cutting method according to claim 1, wherein the first laser beam is an ultrashort pulse laser beam. 前記第2のレーザが連続発振モードまたはパルスモードの紫外レーザ光であることを特徴とする請求項1記載のレーザ切断方法。   2. The laser cutting method according to claim 1, wherein the second laser is a continuous wave mode or pulse mode ultraviolet laser beam. 第2のレーザが赤外レーザであることを特徴とする請求項1記載のレーザ切断方法。   The laser cutting method according to claim 1, wherein the second laser is an infrared laser. 第1のレーザがフェムト秒レーザ、第2のレーザがNd:YAGレーザの第3高調波。   The first laser is a femtosecond laser, and the second laser is a third harmonic of an Nd: YAG laser. 切断始点にフェムト秒レーザを照射し傷をつけることを特徴とする請求項3または4記載のレーザ切断方法。   The laser cutting method according to claim 3 or 4, wherein the cutting start point is irradiated with a femtosecond laser to make a scratch. 加工物がガラス板であることを特徴とする請求項1のレーザ切断方法。   2. The laser cutting method according to claim 1, wherein the workpiece is a glass plate. 請求項1または請求項8において、ガラス成分SiO、B、NaO、KO、CaO、B、ZnO、Al、PbOのうちの少なくとも1つを含むガラスであることを特徴とするレーザ切断方法。 Including in claim 1 or claim 8, the glass component SiO 2, B 2 O 3, Na 2 O, K 2 O, CaO, B 2 O 2, ZnO, at least one of Al 2 O 3, PbO A laser cutting method characterized by being made of glass. 請求項1、請求項8または請求項9のいずれか1項において、ガラスの改質がガラス成分として少なくともB、NaO、KO、CaO、B、ZnO、Al、PbOのうちの1つを含み第1のレーザ照射によるSiやSiまたはB、Na、K、Ca、Zn、Al、Pbなどの遊離基を含む改質部を有することを特徴とするレーザ切断方法。 Claim 1, in any one of claims 8 or claim 9, at least B 2 O 3 modification of the glass as a glass component, Na 2 O, K 2 O , CaO, B 2 O 2, ZnO, Al It has one of 2 O 3 and PbO and has a modified part containing free radicals such as Si, Si x O y or B, Na, K, Ca, Zn, Al, Pb by the first laser irradiation. A laser cutting method characterized by the above. 第1のレーザによる改質部の生成形状が1本の線状、または、複数の線状であることを特徴とする請求項1のレーザ切断方法。   2. The laser cutting method according to claim 1, wherein the generation shape of the modified portion by the first laser is one line or a plurality of lines. ガラス板設置ステージのレーザ割断予定位置において、少なくとも第2のレーザの割断予定部位への照射時に割断方向に交差する方向に曲げモーメントを印加するガラス割断の発生を促進することを特徴とする請求項1のレーザ切断方法。   The generation of glass cleaving in which a bending moment is applied in a direction crossing the cleaving direction at the time of irradiation of at least the second laser cleaving planned portion at the laser cleaving position of the glass plate installation stage is promoted. 1. Laser cutting method.
JP2004220922A 2004-07-28 2004-07-28 Glass processing method using laser and device Pending JP2006035710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004220922A JP2006035710A (en) 2004-07-28 2004-07-28 Glass processing method using laser and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004220922A JP2006035710A (en) 2004-07-28 2004-07-28 Glass processing method using laser and device

Publications (1)

Publication Number Publication Date
JP2006035710A true JP2006035710A (en) 2006-02-09

Family

ID=35901202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220922A Pending JP2006035710A (en) 2004-07-28 2004-07-28 Glass processing method using laser and device

Country Status (1)

Country Link
JP (1) JP2006035710A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237210A (en) * 2006-03-07 2007-09-20 Aisin Seiki Co Ltd Laser beam machining method and apparatus
JP2009023215A (en) * 2007-07-19 2009-02-05 Panasonic Electric Works Co Ltd Dividing method of laminate
JP2011061129A (en) * 2009-09-14 2011-03-24 Disco Abrasive Syst Ltd Method of processing wafer
CN102152003A (en) * 2011-02-24 2011-08-17 华中科技大学 Method and device for separating optical crystal by using two laser beams
CN102596830A (en) * 2009-08-28 2012-07-18 康宁股份有限公司 Methods for laser cutting articles from chemically strengthened glass substrates
KR101203106B1 (en) 2010-04-05 2012-11-20 김원옥 Laser cutting method for multilayer film having cop layer
JP2013136067A (en) * 2011-12-28 2013-07-11 Mitsuboshi Diamond Industrial Co Ltd Splitting device and method for splitting workpiece
KR20140096237A (en) * 2013-01-25 2014-08-05 가부시기가이샤 디스코 Laser machining method
CN104117775A (en) * 2013-04-23 2014-10-29 爱信精机株式会社 Crack generation method, cutting method using laser and crack generation device
JP2014534939A (en) * 2011-09-21 2014-12-25 レイディアンス,インコーポレイテッド System and process for cutting material
KR20160045065A (en) * 2013-07-23 2016-04-26 쓰리디-마이크로막 아게 Method and device for separating a flat workpiece into a plurality of sections
JP2016129203A (en) * 2015-01-09 2016-07-14 株式会社ディスコ Wafer processing method
CN106825938A (en) * 2015-12-04 2017-06-13 彭翔 For being gone to lose the method and system of crisp and hard material by means of cold shock light radiation and heat shock light radiation
CN107214419A (en) * 2017-07-14 2017-09-29 中国科学院微电子研究所 Method and device for processing wafer by laser
CN107520541A (en) * 2016-06-20 2017-12-29 南京魔迪多维数码科技有限公司 The method of cutting brittle materials by laser
KR101857374B1 (en) * 2013-06-28 2018-05-11 트룸프 레이저-운트 시스템테크닉 게엠베하 Method for the ablation cutting of a workpiece by means of a pulsed laser beam
JP2018525309A (en) * 2015-08-10 2018-09-06 サン−ゴバン グラス フランスSaint−Gobain Glass France How to cut a thin glass layer
CN109396661A (en) * 2018-11-09 2019-03-01 上海申和热磁电子有限公司 One kind being used for CO2The processing method of laser aiming optical fiber processing aluminium oxide ceramics
JP2019038737A (en) * 2017-08-22 2019-03-14 日本電気硝子株式会社 Manufacturing method of glass article and manufacturing apparatus of glass article
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
CN109732198A (en) * 2019-01-31 2019-05-10 华中科技大学 A kind of hard brittle material dual-beam hot tearing processing unit (plant) and method
WO2019156183A1 (en) * 2018-02-09 2019-08-15 国立大学法人東京大学 Processing device, processing method, and transparent substrate
CN111834211A (en) * 2020-07-24 2020-10-27 浙江晶科能源有限公司 Pretreatment method of silicon wafer and preparation method of stitch welding solar module
WO2021102065A1 (en) * 2019-11-20 2021-05-27 Corning Incorporated Method of cutting combined structure of glass substrate and light-absorbing plate
CN113601027A (en) * 2021-08-04 2021-11-05 广东工业大学 Double-laser composite invisible cutting method and processing system
WO2024205038A1 (en) * 2023-03-24 2024-10-03 주식회사 엘지에너지솔루션 Cutting apparatus using laser

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237210A (en) * 2006-03-07 2007-09-20 Aisin Seiki Co Ltd Laser beam machining method and apparatus
JP2009023215A (en) * 2007-07-19 2009-02-05 Panasonic Electric Works Co Ltd Dividing method of laminate
CN102596830A (en) * 2009-08-28 2012-07-18 康宁股份有限公司 Methods for laser cutting articles from chemically strengthened glass substrates
TWI489587B (en) * 2009-09-14 2015-06-21 Disco Corp Wafer processing method
JP2011061129A (en) * 2009-09-14 2011-03-24 Disco Abrasive Syst Ltd Method of processing wafer
CN102024886A (en) * 2009-09-14 2011-04-20 株式会社迪思科 Method for processing wafer
KR101203106B1 (en) 2010-04-05 2012-11-20 김원옥 Laser cutting method for multilayer film having cop layer
CN102152003A (en) * 2011-02-24 2011-08-17 华中科技大学 Method and device for separating optical crystal by using two laser beams
JP2014534939A (en) * 2011-09-21 2014-12-25 レイディアンス,インコーポレイテッド System and process for cutting material
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
JP2013136067A (en) * 2011-12-28 2013-07-11 Mitsuboshi Diamond Industrial Co Ltd Splitting device and method for splitting workpiece
KR20140096237A (en) * 2013-01-25 2014-08-05 가부시기가이샤 디스코 Laser machining method
JP2014143354A (en) * 2013-01-25 2014-08-07 Disco Abrasive Syst Ltd Laser processing method
KR102316372B1 (en) * 2013-01-25 2021-10-21 가부시기가이샤 디스코 Laser machining method
CN104117775A (en) * 2013-04-23 2014-10-29 爱信精机株式会社 Crack generation method, cutting method using laser and crack generation device
KR101857374B1 (en) * 2013-06-28 2018-05-11 트룸프 레이저-운트 시스템테크닉 게엠베하 Method for the ablation cutting of a workpiece by means of a pulsed laser beam
US10639741B2 (en) 2013-06-28 2020-05-05 Trumpf Laser—und Systemtechnik GmbH Ablation cutting of a workpiece by a pulsed laser beam
US10654133B2 (en) 2013-07-23 2020-05-19 3D-Micromac Ag Method and device for separating a flat workpiece into a plurality of sections
KR20160045065A (en) * 2013-07-23 2016-04-26 쓰리디-마이크로막 아게 Method and device for separating a flat workpiece into a plurality of sections
KR102172826B1 (en) * 2013-07-23 2020-11-02 쓰리디-마이크로막 아게 Method and device for separating a flat workpiece into a plurality of sections
JP2016525018A (en) * 2013-07-23 2016-08-22 3デー−ミクロマク アクチェンゲゼルシャフト Method and apparatus for dividing a flat workpiece into a plurality of parts
JP2016129203A (en) * 2015-01-09 2016-07-14 株式会社ディスコ Wafer processing method
JP2018525309A (en) * 2015-08-10 2018-09-06 サン−ゴバン グラス フランスSaint−Gobain Glass France How to cut a thin glass layer
CN106825938A (en) * 2015-12-04 2017-06-13 彭翔 For being gone to lose the method and system of crisp and hard material by means of cold shock light radiation and heat shock light radiation
CN107520541B (en) * 2016-06-20 2020-05-15 南京魔迪多维数码科技有限公司 Method for laser cutting brittle material
CN107520541A (en) * 2016-06-20 2017-12-29 南京魔迪多维数码科技有限公司 The method of cutting brittle materials by laser
CN107214419A (en) * 2017-07-14 2017-09-29 中国科学院微电子研究所 Method and device for processing wafer by laser
CN107214419B (en) * 2017-07-14 2018-10-09 中国科学院微电子研究所 Method and device for processing wafer by laser
JP2019038737A (en) * 2017-08-22 2019-03-14 日本電気硝子株式会社 Manufacturing method of glass article and manufacturing apparatus of glass article
JP7210910B2 (en) 2017-08-22 2023-01-24 日本電気硝子株式会社 Glass article manufacturing method and glass article manufacturing apparatus
WO2019156183A1 (en) * 2018-02-09 2019-08-15 国立大学法人東京大学 Processing device, processing method, and transparent substrate
CN109396661A (en) * 2018-11-09 2019-03-01 上海申和热磁电子有限公司 One kind being used for CO2The processing method of laser aiming optical fiber processing aluminium oxide ceramics
CN109732198B (en) * 2019-01-31 2020-05-19 华中科技大学 Double-beam hot cracking processing device and method for hard and brittle materials
CN109732198A (en) * 2019-01-31 2019-05-10 华中科技大学 A kind of hard brittle material dual-beam hot tearing processing unit (plant) and method
WO2021102065A1 (en) * 2019-11-20 2021-05-27 Corning Incorporated Method of cutting combined structure of glass substrate and light-absorbing plate
CN114981220A (en) * 2019-11-20 2022-08-30 康宁公司 Method for cutting combined structure of glass substrate and light absorption plate
CN111834211A (en) * 2020-07-24 2020-10-27 浙江晶科能源有限公司 Pretreatment method of silicon wafer and preparation method of stitch welding solar module
CN111834211B (en) * 2020-07-24 2023-09-29 浙江晶科能源有限公司 Pretreatment method of silicon wafer and preparation method of stitch welding solar module
CN113601027A (en) * 2021-08-04 2021-11-05 广东工业大学 Double-laser composite invisible cutting method and processing system
WO2024205038A1 (en) * 2023-03-24 2024-10-03 주식회사 엘지에너지솔루션 Cutting apparatus using laser

Similar Documents

Publication Publication Date Title
JP2006035710A (en) Glass processing method using laser and device
JP4175636B2 (en) Glass cutting method
JP5784273B2 (en) Laser processing method, cutting method, and method for dividing structure having multilayer substrate
US8138450B2 (en) Method for cutting workpiece
JP4954653B2 (en) Laser processing method
CN100466185C (en) Laser processing method and object to be processed
JP5864988B2 (en) Tempered glass sheet cutting method
JP5525601B2 (en) Substrate processing method using laser
US8389384B2 (en) Laser beam machining method and semiconductor chip
JP5539625B2 (en) Laser processing method
KR101081613B1 (en) Method for scribing fragile material and apparatus for scribing fragile material
US20070090100A1 (en) Glass cutting method and apparatus therefor
JP2003154517A (en) Method and equipment for fracturing fragile material and manufacturing method for electronic component
JP5322418B2 (en) Laser processing method and laser processing apparatus
TWI647187B (en) Method of separating a glass sheet from a carrier
WO2006101091A1 (en) Laser machining method
KR20210048000A (en) Method of cutting and thinning glass substrate without crack
JP2009084089A (en) Method and apparatus for cutting glass
JP2009040665A (en) Full body cutting method of brittle material
KR101345229B1 (en) Cutting apparatus of substrate
JP5122161B2 (en) Processing object cutting method
JP2009262408A (en) Method for scribing brittle material substrate and device therefor
JP4179314B2 (en) Full-cut cleaving device for brittle materials
JP2006082232A (en) Laser processing method
JP2010037140A (en) Method and device for cutting glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104