JP2006007162A - Ion exchange filter and its production method - Google Patents

Ion exchange filter and its production method Download PDF

Info

Publication number
JP2006007162A
JP2006007162A JP2004191159A JP2004191159A JP2006007162A JP 2006007162 A JP2006007162 A JP 2006007162A JP 2004191159 A JP2004191159 A JP 2004191159A JP 2004191159 A JP2004191159 A JP 2004191159A JP 2006007162 A JP2006007162 A JP 2006007162A
Authority
JP
Japan
Prior art keywords
ion exchange
resin
raw material
filter
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004191159A
Other languages
Japanese (ja)
Inventor
Koji Nakanishi
康二 中西
Setsuo Agawa
節雄 阿川
Tatsuzo Sugiura
辰三 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2004191159A priority Critical patent/JP2006007162A/en
Publication of JP2006007162A publication Critical patent/JP2006007162A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion exchange filter and its production method, capable of expecting production flow creation and handling performance improvement of various products, and highly enhancement of filtering performance. <P>SOLUTION: A communicated porous molding, obtained by heating and calcinating a synthetic fiber powder, is impregnated with a raw solution of an ion exchange resin and this raw material is block polymerized in the communicating porous molding to form the ion exchange filter. Water is preferably contained in the raw solution. An amount of water contained, which is not limited in particular, is preferably more than 0 and less than 25 mass parts and more preferably 5-15 mass parts. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イオン交換フィルタおよびその製造方法に関し、詳細には、多種多様の製品の製造フローの創出、ハンドリング性の向上、濾過性能の高効率化などが期待できる、イオン交換フィルタおよびその製造方法に関する。   The present invention relates to an ion exchange filter and a method for producing the same, and more particularly, an ion exchange filter and a method for producing the same that can be expected to create a production flow for a wide variety of products, improve handling properties, and increase efficiency of filtration performance. About.

従来、工場において発生する粉塵を捕集する方法として、その粉塵が製品である場合や作業環境保全のための集塵の場合等に用いられ、ガラス繊維や合成樹脂からなる繊維を編組してなる濾布を袋状に縫製したバグフィルタや、フェルト濾布が用いられていた。しかしながら、耐熱性濾布を組み込んだバグフィルタは、生地織り目が粗く、粉塵の粒子が漏れることがある。また、フェルト濾布では、次第に目詰まりして通気抵抗が大きくなるため、多大な送風機動力が必要となり、捕集した粉塵の逆洗払い落としによって、濾布がリテーナー(濾布形状保持体)との摩擦で損傷する欠点もあった。
上記欠点を克服するものとしては、例えば、特許文献1および2等に、合成樹脂粉末を加熱・焼結することにより得られる連通多孔性成形体(以下、単に樹脂焼結体フィルタまたは樹脂焼結体とも称する)が開示されている。この樹脂焼結体フィルタは、シンターラメラーフィルタ(日鉄鉱業株式会社登録商標)として市販されている。
Conventionally, as a method of collecting dust generated in factories, it is used when the dust is a product or when collecting dust for the preservation of the work environment, and braided fibers made of glass fiber or synthetic resin. Bag filters and felt filter cloths that were sewn into filter bags were used. However, a bag filter incorporating a heat-resistant filter cloth has a rough fabric texture, and dust particles may leak. In addition, the felt filter cloth is gradually clogged and the ventilation resistance is increased, so a great amount of blower power is required. There was also a drawback of being damaged by friction.
As a means for overcoming the above drawbacks, for example, in Patent Documents 1 and 2, etc., a continuous porous molded body obtained by heating and sintering synthetic resin powder (hereinafter simply referred to as resin sintered body filter or resin sintering). Also referred to as the body). This resin sintered body filter is commercially available as a sintered lamellar filter (registered trademark of Nippon Steel Mining Co., Ltd.).

特公昭64−5934号公報Japanese Patent Publication No. 64-5934 特公平2−39926号公報JP-B-2-39926

また、前述の樹脂焼結体フィルタは、現状の集塵、粉体回収等の固気分離に止まらず、新たな用途への適用が期待され、調査、開発がなされている。これらの調査、開発の一環として、樹脂焼結体フィルタの高機能化を目指し、樹脂焼結体フィルタへのイオン交換能付与が期待された。イオン交換能は、純水製造、脱塩、飲料精製や重金属の回収など多岐にわたる用途に用いられているためである。イオン交換能を持った樹脂焼結体フィルタが開発できれば、樹脂焼結体フィルタが有する性能との組合せによる、多種多様の製品の製造フローが考えられ、ハンドリング性の向上、性能の高効率化など多くのメリットが期待できる。
すなわち、本発明は、多種多様の製品の製造フローの創出、ハンドリング性の向上、濾過性能の高効率化などが期待できる、イオン交換フィルタおよびその製造方法を提供することである。
In addition, the above-described resin sintered body filter is not limited to solid-gas separation such as current dust collection and powder recovery, and is expected to be applied to new applications, and has been investigated and developed. As part of these investigations and developments, the aim was to increase the functionality of the sintered resin filter, and it was expected that ion exchange capacity could be imparted to the sintered resin filter. This is because the ion exchange capacity is used for various purposes such as pure water production, desalting, beverage refining and heavy metal recovery. If a resin-sintered filter with ion exchange capability can be developed, a production flow of a wide variety of products can be considered in combination with the performance of the resin-sintered filter, improving handling, increasing performance efficiency, etc. Many benefits can be expected.
That is, the present invention is to provide an ion exchange filter and a method for producing the same that can be expected to create a production flow for a wide variety of products, improve handling properties, and increase the efficiency of filtration performance.

本発明者らは、樹脂焼結体フィルタにイオン交換能を付与すべく鋭意検討を重ねた結果、本発明に到達した。
即ち、本発明は以下の通りである。
(1)合成樹脂粉末を加熱・焼結することにより得られる連通多孔性成形体にイオン交換樹脂の原料溶液を含浸させ、該連通多孔性成形体内で該原料を塊状重合反応させて得られたイオン交換フィルタ。
(2)前記原料溶液が水を含むものである前記(1)のイオン交換フィルタ。
(3)合成樹脂粉末を加熱・焼結することにより得られる連通多孔性成形体にイオン交換樹脂の原料溶液を含浸させ、該連通多孔性成形体内で該原料を塊状重合反応さるイオン交換フィルタの製造方法。
(4)前記原料溶液に水を含ませる前記(3)のイオン交換フィルタの製造方法。
The inventors of the present invention have arrived at the present invention as a result of intensive studies to impart ion exchange ability to the resin sintered body filter.
That is, the present invention is as follows.
(1) Obtained by impregnating a continuous porous molded body obtained by heating and sintering synthetic resin powder with an ion exchange resin raw material solution, and subjecting the raw material to a bulk polymerization reaction in the continuous porous molded body Ion exchange filter.
(2) The ion exchange filter according to (1), wherein the raw material solution contains water.
(3) An ion exchange filter in which a continuous porous molded body obtained by heating and sintering synthetic resin powder is impregnated with a raw material solution of an ion exchange resin, and the raw material undergoes bulk polymerization reaction in the continuous porous molded body Production method.
(4) The method for producing an ion exchange filter according to (3), wherein water is included in the raw material solution.

本発明者らは、樹脂焼結体フィルタにイオン交換能を付与すべく、当初、樹脂焼結体の樹脂表面へイオン交換性基をグラフト結合して付与することを試みた。しかし、この場合、樹脂焼結体の樹脂表面へイオン交換性基を付与することはできたが、その量は少なく、満足できるものではなかった。
そこで、本発明者らは、樹脂焼結体にイオン交換樹脂の原料溶液を含浸させ、該樹脂焼結体孔内で該原料を塊状重合反応させることにより、反応熱が発生し、その反応熱で、イオン交換樹脂と樹脂焼結体が融着して、イオン交換樹脂が樹脂焼結体内部にまで強固に沈着されることを見出した。
なお、通常、イオン交換樹脂の合成は、懸濁重合法により行なわれるが、樹脂焼結体の孔内で重合反応させる必要があり、そのためには懸濁重合法では不適であった。よって、本発明においては、イオン交換樹脂が塊状重合法により重合させることにより、樹脂焼結体内部にまで強固に沈着されることができた。
In order to impart ion exchange capability to the resin sintered body filter, the inventors of the present invention tried to impart ion exchange groups by graft bonding to the resin surface of the resin sintered body. However, in this case, an ion-exchange group could be imparted to the resin surface of the resin sintered body, but the amount was small and not satisfactory.
Therefore, the present inventors impregnate a resin sintered body with a raw material solution of an ion exchange resin and cause the raw material to undergo a bulk polymerization reaction within the pores of the resin sintered body, thereby generating reaction heat. Thus, it was found that the ion exchange resin and the resin sintered body are fused and the ion exchange resin is firmly deposited even inside the resin sintered body.
In general, the synthesis of the ion exchange resin is performed by a suspension polymerization method. However, it is necessary to cause a polymerization reaction in the pores of the resin sintered body, which is not suitable for the suspension polymerization method. Therefore, in the present invention, the ion exchange resin can be firmly deposited even inside the resin sintered body by being polymerized by the bulk polymerization method.

本発明のイオン交換フィルタは、合成樹脂粉末を加熱・焼結することにより得られる連通多孔性成形体にイオン交換樹脂の原料溶液を含浸させ、該連通多孔性成形体内で該原料を塊状重合反応させて得られたことにより、イオン交換樹脂が樹脂焼結体内部にまで強固に沈着されたものとなり、十分なイオン交換能を有するものとなった。   The ion exchange filter of the present invention is obtained by impregnating a continuous porous molded body obtained by heating and sintering synthetic resin powder with a raw material solution of an ion exchange resin, and subjecting the raw material to a bulk polymerization reaction in the continuous porous molded body. As a result, the ion exchange resin was firmly deposited even inside the resin sintered body and had sufficient ion exchange ability.

以下に本発明のイオン交換フィルタおよびその製造方法について詳細に説明する。
本発明のイオン交換フィルタは、合成樹脂粉末を加熱・焼結することにより得られる連通多孔性成形体にイオン交換樹脂の原料溶液を含浸させ、該連通多孔性成形体内で該原料を塊状重合反応させて得られることを特徴とする。
The ion exchange filter of the present invention and the manufacturing method thereof will be described in detail below.
The ion exchange filter of the present invention is obtained by impregnating a continuous porous molded body obtained by heating and sintering synthetic resin powder with a raw material solution of an ion exchange resin, and subjecting the raw material to a bulk polymerization reaction in the continuous porous molded body. It is characterized by being obtained.

本発明で用いるイオン交換樹脂の原料とは、イオン交換樹脂の塊状重合反応に必要なモノマー成分、重合開始剤等からなるものである。
モノマー成分としては、イオン交換基と成り得る基を含むものがあれば特に限定されない。
イオン交換基と成り得る基を含むモノマー成分としては、特に限定されないが、アクリル酸、メタクリル酸、アクリレート、メタクリレート、無水マレイン酸等の不飽和基を有するジカルボン酸の無水物、スチレン等が挙げられる。アクリレート、メタクリレート、無水マレイン酸等を用いる場合には、重合後に加水分解を行う必要がある。これに対して、アクリル酸、メタクリル酸を用いる場合は、イオン交換性基である−COOH基を元々有しているので、重合後の加水分解は不要である。すなわち、製造工程が削減できる。
The raw material of the ion exchange resin used in the present invention is composed of monomer components necessary for the bulk polymerization reaction of the ion exchange resin, a polymerization initiator, and the like.
The monomer component is not particularly limited as long as it contains a group that can be an ion exchange group.
Although it does not specifically limit as a monomer component containing the group | base which can become an ion exchange group, The anhydride of dicarboxylic acid which has unsaturated groups, such as acrylic acid, methacrylic acid, acrylate, methacrylate, maleic anhydride, styrene, etc. are mentioned. . When using acrylate, methacrylate, maleic anhydride, etc., it is necessary to carry out hydrolysis after polymerization. On the other hand, when acrylic acid or methacrylic acid is used, hydrolysis after polymerization is unnecessary because it originally has a —COOH group which is an ion exchange group. That is, the manufacturing process can be reduced.

また、イオン交換基と成り得る基を含むモノマー成分を必須として、さらに、イオン交換基と成り得る基を含まないモノマー成分を用いてもよい。このイオン交換基と成り得る基を含まないモノマー成分は、重合で得られるイオン交換樹脂の構造に寄与する。例えば、ジビニルベンゼン(DVB)等は、重合性基を2つ持っているため、このDVBをモノマー成分として重合で得られるイオン交換樹脂は、3次元網目構造を持つことができる。
モノマー成分としては、アクリル酸−DVBの組合せが、重合で得られるイオン交換樹脂のイオン交換能が大きくなるので、好ましい。
In addition, a monomer component containing a group that can be an ion exchange group is essential, and a monomer component that does not contain a group that can be an ion exchange group may be used. The monomer component that does not contain a group that can be an ion exchange group contributes to the structure of the ion exchange resin obtained by polymerization. For example, since divinylbenzene (DVB) has two polymerizable groups, an ion exchange resin obtained by polymerization using this DVB as a monomer component can have a three-dimensional network structure.
As the monomer component, a combination of acrylic acid and DVB is preferable because the ion exchange ability of the ion exchange resin obtained by polymerization is increased.

本発明で用いるイオン交換樹脂原料の重合開始剤としては、懸濁重合に使用できるものであれば特に限定されない。
具体的には、ベンゾイルパーオキサイド(BPO)等が挙げられる。
The polymerization initiator for the ion exchange resin raw material used in the present invention is not particularly limited as long as it can be used for suspension polymerization.
Specific examples include benzoyl peroxide (BPO).

また、本発明で用いるイオン交換樹脂の原料溶液には、上記のモノマー成分および重合開始剤等の他に、水を含有していることが好ましい。該原料溶液に水が含有されていることにより、イオン交換樹脂原料の塊状重合反応による重合熱の過剰の発生を抑え、過剰の重合熱による樹脂焼結体フィルタの変形を抑えることができる。   Moreover, it is preferable that the raw material solution of the ion exchange resin used in the present invention contains water in addition to the monomer component and the polymerization initiator. By containing water in the raw material solution, excessive generation of polymerization heat due to the bulk polymerization reaction of the ion exchange resin raw material can be suppressed, and deformation of the resin sintered body filter due to excessive polymerization heat can be suppressed.

イオン交換樹脂の原料溶液中の水の含有量としては特に限定されないが、0質量部よりも多く25質量部未満であることが好ましい。5〜15質量部がより好ましい。0質量部であると、イオン交換樹脂原料の塊状重合反応による重合熱の発生が過剰となり樹脂焼結体フィルタが変形することがある。また25質量部以上であると、樹脂焼結体フィルタに十分な量のイオン交換樹脂が沈着されないことがある。   Although it does not specifically limit as content of the water in the raw material solution of an ion exchange resin, It is preferable that it is more than 0 mass parts and less than 25 mass parts. 5-15 mass parts is more preferable. If it is 0 part by mass, the heat of polymerization due to the bulk polymerization reaction of the ion-exchange resin raw material becomes excessive, and the resin sintered body filter may be deformed. When the amount is 25 parts by mass or more, a sufficient amount of ion exchange resin may not be deposited on the sintered resin filter.

上記イオン交換樹脂の原料溶液を樹脂焼結体に含浸させた後、該イオン交換樹脂の原料を塊状重合反応させるが、これは、イオン交換樹脂原料溶液を含浸させた樹脂焼結体を、使用した重合開始剤の活性化温度下に置くことを意味し、さらに詳細には、70〜110℃、好ましくは80〜100℃の乾燥機(室)内に置く操作等が挙げられる。   After impregnating the ion-exchange resin raw material solution into the resin sintered body, the ion-exchange resin raw material is subjected to a bulk polymerization reaction, which uses a resin sintered body impregnated with the ion-exchange resin raw material solution. This means that the polymerization initiator is placed under the activation temperature of the polymerization initiator, and more specifically, an operation of placing in a dryer (room) at 70 to 110 ° C., preferably 80 to 100 ° C., and the like.

本発明のイオン交換フィルタにおける、イオン交換樹脂の沈着(固定)量としては、特に限定されないが、イオン交換樹脂の沈着後のイオン交換フィルタに対し25〜40質量%が好ましく、より好ましくは30〜35質量%である。25質量%未満では、イオン交換樹脂の沈着量が少なく、フィルタのイオン交換能が不十分となることがあり、40質量%以上では、樹脂焼結体の内孔が塞がれ、通気度が無くなり、イオン交換フィルタにおけるイオン交換樹脂の表面積が小さくなりイオン交換能が不十分となることがある。   The ion exchange resin deposition (fixation) amount in the ion exchange filter of the present invention is not particularly limited, but is preferably 25 to 40% by mass, more preferably 30 to 30% by mass with respect to the ion exchange filter after the ion exchange resin deposition. 35% by mass. If the amount is less than 25% by mass, the amount of ion exchange resin deposited is small, and the ion exchange capacity of the filter may be insufficient. If the amount is 40% by mass or more, the inner hole of the resin sintered body is blocked, and the air permeability is low. In some cases, the surface area of the ion exchange resin in the ion exchange filter is reduced, resulting in insufficient ion exchange capacity.

本発明のイオン交換フィルタにおけるイオン交換樹脂の沈着(固定)量を調節する手法としては、特に限定されないが、樹脂焼結体に含浸させるイオン交換樹脂原料溶液量を調節する方法等が挙げられる。
但し、イオン交換フィルタにおけるイオン交換樹脂の沈着(固定)量は、樹脂焼結体に含浸させるイオン交換樹脂原料溶液量のみによって決定されるものではなく、イオン交換樹脂の沈着前の樹脂焼結体の通気度(空隙率)、イオン交換樹脂原料溶液の水含有量、重合雰囲気等も関与する。しかし、イオン交換樹脂の沈着前の樹脂焼結体の通気度(空隙率)、イオン交換樹脂原料溶液の水含有量、重合雰囲気等は、樹脂焼結体に含浸させるイオン交換樹脂原料溶液量に比べて、イオン交換フィルタにおけるイオン交換樹脂の沈着(固定)量に及ぼす影響が少ないため、これらのイオン交換樹脂の沈着前の樹脂焼結体の通気度(空隙率)、イオン交換樹脂原料溶液の水含有量、重合雰囲気等を考慮しながら、樹脂焼結体に含浸させるイオン交換樹脂原料溶液量を適宜決定することが好ましい。
The method for adjusting the deposition (fixation) amount of the ion exchange resin in the ion exchange filter of the present invention is not particularly limited, and examples thereof include a method for adjusting the amount of the ion exchange resin raw material solution impregnated in the resin sintered body.
However, the amount of deposition (fixation) of the ion exchange resin in the ion exchange filter is not determined only by the amount of the ion exchange resin raw material solution impregnated in the resin sintered body, but the resin sintered body before deposition of the ion exchange resin. The air permeability (porosity), the water content of the ion exchange resin raw material solution, the polymerization atmosphere, and the like are also involved. However, the air permeability (porosity) of the resin sintered body before deposition of the ion exchange resin, the water content of the ion exchange resin raw material solution, the polymerization atmosphere, etc. are the same as the amount of ion exchange resin raw material solution impregnated in the resin sintered body. Compared with the ion exchange resin deposition (fixation) amount in the ion exchange filter, the air permeability (porosity) of the resin sintered body before the deposition of these ion exchange resins, the ion exchange resin raw material solution It is preferable to appropriately determine the amount of the ion-exchange resin raw material solution to be impregnated into the resin sintered body in consideration of the water content, the polymerization atmosphere, and the like.

本発明のイオン交換フィルタに用いられる樹脂焼結体としては、合成樹脂粉末を加熱・焼結することにより得られたものであれば特に限定されないが、特公昭64−5934号公報、特表昭61−502381号公報、特開2002−336619号公報、特開2003−126627号公報等に記載のもの等が挙げられ、具体的には、ポリエチレンを樹脂成分の主成分として含有する樹脂組成物の粒子同士(以下「樹脂組成物粒子」という)を粒子表面で融着させて得たものが好ましい。   The resin sintered body used in the ion exchange filter of the present invention is not particularly limited as long as it is obtained by heating and sintering synthetic resin powder. Examples thereof include those described in JP-A No. 61-502381, JP-A No. 2002-336619, JP-A No. 2003-126627, and the like. Specifically, the resin composition containing polyethylene as a main component of the resin component Those obtained by fusing particles (hereinafter referred to as “resin composition particles”) on the particle surface are preferred.

樹脂成分としてポリエチレンを主成分とする樹脂組成物粒子は、ポリエチレン粒子単独である場合、ポリエチレン粒子とポリエチレン以外の他の樹脂の粒子との混合粒子である場合、及びポリエチレンとポリエチレン以外の他の樹脂との溶融混合物の粒子である場合を含む。なかでも、ポリエチレン粒子単独である場合及びポリエチレン粒子とポリエチレン以外の他の樹脂の粒子との混合粒子である場合が好ましい。そして、樹脂組成物粒子の樹脂成分は、ポリエチレンが該樹脂成分中に50質量%以上、好ましくは65質量%以上、あるいは100質量%占める。   The resin composition particles mainly composed of polyethylene as the resin component are polyethylene particles alone, mixed particles of polyethylene particles and other resin particles other than polyethylene, and other resins other than polyethylene and polyethylene. In the case of particles of a molten mixture. Especially, the case where it is a polyethylene particle independent and the case where it is the mixed particle of the particle | grains of polyethylene resin and other resin other than polyethylene are preferable. And as for the resin component of resin composition particle | grains, polyethylene occupies 50 mass% or more in this resin component, Preferably it is 65 mass% or more, or 100 mass%.

上記樹脂組成物粒子の樹脂成分であるポリエチレンとしては、エチレンの単独重合体、エチレンと少量の炭素数3〜10のα−オレフィンとの結晶性共重合体等が挙げられる。上記ポリエチレンは、デカリン溶媒中、135℃で測定された粘度数が300〜2500ml/gであるものが好ましい。粘度数が上記範囲のポリエチレンは、重量平均分子量Mwが100万を越す、いわゆる超高分子量ポリエチレンを包含する。超高分子量ポリエチレン粒子あるいは超高分子量ポリエチレンを含有する樹脂粒子は、本発明のイオン交換フィルタの樹脂焼結体を製造する際に、融点以上に加熱してもその流動性が低いため、粒子形状を長時間保持する。このため、上記樹脂焼結体を容易に製造することができ、極めて好ましく用いられる。なお、重量平均分子量はゲルパーミエーションクロマトグラフィー法によりポリスチレン換算値として測定された値である。   Examples of polyethylene that is a resin component of the resin composition particles include ethylene homopolymers, crystalline copolymers of ethylene and a small amount of an α-olefin having 3 to 10 carbon atoms. The polyethylene preferably has a viscosity number of 300 to 2500 ml / g measured at 135 ° C. in a decalin solvent. Polyethylene having a viscosity number in the above range includes so-called ultra-high molecular weight polyethylene having a weight average molecular weight Mw exceeding 1 million. Ultra high molecular weight polyethylene particles or resin particles containing ultra high molecular weight polyethylene have a low fluidity even when heated to the melting point or higher when producing the resin sintered body of the ion exchange filter of the present invention. Hold for a long time. For this reason, the said resin sintered compact can be manufactured easily and it is used very preferably. In addition, a weight average molecular weight is the value measured as a polystyrene conversion value by the gel permeation chromatography method.

ポリエチレンはエチレンの重合あるいはエチレンと少量の炭素数3〜10のα−オレフィンとの共重合により得ることができる。また、ポリエチレンは粒子あるいはペレットとして市販されており、これらを用いることができる。
樹脂成分としてポリエチレンを主成分とする樹脂組成物粒子は、ポリエチレン以外のその他の樹脂、例えばポリプロピレン等を含むことができる。上記その他の樹脂は、粒子としてポリエチレン粒子と混合されあるいはポリエチレンと溶融混合、粉砕されて、樹脂組成物粒子の樹脂成分を構成する。その他の樹脂がポリプロピレンの場合、プロピレンの重合あるいはプロピレンと少量の他のオレフィン(エチレン等)との共重合により粒子として得ることができる。またポリプロピレンは、粒子状あるいはペレット状で市販されており、これらを用いることができる。樹脂組成物粒子がポリエチレンとポリエチレン以外の他の樹脂との溶融混合物の粒子である場合、両者を溶融混合後、機械粉砕等の手段により、所望の粒径の樹脂組成物粒子に調製することができる。
Polyethylene can be obtained by polymerization of ethylene or copolymerization of ethylene with a small amount of an α-olefin having 3 to 10 carbon atoms. Polyethylene is commercially available as particles or pellets, and these can be used.
The resin composition particles containing polyethylene as a main component as the resin component can contain other resins other than polyethylene, such as polypropylene. The other resin is mixed with polyethylene particles as particles, or melt-mixed with polyethylene and pulverized to constitute the resin component of the resin composition particles. When the other resin is polypropylene, it can be obtained as particles by polymerization of propylene or copolymerization of propylene and a small amount of other olefins (such as ethylene). Polypropylene is commercially available in the form of particles or pellets, and these can be used. When the resin composition particles are particles of a molten mixture of polyethylene and another resin other than polyethylene, the both can be prepared into resin composition particles having a desired particle diameter by means such as mechanical pulverization after melt mixing. it can.

樹脂組成物粒子は、平均粒径が50〜500μmであることが好ましく、より好ましくは100〜300μmである。平均粒径が50μm未満の場合は、フィルタエレメントに目詰まり部分が多くなり通気抵抗が大きくなる。一方、平均粒径が500μmより大きい場合は、微細粉塵の目抜けが生じ、かつ強度が低下する。   The resin composition particles preferably have an average particle size of 50 to 500 μm, more preferably 100 to 300 μm. When the average particle size is less than 50 μm, the filter element has more clogged portions and the ventilation resistance is increased. On the other hand, when the average particle size is larger than 500 μm, fine dust is lost and the strength is lowered.

本発明のイオン交換フィルタの概略(断面)を図1に示す。本発明のイオン交換フィルタ1は、樹脂焼結体を構成している合成樹脂粉末2の周囲を覆うようにイオン交換樹脂3が沈着しているものである。このイオン交換フィルタ1は、適度な空隙4を有する(通気度がある)ことが好ましい。空隙4が少ない(通気度が低い)と、イオン交換処理対象の気体または液体が本イオン交換フィルタ1の内部に入りこむことができず、即ち、イオン交換フィルタ1内部に沈着したイオン交換樹脂3を有効に利用することができず、結果的に、イオン交換能が低いものとなる。   An outline (cross section) of the ion exchange filter of the present invention is shown in FIG. In the ion exchange filter 1 of the present invention, the ion exchange resin 3 is deposited so as to cover the periphery of the synthetic resin powder 2 constituting the resin sintered body. The ion exchange filter 1 preferably has an appropriate gap 4 (has air permeability). When the gap 4 is small (the air permeability is low), the gas or liquid to be ion exchange treated cannot enter the inside of the ion exchange filter 1, that is, the ion exchange resin 3 deposited inside the ion exchange filter 1. It cannot be used effectively, resulting in a low ion exchange capacity.

これに対し、空隙4が多い(通気度が高い)と、イオン交換処理対象の気体または液体が本イオン交換フィルタ1の内部に入りこむことができ、即ち、イオン交換フィルタ1内部に沈着したイオン交換樹脂3を有効に利用することができ、結果的に、イオン交換能が高いものとなる。しかし、空隙4が多い(通気度が高い)ということは、イオン交換樹脂3の沈着量が少ないという場合も有り得る。また、本発明のイオン交換フィルタ1の空隙率(通気度)は、イオン交換樹脂3沈着前の樹脂焼結体自体の空隙率(通気度)にも依存する。よって、本発明のイオン交換フィルタ1の好ましい空隙率(通気度)範囲を、一概に特定することは難しい。   On the other hand, when there are many voids 4 (the air permeability is high), the gas or liquid to be ion exchange treated can enter the inside of the ion exchange filter 1, that is, the ion exchange deposited inside the ion exchange filter 1. The resin 3 can be used effectively, and as a result, the ion exchange ability is high. However, there are cases where the amount of deposition of the ion exchange resin 3 is small because the gap 4 is large (the air permeability is high). Moreover, the porosity (air permeability) of the ion exchange filter 1 of the present invention also depends on the porosity (air permeability) of the resin sintered body itself before the deposition of the ion exchange resin 3. Therefore, it is difficult to generally specify a preferable porosity (air permeability) range of the ion exchange filter 1 of the present invention.

本発明のイオン交換フィルタは、イオン交換処理に使用した後、適当な再生処理により再生することも可能である。例えば、弱酸性陽イオン交換樹脂を沈着させたものであれば、1N塩酸に浸漬する等して再生することができる。   The ion exchange filter of the present invention can be regenerated by an appropriate regeneration process after being used for the ion exchange process. For example, if a weakly acidic cation exchange resin is deposited, it can be regenerated by immersing it in 1N hydrochloric acid.

以下に本発明を実施例によって更に詳細に説明するが、勿論本発明の範囲は、これらによって限定されるものではない。
1.イオン交換樹脂の原料溶液の調整
アクリル酸とジビニルベンゼン(DVB)とベンゾイルパーオキサイド(BPO)を90:10:5(アクリル酸:DVB:BPO)の割合で配合したものに、水を0、5、15、25質量部添加したものを、それぞれ、原料溶液A、B、C、Dとした。
The present invention will be described in more detail with reference to the following examples, but of course the scope of the present invention is not limited thereto.
1. Preparation of ion exchange resin raw material solution A mixture of acrylic acid, divinylbenzene (DVB), and benzoyl peroxide (BPO) in a ratio of 90: 10: 5 (acrylic acid: DVB: BPO) was mixed with 0,5 water. , 15 and 25 parts by mass were added as raw material solutions A, B, C and D, respectively.

2.樹脂焼結体の作製
ポリエチレン粒子(平均粒径=200μm(ふるい分け法による)、融点=135℃)100質量部をテストピース用金型(外形寸法:85mm×85mm、厚み:3.0mm)に振動を与えながら充填した。次いでこの金型を加熱炉に入れ、炉内温度240℃で3時間加熱処理し、シート状の連通多孔質成形体(樹脂焼結体)を得た。なお、得られる樹脂焼結体の大きさ及び質量等は、厳密には個々に異なるため、後述の各種試験では、これらの厳密な値を採用することがある。
2. Production of resin sintered body 100 parts by mass of polyethylene particles (average particle size = 200 μm (by sieving method), melting point = 135 ° C.) are vibrated in a test piece mold (external dimensions: 85 mm × 85 mm, thickness: 3.0 mm). Filled while giving. Subsequently, this metal mold | die was put into the heating furnace, and it heat-processed at the furnace temperature of 240 degreeC for 3 hours, and obtained the sheet-like continuous porous molded object (resin sintered compact). In addition, since the magnitude | size, mass, etc. of the resin sintered compact obtained differ strictly from each other, these exact values may be adopted in various tests described later.

3.樹脂焼結体へのイオン交換樹脂原料溶液の含浸及び塊状重合反応
上記2で得られた樹脂焼結体へ、上記1で得られたイオン交換樹脂原料溶液を含浸させる。
具体的には、イオン交換樹脂原料溶液A〜Dを下記表1の「含浸量率(%)」となるように滴下含浸させた。なお「含浸量率(%)」は以下の式により算出する。
3. Impregnation of resin-sintered body with ion-exchange resin raw material solution and bulk polymerization reaction The resin-sintered body obtained in 2 above is impregnated with the ion-exchange resin raw material solution obtained in 1 above.
Specifically, the ion exchange resin raw material solutions A to D were impregnated dropwise so as to have the “impregnation amount rate (%)” in Table 1 below. The “impregnation amount rate (%)” is calculated by the following formula.

含浸量率(%)
=(原料溶液含浸量/原料溶液含浸前の樹脂焼結体質量)×100
Impregnation rate (%)
= (Material solution impregnation amount / resin sintered body mass before material solution impregnation) × 100

次いで、イオン交換樹脂原料溶液を含浸させた樹脂焼結体を100℃に設定した乾燥機内に置き塊状重合反応させた。乾燥機内の置き時間は塊状重合反応が完全に終了するまでの時間とした。よって個々の試料によって異なる。
各試料の「樹脂沈着量率(%)」、並びに、変形、目詰り(通気性)の有無、およびその他の可否を下記表1に示す。
なお「樹脂沈着量率(%)」は以下の式により算出する。
Next, the resin sintered body impregnated with the ion exchange resin raw material solution was placed in a dryer set at 100 ° C. and subjected to bulk polymerization reaction. The placing time in the dryer was the time until the bulk polymerization reaction was completed. Therefore, it varies depending on individual samples.
Table 1 below shows the “resin deposition rate (%)” of each sample, the presence or absence of deformation, clogging (breathability), and other possibilities.
The “resin deposition rate (%)” is calculated by the following formula.

樹脂沈着量率(%)
=(イオン交換樹脂沈着量/原料溶液含浸前の樹脂焼結体質量)×100
Resin deposition rate (%)
= (Deposition amount of ion exchange resin / mass of resin sintered body before impregnation of raw material solution) × 100

また、目詰り(通気性)の有無は、JIS L 1096 8.27.1 A の通気度試験(フラジール方法)にて観察した。
その通気度値が0.5cm/cm・sec以上を「通気性有り」、0〜0〜0.065cm/cm・secを「通気性僅か」、05cm/cm・secを「通気性無し」とした。
Moreover, the presence or absence of clogging (breathability) was observed by the air permeability test (fragile method) of JIS L 1096 8.27.1 A.
When the air permeability value is 0.5 cm 3 / cm 2 · sec or more, “there is air permeability”, 0 to 0 to 0.065 cm 3 / cm 2 · sec is “a little air permeability”, and 05 cm 3 / cm 2 · sec is “No breathability”.

Figure 2006007162
Figure 2006007162

4.イオン交換能の測定
上記3.で得られたイオン交換フィルタ試料のうち、試料番号(4)、(7)、(8)、(11)、(12)についてイオン交換能を測定した。
なお、比較のため市販のアクリル酸系イオン交換樹脂(粒状、三菱化学(株)製WK40)をコントロール試料(試料番号(c))、として用いた。また、試料番号(4)、(7)、(8)、(11)、(12)に沈着されているイオン交換樹脂量および試料番号(c)のイオン交換樹脂量を下記表2に示す。
4). Measurement of ion exchange capacity 3. Among the ion exchange filter samples obtained in the above, ion exchange capacity was measured for sample numbers (4), (7), (8), (11), and (12).
For comparison, a commercially available acrylic acid ion exchange resin (granular, WK40 manufactured by Mitsubishi Chemical Corporation) was used as a control sample (sample number (c)). The amount of ion exchange resin deposited on sample numbers (4), (7), (8), (11), and (12) and the amount of ion exchange resin of sample number (c) are shown in Table 2 below.

Figure 2006007162
Figure 2006007162

イオン交換能は、具体的には以下の手法で測定した。
(1)各試料を250mlのN/5−NaOH溶液に室温で44時間浸漬し、その上澄液25mlをN/10−HCl溶液で中和滴定し、その中和滴定量A(ml)を測定した。なお、この中和滴定における指示薬としては、メチルオレンジを用いた。
(2)また、試料未浸漬のN/5−NaOH溶液25mlを、同様にN/10−HCl溶液で中和滴定し、その中和滴定量B(ml)を測定した。 その中和滴定量Bは49.30mlであった。
Specifically, the ion exchange capacity was measured by the following method.
(1) Each sample was immersed in 250 ml of N / 5-NaOH solution at room temperature for 44 hours, 25 ml of the supernatant was neutralized with N / 10-HCl solution, and the neutralization titration A (ml) was determined. It was measured. Note that methyl orange was used as an indicator in this neutralization titration.
(2) Further, 25 ml of N / 5-NaOH solution not immersed in the sample was similarly subjected to neutralization titration with an N / 10-HCl solution, and the neutralization titer B (ml) was measured. The neutralization titer B was 49.30 ml.

(3)各試料における中和滴定量Bと中和滴定量Aの差(B−A差量(ml))を求め、次いで「イオン交換樹脂単位量当りの滴定量差(ml/g)」を求めた。さらに、コントロール試料(試料番号(c))の「イオン交換樹脂単位量当りの滴定量差」を100%とした場合の、各試料の「イオン交換樹脂単位量当りの滴定量差」の比率を求め、「イオン交換能」とした。 (3) The difference between the neutralization titration amount B and the neutralization titration amount A (B-A difference amount (ml)) in each sample is obtained, and then “the titration difference per unit amount of ion-exchange resin (ml / g)” Asked. Furthermore, the ratio of the “titer difference per unit amount of ion exchange resin” for each sample when the “titer difference per unit amount of ion exchange resin” of the control sample (sample number (c)) is assumed to be 100%. It was determined as “ion exchange capacity”.

各試料における中和滴定量A(ml)、B−A差量(ml)、イオン交換樹脂単位量当りの滴定量(ml/g)及びイオン交換能(%)を下記表3に示す。   Table 3 below shows the neutralization titer A (ml), B-A difference (ml), titer per unit amount of ion exchange resin (ml / g) and ion exchange capacity (%) in each sample.

Figure 2006007162
Figure 2006007162

上記表3から、試料(7)および(11)のイオン交換能が試料(c)よりも優れていることがわかった。   From Table 3 above, it was found that the ion exchange capacities of the samples (7) and (11) were superior to those of the sample (c).

なお、本明細書の実施例では、弱酸性陽イオン交換樹脂であるアクリル酸系イオン交換樹脂を沈着させたものについて詳細な検討を行ったが、弱酸性陽イオン交換樹脂以外についても、同様な塊状重合の手法で樹脂焼結体に、沈着させることが可能であると考えられる。例えば、強酸性陽イオン交換樹脂の場合は、スチレンとDVBの塊状重合反応により形成された共重合体層にクロロ硫酸を反応させてスルホン化すれば良い。また、強塩基性陰イオン交換樹脂の場合、スチレンとDVBの塊状重合反応により形成された共重合体層にLewis酸触媒を用いてクロルメチルエーテルでクロルメチル化する。このクロルメチル化三次元ポリマーを3級アミンと反応させることにより4級アンモニウムを付加すれば良い。弱塩基性陰イオン交換樹脂の場合は、エチルアクリレートとDVBの塊状重合反応により形成された共重合体層に、ジエチレントリアミンを吸収させて加熱させることにより3級アミンを付加すれば良いと考えられる。   In addition, in the Example of this specification, although detailed examination was performed about what deposited acrylic acid type ion exchange resin which is weak acid cation exchange resin, it is the same also about other than weak acid cation exchange resin. It is thought that it can be deposited on a resin sintered body by a bulk polymerization method. For example, in the case of a strongly acidic cation exchange resin, the copolymer layer formed by bulk polymerization reaction of styrene and DVB may be sulfonated by reacting with chlorosulfuric acid. In the case of a strongly basic anion exchange resin, the copolymer layer formed by the bulk polymerization reaction of styrene and DVB is chloromethylated with chloromethyl ether using a Lewis acid catalyst. Quaternary ammonium may be added by reacting this chloromethylated three-dimensional polymer with a tertiary amine. In the case of a weakly basic anion exchange resin, it is considered that a tertiary amine may be added by absorbing diethylenetriamine and heating the copolymer layer formed by bulk polymerization reaction of ethyl acrylate and DVB.

本発明のイオン交換フィルタは、多種多様の製品の製造フローの創出、イオン交換フィルタとしてのハンドリング性の向上、樹脂焼結体フィルタとして濾過性能の高効率化などが期待できる。
また、本発明のイオン交換フィルタは、イオン交換処理に使用した後、適当な再生処理により再生することもできる。
The ion exchange filter of the present invention can be expected to create a production flow for a wide variety of products, to improve handling properties as an ion exchange filter, and to improve filtration efficiency as a resin sintered body filter.
The ion exchange filter of the present invention can be regenerated by an appropriate regeneration process after being used for the ion exchange process.

本発明のイオン交換フィルタの概略(断面)図である。It is a schematic (cross section) figure of the ion exchange filter of this invention.

符号の説明Explanation of symbols

1 イオン交換フィルタ
2 合成樹脂粉末
3 イオン交換樹脂
4 空隙
1 Ion exchange filter 2 Synthetic resin powder 3 Ion exchange resin 4 Void

Claims (4)

合成樹脂粉末を加熱・焼結することにより得られる連通多孔性成形体にイオン交換樹脂の原料溶液を含浸させ、該連通多孔性成形体内で該原料を塊状重合反応させて得られたイオン交換フィルタ。   An ion exchange filter obtained by impregnating a continuous porous molded body obtained by heating and sintering a synthetic resin powder with a raw material solution of an ion exchange resin, and subjecting the raw material to a bulk polymerization reaction in the continuous porous molded body . 前記原料溶液が水を含むものである請求項1記載のイオン交換フィルタ。   The ion exchange filter according to claim 1, wherein the raw material solution contains water. 合成樹脂粉末を加熱・焼結することにより得られる連通多孔性成形体にイオン交換樹脂の原料溶液を含浸させ、該連通多孔性成形体内で該原料を塊状重合反応さるイオン交換フィルタの製造方法。   A process for producing an ion exchange filter, wherein a continuous porous molded body obtained by heating and sintering synthetic resin powder is impregnated with a raw material solution of an ion exchange resin, and the raw material is subjected to a bulk polymerization reaction in the continuous porous molded body. 前記原料溶液に水を含ませる請求項3記載のイオン交換フィルタの製造方法。   The method for producing an ion exchange filter according to claim 3, wherein water is contained in the raw material solution.
JP2004191159A 2004-06-29 2004-06-29 Ion exchange filter and its production method Pending JP2006007162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191159A JP2006007162A (en) 2004-06-29 2004-06-29 Ion exchange filter and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191159A JP2006007162A (en) 2004-06-29 2004-06-29 Ion exchange filter and its production method

Publications (1)

Publication Number Publication Date
JP2006007162A true JP2006007162A (en) 2006-01-12

Family

ID=35774978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191159A Pending JP2006007162A (en) 2004-06-29 2004-06-29 Ion exchange filter and its production method

Country Status (1)

Country Link
JP (1) JP2006007162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255351A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Anion exchange membrane for salt production and method for producing the same
JP2008255350A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Cation exchange membrane for salt production and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255351A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Anion exchange membrane for salt production and method for producing the same
JP2008255350A (en) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan Cation exchange membrane for salt production and method for producing the same

Similar Documents

Publication Publication Date Title
JP5252653B2 (en) Method for manufacturing sintered body
KR101026573B1 (en) Moisture absorptive and desorptive ultrafine particles and a product using said ultrafine particles
US4110425A (en) Form retaining hydrogen-storing material
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
EP2903714B1 (en) Porous separation article
HU213523B (en) Process for producing crosslinked copolymers predominantly comprising units formed from methacrylic anhydride and process using said copolymers for adsorption, ion exchange or affinity chromatography and adsorbing of proteins
JP6659389B2 (en) Polyolefin porous sintered compact
JP5435708B2 (en) Metal adsorbent sintered porous body and method for producing the same
JP2003112060A (en) Ion adsorbing resin and ion adsorbing porous material
JP5292571B2 (en) Method for producing organic porous body, organic porous column and organic porous body
JP2006007162A (en) Ion exchange filter and its production method
JP2008045906A (en) Affinity beads and manufacturing method thereof
JPH0321390A (en) Removal of heavy metal ion in water
JP2015226867A (en) Aldehydes removal material, filter for removing aldehydes and aldehydes removal method
CN115920863A (en) Composite material for gas adsorption separation and preparation method thereof
CN112261981B (en) Fastening media device with thermoplastic polymer binder system
JP2016141756A (en) Porous molding, gelatinous molding and filter
JP3212055B2 (en) Plastic sintered filter
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2000263040A (en) Adsorbent molded body and its production
JP7373836B2 (en) Porous adsorption medium, solid phase extraction cartridge equipped with porous adsorption medium, and method for producing porous adsorption medium
JP3529863B2 (en) Plastic sintered filter
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JPS625442B2 (en)
JP6139962B2 (en) Graft copolymer of ethylene-vinyl alcohol copolymer, process for producing the same, and metal adsorbent using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

RD04 Notification of resignation of power of attorney

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Effective date: 20090210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090722

Free format text: JAPANESE INTERMEDIATE CODE: A02