JP2006026484A - Production method for composite reverse osmosis membrane with high salt suppression ratio - Google Patents

Production method for composite reverse osmosis membrane with high salt suppression ratio Download PDF

Info

Publication number
JP2006026484A
JP2006026484A JP2004206500A JP2004206500A JP2006026484A JP 2006026484 A JP2006026484 A JP 2006026484A JP 2004206500 A JP2004206500 A JP 2004206500A JP 2004206500 A JP2004206500 A JP 2004206500A JP 2006026484 A JP2006026484 A JP 2006026484A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
composite reverse
solution
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004206500A
Other languages
Japanese (ja)
Other versions
JP4563093B2 (en
Inventor
Susumu Echizen
将 越前
Masahiko Hirose
雅彦 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004206500A priority Critical patent/JP4563093B2/en
Publication of JP2006026484A publication Critical patent/JP2006026484A/en
Application granted granted Critical
Publication of JP4563093B2 publication Critical patent/JP4563093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polyamides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite reverse osmosis membrane having a high salt suppression ratio and excellent separation performance of a non-electrolytic organic substance such as IPA and a non-dissociation substance in a usual pH area such as boron, and to provide its production method. <P>SOLUTION: The method for producing the composite reverse osmosis membrane comprising a polyamide-based skin layer and a fine porous support for supporting the layer is characterized in that the fine porous support is covered with an aqueous solution A containing a compound having two or more of reactive amino groups to form a covering layer and a solution B containing a multi-functional acid halide having two or more of reactive acid halide groups is subsequently brought into contact with the covering layer in an organic solvent containing cycloparaffin (C<SB>n</SB>H<SB>2n</SB>) having 7 or more of carbon numbers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液状混合物の成分を選択的に分離するための複合逆浸透膜の製造方法に関し、詳しくは、微多孔性支持体上にポリアミドを主成分とする活性層もしくは薄膜とも呼ばれるスキン層を備えた高塩阻止率と高透過性を併せ有する複合逆浸透膜の製造方法および複合逆浸透膜に関する。   The present invention relates to a method for producing a composite reverse osmosis membrane for selectively separating components of a liquid mixture, and more specifically, a skin layer called an active layer or a thin film mainly composed of polyamide on a microporous support. The present invention relates to a composite reverse osmosis membrane production method and a composite reverse osmosis membrane having both high salt rejection and high permeability.

複合逆浸透膜は、超純水の製造、かん水または海水の脱塩などに広く用いられている。また、染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化にも貢献している。さらに、食品用途などで有効成分の濃縮などにも用いられている。   Composite reverse osmosis membranes are widely used for the production of ultrapure water, brine or seawater desalination. It also contributes to the closure of wastewater by removing and collecting pollution sources or effective substances contained in it from stains that cause pollution, such as dye wastewater and electrodeposition paint wastewater. Furthermore, it is also used for the concentration of active ingredients in food applications.

従来より、多孔性支持体上に実質的に選択分離性を有する活性なスキン層(薄膜)を形成してなる複合逆浸透膜が知られている。現在、かかる逆浸透膜として、多官能芳香族アミンと多官能芳香族酸ハロゲン化物との界面重合によって得られるポリアミドからなるスキン層が支持体上に形成されたものが多く知られている(例えば、特許文献1−4を参照)。   Conventionally, a composite reverse osmosis membrane is known in which an active skin layer (thin film) having a substantially selective separation property is formed on a porous support. Currently, many reverse osmosis membranes are known in which a skin layer made of polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide is formed on a support (for example, And see Patent Documents 1-4).

また、多官能芳香族アミンと多官能脂環式酸ハロゲン化物との界面重合によって得られるポリアミドからなるスキン層が支持体上に形成されたものも提案されている(例えば、特許文献5を参照)。上記複合逆浸透膜は、高い脱塩性能および水透過性能を有するが、さらに高い脱塩性能および水透過性能を向上させることを目的に、多官能酸ハロゲン化物を含む溶液の溶媒を飽和炭化水素や不飽和炭化水素、またハロゲン化炭化水素などを用いて界面重合を行なう方法も提案されている(例えば、特許文献6−9を参照)。   Also proposed is a skin layer made of polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional alicyclic acid halide on a support (for example, see Patent Document 5). ). The composite reverse osmosis membrane has high desalting performance and water permeation performance, but for the purpose of improving the higher desalting performance and water permeation performance, the solvent of the solution containing the polyfunctional acid halide is saturated hydrocarbon. There has also been proposed a method in which interfacial polymerization is carried out using, for example, unsaturated hydrocarbon or halogenated hydrocarbon (see, for example, Patent Documents 6-9).

従来の複合逆浸透膜は、脱塩性能、水透過性能及びイオン状物質分離性能に優れるものであるが、イソプロピルアルコール(IPA)のような非電解質有機物や、これが通常使用されるpH領域では解離しない物質(例えば、ホウ素など)の阻止性能も十分ではなかった。IPAは、半導体工場等で汎用される物質であり、主に超純水製造過程においてTOCを上昇させる原因となる。また、ホウ素は、人体及び動植物に対して神経障害の発症や成長阻害を引き起こすなどの毒性を持つが、海水に多く含まれていることから、海水淡水化においてホウ素除去は重要である。したがって、このような有害な物質も高い阻止率で分離できる複合逆浸透膜の開発が望まれていた。
特開昭55−147106号公報 特開昭62−121603号公報 特開昭63−218208号公報 特開平2−187135号公報 特開昭61−42308号公報 特開平5−92130号公報 特開平9−225278号公報 特開平5−76740号公報 特開平5−137984号公報
Conventional composite reverse osmosis membranes are excellent in desalting performance, water permeation performance and ionic substance separation performance, but dissociated in non-electrolytic organic substances such as isopropyl alcohol (IPA) and in the pH range where they are normally used. The blocking performance of substances that do not (e.g., boron) was not sufficient. IPA is a substance widely used in semiconductor factories and the like, and causes TOC to rise mainly in the process of producing ultrapure water. In addition, boron has toxicity such as causing onset of neuropathy and growth inhibition to human bodies and animals and plants, but since it is contained in seawater, boron removal is important in seawater desalination. Therefore, it has been desired to develop a composite reverse osmosis membrane capable of separating such harmful substances with a high rejection.
JP-A-55-147106 JP 62-121603 A JP-A-63-218208 JP-A-2-187135 JP-A-61-42308 JP-A-5-92130 JP-A-9-225278 Japanese Patent Laid-Open No. 5-76740 JP-A-5-137984

本発明の目的は、高い塩阻止率を有すると共に、IPA等の非電解質有機物及びホウ素等の通常pH領域における非解離物質の分離性能に優れた複合逆浸透膜、及びその製造方法を提供することにある。   An object of the present invention is to provide a composite reverse osmosis membrane having a high salt rejection and excellent in separation performance of non-electrolytic organic substances such as IPA and non-dissociating substances in a normal pH region such as boron, and a method for producing the same. It is in.

本発明者らは、前記課題を解決すべく鋭意検討した結果、特定の溶媒を使用する界面重合でポリアミドスキン層を形成させることが複合逆浸透膜の性能と密接に関連することを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the formation of a polyamide skin layer by interfacial polymerization using a specific solvent is closely related to the performance of the composite reverse osmosis membrane. The invention has been completed.

すなわち、本発明の複合逆浸透膜の製造方法は、ポリアミド系スキン層と、これを支持する微多孔性支持体とからなる複合逆浸透膜を製造する方法において、2つ以上の反応性アミノ基を有する化合物を含んでなる水溶液Aを微多孔性支持体上に被覆して被覆層を形成し、次に、炭素数7以上のシクロパラフィン(C2n)を含有する有機溶媒中に2つ以上の反応性酸ハライド基を有する多官能酸ハロゲン化物を含んでなる溶液Bを、前記被覆層と接触させることを特徴とする。 That is, the method for producing a composite reverse osmosis membrane of the present invention is a method for producing a composite reverse osmosis membrane comprising a polyamide-based skin layer and a microporous support that supports the polyamide skin layer. A coating layer is formed by coating an aqueous solution A containing a compound having the following formula on a microporous support, and then, in an organic solvent containing cycloparaffin (C n H 2n ) having 7 or more carbon atoms. A solution B comprising a polyfunctional acid halide having one or more reactive acid halide groups is brought into contact with the coating layer.

前記シクロパラフィンは、沸点が90〜250℃であるものが好ましい。また、前記有機溶媒中のシクロパラフィンの含有量は、5〜100重量%であることが好ましい。
本発明の複合逆浸透膜は、前記製造方法により得られるものである。
The cycloparaffin preferably has a boiling point of 90 to 250 ° C. Moreover, it is preferable that content of the cycloparaffin in the said organic solvent is 5 to 100 weight%.
The composite reverse osmosis membrane of the present invention is obtained by the above production method.

前記複合逆浸透膜は、温度25℃、pH6.5、及び濃度0.15重量%のイソプロピルアルコール水溶液を操作圧力1.5MPaの条件で透過試験した際のイソプロピルアルコール阻止率が99%以上であることが好ましい。   The composite reverse osmosis membrane has a isopropyl alcohol rejection rate of 99% or more when a isopropyl alcohol aqueous solution having a temperature of 25 ° C., a pH of 6.5, and a concentration of 0.15% by weight is subjected to a permeation test under an operating pressure of 1.5 MPa. It is preferable.

また、前記複合逆浸透膜は、温度25℃、pH6.5、及び5ppmのホウ素を含有する濃度3.2重量%の食塩水を操作圧力5.5MPaの条件で透過試験した際のホウ素阻止率が90%以上であり、食塩阻止率が99%以上であることが好ましい。   The composite reverse osmosis membrane has a boron rejection when a permeation test is performed at a temperature of 25 ° C., a pH of 6.5, and a 3.2 wt% saline solution containing 5 ppm of boron at an operating pressure of 5.5 MPa. Is 90% or more, and the salt rejection is preferably 99% or more.

さらに、前記複合逆浸透膜は、温度25℃、pH6.5、及び濃度0.15重量%のイソプロピルアルコール水溶液を操作圧力1.5MPaの条件で透過試験した際のイソプロピルアルコール阻止率が99%以上であり、かつ温度25℃、pH6.5、及び5ppmのホウ素を含有する濃度3.2重量%の食塩水を操作圧力5.5MPaの条件で透過試験した際のホウ素阻止率が90%以上であり、食塩阻止率が99%以上であることが好ましい。   Furthermore, the composite reverse osmosis membrane has a isopropyl alcohol rejection of 99% or more when a permeation test is performed on an aqueous isopropyl alcohol solution at a temperature of 25 ° C., pH 6.5, and a concentration of 0.15 wt% under an operating pressure of 1.5 MPa. And a boron rejection rate of 90% or more when a permeation test of a saline solution having a temperature of 25 ° C., a pH of 6.5, and a boron concentration of 5 ppm containing 3.2 ppm by weight at an operating pressure of 5.5 MPa is performed. It is preferable that the salt rejection is 99% or more.

本発明の製造方法によれば、界面重合に用いる有機溶媒としてシクロパラフィンを選択することにより、所望の特性を有するポリアミドスキン層を形成でき、高い水透過性能を維持し、高い塩阻止率を併せ有する複合逆浸透膜を容易に製造することができる。前記シクロパラフィンを90〜250℃の沸点を有するものから選択し、有機溶媒中のその含有量を5〜100重量%から選択することにより、用途に合わせた水透過性、非電解質有機物の阻止率、塩阻止率およびホウ素阻止率のバランスに優れた複合逆浸透膜を容易に製造することができる。   According to the production method of the present invention, a polyamide skin layer having desired characteristics can be formed by selecting cycloparaffin as an organic solvent used for interfacial polymerization, maintaining high water permeability and combining high salt rejection. The composite reverse osmosis membrane can be easily produced. By selecting the cycloparaffin from those having a boiling point of 90 to 250 ° C., and selecting the content thereof in the organic solvent from 5 to 100% by weight, the water permeability and non-electrolyte organic substance blocking rate according to the application are selected. In addition, a composite reverse osmosis membrane having an excellent balance of salt rejection and boron rejection can be easily produced.

本発明の複合逆浸透膜は、本製造方法により得られたものであることから、高い水透過性能を維持し、高い塩阻止率を併せ有し、非電解質有機物の阻止率、及びホウ素等の非解離物質の阻止率に優れ、かん水や海水等の脱塩による淡水化や、半導体の製造に必要とされる超純水の製造に好適に使用することができる。   Since the composite reverse osmosis membrane of the present invention is obtained by this production method, it maintains high water permeability, has a high salt rejection, non-electrolyte organic rejection, boron, etc. It has an excellent non-dissociation blocking rate and can be suitably used for desalination by desalting such as brine and seawater and for the production of ultrapure water required for semiconductor production.

本発明の複合逆浸透膜の製造方法は、ポリアミド系スキン層と、これを支持する微多孔性支持体とからなる複合逆浸透膜を製造する方法において、前記ポリアミド系スキン層は、2つ以上の反応性アミノ基を有する化合物を含んでなる水溶液Aを微多孔性支持体上に被覆して被覆層を形成し、次に、炭素数7以上のシクロパラフィン(C2n)を含有する有機溶媒中に2つ以上の反応性酸ハライド基を有する多官能酸ハロゲン化物を含んでなる溶液Bを、前記被覆層と接触させることにより形成することを特徴とする。すなわち、多官能アミノ基を有する化合物と多官能酸ハロゲン化物とを界面重合させることにより、微多孔性支持体上に架橋ポリアミドを主成分とするポリアミド系スキン層を形成する。 The method for producing a composite reverse osmosis membrane of the present invention is a method for producing a composite reverse osmosis membrane comprising a polyamide skin layer and a microporous support that supports the polyamide skin layer. An aqueous solution A containing a compound having a reactive amino group is coated on a microporous support to form a coating layer, and then contains a cycloparaffin (C n H 2n ) having 7 or more carbon atoms. A solution B comprising a polyfunctional acid halide having two or more reactive acid halide groups in an organic solvent is formed by contacting with the coating layer. That is, a polyamide-based skin layer containing a crosslinked polyamide as a main component is formed on a microporous support by interfacial polymerization of a compound having a polyfunctional amino group and a polyfunctional acid halide.

本発明で用いられるシクロパラフィンは、炭素数が7以上であり、一般式:C2nで表わされる脂環式炭化水素化合物であれば特に限定されないが、沸点(1013hPa)が90〜250℃であることが好ましく、170〜250℃がより好ましい。沸点が90℃未満であれば、かかる化合物は蒸発速度が早く、十分な界面重合反応が行われなくなる場合がある。沸点が250℃を超える場合、形成したポリアミド系スキン層の表面から蒸発しにくくなり、除去することが困難になる。 The cycloparaffin used in the present invention has 7 or more carbon atoms and is not particularly limited as long as it is an alicyclic hydrocarbon compound represented by the general formula: C n H 2n , but has a boiling point (1013 hPa) of 90 to 250 ° C. It is preferable that it is 170-250 degreeC. When the boiling point is less than 90 ° C., such a compound has a high evaporation rate, and a sufficient interfacial polymerization reaction may not be performed. When the boiling point exceeds 250 ° C., it is difficult to evaporate from the surface of the formed polyamide skin layer, and it is difficult to remove it.

前記シクロパラフィンは、例えば、シクロへプタン、シクロオクタン、シクロノナン、シクロデカン、シクロウンデカン、シクロドデカン、シクロトリデカン、シクロテトラデカンなどがあげられる。   Examples of the cycloparaffin include cycloheptane, cyclooctane, cyclononane, cyclodecane, cycloundecane, cyclododecane, cyclotridecane, and cyclotetradecane.

前記溶液Bに含まれる有機溶媒は、前記シクロパラフィンを1種単独でもよいし、2種以上の前記シクロパラフィンを混合したものでもよく、さらに、シクロパラフィン単独もしくはその混合物と他の有機溶媒とを混合したものでもよい。この場合、有機溶媒中の前記シクロパラフィンの含有量は、シクロパラフィンの溶媒効果を奏するためには5〜100重量%が好ましく、より好ましくは30〜100重量%であり、さらに好ましくは50〜100重量%である。   The organic solvent contained in the solution B may be one kind of the cycloparaffin or a mixture of two or more kinds of the cycloparaffins. Furthermore, the cycloparaffin alone or a mixture thereof and another organic solvent may be used. A mixture may be used. In this case, the content of the cycloparaffin in the organic solvent is preferably 5 to 100% by weight, more preferably 30 to 100% by weight, and still more preferably 50 to 100% in order to exert the solvent effect of the cycloparaffin. % By weight.

前記他の有機溶媒としては、水非混和性有機溶媒があげられ、例えば、特にヘキサン、ヘプタン、オクタン、ノナン、シクロヘキサンなどの脂肪族炭化水素や、四塩化炭素、トリクロロトリフルオロエタン、へキサクロロエタンなどのハロゲン化炭化水素などが好ましく用いられる。   Examples of the other organic solvents include water-immiscible organic solvents such as aliphatic hydrocarbons such as hexane, heptane, octane, nonane, cyclohexane, carbon tetrachloride, trichlorotrifluoroethane, hexachloroethane. Halogenated hydrocarbons such as are preferably used.

本発明で用いられる溶液Bに含まれる2つ以上の反応性酸ハライド基を有する多官能酸ハロゲン化物は特に限定されず、芳香族、脂肪族、または脂環式の多官能酸ハロゲン化物があげられる。これらの多官能酸ハロゲン化物は単独で用いてもよく、また混合物として用いてもよい。   The polyfunctional acid halide having two or more reactive acid halide groups contained in the solution B used in the present invention is not particularly limited, and examples thereof include aromatic, aliphatic or alicyclic polyfunctional acid halides. It is done. These polyfunctional acid halides may be used alone or as a mixture.

前記芳香族多官能酸ハロゲン化物としては、例えばトリメシン酸クロライド、テレフタル酸クロライド、イソフタル酸クロライド、ビフェニルジカルボン酸クロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸クロライド、ベンゼンジスルホン酸クロライド、クロロスルホニルベンゼンジカルボン酸クロライドなどがあげられる。   Examples of the aromatic polyfunctional acid halide include trimesic acid chloride, terephthalic acid chloride, isophthalic acid chloride, biphenyl dicarboxylic acid chloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid chloride, benzene disulfonic acid chloride, and chlorosulfonylbenzene dicarboxylic acid. Such as chloride.

前記脂肪族多官能酸ハロゲン化物としては、例えば、プロパントリカルボン酸クロライド、ブタントリカルボン酸クロライド、ペンタントリカルボン酸クロライド、グルタリルハライド、アジポイルハライドなどがあげられる。   Examples of the aliphatic polyfunctional acid halide include propanetricarboxylic acid chloride, butanetricarboxylic acid chloride, pentanetricarboxylic acid chloride, glutaryl halide, adipoyl halide, and the like.

前記脂環式多官能酸ハロゲン化物としては、例えば、シクロプロパントリカルボン酸クロライド、シクロブタンテトラカルボン酸クロライド、シクロペンタントリカルボン酸クロライド、シクロペンタンテトラカルボン酸クロライド、シクロヘキサントリカルボン酸クロライド、テトラハイドロフランテトラカルボン酸クロライド、シクロペンタンジカルボン酸クロライド、シクロブタンジカルボン酸クロライド、シクロヘキサンジカルボン酸クロライド、テトラハイドロフランジカルボン酸クロライドなどがあげられる。   Examples of the alicyclic polyfunctional acid halide include cyclopropane tricarboxylic acid chloride, cyclobutane tetracarboxylic acid chloride, cyclopentane tricarboxylic acid chloride, cyclopentane tetracarboxylic acid chloride, cyclohexane tricarboxylic acid chloride, and tetrahydrofuran tetracarboxylic acid. Examples include chloride, cyclopentane dicarboxylic acid chloride, cyclobutane dicarboxylic acid chloride, cyclohexane dicarboxylic acid chloride, and tetrahydrofurandicarboxylic acid chloride.

本発明で用いられる水溶液Aに含まれる2つ以上の反応性のアミノ基を有する化合物は、多官能アミンであれば特に限定されず、芳香族、脂肪族、または脂環式の多官能アミンがあげられる。前記多官能アミンは単独で用いてもよく、混合物としてもよい。   The compound having two or more reactive amino groups contained in the aqueous solution A used in the present invention is not particularly limited as long as it is a polyfunctional amine, and an aromatic, aliphatic, or alicyclic polyfunctional amine is can give. The polyfunctional amines may be used alone or as a mixture.

前記芳香族多官能アミンとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5‐トリアミノベンゼン、1,2,4‐トリアミノベンゼン、3,5‐ジアミノ安息香酸、2,4‐ジアミノトルエン、2,6‐ジアミノトルエン、2,4‐ジアミノアニソール、アミドール、キシリレンジアミンなどがあげられる。   Examples of the aromatic polyfunctional amine include m-phenylenediamine, p-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 2 , 4-diaminotoluene, 2,6-diaminotoluene, 2,4-diaminoanisole, amidol, xylylenediamine and the like.

前記脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2‐アミノエチル)アミンなどがあげられる。   Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, and tris (2-aminoethyl) amine.

前記脂環式多官能アミンとしては、例えば、1,3‐ジアミノシクロヘキサン、1,2‐ジアミノシクロへキサン、1,4‐ジアミノシクロへキサン、ピペラジン、2,5‐ジメチルピペラジン、4‐アミノメチルピペラジンなどがあげられる。   Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, and 4-aminomethyl. Examples include piperazine.

前記多官能アミンを含有する水溶液Aは、製膜を容易にし、あるいは得られる複合逆浸透膜の性能を向上させるために、例えばポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などの重合体や、ソルビトール、グリセリンなどのような多価アルコールを水などに含有させることもできる。   The aqueous solution A containing the polyfunctional amine is used to facilitate film formation or improve the performance of the obtained composite reverse osmosis membrane, for example, a polymer such as polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, sorbitol, A polyhydric alcohol such as glycerin can also be contained in water.

また、特開平2−187135号に記載のテトラアルキルアンモニウムハライドやトリアルキルアンモニウムと有機酸とによる塩なども、製膜を容易にするため、アミン水溶液の微多孔性支持体への吸収性をよくするため、縮合反応を促進するため等の点で好適に用いられる。   In addition, tetraalkylammonium halides and salts of trialkylammonium and organic acids described in JP-A-2-187135 also improve the absorbability of the aqueous amine solution to the microporous support in order to facilitate film formation. Therefore, it is preferably used in terms of promoting the condensation reaction.

また、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム(ラウリル硫酸ナトリウム)などの界面活性剤を水溶液Aに含有させることもできる。これらの界面活性剤は、アミン水溶液の微多孔性支持体への濡れ性を改善するのに効果がある。   Further, a surfactant such as sodium dodecylbenzenesulfonate and sodium dodecylsulfate (sodium laurylsulfate) can be contained in the aqueous solution A. These surfactants are effective in improving the wettability of the aqueous amine solution to the microporous support.

さらに、上記界面での縮重合反応を促進させるために、界面反応にて生成するハロゲン化水素を除去し得る水酸化ナトリウムやリン酸三ナトリウムを用い、あるいは触媒として、アシル化触媒などを水溶液Aに含有させることも有益である。   Further, in order to promote the polycondensation reaction at the interface, sodium hydroxide or trisodium phosphate capable of removing hydrogen halide generated by the interface reaction is used, or an acylation catalyst or the like is used as an aqueous solution A as a catalyst. It is also beneficial to contain it.

また、透過流束を高めるために、特開平8−224452号記載の溶解度パラメーターが8〜14(cal/cm1/2の化合物を水溶液Aに添加することもできる。 In order to increase the permeation flux, a compound having a solubility parameter of 8 to 14 (cal / cm 3 ) 1/2 described in JP-A-8-224452 can also be added to the aqueous solution A.

前記溶液Bおよび前記水溶液Aにそれぞれ含まれる多官能酸ハロゲン化物および多官能アミンの濃度は、特に限定されるものではないが、多官能酸ハロゲン化物は、通常0.01〜5重量%、好ましくは0.05〜1重量%であり、多官能アミンは、通常0.1〜10重量%、好ましくは0.5〜5重量%である。   The concentration of the polyfunctional acid halide and polyfunctional amine contained in the solution B and the aqueous solution A is not particularly limited, but the polyfunctional acid halide is usually 0.01 to 5% by weight, preferably Is 0.05 to 1% by weight, and the polyfunctional amine is usually 0.1 to 10% by weight, preferably 0.5 to 5% by weight.

本発明においてスキン層を支持する微多孔性支持体は、スキン層を支持しうるものであれば特に限定されず、通常平均孔径10〜500Å程度の微孔を有する限外濾過膜が好ましく用いられる。微多孔性支持体の形成材料は、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンなど種々のものをあげることができるが、特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンからなる微多孔性支持体が好ましく用いられる。かかる微多孔性支持体は、通常約25〜125μm、好ましくは約40〜75μmの厚みを有するが、必ずしもこれらに限定されるものではない。   In the present invention, the microporous support for supporting the skin layer is not particularly limited as long as it can support the skin layer. Usually, an ultrafiltration membrane having micropores with an average pore diameter of about 10 to 500 mm is preferably used. . Examples of the material for forming the microporous support may include various materials such as polysulfone and polyarylethersulfone such as polyethersulfone, polyimide, and polyvinylidene fluoride. From the viewpoint of stability, a microporous support made of polysulfone or polyarylethersulfone is preferably used. Such a microporous support usually has a thickness of about 25 to 125 μm, preferably about 40 to 75 μm, but is not necessarily limited thereto.

まず、前記微多孔性支持体上に、前記多官能アミンを含有する水溶液Aを被覆した後、余分な水溶液を除去して被覆層を形成する。   First, the aqueous solution A containing the polyfunctional amine is coated on the microporous support, and then the excess aqueous solution is removed to form a coating layer.

次いで、前記多官能酸ハロゲン化物を含有する溶液Bを前記被覆層と接触させる。余分な溶液を除去した後、接触により生じた界面で縮重合させる。本発明においては、通常約20〜180℃、好ましくは約50〜150℃、さらに好ましくは約80〜130℃で、約1〜10分間、好ましくは約2〜8分間乾燥させて、架橋ポリアミドからなるポリアミド系スキン層を微多孔性支持膜上に形成させる。   Next, the solution B containing the polyfunctional acid halide is brought into contact with the coating layer. After the excess solution is removed, condensation polymerization is performed at the interface generated by the contact. In the present invention, it is usually dried at about 20 to 180 ° C., preferably about 50 to 150 ° C., more preferably about 80 to 130 ° C. for about 1 to 10 minutes, preferably about 2 to 8 minutes. A polyamide-based skin layer is formed on the microporous support membrane.

形成されたスキン層の厚さは、通常約0.05〜2μm、好ましくは約0.1〜1μmの範囲にある。   The thickness of the formed skin layer is usually about 0.05 to 2 μm, preferably about 0.1 to 1 μm.

このようにして得られた本発明の複合逆浸透膜は、高い水透過性を維持し、高い塩阻止率を併せ有するものであり、さらにIPA等の非電解質有機物及びホウ素等の通常pH領域における非解離物質の分離性能に優れ、かん水や海水等の脱塩による淡水化、超純水の製造に好適に用いられる。   The composite reverse osmosis membrane of the present invention thus obtained maintains high water permeability and has a high salt rejection, and further in a non-electrolytic organic substance such as IPA and a normal pH region such as boron. It has excellent separation performance for non-dissociated substances, and is suitably used for desalination by the desalting of brine or seawater and for the production of ultrapure water.

本発明の複合逆浸透膜は、温度25℃、pH6.5、及び濃度0.15重量%のイソプロピルアルコール水溶液を操作圧力1.5MPaの条件で透過試験した際のイソプロピルアルコール阻止率が99%以上であることが好ましく、99.3%以上であることがより好ましい。   The composite reverse osmosis membrane of the present invention has a isopropyl alcohol blocking rate of 99% or more when a isopropyl alcohol aqueous solution having a temperature of 25 ° C., pH 6.5, and a concentration of 0.15 wt% is subjected to a permeation test under an operating pressure of 1.5 MPa. It is preferable that it is 99.3% or more.

また、本発明の複合逆浸透膜は、温度25℃、pH6.5、及び5ppmのホウ素を含有する濃度3.2重量%の食塩水を操作圧力5.5MPaの条件で透過試験した際のホウ素阻止率が90%以上であることが好ましく、より好ましくは92%である。   In addition, the composite reverse osmosis membrane of the present invention has a boron content when a permeation test is performed at a temperature of 25 ° C., a pH of 6.5, and a 3.2 wt% saline solution containing 5 ppm of boron at an operating pressure of 5.5 MPa. The rejection is preferably 90% or more, more preferably 92%.

以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。本実施例において、微多孔性支持体としてポリスルホン系限外ろ過膜を用いた。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In this example, a polysulfone ultrafiltration membrane was used as the microporous support.

実施例1
m−フェニレンジアミン3.0重量%、ラウリル硫酸ナトリウム0.15重量%、トリエチルアミン2.0重量%、カンファースルホン酸4.0重量%を含有した水溶液Aを多孔性ポリスルホン支持膜に数秒接触させた後、余分の水溶液を除去して、前記支持膜上に前記水溶液Aからなる被覆層を形成した。次に、かかる支持膜の表面にトリメシン酸クロライド0.10重量%とイソフタル酸クロライド0.15重量%を含有する溶液Bを接触させた。溶液B中の有機溶媒としては、シクロドデカン(沸点200℃)を用いた。その後、120℃の熱風乾燥機中で3分間保持して、支持膜上にスキン層を形成させて複合逆浸透膜を得た。得られた複合逆浸透膜の性能を下記評価試験で評価したところ、IPAの阻止率は99.5%、ホウ素の阻止率は93.7%、NaClの阻止率は99.9%、透過流束0.58m/(m・日)であった。
Example 1
An aqueous solution A containing 3.0% by weight of m-phenylenediamine, 0.15% by weight of sodium lauryl sulfate, 2.0% by weight of triethylamine, and 4.0% by weight of camphorsulfonic acid was brought into contact with the porous polysulfone support membrane for several seconds. Thereafter, the excess aqueous solution was removed, and a coating layer composed of the aqueous solution A was formed on the support film. Next, a solution B containing 0.10% by weight of trimesic acid chloride and 0.15% by weight of isophthalic acid chloride was brought into contact with the surface of the support membrane. Cyclododecane (boiling point 200 ° C.) was used as the organic solvent in the solution B. Then, it hold | maintained for 3 minutes in a 120 degreeC hot air dryer, the skin layer was formed on the support membrane, and the composite reverse osmosis membrane was obtained. When the performance of the obtained composite reverse osmosis membrane was evaluated by the following evaluation test, the rejection rate of IPA was 99.5%, the rejection rate of boron was 93.7%, the rejection rate of NaCl was 99.9%, and the permeation flow The bundle was 0.58 m 3 / (m 2 · day).

[評価試験]
実施例および比較例で得られた複合逆浸透膜の性能は、複合逆浸透膜に操作圧力1.5MPa、温度25℃、pH6.5にて、濃度0.15重量%のイソプロピルアルコール(IPA)水溶液を30分間透過させた後、IPA阻止率を測定した。IPA阻止率は、GC分析装置にて供給液及び透過液の濃度測定を行い、その測定結果から下記式により算出した。
<IPA阻止率>
阻止率(%)=(1−(膜透過液中のIPA濃度/供給液中のIPA濃度))×100

また、複合逆浸透膜に操作圧力5.5MPa、温度25℃、pH6.5にて、塩化ナトリウム3.2重量%とホウ素5ppm(ホウ酸29ppm)とを含有する水溶液を1時間透過させた後、塩化ナトリウム阻止率、ホウ素阻止率および透過流束を測定した。塩化ナトリウム阻止率は、通常の電導度測定によって行い、ホウ素阻止率は、ICP分析装置にて濃度測定を行い、その測定結果からそれぞれ下記式により算出した。
<NaCl阻止率>
阻止率(%)=(1−(膜透過液中のNaCl濃度/供給液中のNaCl濃度))×100
<ホウ素阻止率>
阻止率(%)=(1−(膜透過液中のホウ素濃度/供給液中のホウ素濃度))×100

実施例2
実施例1において、溶液Bの有機溶媒をシクロドデカン40重量%、シクロノナン(沸点171℃)40重量%、及びイソオクタン20重量%とからなる混合溶媒としたこと以外は実施例1と同様にして複合逆浸透膜を得た。評価試験の結果を表1に示す。
[Evaluation test]
The performances of the composite reverse osmosis membranes obtained in the examples and comparative examples were as follows. The composite reverse osmosis membrane had an isopropyl alcohol (IPA) concentration of 0.15 wt% at an operating pressure of 1.5 MPa, a temperature of 25 ° C., and a pH of 6.5. After allowing the aqueous solution to permeate for 30 minutes, the IPA rejection was measured. The IPA rejection was measured by using the GC analyzer and the concentration of the feed solution and the permeate was measured, and the measurement result was calculated by the following formula.
<IPA rejection rate>
Blocking rate (%) = (1− (IPA concentration in membrane permeate / IPA concentration in feed solution)) × 100

Further, after allowing an aqueous solution containing 3.2% by weight of sodium chloride and 5 ppm of boron (29 ppm of boric acid) to permeate through the composite reverse osmosis membrane at an operating pressure of 5.5 MPa, a temperature of 25 ° C. and a pH of 6.5, for 1 hour. Sodium chloride rejection, boron rejection and permeation flux were measured. The sodium chloride rejection was measured by ordinary conductivity measurement, and the boron rejection was measured by concentration measurement with an ICP analyzer, and calculated from the measurement results by the following formulas.
<NaCl rejection>
Blocking rate (%) = (1− (NaCl concentration in membrane permeate / NaCl concentration in feed solution)) × 100
<Boron rejection>
Blocking rate (%) = (1− (boron concentration in membrane permeate / boron concentration in feed solution)) × 100

Example 2
In Example 1, the organic solvent of the solution B was combined as in Example 1 except that the mixed solvent was 40% by weight of cyclododecane, 40% by weight of cyclononane (boiling point 171 ° C.), and 20% by weight of isooctane. A reverse osmosis membrane was obtained. The results of the evaluation test are shown in Table 1.

実施例3
実施例1において、溶液Bの有機溶媒をシクロドデカン70重量%、及びイソオクタン30重量%からなる混合溶媒としたこと以外は実施例1と同様にして、複合逆浸透膜を得た。評価試験の結果を表1に示す。
Example 3
A composite reverse osmosis membrane was obtained in the same manner as in Example 1 except that the organic solvent of the solution B was a mixed solvent consisting of 70% by weight of cyclododecane and 30% by weight of isooctane. The results of the evaluation test are shown in Table 1.

実施例4
実施例1において、溶液Bの有機溶媒をシクロドデカン30重量%、及びイソウンデカン70重量%からなる混合溶媒としたこと以外は実施例1と同様にして、複合逆浸透膜を得た。評価試験の結果を表1に示す。
Example 4
A composite reverse osmosis membrane was obtained in the same manner as in Example 1, except that the organic solvent of the solution B was a mixed solvent composed of 30% by weight of cyclododecane and 70% by weight of isoundecane. The results of the evaluation test are shown in Table 1.

実施例5
実施例1において、溶液Bの有機溶媒をシクロドデカン70重量%、及びイソウンデカン30重量%からなる混合溶媒としたこと以外は実施例1と同様にして、複合逆浸透膜を得た。評価試験の結果を表1に示す。
Example 5
A composite reverse osmosis membrane was obtained in the same manner as in Example 1 except that the organic solvent of the solution B was a mixed solvent composed of 70% by weight of cyclododecane and 30% by weight of isoundecane. The results of the evaluation test are shown in Table 1.

比較例1
実施例1において、溶液Bの有機溶媒をイソオクタンとしたこと以外は実施例1と同様にして、複合逆浸透膜を得た。評価試験の結果を表1に示す。
Comparative Example 1
In Example 1, a composite reverse osmosis membrane was obtained in the same manner as in Example 1 except that the organic solvent of Solution B was isooctane. The results of the evaluation test are shown in Table 1.

比較例2
実施例1において、溶液Bの有機溶媒をイソウンデカンとしたこと以外は実施例1と同様にして、複合逆浸透膜を得た。評価試験の結果を表1に示す。
Comparative Example 2
In Example 1, a composite reverse osmosis membrane was obtained in the same manner as in Example 1 except that the organic solvent of the solution B was isoundecane. The results of the evaluation test are shown in Table 1.

比較例3
実施例1において、溶液Bの有機溶媒をシクロヘキサン(沸点81℃)としたこと以外は実施例1と同様にして、複合逆浸透膜を得た。評価試験の結果を表1に示す。
Comparative Example 3
A composite reverse osmosis membrane was obtained in the same manner as in Example 1 except that the organic solvent of the solution B was cyclohexane (boiling point 81 ° C.). The results of the evaluation test are shown in Table 1.

Figure 2006026484
表1より明らかなように、多官能アミンと多官能酸ハロゲン化物の組合せを一定にして本発明の範囲内でシクロパラフィンを含有する有機溶媒を変えるだけで、用途に応じたバランスのとれた膜性能を有する複合逆浸透膜を得ることができる。実施例で得られた複合逆浸透膜は、イソパラフィンを含有する有機溶媒で得られたポリアミド系複合逆浸透膜(比較例1、2)と比べて、高い塩阻止率を維持したままIPA阻止率及びホウ素阻止率が向上しており、特に半導体の製造に必要とされる超純水の製造や、海水の淡水化の用途に適したものが得られたことがわかる。
Figure 2006026484
As can be seen from Table 1, a balanced film according to the application can be obtained simply by changing the organic solvent containing cycloparaffin within the scope of the present invention while keeping the combination of the polyfunctional amine and polyfunctional acid halide constant. A composite reverse osmosis membrane having performance can be obtained. The composite reverse osmosis membranes obtained in the examples were compared with the polyamide-based composite reverse osmosis membranes (Comparative Examples 1 and 2) obtained with an organic solvent containing isoparaffin, while maintaining a high salt rejection rate. In addition, the boron rejection is improved, and it can be seen that a product suitable for the production of ultrapure water particularly required for the production of semiconductors and the desalination of seawater has been obtained.

Claims (6)

ポリアミド系スキン層と、これを支持する微多孔性支持体とからなる複合逆浸透膜を製造する方法において、2つ以上の反応性アミノ基を有する化合物を含んでなる水溶液Aを微多孔性支持体上に被覆して被覆層を形成し、次に、炭素数7以上のシクロパラフィン(C2n)を含有する有機溶媒中に2つ以上の反応性酸ハライド基を有する多官能酸ハロゲン化物を含んでなる溶液Bを、前記被覆層と接触させることを特徴とする複合逆浸透膜の製造方法。 In a method for producing a composite reverse osmosis membrane comprising a polyamide-based skin layer and a microporous support for supporting the same, an aqueous solution A containing a compound having two or more reactive amino groups is microporously supported. A polyfunctional acid halogen having two or more reactive acid halide groups in an organic solvent containing a cycloparaffin having 7 or more carbon atoms (C n H 2n ) A method for producing a composite reverse osmosis membrane, comprising bringing solution B containing a chemical into contact with the coating layer. 前記シクロパラフィンは、沸点が90〜250℃である請求項1記載の製造方法。 The method according to claim 1, wherein the cycloparaffin has a boiling point of 90 to 250 ° C. 前記有機溶媒中のシクロパラフィンの含有量が5〜100重量%である請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the content of cycloparaffin in the organic solvent is 5 to 100% by weight. 請求項1〜3のいずれかに記載の製造方法により得られる複合逆浸透膜。 A composite reverse osmosis membrane obtained by the production method according to claim 1. 温度25℃、pH6.5、及び濃度0.15重量%のイソプロピルアルコール水溶液を操作圧力1.5MPaの条件で透過試験した際のイソプロピルアルコール阻止率が99%以上である請求項4記載の複合逆浸透膜。 The composite inverse according to claim 4, wherein when the aqueous isopropyl alcohol solution having a temperature of 25 ° C, pH 6.5, and a concentration of 0.15% by weight is subjected to a permeation test under an operating pressure of 1.5 MPa, the isopropyl alcohol rejection is 99% or more. Osmosis membrane. 温度25℃、pH6.5、及び5ppmのホウ素を含有する濃度3.2重量%の食塩水を操作圧力5.5MPaの条件で透過試験した際のホウ素阻止率が90%以上であり、食塩阻止率が99%以上である請求項4又は5記載の複合逆浸透膜。 Boron rejection is 90% or more when a permeation test is performed at a temperature of 25 ° C., pH 6.5, and 3.2 wt% boron containing 5 ppm of boron at an operating pressure of 5.5 MPa. The composite reverse osmosis membrane according to claim 4 or 5, wherein the rate is 99% or more.
JP2004206500A 2004-07-13 2004-07-13 Method for producing high salt rejection composite reverse osmosis membrane Expired - Lifetime JP4563093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206500A JP4563093B2 (en) 2004-07-13 2004-07-13 Method for producing high salt rejection composite reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206500A JP4563093B2 (en) 2004-07-13 2004-07-13 Method for producing high salt rejection composite reverse osmosis membrane

Publications (2)

Publication Number Publication Date
JP2006026484A true JP2006026484A (en) 2006-02-02
JP4563093B2 JP4563093B2 (en) 2010-10-13

Family

ID=35893450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206500A Expired - Lifetime JP4563093B2 (en) 2004-07-13 2004-07-13 Method for producing high salt rejection composite reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP4563093B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290013A (en) * 2007-05-25 2008-12-04 Toray Ind Inc Method for treating composite semipermeable film
CN100453153C (en) * 2006-08-17 2009-01-21 贵阳时代汇通膜科技有限公司 Extreme low-voltage composite reverse osmosis membrane and production method thereof
JP2013503034A (en) * 2009-08-31 2013-01-31 ゼネラル・エレクトリック・カンパニイ Reverse osmosis composite membrane for boron removal
WO2015012054A1 (en) * 2013-07-22 2015-01-29 栗田工業株式会社 Method and device for treating boron-containing water
WO2015118894A1 (en) * 2014-02-07 2015-08-13 日東電工株式会社 Method for producing composite semipermeable membrane
JP2016532542A (en) * 2013-10-07 2016-10-20 エオレイン カンパニー リミテッドAirrane Co.,Ltd. Combined membrane separation process for IPA concentration and wastewater treatment from IPA containing wastewater
US10800676B2 (en) 2014-03-31 2020-10-13 Kurita Water Industries Ltd. Method for treating water containing low-molecular-weight organic substance
JP6767562B1 (en) * 2019-12-27 2020-10-14 日東電工株式会社 Composite semipermeable membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576740A (en) * 1991-03-12 1993-03-30 Toray Ind Inc Production for composite semipermeable membrane
JPH06327953A (en) * 1993-05-26 1994-11-29 Nitto Denko Corp Production of composite reverse osmotic membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576740A (en) * 1991-03-12 1993-03-30 Toray Ind Inc Production for composite semipermeable membrane
JPH06327953A (en) * 1993-05-26 1994-11-29 Nitto Denko Corp Production of composite reverse osmotic membrane

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453153C (en) * 2006-08-17 2009-01-21 贵阳时代汇通膜科技有限公司 Extreme low-voltage composite reverse osmosis membrane and production method thereof
JP2008290013A (en) * 2007-05-25 2008-12-04 Toray Ind Inc Method for treating composite semipermeable film
JP2013503034A (en) * 2009-08-31 2013-01-31 ゼネラル・エレクトリック・カンパニイ Reverse osmosis composite membrane for boron removal
WO2015012054A1 (en) * 2013-07-22 2015-01-29 栗田工業株式会社 Method and device for treating boron-containing water
JP2015020131A (en) * 2013-07-22 2015-02-02 栗田工業株式会社 Method and device for treating boron-containing water
KR102047155B1 (en) 2013-07-22 2019-11-20 쿠리타 고교 가부시키가이샤 Method and device for treating boron-containing water
KR20160033119A (en) * 2013-07-22 2016-03-25 쿠리타 고교 가부시키가이샤 Method and device for treating boron-containing water
JP2016532542A (en) * 2013-10-07 2016-10-20 エオレイン カンパニー リミテッドAirrane Co.,Ltd. Combined membrane separation process for IPA concentration and wastewater treatment from IPA containing wastewater
KR20160118304A (en) 2014-02-07 2016-10-11 닛토덴코 가부시키가이샤 Method for producing composite semipermeable membrane
JP2015147194A (en) * 2014-02-07 2015-08-20 日東電工株式会社 Composite semi-permeable membrane manufacturing method
WO2015118894A1 (en) * 2014-02-07 2015-08-13 日東電工株式会社 Method for producing composite semipermeable membrane
US10800676B2 (en) 2014-03-31 2020-10-13 Kurita Water Industries Ltd. Method for treating water containing low-molecular-weight organic substance
JP6767562B1 (en) * 2019-12-27 2020-10-14 日東電工株式会社 Composite semipermeable membrane
JP2021107041A (en) * 2019-12-27 2021-07-29 日東電工株式会社 Composite semipermeable membrane
JP2021107071A (en) * 2019-12-27 2021-07-29 日東電工株式会社 Composite semipermeable membrane
JP7252183B2 (en) 2019-12-27 2023-04-04 日東電工株式会社 composite semipermeable membrane

Also Published As

Publication number Publication date
JP4563093B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP3006976B2 (en) Method for producing highly permeable composite reverse osmosis membrane
JP3489922B2 (en) Method for producing highly permeable composite reverse osmosis membrane
JPH0810595A (en) Composite reverse osmosis membrane
JP6624278B2 (en) Composition for interfacial polymerization of polyamide and method for producing reverse osmosis membrane using the same
ES2343953T3 (en) SEMIPERMEABLE COMPOUND MEMBRANE AND PROCEDURE FOR ITS PRODUCTION.
WO2018079589A1 (en) Composite semipermeable membrane and spiral separation membrane element
JP4563093B2 (en) Method for producing high salt rejection composite reverse osmosis membrane
KR20100078822A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
WO2015118894A1 (en) Method for producing composite semipermeable membrane
JP3665692B2 (en) Method for producing dry composite reverse osmosis membrane
JP3862184B2 (en) Method for producing composite reverse osmosis membrane
JP7300810B2 (en) Composite semipermeable membrane and manufacturing method thereof
JP2000237559A (en) Production of high permeability composite reverse osmosis membrane
JPH07171363A (en) Composite reverse osmosis membrane
KR20190055664A (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
JP2007253109A (en) Method for manufacturing dry composite semipermeable membrane
JPH06327953A (en) Production of composite reverse osmotic membrane
JP3647620B2 (en) Method for treating highly permeable composite reverse osmosis membrane and highly permeable composite reverse osmosis membrane
JP3628114B2 (en) Treatment method with composite reverse osmosis membrane
JP3181134B2 (en) Method for producing low pressure and high permeability composite reverse osmosis membrane
KR20100078812A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
JPH06254364A (en) Composite reverse osmosis membrane
JP2005246207A (en) Method for producing composite semi-permeable membrane
JP2015147192A (en) Composite semi-permeable membrane manufacturing method
JPH05146655A (en) Dual reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160806

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term