JP2006013408A - Deionized water boiling and cooling equipment with cooling medium opening and closing means - Google Patents

Deionized water boiling and cooling equipment with cooling medium opening and closing means Download PDF

Info

Publication number
JP2006013408A
JP2006013408A JP2004234073A JP2004234073A JP2006013408A JP 2006013408 A JP2006013408 A JP 2006013408A JP 2004234073 A JP2004234073 A JP 2004234073A JP 2004234073 A JP2004234073 A JP 2004234073A JP 2006013408 A JP2006013408 A JP 2006013408A
Authority
JP
Japan
Prior art keywords
cooling medium
pure water
cooling
valve
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004234073A
Other languages
Japanese (ja)
Other versions
JP4353026B2 (en
Inventor
Toshiharu Mochida
敏治 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004234073A priority Critical patent/JP4353026B2/en
Publication of JP2006013408A publication Critical patent/JP2006013408A/en
Application granted granted Critical
Publication of JP4353026B2 publication Critical patent/JP4353026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide equipment that is operated well even in below a freezing environment as boiling and cooling equipment that uses deionized water as a cooling medium. <P>SOLUTION: Deionized water boiling and cooling equipment has: an evaporator that receives heat from a cooled body and converts deionized water as a cooling medium from a liquid phase to a gas phase; a gas path that is communicated with the evaporator to guide the deionized water converted from a liquid state to a gas state; a condenser that is communicated with the gas path to receive heat from the deionized water converted to a gas state, thus converting the deionized water from a gas phase to a liquid phase; and a sealed-up cooling system composed of a liquid path that is communicated with the condenser to guide the deionized water converted from a gas phase to a liquid phase back to the evaporator. A cooling medium opening and closing means is provided with either or both of the gas path and liquid path that controls or switches circulation of a cooling medium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は冷却媒体の相変化を利用して被冷却体を冷却する沸騰冷却装置に関し、特に冷却媒体として純水を使用する純水沸騰冷却装置に関するものである。   The present invention relates to a boiling cooling apparatus that cools an object to be cooled by using a phase change of a cooling medium, and more particularly to a pure water boiling cooling apparatus that uses pure water as a cooling medium.

従来は特許文献1に記載の通り、冷却媒体の気相変化を利用して冷却する沸騰冷却装置の冷却媒体としてフロン系物質が用いられてきたが、フロン系物質は温暖化係数を持っているため、沸騰冷却装置から漏れ出した場合に環境の温暖化を招くという観点から、現在では特許文献2に記載のように冷却媒体として温暖化には影響しない純水が使用されている。また、沸騰冷却特性はフロン系物質よりも水の方が高い性能を有しており、この点からも冷却媒体として純水を用いることが注目されている。   Conventionally, as described in Patent Document 1, chlorofluorocarbon-based materials have been used as a cooling medium for a boiling cooling device that cools using a gas phase change of the cooling medium. However, chlorofluorocarbon-based materials have a warming potential. Therefore, from the viewpoint of inducing warming of the environment when leaking from the boiling cooling device, pure water that does not affect warming is currently used as a cooling medium as described in Patent Document 2. In addition, water has higher performance for boiling cooling than chlorofluorocarbon-based materials, and from this point of view, the use of pure water as a cooling medium is attracting attention.

図8に特許文献2に示された従来の純水沸騰冷却装置を示す。この図において1は被冷却体としての平形半導体素子、2は平形半導体素子1の発生熱を処理する冷却ブロック、3は上記熱処理時に発生する気泡、4は平形半導体素子1及び冷却ブロック2をスタック構成する締め付けボルト、5は一体構成されたスタック、6は冷却ブロック2と連通された密封容器で、冷却ブロック2とともに内部に貯溜した冷却媒体の純水7を液相から気相に変換する蒸発器を構成する。ここで純水とは水を高度に精製して不純物を除いた純粋な水をいう。8は発生した気泡3の通路である気相管、9は気相から液相に相変化した純水の通路である液相管、10は気泡3が集約した水蒸気、11は気相から液相に相変化した純水、12は冷却管、13は冷却管12に設けられたフィン、14は冷却管12を通過した冷却風、15は冷却管12を包含し、この中で冷却媒体を気相から液相に変換する凝縮器である。   FIG. 8 shows a conventional pure water boiling cooling apparatus disclosed in Patent Document 2. In this figure, 1 is a flat semiconductor element as a body to be cooled, 2 is a cooling block for processing the heat generated by the flat semiconductor element 1, 3 is a bubble generated during the heat treatment, 4 is a stack of the flat semiconductor element 1 and the cooling block 2 Clamping bolts 5 and 5 are integrated stacks, and 6 is a sealed container that communicates with the cooling block 2. Evaporation that converts pure water 7 of the cooling medium stored in the cooling block 2 together with the cooling block 2 from a liquid phase to a gas phase. Configure the vessel. Here, pure water refers to pure water obtained by highly purifying water to remove impurities. 8 is a gas phase tube that is a passage for the generated bubbles 3, 9 is a liquid phase tube that is a passage of pure water that has changed phase from the gas phase to the liquid phase, 10 is water vapor that is aggregated by the bubbles 3, and 11 is liquid from the gas phase Pure water phase-changed into phases, 12 is a cooling pipe, 13 is a fin provided in the cooling pipe 12, 14 is cooling air that has passed through the cooling pipe 12, and 15 includes the cooling pipe 12, in which a cooling medium is contained. It is a condenser that converts from the gas phase to the liquid phase.

このように構成された従来の沸騰冷却装置において、平形半導体素子1には通電することにより熱が発生する。この熱は平形半導体素子1の陽極面及び陰極面に配置されている冷却ブロック2に伝達されて、冷却ブロック2内に充満した純水7を液相から気相である気泡3に相変化させる。相変化した純水は、水蒸気10となって気相管8を通して凝縮器15に導かれる。これにより凝縮器15内には、水蒸気10が充満する。ここで凝縮器15の冷却管12において、その表面に設けられたフィン13により二次冷却媒体である空気等と熱交換が行われる。その結果、水蒸気10は冷却管12を通過しながら冷却されて気相から液相に相変化する。液相に戻った純水11は、著しく密度が増大し、気圧差よりも重力の影響が支配的となり、落下を始める。落下を始めた液相の純水は、液相管9を通して冷却ブロック2に戻り、再び沸騰冷却に供される。この連続動作により、平形半導体素子1が冷却媒体の純水気化潜熱により良好に冷却される。   In the conventional boiling cooling apparatus configured as described above, heat is generated when the flat semiconductor element 1 is energized. This heat is transmitted to the cooling block 2 disposed on the anode surface and the cathode surface of the flat semiconductor element 1 to change the phase of the pure water 7 filled in the cooling block 2 from a liquid phase to a bubble 3 which is a gas phase. . The phase-change pure water becomes water vapor 10 and is led to the condenser 15 through the gas phase pipe 8. Thereby, the water vapor 10 is filled in the condenser 15. Here, in the cooling pipe 12 of the condenser 15, heat exchange with air or the like as the secondary cooling medium is performed by the fins 13 provided on the surface thereof. As a result, the water vapor 10 is cooled while passing through the cooling pipe 12 and changes from the gas phase to the liquid phase. The pure water 11 that has returned to the liquid phase has a significantly increased density, and the influence of gravity is more dominant than the pressure difference, and starts to fall. The liquid-phase pure water that has started to fall returns to the cooling block 2 through the liquid-phase tube 9 and is subjected to boiling cooling again. By this continuous operation, the flat semiconductor element 1 is favorably cooled by the pure water vaporization latent heat of the cooling medium.

しかしながらこのような、沸騰冷却装置は、冷却媒体が水であるが故に氷点下環境においては冷却媒体が凍結するという特有の課題が存在する。   However, such a boiling cooling apparatus has a specific problem that the cooling medium freezes in a sub-freezing environment because the cooling medium is water.

即ち、屋外式の沸騰冷却装置においては冷却能力向上のため凝縮器あるいは冷却管を外気にさらして設置するため、特に寒冷地で使用される沸騰冷却装置のようにその動作環境によっては氷点下環境となることは十分あり得るのである。   That is, in an outdoor type boiling cooling device, a condenser or a cooling pipe is exposed to the outside air in order to improve the cooling capacity. Depending on the operating environment, particularly in a boiling cooling device used in a cold region, It can be enough.

このように沸騰冷却装置、特に凝縮器あるいは冷却管が氷点下環境にある場合、外気温の低下に伴い密閉された冷却系内の温度が低下するとボイル−シャルルの法則(P∝T)に従い、内気圧がこれに比例して低くなる。蒸発器内の圧力が低下すると冷却媒体である純水の沸点も低下する。   As described above, when the boiling cooling device, particularly the condenser or the cooling pipe is in a sub-freezing environment, if the temperature in the sealed cooling system is lowered as the outside air temperature is lowered, the inner temperature is reduced according to Boyle-Charle's law (P∝T). Atmospheric pressure decreases proportionally. When the pressure in the evaporator is lowered, the boiling point of pure water as a cooling medium is also lowered.

このため、冷却媒体である純水は比較的低温で蒸発器内にて気相化し、凝縮器内の温度が屋内に置かれている蒸発器内の温度を下回れば両者には気温度差が生じ、同時に圧力差も生じるため水蒸気10は、蒸発器2から気相管8を通って上昇し凝縮器15へ送られて冷却管内で冷却されて気相の水蒸気が凝縮し、液相化し、凝縮器あるいは冷却管が氷点下環境に設置されている場合には、その液相化した冷却媒体である純水はその場で凍結することになる。その結果、凍結に伴う蒸発器側への戻り液不足が生じ、更にこのような状態が長時間続いた場合には、最終的に蒸発器側でドライアウト(液枯れ)となり、装置は冷却能力を失うことになる。   For this reason, pure water as a cooling medium is vaporized in the evaporator at a relatively low temperature, and if the temperature in the condenser is lower than the temperature in the evaporator placed indoors, there is a difference in temperature between the two. At the same time, since a pressure difference is also generated, the water vapor 10 rises from the evaporator 2 through the gas phase pipe 8 and is sent to the condenser 15 where it is cooled in the cooling pipe to condense the water vapor in the gas phase and turn into a liquid phase. When the condenser or the cooling pipe is installed in a sub-freezing environment, the pure water as the liquid phase cooling medium is frozen on the spot. As a result, there is a shortage of liquid returning to the evaporator side due to freezing, and if this condition continues for a long time, the evaporator side will eventually dry out (liquid withering), and the device will have a cooling capacity. You will lose.

そこで、このような危険を回避するためには、冷却媒体である水の凍結の防止あるいは
凍結量を抑制することが重要となる。
Therefore, in order to avoid such danger, it is important to prevent freezing of water as a cooling medium or to suppress the freezing amount.

氷点下環境で冷却媒体である水の凍結を防止する手段として特許文献1では、冷却媒体の水の中にアルコール類等の不凍液を混入するようにしているが、この水に混入された不純物は長期に亘って使用することにより沸騰冷却装置の凝縮器や冷却管等に付着し、これら装置の劣化を招き、延いては冷却能力の低下あるいは戻り液不足を生じさせる可能性が十分に考えられる。   In Patent Document 1, as a means for preventing freezing of water as a cooling medium in a sub-freezing environment, an antifreeze liquid such as alcohol is mixed in the cooling medium water. It is considered that there is a possibility that it will adhere to the condenser, cooling pipe, etc. of the boiling cooling device by using it over a long period of time, thereby leading to deterioration of these devices, resulting in a decrease in cooling capacity or a shortage of return liquid.

特許文献2では、図9に示すように、凝縮器にヒータ16を設けて水の凍結防止を図るようにしている。しかしこの方法ではヒータ及びヒータ取り付け部品の数だけ部品点数が増大することにより、製品の信頼性が低下し、またコスト面からも不利である。また、ヒータには、被冷却体の発熱容量と同等の発熱容量を必要とされるため、電力消費の点からも問題が残る。   In Patent Document 2, as shown in FIG. 9, a heater 16 is provided in the condenser to prevent water from freezing. However, this method increases the number of parts by the number of heaters and heater attachment parts, thereby reducing the reliability of the product and is disadvantageous in terms of cost. In addition, since the heater needs a heat generation capacity equivalent to the heat generation capacity of the object to be cooled, there remains a problem in terms of power consumption.

特許文献3では、図10に示すように、熱抵抗のことなる2種類以上のヒートパイプ19を用いることにより、外気温に合わせて放熱能力を何段階かに分けるようにしている。しかしこの方法では密閉系を2つ以上作る必要があり、従来例に示したような共通凝縮器構造に比してコスト又はサイズ又は重量が増大してしまう。   In Patent Document 3, as shown in FIG. 10, by using two or more types of heat pipes 19 having different thermal resistance, the heat radiation capacity is divided into several stages according to the outside air temperature. However, in this method, it is necessary to make two or more closed systems, and the cost, size, or weight increases as compared with the common condenser structure as shown in the conventional example.

この他、同様の課題を解決する他の手段として、気相管や液相管の径を細くする等して圧力の損失を増大させる方法がある。この方法であれば確かに冷却媒体の循環を制限しドライアウトまでの時間を延長することができるが、気相管や液相管径が細いため肝心の冷却能力をも制限することになる。
特開平5-326773号公報(明細書) 特開2003-148883号公報(第4項、図1〜図3) 特開2001-118976号公報(第5項、図5)
In addition, as another means for solving the same problem, there is a method of increasing the pressure loss by reducing the diameter of the gas phase tube or the liquid phase tube. This method can certainly limit the circulation of the cooling medium and extend the time to dryout, but it also restricts the cooling capacity of the core because the gas phase tube and liquid phase tube diameter are thin.
JP-A-5-326773 (specification) Japanese Unexamined Patent Publication No. 2003-148883 (section 4, FIGS. 1 to 3) Japanese Patent Laid-Open No. 2001-118976 (Section 5, FIG. 5)

本発明は、これら従来の方法における問題点を解消して、特に冷却媒体として純水を用いた沸騰冷却装置において、冷却媒体の循環量を調整し氷点下環境においても良好に使用できる装置を提供することを課題とするものである。   The present invention solves the problems in these conventional methods, and provides an apparatus that can be used satisfactorily even in sub-freezing environments by adjusting the circulation amount of the cooling medium in a boiling cooling apparatus using pure water as a cooling medium. This is a problem.

上記の課題を解決するために、本発明は、被冷却体からの熱を受熱し冷却媒体としての純水を液相から気相に変換する蒸発器2と、この蒸発器2と連通し液相から気相に変換された純水を誘導する気相通路8と、この気相通路と連通し気相に変換された純水からの熱を受熱して該純水を気相から液相に変換する凝縮器15と、この凝縮器と連通し気相から液相に変換された純水を前記蒸発器へ導戻す液相通路9から成る密閉された冷却系を有する純水沸騰冷却装置において、気相通路又は液相通路の一方又は両方に冷却媒体の循環を抑制又は開閉する冷却媒体開閉手段を設けることを特徴とする。   In order to solve the above-described problems, the present invention provides an evaporator 2 that receives heat from an object to be cooled and converts pure water as a cooling medium from a liquid phase to a gas phase, and a liquid that communicates with the evaporator 2. A gas phase passage 8 for inducing pure water converted from the phase into the gas phase, and receiving heat from the pure water converted into the gas phase in communication with the gas phase passage, the pure water is converted from the gas phase to the liquid phase. A pure water boiling cooling apparatus having a hermetically sealed cooling system comprising a condenser 15 for converting to water and a liquid phase passage 9 that communicates with the condenser and converts pure water converted from a gas phase to a liquid phase to the evaporator. In the above, a cooling medium opening / closing means for suppressing or opening / closing the circulation of the cooling medium is provided in one or both of the gas phase passage and the liquid phase passage.

本発明においては、前記の冷却媒体開閉手段としては、沸騰冷却装置の内外の圧力差を利用して開閉動作する差圧弁を用いることができる。そしてこの差圧弁は可撓性部材により形成された管で構成し、更にその管は偏平形状または内折形状にするのがよい。   In the present invention, as the cooling medium opening / closing means, a differential pressure valve that opens and closes using a pressure difference inside and outside the boiling cooling device can be used. And this differential pressure valve is comprised with the pipe | tube formed of the flexible member, and also the pipe | tube is good to make it a flat shape or an inward folding shape.

同様に沸騰冷却装置の外気温度、運転状態に応じて開閉制御される電磁弁等の制御弁を用いても本課題は解決できる。   Similarly, this problem can also be solved by using a control valve such as an electromagnetic valve that is controlled to open and close in accordance with the outside air temperature and operating state of the boiling cooling device.

本発明によれば、沸騰冷却装置の気相管8または気相管および液相管9の両方に冷却媒体開閉手段を設け、外気温が氷点下となり冷却媒体である純水(蒸気)が外気にさらされている凝縮器内で凍結する危険性がある場合などに、この冷却媒体開閉手段により、冷却媒体である純水(蒸気)の凝縮器への流入を遮断または抑制し、凝縮器内での凝縮水の凍結を最小限に抑えることができる。   According to the present invention, the cooling medium opening / closing means is provided in both the gas phase tube 8 or the gas phase tube and the liquid phase tube 9 of the boiling cooling device, so that the outside air temperature is below the freezing point and pure water (steam) as the cooling medium is introduced into the outside air. When there is a risk of freezing in the exposed condenser, this cooling medium opening / closing means blocks or suppresses the flow of pure water (steam), which is the cooling medium, into the condenser. Freezing of the condensed water can be minimized.

その結果、蒸発器のドライアウトまでの時間を大幅に延長させることができ、純水沸騰冷却装置を氷点下環境においても良好に使用することが可能となる効果が得られる。   As a result, the time to dry-out of the evaporator can be greatly extended, and the effect that the pure water boiling cooling device can be satisfactorily used even in a sub-freezing environment can be obtained.

図1は本発明の実施例を示す沸騰冷却装置の断面図である。   FIG. 1 is a cross-sectional view of a boiling cooling apparatus showing an embodiment of the present invention.

本発明が対象とする純水沸騰冷却装置は、金属等による密閉系を形成しているため、内外の圧力の変化に関わらず、密閉系の体積(V)は殆ど変化しない(V≒const.)。従って、ボイル−シャルルの法則のPV/T=kの式により、密閉系内部圧力Pは、密閉系内部温度T(蒸気温度)に比例して増減する(P∝T)ことが理解できる。他方、外気圧である大気圧は気温に関わらずほぼ一定な状態で保たれている。   Since the pure water boiling cooling apparatus targeted by the present invention forms a closed system made of metal or the like, the volume (V) of the closed system hardly changes regardless of changes in internal and external pressures (V≈const. ). Therefore, it can be understood that the internal pressure P of the closed system increases and decreases in proportion to the internal temperature T (steam temperature) of the closed system (P∝T) according to the PV / T = k equation of Boyle-Charles' law. On the other hand, the atmospheric pressure, which is the external pressure, is maintained in a substantially constant state regardless of the temperature.

図1に示す本発明の装置は、蒸発器2と凝縮器15の相互を結ぶ気相管8および液相管9の途中にそれぞれ冷却媒体の循環を遮断または抑制する冷却媒体開閉手段8Aおよび9Aを設けている点が、図4に示した従来装置と異なるだけでその他の構成は同じであるので、同一の構成要素は同一の符号を付すことによって説明を省略する。   The apparatus of the present invention shown in FIG. 1 includes cooling medium opening / closing means 8A and 9A that interrupt or suppress the circulation of the cooling medium in the middle of the gas phase pipe 8 and the liquid phase pipe 9 that connect the evaporator 2 and the condenser 15, respectively. 4 is different from the conventional apparatus shown in FIG. 4 except that the other components are the same. Therefore, the same components are denoted by the same reference numerals and the description thereof is omitted.

この冷却媒体開閉手段8Aおよび9Aとしては、外気圧と密閉系内の内部圧力との圧力差に応じて開閉動作する差圧弁機構または、外部から制御されて開閉動作する制御弁機構を用いることができる。   As the cooling medium opening / closing means 8A and 9A, a differential pressure valve mechanism that opens and closes according to the pressure difference between the external air pressure and the internal pressure in the closed system, or a control valve mechanism that opens and closes under the control of the outside is used. it can.

冷却媒体開閉手段8A、9Aに差圧弁機構を用いた場合、これは、装置の運転が停止され、外気温度が氷点下以下の温度に低下した場合などにより密閉系内の温度が低下した場合には、同時に内部圧力も低下し、大気圧との圧力差が大きくなるので、気相管8および液相管9内の冷却媒体の循環通路を自動的に閉塞又は縮小して冷却媒体の蒸気の循環が止めるか又は抑制する。他方装置の運転の開始、又は外気温度が上昇することにより、密閉系内の温度が上昇した場合には内部圧力も上昇し、よって内外の圧力差は小さくなり、冷却媒体の循環通路を開放または拡大して冷却媒体の循環を許容するように作用して、沸騰冷却装置の運転状態または外気温度に応じて冷却媒体循環路の開閉を行い、冷却媒体の循環量を調整する。   When the differential pressure valve mechanism is used for the cooling medium opening / closing means 8A and 9A, this is because the operation of the apparatus is stopped and the temperature in the closed system is lowered due to the outside air temperature dropping to a temperature below the freezing point. At the same time, the internal pressure also decreases and the pressure difference from the atmospheric pressure increases, so that the circulation path of the cooling medium in the gas phase pipe 8 and the liquid phase pipe 9 is automatically closed or reduced to circulate the cooling medium vapor. Stops or suppresses. On the other hand, when the temperature in the closed system rises due to the start of operation of the device or the rise in the outside air temperature, the internal pressure also rises, so that the pressure difference between the inside and outside becomes small, and the circulation path of the cooling medium is opened or closed. Enlarging and allowing circulation of the cooling medium, the cooling medium circulation path is opened and closed according to the operating state of the boiling cooling device or the outside air temperature, and the circulation amount of the cooling medium is adjusted.

次に、冷却媒体開閉手段8A、9Aに制御弁機構を用いた場合は、これは、凝縮器15の設置される屋外の外気温度や被冷却体の運転状態を監視し凝縮器15内で凝縮水が凍結する危険のある状態となったときに外部の制御装置から制御信号により、気相管8および液相管9内の冷却媒体の循環通路を閉塞又は縮小して冷却媒体の蒸気の循環を完全に止めるか抑制し、他方被冷却体が運転状態に入るか、または外気温度が上昇することにより冷却媒体の循環通路を開放または拡大するように制御されて、沸騰冷却装置の運転状態または外気温度に応じて冷却媒体循環路の開閉を行い、冷却媒体の循環量を調整する。   Next, when a control valve mechanism is used for the cooling medium opening / closing means 8A and 9A, this is done by monitoring the outdoor outside air temperature where the condenser 15 is installed and the operating state of the object to be cooled, and condensing in the condenser 15. Circulation of the vapor of the cooling medium by closing or reducing the circulation path of the cooling medium in the gas phase pipe 8 and the liquid phase pipe 9 according to a control signal from an external control device when there is a risk of water freezing Is controlled so as to open or expand the circulation path of the cooling medium when the object to be cooled enters the operating state or when the outside air temperature rises, The cooling medium circulation path is opened and closed according to the outside air temperature to adjust the circulation amount of the cooling medium.

沸騰冷却装置にこのような冷却媒体開閉手段8Aおよび9Aを設けることにより、外気温度が氷点下に低下することにより、密閉系内の温度が下がり圧力が低下すると、この手段が作動して、気相管8および液相管9を閉塞するか、または管路断面積を絞って縮小する。あるいは、外気温度が氷点下に低下し凝縮器15において凝縮水が凍結する危険が生じる状態となったとき、この手段が作動されて、気相管8および液相管9を閉塞するか、または管路断面積を絞って縮小する。   By providing such cooling medium opening / closing means 8A and 9A in the boiling cooling device, when the outside air temperature drops below freezing point, the temperature in the closed system decreases and the pressure decreases, and this means is activated to The pipe 8 and the liquid phase pipe 9 are closed, or the pipe cross-sectional area is reduced and reduced. Alternatively, when the outside air temperature drops below freezing point and there is a risk of the condensed water freezing in the condenser 15, this means is activated to close the gas phase tube 8 and the liquid phase tube 9, or Reduce the road cross-sectional area.

この発明の装置においては、このような低温状態では、冷却媒体開閉手段8A、9Aにより冷却媒体の循環路となる気相管8および液相管9が閉じられたり、循環通路が縮小されたりするので、蒸発器2で冷却媒体の水が蒸発しても、蒸気はここで遮断されるか、または流通量が僅少に制限されるため、凝縮器15へ送られないか、または送られても僅少となる。このため、凍結の危険のある低温状態においては、凝縮器2に冷却媒体の水の蒸気がほとんど流入しなくなり、凝縮水の発生が抑えられるので、凍結の発生を防止または最小限に抑えることができる。これにより、凍結にともなう、蒸発器内の冷却媒体である純水の減少を抑え、装置の運転時のドライアウトまでの時間を大幅に延長することができる。   In the apparatus of the present invention, in such a low temperature state, the cooling medium opening / closing means 8A, 9A closes the gas phase pipe 8 and the liquid phase pipe 9 serving as a cooling medium circulation path, or reduces the circulation path. Therefore, even if the water of the cooling medium evaporates in the evaporator 2, the steam is blocked here, or the flow rate is slightly limited, so that it is not sent or sent to the condenser 15. Become scarce. For this reason, in a low temperature state where there is a risk of freezing, the vapor of the cooling medium water hardly flows into the condenser 2 and the generation of condensed water is suppressed, so that the occurrence of freezing can be prevented or minimized. it can. As a result, it is possible to suppress a decrease in pure water that is a cooling medium in the evaporator accompanying freezing, and to greatly extend the time to dryout during operation of the apparatus.

なお、凝縮器内の凍結の発生を完全に防止するには、冷却媒体開閉手段8Aおよび9Aにより気相管8および液相管9の通路を完全に遮断するのがよい。   In order to completely prevent freezing in the condenser, the passages of the gas phase pipe 8 and the liquid phase pipe 9 are preferably completely blocked by the cooling medium opening / closing means 8A and 9A.

しかし、本発明が解決しようとする主たる課題は、凝縮器内での凝縮水の凍結を防止するかまたは最小限に抑えることであるので、冷却媒体開閉手段を気相管8および液相管9の両方に必ずしも設ける必要はない。気相管8側だけに設けるようしても、機能的には十分である。   However, since the main problem to be solved by the present invention is to prevent or minimize the freezing of the condensed water in the condenser, the cooling medium opening and closing means is connected to the gas phase pipe 8 and the liquid phase pipe 9. It is not always necessary to provide both. Even if it is provided only on the gas phase tube 8 side, the function is sufficient.

このような本発明における冷却媒体開閉手段としては、種々の形式の弁機構を使用することができる。   As such a cooling medium opening / closing means in the present invention, various types of valve mechanisms can be used.

図2aおよび図2bでは可撓性部材により形成された管を使用した弁機構の第1の実施例を示す。   2a and 2b show a first embodiment of a valve mechanism using a tube formed of a flexible member.

図2aおよび図2bにおいて、80は、気相管8の途中に介装した冷却媒体開閉手段8Aとなる弁機構である。この弁機構80は、両端部にフランジ部81、82を形成し、この両フランジ部の間の中間部分に、変形しやすい可撓性部材により形成された弁部83を有する。そして両フランジ部81、82をそれぞれ分割された気相管8に気密的に嵌合することにより弁機構80を介して気相管8を結合する。   2A and 2B, reference numeral 80 denotes a valve mechanism serving as a cooling medium opening / closing means 8A interposed in the middle of the gas phase pipe 8. The valve mechanism 80 has flange portions 81 and 82 at both ends, and has a valve portion 83 formed of a flexible member that is easily deformed at an intermediate portion between the both flange portions. Then, the gas phase pipe 8 is coupled via the valve mechanism 80 by airtightly fitting both the flange portions 81 and 82 to the divided gas phase pipe 8.

このような弁機構80を有する沸騰冷却装置が運転状態(被冷却体1が運転状態されている状態)にあるときは、被冷却体1が発熱し、蒸発器2において冷却媒体である純水11がこの熱により加熱されて蒸発する。   When the boiling cooling apparatus having such a valve mechanism 80 is in an operating state (a state where the cooled object 1 is in an operating state), the cooled object 1 generates heat, and pure water which is a cooling medium in the evaporator 2 11 is heated by this heat and evaporates.

被冷却体1により加熱されることにより発生する水蒸気が、蒸発器2から気相管8を通して凝縮器15へ流入することにより、通常大気圧より低い負圧に設定されている密閉系内における気相管8の内部圧力が上昇し、内気圧と外気圧との圧力差は小さくなるにしたがって弁機構80の弁部83は、図2に示すように気相管8の内側から外側へ押圧されるため、弁部83の内径は気相管8の内径と同じくらいまで拡開されるので、水蒸気は、何も制限されることなく凝縮器15へ流入する。凝縮器15に流入した水蒸気は、冷却管12で冷却されて液相化された後、液相管9を介して再び蒸発器2に戻され、以後同様の冷却サイクルを繰り返す(図1参照)。   The water vapor generated by heating by the cooled object 1 flows from the evaporator 2 into the condenser 15 through the gas phase pipe 8, so that the gas in the closed system, which is normally set to a negative pressure lower than the atmospheric pressure, is obtained. As the internal pressure of the phase tube 8 increases and the pressure difference between the internal pressure and the external pressure decreases, the valve portion 83 of the valve mechanism 80 is pressed from the inside to the outside of the gas phase tube 8 as shown in FIG. Therefore, since the inner diameter of the valve portion 83 is expanded to the same extent as the inner diameter of the gas phase tube 8, the water vapor flows into the condenser 15 without any limitation. The water vapor that has flowed into the condenser 15 is cooled in the cooling pipe 12 to be converted into a liquid phase, and then returned to the evaporator 2 again through the liquid phase pipe 9, and thereafter the same cooling cycle is repeated (see FIG. 1). .

被冷却体1が電気鉄道の地上設備や車載設備の機器を構成する場合は、鉄道の運行が停止される夜間は、その運転が停止される。このような運転の停止が、外気温度が氷点下に低下する冬季の夜間に行なわれると、凝縮器15は、通常屋外に設置されるので、ほぼ氷点下の外気温度付近までその温度が低下する。凝縮器15の温度が氷点下まで低下すると、密閉系内における内圧も低下し、図2bに示すように弁機構80の弁部83が外気圧により更に押圧されて気相管8の内側へ撓むので、弁部83の内径が縮小または完全に閉塞される。これにより気相管8を通して凝縮器15へ流入する水蒸気が抑制されるか、または遮断されるので、氷点下となる低温状態でであっても凝縮器8では新たな凍結が防止されるか、または最小限に抑制される。このため、蒸発器2において冷却媒体である水の蒸発が抑えられ、被冷却体1の運転再開時のドライアウトまでの時間を大幅に延長できる。   When the body 1 to be cooled constitutes a ground facility or an in-vehicle facility of an electric railway, its operation is stopped at night when the railway operation is stopped. If such an operation stop is performed at night in winter when the outside air temperature falls below freezing point, the condenser 15 is usually installed outdoors, so that the temperature drops to near the outside air temperature below freezing point. When the temperature of the condenser 15 falls below the freezing point, the internal pressure in the closed system also decreases, and the valve portion 83 of the valve mechanism 80 is further pressed by the external air pressure as shown in FIG. Therefore, the inner diameter of the valve portion 83 is reduced or completely closed. As a result, water vapor flowing into the condenser 15 through the gas phase pipe 8 is suppressed or blocked, so that the condenser 8 can be prevented from freezing even in a low temperature state below the freezing point. Minimized. For this reason, evaporation of water which is a cooling medium in the evaporator 2 is suppressed, and the time until dryout when the operation of the cooled object 1 is resumed can be greatly extended.

図1の沸騰冷却装置の液相管9の冷却媒体水面9aからも僅かであるが、水蒸気が発生するので、この蒸気が液相管9を通して凝縮器15へ流入するのを抑制するために、弁機構80を液相管9の9A部分にも設けるようにしてもよい。この場合、弁機構は、必ず屋内、またはこれに準じる外気から保護された場所に設ける必要がある。これは凝縮器15から蒸発器2へ戻る凝縮水がこの弁機構で凍結するのを防止するためである。   Although a slight amount of water is generated from the cooling medium water surface 9a of the liquid phase tube 9 of the boiling cooling device of FIG. 1, in order to prevent the vapor from flowing into the condenser 15 through the liquid phase tube 9, You may make it provide the valve mechanism 80 also in 9A part of the liquid phase pipe | tube 9. As shown in FIG. In this case, the valve mechanism must be provided indoors or in a place protected from the outside air according to this. This is to prevent the condensed water returning from the condenser 15 to the evaporator 2 from being frozen by this valve mechanism.

このように、弁部83を可撓性部材により形成すると、沸騰冷却装置の運転状態および外気温度により密閉系内の圧力変動に応じて弁部83が変形しやすくなるので、特に運転定状態や外気温度を監視する手段を設けることなく、装置の運転状態および外気温度の状態に応じて密閉形内の冷却媒体の循環路を開閉制御することができるため、構成を簡単にすることができる利点がある。   As described above, when the valve portion 83 is formed of a flexible member, the valve portion 83 is likely to be deformed according to the pressure fluctuation in the closed system due to the operation state of the boiling cooling device and the outside air temperature. The advantage that the configuration can be simplified because the circulation path of the cooling medium in the sealed type can be controlled to open and close according to the operating state of the apparatus and the state of the outside air temperature without providing a means for monitoring the outside air temperature. There is.

なお、弁部83を形成する可撓性部材としてはゴム等の弾性部材が適当である。   An elastic member such as rubber is suitable as the flexible member that forms the valve portion 83.

次に、図3aないし図3cに実施例1と同様に可撓性部材により形成された管を使用した弁機構の第2実施例を示す。   Next, FIGS. 3a to 3c show a second embodiment of the valve mechanism using a tube formed of a flexible member as in the first embodiment.

この実施例は、原理、構成は実施例1と同様であるが、図3aに示すように気相管又は液相管には偏平形状の気相管8又は液相管9を設け、気相管又は液相管の一部に内部気圧の変動の影響を一層受けやすくするために、弁機構80には可撓性部材からなる弁部83を設けた。   In this embodiment, the principle and configuration are the same as those in the first embodiment. However, as shown in FIG. 3A, the gas phase tube or liquid phase tube is provided with a flat gas phase tube 8 or liquid phase tube 9, and the gas phase tube The valve mechanism 80 is provided with a valve portion 83 made of a flexible member so that a part of the pipe or the liquid phase pipe is more easily affected by the fluctuation of the internal atmospheric pressure.

弁部83は、図3bに示す、図3aのA−A’線の断面図のように、断面が略偏平形の管状に形成され、その構成は、対向する2つの長辺となる面83b、83bと、長辺面83b、83bの両端をそれぞれ接合するようにしてできる厚みのある2つの短辺となる面83a、83aとからなる。   The valve portion 83 is formed in a tubular shape having a substantially flat cross section as shown in the cross-sectional view taken along the line AA ′ of FIG. 3A shown in FIG. 3B, and the configuration thereof is a surface 83b having two long sides facing each other. 83b and two surfaces 83a and 83a having two short sides with a thickness which can be formed by joining both ends of the long side surfaces 83b and 83b, respectively.

ここで弁部断面の短辺面83a、83aは肉厚のため内外圧差が比較的大きくても短辺面83a、83aは変形することはないが、対向する2つの長辺面83b、83bは肉薄のため外気温の変化に伴う僅かな内外圧差の変動によって内部通路の断面積を拡縮する。すなわち、外気温が低温になると内部気圧が減少するため弁部83の長辺面83b、83bの外壁は内側へ変形し、内部通路の断面は縮小または閉塞され、他方、外気温が高温になると内部気圧が上昇するため弁部83の長辺面83b、83bの外壁は外側へと変形し、内部通路の断面は拡開され、冷却媒体の循環路を効率的に開閉制御し、冷却媒体の循環量を効果的に調整することが可能となる。  Here, since the short side surfaces 83a and 83a of the valve section are thick, the short side surfaces 83a and 83a are not deformed even if the internal / external pressure difference is relatively large, but the two opposing long side surfaces 83b and 83b are Since the wall is thin, the cross-sectional area of the internal passage is enlarged or reduced by a slight change in the internal / external pressure difference accompanying a change in the external temperature. That is, when the outside air temperature becomes low, the internal air pressure decreases, so that the outer walls of the long side surfaces 83b and 83b of the valve portion 83 are deformed inward, and the cross section of the internal passage is reduced or closed, while the outside air temperature becomes high. Since the internal air pressure rises, the outer walls of the long side surfaces 83b and 83b of the valve portion 83 are deformed outward, the cross section of the internal passage is widened, and the circulation path of the cooling medium is efficiently controlled to open and close. It becomes possible to adjust the circulation amount effectively.

実施例2の弁機構は、長辺面83b、83bは外気温の変化に伴う僅かな内外圧差の変動にも容易に作動する要件を満たす構成、形状又は部材であれば本発明の課題を達成することができるので、弁部断面の短辺面83a、83aと長辺面83b、83bは必ずしも同一部材である必要はない。例えば弁部断面の短辺面83a、83aについては可撓性部材に限定することはなく、変形しにくい高剛性の部材によって構成することも可能である。   The valve mechanism according to the second embodiment achieves the object of the present invention as long as the long side surfaces 83b and 83b have a configuration, shape, or member that satisfies the requirement of easily operating even with slight fluctuations in internal and external pressure differences accompanying changes in the outside air temperature. Therefore, the short side surfaces 83a and 83a and the long side surfaces 83b and 83b in the valve section are not necessarily the same member. For example, the short side surfaces 83a and 83a of the valve section are not limited to flexible members, and may be configured by highly rigid members that are difficult to deform.

次に、図3dないし図3gに実施例1および実施例2と同様に可撓性部材により形成された管を使用した弁機構の第3実施例を示す。   Next, FIGS. 3d to 3g show a third embodiment of the valve mechanism using a tube formed of a flexible member, as in the first and second embodiments.

この実施例は、原理、構成は実施例1および実施例2と同様であるが、図3dに示すように気相管又は液相管には偏平形状の気相管8又は液相管9を設け、気相管又は液相管の一部に内部気圧の変動の影響を一層受けやすくするために、弁機構80には、可撓性部材からなる弁部83を設けた。   In this embodiment, the principle and configuration are the same as those in Embodiments 1 and 2, but a flat gas-phase tube 8 or liquid-phase tube 9 is provided in the gas-phase tube or liquid-phase tube as shown in FIG. 3d. The valve mechanism 80 is provided with a valve portion 83 made of a flexible member so that a part of the gas phase pipe or the liquid phase pipe is more easily affected by the fluctuation of the internal atmospheric pressure.

弁部83は、図3eに示す、図3dのA−A'線の断面図のように、断面がほぼ矩形の管状に形成され、その対向する2つの長辺となる面83b、83bの両端をそれぞれ接続する2つの短辺となる面83a、83aが、その中間の折り目83cで内側に折り込まれ、蛇腹様に伸縮可能に構成されている。   The valve part 83 is formed in a substantially rectangular tubular shape as shown in the cross-sectional view along the line AA ′ in FIG. 3d shown in FIG. 3e, and both ends of the opposing long sides 83b and 83b are formed. Two short sides 83a and 83a that connect the two are folded inward at an intermediate fold 83c, and can be expanded and contracted like a bellows.

このため、弁部83は、内外圧差の変動に応じて短辺面83a、83aを変形させて、内部通路の断面積を拡縮する。すなわち、弁部83の内部通路の圧力が外気圧より高いときは、長辺面83b,83bが外側へ押されるので、短辺面83a、83a外側へ伸びて、図3eに示すように内部通路の断面積が拡大される。そして、内部通路の圧力が外気圧より低くなると、長辺面83b,83bが内側に押されるので、短辺面83a、83aが内側に折り込まれて縮小し、内部通路の断面積が図3fに示すよう縮小される。   For this reason, the valve part 83 deform | transforms the short side surfaces 83a and 83a according to the fluctuation | variation of the internal / external pressure difference, and expands / contracts the cross-sectional area of an internal channel | path. That is, when the pressure in the internal passage of the valve portion 83 is higher than the external air pressure, the long side surfaces 83b and 83b are pushed outward, so that the short side surfaces 83a and 83a extend outward, as shown in FIG. The cross-sectional area of is enlarged. When the pressure in the internal passage becomes lower than the external pressure, the long side surfaces 83b and 83b are pushed inward, so that the short side surfaces 83a and 83a are folded inward to reduce the cross-sectional area of the internal passage in FIG. Reduced as shown.

このように、弁部83の短辺面83a、83aの上下端部a、bおよび中間部cを屈折が容易となるように形成して、この短辺面83a、83aを内折れ可能に構成することにより僅かな内外圧差の変動により、弁部を内外に大きく変形させることができ、弁部を容易に開閉することできる。   In this way, the upper and lower end portions a and b and the intermediate portion c of the short side surfaces 83a and 83a of the valve portion 83 are formed so as to be easily refracted, and the short side surfaces 83a and 83a can be folded inwardly. By doing so, the valve portion can be greatly deformed inward and outward by a slight fluctuation in the internal / external pressure difference, and the valve portion can be easily opened and closed.

具体的は、外気温が低温になると、内部通路内の圧力が低下し、外気圧より低くなるため、弁部83の短辺面83a、83aは、長辺面83b、83bが外気圧により内側へ押されて、折り目83c、83cが内側へ折り込まれるように変形されるので、内部通路の断面積が縮小または閉塞される。   Specifically, when the outside air temperature becomes low, the pressure in the internal passage decreases and becomes lower than the outside air pressure. Therefore, the short side surfaces 83a and 83a of the valve portion 83 are inside by the outside air pressure due to the long side surfaces 83b and 83b. Since the folds 83c and 83c are deformed so as to be folded inward, the cross-sectional area of the internal passage is reduced or closed.

他方、外気温が高くなると、内部圧力が上昇し、外気圧より高くなるため、弁部83の長辺面83b、83bが外側に押されることにより、内折可能に構成された弁部83の短辺面83a、83aが外側へ開くので内部通路の断面積が拡大または拡開される。     On the other hand, when the outside air temperature rises, the internal pressure rises and becomes higher than the outside air pressure. Therefore, when the long side surfaces 83b and 83b of the valve portion 83 are pushed outward, the valve portion 83 configured to be internally foldable. Since the short side surfaces 83a and 83a open outward, the cross-sectional area of the internal passage is enlarged or expanded.

このような作動により冷却媒体の循環路を効率的に開閉制御し、冷却媒体の循環量を効果的に調整することが可能となる。  With such an operation, the circulation path of the cooling medium can be efficiently controlled to be opened and closed, and the circulation amount of the cooling medium can be effectively adjusted.

実施例3の弁機構は、外気温の変化に伴う僅かな内外圧差の変動にも容易に作動する要件を満たす構成、形状又は部材であれば本発明の課題を達成することができるので、弁部断面の短辺面83a、83aと長辺面83b、83bは必ずしも同一部材である必要はない。例えば弁部断面の長辺面については可撓性部材に限定することはなく、変形しにくい高剛性の部材によって構成することも可能である。   Since the valve mechanism according to the third embodiment can achieve the object of the present invention as long as it has a configuration, shape, or member that satisfies the requirements of easily operating even a slight fluctuation in internal / external pressure accompanying a change in the outside air temperature, The short side surfaces 83a and 83a and the long side surfaces 83b and 83b of the partial cross section are not necessarily the same member. For example, the long side surface of the cross section of the valve portion is not limited to a flexible member, and can be constituted by a highly rigid member that is not easily deformed.

なお、本発明の冷却媒体開閉手段である弁機構80を構成する可撓性部材からなる弁部83の断面形状は、図3bおよび図3e示した偏平、矩形の管状に限定されるわけではない。   The cross-sectional shape of the valve portion 83 made of a flexible member constituting the valve mechanism 80 which is the cooling medium opening / closing means of the present invention is not limited to the flat and rectangular tube shown in FIGS. 3b and 3e. .

例えば、図3g(1)、図3g(2)の弁部断面図に示すように、図3eで示した内折形状を有する弁部を複数強固に張り合わせることにより複数の屈折部(a〜e)を有するように構成した弁部にあっては、内気圧の変動によって弁部に圧力が加わると、屈折部(a〜e)がその形状に従い蛇腹様に伸縮可能に弁部断面を拡縮変形させ、弁の開閉を容易にすることが可能である。  For example, as shown in the cross-sectional views of the valve portion in FIGS. 3g (1) and 3g (2), a plurality of refracting portions (a to e) When the pressure is applied to the valve part due to fluctuations in the internal pressure, the valve part cross section is expanded and contracted so that the refracting part (ae) can expand and contract like a bellows according to its shape. The valve can be easily opened and closed.

また、図3g(3)の弁部断面図に示すように、弁部断面の一側面に複数の屈折部(a〜m)を設けてなる単体弁部を複数強固に張り合わせ構成した弁部にあっては、内気圧の変動によって弁部に圧力が加わると、屈折部(a〜m)がその形状に従い蛇腹様に伸縮可能に弁部断面を拡縮変形させ、弁の開閉を容易にすることが可能である。  Further, as shown in the valve section sectional view of FIG. 3g (3), a valve section in which a plurality of unit valve sections each having a plurality of refracting sections (am) are provided on one side surface of the valve section is firmly bonded. Then, when pressure is applied to the valve part due to fluctuations in internal pressure, the refracting part (am) expands and contracts the valve part cross section so that it can expand and contract like a bellows according to its shape, making it easy to open and close the valve. Is possible.

更に、図3g(4)の弁部断面図に示すように、屈折部(a〜j)を有する星型形状からなる弁部にあっては、内気圧の変動によって弁部に圧力が加わると、屈折部(a〜j)がその形状に従い弁部断面を拡縮変形させ、弁の開閉を容易にすることが可能である。  Furthermore, as shown in the cross-sectional view of the valve portion in FIG. 3g (4), in the valve portion having a star shape having the refracting portions (a to j), when pressure is applied to the valve portion due to fluctuations in internal pressure. The refracting portions (a to j) can expand and contract the cross section of the valve portion according to the shape thereof, thereby facilitating the opening and closing of the valve.

なお、このような弁部83とフランジ部81、82から構成されている弁機構80と気相管8又は液相管9を結合するには、可撓性部材からなるフランジ部81、82をそれぞれ分割された気相管8または液相管9に合うように成形することにより弁機構80を介して気相管8又は液相管9と結合することができる。  In order to connect the valve mechanism 80 constituted by the valve portion 83 and the flange portions 81 and 82 to the gas phase tube 8 or the liquid phase tube 9, the flange portions 81 and 82 made of a flexible member are used. The gas phase tube 8 or the liquid phase tube 9 can be combined with the gas phase tube 8 or the liquid phase tube 9 via the valve mechanism 80 by forming the gas phase tube 8 or the liquid phase tube 9 so as to be fitted.

つぎに、この発明による冷却媒体開閉手段の第4の実施例を図4に示す。   Next, a fourth embodiment of the cooling medium opening / closing means according to the present invention is shown in FIG.

図4において、84は気相管8に配設した電磁弁である。この電磁弁84自身では、図2に示した可撓性部材により構成した弁機構80と異なり、気相管9の内外の圧力差に応じて作動する機能を有していないため、この電磁弁84を外気温度や、被冷却体2の運転状態に応じて制御するための制御装置85が設けられる。この制御装置85には、外気温度を検知するための外気温度検出器86と、被冷却体の運転状態を検知するための被冷却体温度検出器87が接続される。   In FIG. 4, 84 is an electromagnetic valve disposed in the gas phase pipe 8. Unlike the valve mechanism 80 configured by the flexible member shown in FIG. 2, the electromagnetic valve 84 itself does not have a function that operates according to the pressure difference between the inside and outside of the gas phase pipe 9. A control device 85 is provided for controlling 84 in accordance with the outside air temperature and the operating state of the cooled object 2. The controller 85 is connected to an outside air temperature detector 86 for detecting the outside air temperature and a cooled object temperature detector 87 for detecting the operating state of the cooled object.

被冷却体2が運転されているときは自身が発生する熱により加熱されるため所定の温度より高い温度にあるので、制御装置85は、被冷却体2の温度を監視することによりこれの運転状態を検知することができる。また、制御装置85は、外気温度検出器86の検出信号を監視することにより外気温度が凍結の危険性のある氷点下以下にあるか否かを検知する。   When the object to be cooled 2 is in operation, the controller 85 is heated by the heat generated by itself and is at a temperature higher than a predetermined temperature. Therefore, the controller 85 monitors the temperature of the object to be cooled 2 to operate it The state can be detected. Further, the control device 85 detects whether or not the outside air temperature is below the freezing point where there is a risk of freezing by monitoring the detection signal of the outside air temperature detector 86.

制御装置85は、2つの温度検出器の出力信号を処理して、図5に示すようなフローにより電磁弁を制御する。   The control device 85 processes the output signals of the two temperature detectors and controls the solenoid valve according to the flow shown in FIG.

すなわち、制御装置85は、S1で被冷却体温度検出器87の検出信号を読み取り、S2でこの読み取り信号の大きさから被冷却体2が運転状態にあるか否かを判定する。温度が所定温度以上あり、被冷却体2が運転中であると判定された場合には、S3に進んで電磁弁84に開指令を与える(図4a)。   That is, the control device 85 reads the detection signal of the cooled object temperature detector 87 in S1, and determines whether or not the cooled object 2 is in an operating state from the magnitude of this read signal in S2. When it is determined that the temperature is equal to or higher than the predetermined temperature and the body to be cooled 2 is in operation, the process proceeds to S3 to give an open command to the electromagnetic valve 84 (FIG. 4a).

被冷却体2が運転を停止していると判定されたときは、S4へ進んで、外気温度検出器86の検出信号を読み取る。この読み取った外気温度検出出信号から外気温度が凍結の危険性がある氷点下温度以下にあるか否かを判定し(S5)、氷点下より高い温度のときは、S3へ進み電磁弁84に開指令を与え続ける。氷点下より低い温度のときは、S6へ進んで電磁弁84へ閉指令を与える(図4b)。   When it is determined that the object to be cooled 2 has stopped operating, the process proceeds to S4, and the detection signal of the outside air temperature detector 86 is read. It is determined from the read outside temperature detection output signal whether or not the outside temperature is below the freezing point temperature at which there is a risk of freezing (S5). When the outside temperature is higher than below freezing point, the process proceeds to S3 and the solenoid valve 84 is instructed to open. Keep giving. When the temperature is lower than the freezing point, the process proceeds to S6 to give a close command to the electromagnetic valve 84 (FIG. 4b).

このような制御装置85により、電磁弁84は、被冷却体2が運転されている限り開かれており、蒸発器2で発生した冷却媒体(水)の蒸気が気相管8を通して循環させるので、沸騰冷却装置による被冷却体2の冷却が通常に行なわれる。そして被冷却体2の運転が中止され、かつ外気温度が凍結の危険が生じる氷点下以下の温度にあるときは、電磁弁84は閉じられるので、蒸発器2で発生する蒸気の循環が遮断される。   By such a control device 85, the electromagnetic valve 84 is opened as long as the cooled object 2 is operated, and the vapor of the cooling medium (water) generated in the evaporator 2 is circulated through the gas phase pipe 8. The object to be cooled 2 is normally cooled by the boiling cooling device. When the operation of the cooled object 2 is stopped and the outside air temperature is below the freezing point where the risk of freezing occurs, the solenoid valve 84 is closed, so that the circulation of the steam generated in the evaporator 2 is interrupted. .

このため、冬季の夜間になどの被冷却体2の運転が停止され、外気温度が凍結の危険を生じる氷点下以下に低下したとき、図1における沸騰冷却装置の気相管8が電磁弁84によって閉じられ蒸発器2からの冷却媒体(水)の蒸気の流入が遮断されることになるので、凝縮器15に水蒸気10が流入することなく、蒸発器2において冷媒である純水の蒸発が抑えられ、ドライアウトまでの時間を大幅に延長できる。   For this reason, when the operation of the cooled object 2 is stopped at night in winter and the outside air temperature falls below the freezing point causing the risk of freezing, the vapor phase pipe 8 of the boiling cooling device in FIG. Since the inflow of the vapor of the cooling medium (water) from the evaporator 2 is shut off, the water vapor 10 does not flow into the condenser 15, and the evaporation of pure water as a refrigerant is suppressed in the evaporator 2. The time to dryout can be greatly extended.

運転が再開されると、被冷却体2の温度が上昇し、所定の温度に達したところで、制御装置85から電磁弁54に開指令が与えられることにより、気相管8が開かれるので、蒸発器2で発生された蒸気が凝縮器15へ流通し、被冷却体2の沸騰冷却動作が自動的に再開される。   When the operation is resumed, the temperature of the cooled object 2 rises, and when the predetermined temperature is reached, an opening command is given from the control device 85 to the electromagnetic valve 54, so that the vapor phase pipe 8 is opened. The steam generated in the evaporator 2 flows to the condenser 15, and the boiling cooling operation of the cooled object 2 is automatically restarted.

本発明の構成を示す純水沸騰冷却装置の断面図である。It is sectional drawing of the pure water boiling cooling device which shows the structure of this invention. 本発明に用いる冷却媒体循環促成又は開閉手段の第1の実施例を示す断面図である。It is sectional drawing which shows the 1st Example of the cooling medium circulation promotion or opening / closing means used for this invention. 図2aに示す装置の動作説明に用いる断面図である。It is sectional drawing used for operation | movement description of the apparatus shown in FIG. 2a. 本発明に用いる略偏平形の管状をした気相管又は液相管の第2の実施例である。It is the 2nd Example of the substantially flat tubular gas-phase pipe | tube or liquid phase pipe | tube used for this invention. 本発明に用いる冷却媒体循環促成又は開閉手段の第2の実施例を示すA−A’断面図である。It is A-A 'sectional drawing which shows the 2nd Example of the cooling medium circulation promotion or opening / closing means used for this invention. 図3bに示す装置の動作説明に用いるA−A’断面図である。It is A-A 'sectional drawing used for description of operation | movement of the apparatus shown in FIG. 3b. 本発明に用いるほぼ矩形の管状をした気相管又は液相管の第3の実施例である。It is the 3rd Example of the substantially rectangular tubular gas-phase pipe | tube or liquid phase pipe | tube used for this invention. 本発明に用いる冷却媒体循環促成又は開閉手段の第3の実施例を示すA−A’断面図である。It is A-A 'sectional drawing which shows the 3rd Example of the cooling medium circulation promotion or opening / closing means used for this invention. 図3eに示す装置の動作説明に用いるA−A’断面図である。It is A-A 'sectional drawing used for description of operation | movement of the apparatus shown in FIG. 3e. その他の形状をした冷却媒体循環促成又は開閉手段の断面図である。It is sectional drawing of the cooling-medium circulation promotion or opening / closing means of the other shape. 本発明に用いる冷却媒体循環促成又は開閉手段の第5の実施例を示す構成図である。It is a block diagram which shows the 5th Example of the cooling medium circulation promotion or opening / closing means used for this invention. 図4に示す制御装置の動作フローを示す図である。It is a figure which shows the operation | movement flow of the control apparatus shown in FIG. 従来の純水沸騰冷却装置を示す一部拡大断面図である。It is a partially expanded sectional view which shows the conventional pure water boiling cooling device. 従来のヒータを用いた純水沸騰冷却装置を示す断面図である。It is sectional drawing which shows the pure water boiling cooling device using the conventional heater. 従来のヒートパイプを用いた冷却装置を示す断面図である。It is sectional drawing which shows the cooling device using the conventional heat pipe.

符号の説明Explanation of symbols

1 被冷却体(平形半導体素子)
2 冷却ブロック
3 気泡
4 締め付けボルト
5 スタック
6 密封容器
7 純水
8 気相管
8A 冷却媒体循環促成又は開閉手段
80 弁機構
81 フランジ
82 フランジ
83 弁部
83a 短辺面
83b 長辺面
83c 折り目
84 電磁弁
85 制御装置
86 外気温度検出器
87 被冷却体温度検出器
9 液相管
9A 冷却媒体循環促成又は開閉手段
10 水蒸気
11 純水
12 冷却管
13 フィン
14 冷却風
15 凝縮器
1 Object to be cooled (flat semiconductor element)
2 Cooling block 3 Bubble 4 Clamping bolt 5 Stack 6 Sealed container 7 Pure water 8 Gas phase pipe 8A Cooling medium circulation promotion or opening / closing means 80 Valve mechanism 81 Flange 82 Flange 83 Valve portion 83a Short side surface 83b Long side surface 83c Fold 84 Electromagnetic Valve 85 Control device 86 Outside air temperature detector 87 Cooled object temperature detector 9 Liquid phase tube 9A Cooling medium circulation promotion or switching means 10 Water vapor 11 Pure water 12 Cooling tube 13 Fin 14 Cooling air 15 Condenser

Claims (7)

被冷却体からの熱を受熱し冷却媒体としての純水を液相から気相に変換する蒸発器と、この蒸発器と連通し液相から気相に変換された純水を誘導する気相通路と、この気相通路と連通し気相に変換された純水からの熱を受熱して該純水を気相から液相に変換する凝縮器と、この凝縮器と連通し気相から液相に変換された純水を前記蒸発器へ導戻す液相通路から成る密閉された冷却系を有する純水沸騰冷却装置において、
気相通路又は液相通路の一方又は両方に冷却媒体の循環を抑制又は開閉する冷却媒体開閉手段を備えたことを特徴とする純水沸騰冷却装置。
An evaporator that receives heat from an object to be cooled and converts pure water as a cooling medium from a liquid phase to a gas phase, and a vapor phase that communicates with the evaporator and induces pure water converted from a liquid phase to a gas phase. A passage, a condenser that receives heat from the pure water that has been converted into the gas phase and communicates with the gas phase passage, and converts the pure water from the gas phase to a liquid phase; In a pure water boiling cooling device having a sealed cooling system comprising a liquid phase passage for returning pure water converted to a liquid phase to the evaporator,
A pure water boiling cooling device comprising a cooling medium opening / closing means for suppressing or opening / closing a circulation of a cooling medium in one or both of a gas phase passage and a liquid phase passage.
前記冷却媒体開閉手段は冷却媒体開閉弁であることを特徴とする請求項1に記載の純水沸騰冷却装置。   2. The pure water boiling cooling device according to claim 1, wherein the cooling medium opening / closing means is a cooling medium opening / closing valve. 前記冷却媒体開閉弁は密閉系内外の外気圧と内圧の圧力差で作動する差圧弁であることを特徴とする請求項2に記載の純水沸騰冷却装置。   3. The pure water boiling cooling device according to claim 2, wherein the cooling medium on-off valve is a differential pressure valve that operates by a pressure difference between an external pressure inside and outside the sealed system and an internal pressure. 前記差圧弁の弁部の一部又は全部が可撓性部材で形成された管であることを特徴とする請求項3に記載の純水沸騰冷却装置。   The pure water boiling cooling apparatus according to claim 3, wherein a part or all of the valve portion of the differential pressure valve is a tube formed of a flexible member. 前記差圧弁の弁部の断面は略偏平形状の管であることを特徴とする請求項3又は4に記載の純水沸騰冷却装置。   The pure water boiling cooling apparatus according to claim 3 or 4, wherein a cross section of a valve portion of the differential pressure valve is a substantially flat tube. 前記差圧弁の弁部の断面は内折形状の管であることを特徴とする請求項3又は4に記載の純水沸騰冷却装置。   5. The pure water boiling cooling device according to claim 3, wherein a cross section of a valve portion of the differential pressure valve is an internally folded pipe. 前記冷却媒体開閉弁は電磁弁であることを特徴とする請求項2に記載の純水沸騰冷却装置。   The pure water boiling cooling device according to claim 2, wherein the cooling medium on-off valve is an electromagnetic valve.
JP2004234073A 2003-12-16 2004-08-11 Pure water boiling cooling device with cooling medium opening and closing means Expired - Fee Related JP4353026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234073A JP4353026B2 (en) 2003-12-16 2004-08-11 Pure water boiling cooling device with cooling medium opening and closing means

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003418394 2003-12-16
JP2004154825 2004-05-25
JP2004234073A JP4353026B2 (en) 2003-12-16 2004-08-11 Pure water boiling cooling device with cooling medium opening and closing means

Publications (2)

Publication Number Publication Date
JP2006013408A true JP2006013408A (en) 2006-01-12
JP4353026B2 JP4353026B2 (en) 2009-10-28

Family

ID=35780243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234073A Expired - Fee Related JP4353026B2 (en) 2003-12-16 2004-08-11 Pure water boiling cooling device with cooling medium opening and closing means

Country Status (1)

Country Link
JP (1) JP4353026B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247573A (en) * 2010-04-26 2011-12-08 Gac Corp Cooling system
CN102316705A (en) * 2010-07-01 2012-01-11 株式会社电装 Cooling device
JP2012015376A (en) * 2010-07-01 2012-01-19 Denso Corp Cooling device
JP2013130332A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP2014067820A (en) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp Cooling device, and cooling device-carrying vehicle
US20170102187A1 (en) * 2015-10-13 2017-04-13 International Business Machines Corporation Demand-based charging of a heat pipe
JP2017101888A (en) * 2015-12-03 2017-06-08 健治 大沢 Heat transfer unit for heat radiation
JP2017174881A (en) * 2016-03-22 2017-09-28 日本電気株式会社 Electronic component cooler, electronic component including cooler and electronic component cooling method
US9863712B2 (en) 2015-10-13 2018-01-09 International Business Machines Corporation Demand-based charging of a heat pipe
CN107923716A (en) * 2015-08-06 2018-04-17 日本电产株式会社 Cooling device and motor
US10123457B2 (en) 2015-02-09 2018-11-06 Fujitsu Limited Cooling apparatus and electronic device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247573A (en) * 2010-04-26 2011-12-08 Gac Corp Cooling system
CN102316705A (en) * 2010-07-01 2012-01-11 株式会社电装 Cooling device
JP2012015376A (en) * 2010-07-01 2012-01-19 Denso Corp Cooling device
JP2013130332A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP2014067820A (en) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp Cooling device, and cooling device-carrying vehicle
US10123457B2 (en) 2015-02-09 2018-11-06 Fujitsu Limited Cooling apparatus and electronic device
CN107923716A (en) * 2015-08-06 2018-04-17 日本电产株式会社 Cooling device and motor
US10871331B2 (en) 2015-08-06 2020-12-22 Nidec Corporation Cooling device and motor utilizing a heating element to circulate cooling
EP3333529A4 (en) * 2015-08-06 2019-02-27 Nidec Corporation Cooling device and motor
US9863712B2 (en) 2015-10-13 2018-01-09 International Business Machines Corporation Demand-based charging of a heat pipe
US20180080720A1 (en) * 2015-10-13 2018-03-22 International Business Machines Corporation Demand-based charging of a heat pipe
US20170102187A1 (en) * 2015-10-13 2017-04-13 International Business Machines Corporation Demand-based charging of a heat pipe
US10126070B2 (en) 2015-10-13 2018-11-13 International Business Machines Corporation Demand-based charging of a heat pipe
US10156403B2 (en) 2015-10-13 2018-12-18 International Business Machines Corporation Demand-based charging of a heat pipe
US9835384B2 (en) * 2015-10-13 2017-12-05 International Business Machines Corporation Demand-based charging of a heat pipe
US10295270B2 (en) 2015-10-13 2019-05-21 International Business Machines Corporation Demand-based charging of a heat pipe
US10982907B2 (en) * 2015-10-13 2021-04-20 International Business Machines Corporation Demand-based charging of a heat pipe
JP2017101888A (en) * 2015-12-03 2017-06-08 健治 大沢 Heat transfer unit for heat radiation
JP2017174881A (en) * 2016-03-22 2017-09-28 日本電気株式会社 Electronic component cooler, electronic component including cooler and electronic component cooling method

Also Published As

Publication number Publication date
JP4353026B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4353026B2 (en) Pure water boiling cooling device with cooling medium opening and closing means
JP2011027412A (en) Mixed-phase regulator for managing coolant in refrigerant based high efficiency energy storage and cooling system
KR101921352B1 (en) Overheat protection mechanism for solar thermal collector
US6050102A (en) Heat pump type air conditioning apparatus
WO2020004219A1 (en) Apparatus temperature adjusting device
JP6662462B2 (en) Equipment temperature controller
JP2011080736A (en) Heat exchange device
JP2008116173A (en) Absorption type refrigerating machine
US9574807B2 (en) Thermally driven condenser unit and adsorption heat or refrigeration plant
KR101573800B1 (en) Vacuum Heat Latent Type Heating and Cooling Water Device
JPH06257969A (en) Loop type heat pipe
US20190063803A1 (en) Refrigerant Circuit For A Cooling And/Or Freezing Appliance
JP3732893B2 (en) Control method of absorption chiller / heater
CN113498469B (en) Refrigeration device
KR101163065B1 (en) Absorptive refrigerator
JP3729876B2 (en) Air conditioner low temperature regenerator
JP2004233009A (en) Operation control method of ice storage type water cooler
JP2001124431A (en) Refrigerating and water heater and refrigerator
JPS5838719B2 (en) Netsuden Tatsuouchi
JP2017129315A (en) Refrigeration cycle device
JP2001317835A (en) Absorption refrigeration machine
CN202216401U (en) Fan-free forced convection and direct evaporation expansion type air-source heat pump water heater
JP3448681B2 (en) Absorption type cold heat generator
JP2017030391A (en) Air conditioner for vehicle
JPH1163685A (en) Solar heat utilization hot water supply system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20070315

Free format text: JAPANESE INTERMEDIATE CODE: A625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Effective date: 20090610

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120807

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120807

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees