JP2006000985A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2006000985A
JP2006000985A JP2004181121A JP2004181121A JP2006000985A JP 2006000985 A JP2006000985 A JP 2006000985A JP 2004181121 A JP2004181121 A JP 2004181121A JP 2004181121 A JP2004181121 A JP 2004181121A JP 2006000985 A JP2006000985 A JP 2006000985A
Authority
JP
Japan
Prior art keywords
tool
groove
gash
tool body
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004181121A
Other languages
Japanese (ja)
Other versions
JP4088271B2 (en
Inventor
Kenji Watanabe
健志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NS Tool Co Ltd
Original Assignee
NS Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Tool Co Ltd filed Critical NS Tool Co Ltd
Priority to JP2004181121A priority Critical patent/JP4088271B2/en
Publication of JP2006000985A publication Critical patent/JP2006000985A/en
Application granted granted Critical
Publication of JP4088271B2 publication Critical patent/JP4088271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a much more efficient thrust cutting operation by improving the chip removability in bottom edge cutting without deteriorating the stiffness of a tool. <P>SOLUTION: An endmill 1 has a plurality of helicoidal chip removal grooves 3 formed on the outer periphery on the tip end side of a tool body 2. Outside peripheral cutting edges 6 are formed at the ridges where the groove wall surfaces 4 of the respective chip removal grooves 3 facing to the rotational direction of the tool intersect the outer peripheral surface of the tool body 2. In addition, end cutting edges 8 are arranged on the tip end surface of the tool body 2 toward the center of the tool body 2 so as to be connected with the respective outside peripheral cutting edges 6. Gashes 10 forming the rake surfaces 12 of the respective end cutting edges 8 are arranged so as to be connected with the tip end portions of the chip removal grooves 3 arranged in the axial direction of the tool body 2. The gashes 10 are formed, in a side view, such that groove widths B gradually increase with the depth in the axial direction of the tool body 2 because the rear wall surfaces 11b on the rear side in the rotational direction of the tool are directed to the twisted direction of the outside peripheral cutting edges 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、工作機械を使用してワークに穴や凹所を突込み加工により形成するためのエンドミル、ドリル等の切削工具に関する。   The present invention relates to a cutting tool such as an end mill or a drill for forming a hole or a recess in a workpiece by piercing using a machine tool.

工具本体の外周に複数の螺旋状の切屑排出溝が周方向に間隔をあけて形成され、該各切屑排出溝に沿って前記工具本体の外周面に外周刃が形成されると共に、該各外周刃に連続され工具本体の中心方向へ向けられた長さの異なる複数の底刃が前記工具本体の先端に設けられ、各底刃のすくい面を形成するギャッシュ溝が前記切屑排出溝の工具本体の軸方向における先端部に連続して設けられてなるエンドミルにおいて、前記各ギャッシュ溝の工具本体の軸に垂直な面とのなす傾斜角度であるギャッシュ角をそれぞれ所定値に設定することにより、全てのギャッシュ溝の工具本体の外周側の軸方向における深さが一定値となるようにし、これにより、各底刃に係る切屑排出経路の容積をほぼ均等にして、切屑の排出性が良く、高い切削性能が得られ、底刃の欠損を生じ難くしたエンドミルが知られている(例えば、特許文献1参照)。
また、同様な目的を達成するために、工具本体の先端外周に設けた螺旋状の外周刃を形成するリードすくい面の延長上に底刃が交差されて設けられ、ギャッシュ溝の溝底面が前記外周刃に沿う方向において、工具本体の外周側を向く凸面状に形成され、かつ前記リードすくい面と前記ギャッシュ溝との交わる境界部が円弧面に形成され、前記凸面状のギャッシュ溝に倣って切屑が工具本体の外周方向へ流れ易くするように構成したエンドミルも知られている(例えば、特許文献2参照)。
実開平7−40021号公報 特開平10−217024号公報
A plurality of spiral chip discharge grooves are formed on the outer periphery of the tool body at intervals in the circumferential direction, and outer peripheral blades are formed on the outer peripheral surface of the tool body along the respective chip discharge grooves. A plurality of bottom blades having different lengths that are continuous with the blades and directed toward the center of the tool body are provided at the tip of the tool body, and a gash groove that forms a rake face of each bottom blade is the tool body of the chip discharge groove In the end mill continuously provided at the tip portion in the axial direction of each of the above, by setting each of the gash angles that are inclined angles with the surface perpendicular to the axis of the tool body of each gash groove to a predetermined value, The depth in the axial direction on the outer peripheral side of the tool body of the gash groove is a constant value, so that the volume of the chip discharge path related to each bottom blade is made substantially uniform, and the chip discharge performance is good and high. Cutting performance is obtained Is, there is known the end mill hardly occurs a defect of the end cutting edge (e.g., see Patent Document 1).
In order to achieve the same purpose, a bottom blade is provided on the extension of the lead rake face that forms a spiral outer peripheral blade provided on the outer periphery of the tip of the tool body, and the groove bottom surface of the gash groove In the direction along the outer peripheral edge, a convex surface facing the outer peripheral side of the tool body is formed, and a boundary portion where the lead rake surface and the gash groove intersect is formed in an arc surface, following the convex gash groove An end mill is also known that is configured to facilitate the flow of chips toward the outer periphery of the tool body (see, for example, Patent Document 2).
Japanese Utility Model Publication No. 7-40021 Japanese Patent Laid-Open No. 10-217024

しかしながら、前者のエンドミルは、前記ギャッシュ溝の工具本体の外周側の軸方向における深さが工具の直径の0.10〜0.14倍程度であって極めて浅い上に、ギャッシュ溝の底面が一定角度の傾斜面に形成されているので、工具先端部における各底刃に係る切屑排出経路の容積を十分に大きくすることができないと共に、ギャッシュ溝と切屑排出溝との接続が滑らかでなく、したがって、各底刃で生成される切屑の外部への排出性を十分に高めることができず、高能率な突込み加工を行える切削工具としての要求に十分に応えるものではない。また、前者のエンドミルの場合、前記ギャッシュ溝を前記各底刃に沿いかつ工具本体の軸方向に沿って形成しているので、切屑ポケットを大きくしようとしてギャッシュ溝を深くすると、外周刃の逃げ面側を深く切り欠くこととなり、工具刃数が増すほど工具剛性が低下するおそれがある。   However, in the former end mill, the depth of the gash groove in the axial direction on the outer peripheral side of the tool body is about 0.10 to 0.14 times the diameter of the tool and is extremely shallow, and the bottom surface of the gash groove is constant. Since it is formed on the inclined surface of the angle, the volume of the chip discharge path related to each bottom blade at the tool tip cannot be sufficiently increased, and the connection between the gash groove and the chip discharge groove is not smooth, and therefore However, it is not possible to sufficiently enhance the discharge of chips generated by each bottom blade to the outside, and it does not sufficiently meet the demand as a cutting tool capable of performing highly efficient plunging. Also, in the case of the former end mill, the gash grooves are formed along the bottom blades and along the axial direction of the tool body. The side is notched deeply, and the tool rigidity may decrease as the number of tool blades increases.

また、後者のエンドミルは、前記ギャッシュ溝が、一定の溝幅で切屑排出溝方向へ向けられ底面が凸面状に形成されて、底刃で生成された切屑が切屑排出溝側へ流れ易くなっているが、ギャッシュ角が最大45°程度であることからギャッシュ溝の深さが最大で工具の直径の0.5倍位までであるので、前者のエンドミルよりも切屑ポケットを大きく採ることができるが、より高能率な突込み加工を行う際に多量に生成される切屑を排出するには、未だ切屑ポケットの大きさが不足する問題がある。また、前記ギャッシュ溝のリードすくい面側の溝面がリードすくい面と底刃のすくい面とに沿って共通に設けられているので、底刃で生成された切屑がリードすくい面を擦って外周刃側に流れて該外周刃を損耗させるおそれがある。   In the latter end mill, the gash groove is directed toward the chip discharge groove with a constant groove width, and the bottom surface is formed in a convex shape so that the chips generated by the bottom blade can easily flow toward the chip discharge groove side. However, since the depth of the gash groove is up to about 0.5 times the diameter of the tool because the gash angle is about 45 ° at the maximum, a chip pocket can be taken larger than the former end mill. There is still a problem that the size of the chip pocket is still insufficient for discharging chips generated in a large amount when performing a more efficient plunging process. Further, since the groove surface on the lead rake face side of the gash groove is provided in common along the lead rake face and the rake face of the bottom blade, the chips generated by the bottom blade rub the lead rake face and There is a risk of flowing to the blade side and damaging the outer peripheral blade.

本発明は、上記事情に鑑みてなされたものであって、工具剛性を損なわず、突込み加工時の切屑排出性を向上させ、より高能率な突込み加工を行うことができる切削工具を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a cutting tool capable of performing a more efficient plunging process without impairing the rigidity of the tool, improving the chip discharging performance during the plunging process. With the goal.

本発明は、前記課題を解決するために、以下の点を特徴としている。
すなわち、本発明の請求項1に係る切削工具は、工具本体の先端側外周に複数の螺旋状に捻れた切屑排出溝が周方向に間隔をあけて形成され、該各切屑排出溝の工具回転方向を向く溝壁面と前記工具本体の外周面との交差稜線部に外周刃が形成されると共に、工具本体の先端には前記各外周刃に連続する底刃が工具本体の中心方向へ向けて設けられ、各底刃のすくい面を形成するギャッシュ溝が前記切屑排出溝の工具本体の軸方向における先端部に連続して設けられてなる切削工具において、前記ギャッシュ溝が、側面視で、工具本体の軸方向における深さが増すにつれて、工具回転方向を向く後側壁面を前記外周刃の捻れ方向へ指向されることにより、溝幅が徐々に大きくなるように形成されていることを特徴としている。
The present invention is characterized by the following points in order to solve the above problems.
That is, in the cutting tool according to claim 1 of the present invention, a plurality of helically twisted chip discharge grooves are formed on the outer periphery on the tip side of the tool body at intervals in the circumferential direction, and the tool rotation of each chip discharge groove is performed. An outer peripheral blade is formed at the intersecting ridge line portion between the groove wall surface facing the direction and the outer peripheral surface of the tool body, and a bottom blade continuous with each outer peripheral blade is directed toward the center of the tool body at the tip of the tool body. A cutting tool provided with a gash groove that forms a rake face of each bottom blade provided continuously at a tip portion in the axial direction of the tool body of the chip discharge groove. As the depth in the axial direction of the main body increases, the groove width is gradually increased by directing the rear side wall surface facing the tool rotation direction in the twist direction of the outer peripheral blade. Yes.

請求項2に係る切削工具は、請求項1に記載の切削工具において、前記ギャッシュ溝の工具回転方向を向く後側壁面が、側面視で、工具回転方向を向く凸曲面に形成されていることを特徴としている。
請求項3に係る切削工具は、請求項1または2に記載の切削工具において、前記ギャッシュ溝の工具回転方向を向く後側壁面が、前記外周刃の捻れ方向に指向する広角を、前記底刃のすくい面から5°以上で前記外周刃の捻れ角の範囲に設定されていることを特徴としている。
The cutting tool according to claim 2 is the cutting tool according to claim 1, wherein a rear side wall surface of the gasche groove facing the tool rotation direction is formed as a convex curved surface facing the tool rotation direction in a side view. It is characterized by.
The cutting tool according to claim 3 is the cutting tool according to claim 1 or 2, wherein the rear side wall surface of the gash groove facing the tool rotation direction has a wide angle directed to the twisting direction of the outer peripheral blade. It is characterized in that it is set within the range of the twist angle of the outer peripheral blade at 5 ° or more from the rake face.

請求項4に係る切削工具は、請求項1〜3のいずれかに記載の切削工具において、前記ギャッシュ溝が、工具本体の軸方向における深さを、工具直径の0.5倍を超え1.5倍以下の範囲に設定されていることを特徴としている。
請求項5に係る切削工具は、請求項1〜4のいずれかに記載の切削工具において、前記ギャッシュ溝が、そのギャッシュ角を20°〜70°の範囲に設定され、溝底面を工具本体の外周側を向く凸曲面に形成されていることを特徴としている。
The cutting tool according to a fourth aspect is the cutting tool according to any one of the first to third aspects, wherein the gash groove exceeds the depth in the axial direction of the tool body by more than 0.5 times the tool diameter. It is characterized by being set in a range of 5 times or less.
The cutting tool according to claim 5 is the cutting tool according to any one of claims 1 to 4, wherein the gash groove has a gash angle set in a range of 20 ° to 70 °, and the groove bottom surface of the tool main body. It is formed in the convex curved surface which faces the outer peripheral side.

本発明によれば、以下の優れた効果を奏する。
すなわち、請求項1に係る切削工具によれば、ギャッシュ溝が、側面視で、工具本体の軸方向における先端からの深さが増すにつれて溝幅を徐々に外周刃の捻れ方向へ指向して大きくなるように形成されているので、切屑排出溝と、底刃で生成された切屑を前記切屑排出溝へ送り出す切屑排出経路とを滑らかに接続することができると共に、前記切屑排出経路を、大きく確保することができる。
したがって、高能率な突込み加工によって前記底刃で切屑が多量に生成される場合であっても、該切屑が前記切屑排出経路に詰まったり、前記外周刃に絡みついたりすることなく、前記切屑排出経路を無理なく通過して外部に円滑に排出させることができるので、前記外周刃、ワークの加工面に損傷を生じさせることがなく、かつ工具剛性を損なわずに、高能率な突込み加工を確実に行うことができる。
The present invention has the following excellent effects.
That is, according to the cutting tool of the first aspect, the gash groove increases in the groove width gradually toward the twist direction of the outer peripheral blade as the depth from the tip in the axial direction of the tool body increases in a side view. The chip discharge groove and the chip discharge path for sending the chip generated by the bottom blade to the chip discharge groove can be smoothly connected, and the chip discharge path can be secured largely. can do.
Therefore, even when a large amount of chips are generated by the bottom blade by high-efficiency plunging processing, the chips discharge path without clogging the chip discharge path or entangled with the outer peripheral blade. Can be smoothly discharged and discharged to the outside without causing damage to the outer peripheral blade and the work surface of the workpiece, and ensuring high-efficiency piercing without impairing tool rigidity. It can be carried out.

また、請求項2に係る切削工具によれば、ギャッシュ溝の工具回転方向を向く後側壁面が凸曲面に形成されていることにより、前記ギャッシュ溝の後側壁面と底刃で生成されて切屑排出溝へ流れる切屑との擦れを緩和することができて、該切屑の流れを良好にすることができる。
また、請求項3に係る切削工具によれば、ギャッシュ溝の工具回転方向を向く後側壁面が、外周刃の捻れ方向に指向する広角を適切な角度に設定することができて、切屑排出経路の切屑排出溝への接続を一層滑らかにして、底刃で生成された切屑の切屑排出溝への流れを一層良好に行わせることができる。
Further, according to the cutting tool according to claim 2, the rear side wall surface facing the tool rotation direction of the gash groove is formed into a convex curved surface, so that the chips are generated by the rear side wall surface and the bottom blade of the gash groove. Rubbing with the chips flowing into the discharge groove can be reduced, and the flow of the chips can be improved.
According to the third aspect of the present invention, the rear side wall surface facing the tool rotation direction of the gash groove can set the wide angle directed in the twist direction of the outer peripheral blade to an appropriate angle, and the chip discharge path The connection to the chip discharge groove can be made smoother, and the flow of the chip generated by the bottom blade to the chip discharge groove can be made better.

また、請求項4に係る切削工具によれば、ギャッシュ溝の工具本体の軸方向における深さを適切に設定することができて、底刃で生成された切屑を切屑排出溝側へ送り出す切屑排出経路を十分に大きくすることができる。
また、請求項5に係る切削工具によれば、ギャッシュ溝のギャッシュ角を適切な角度に設定し、かつ溝底面を工具本体の外周側を向く凸曲面に形成することにより、工具先端側の工具剛性を損なうことなく、底刃で生成された切屑を一層円滑に切屑排出溝側へ送り出して外部へ排出させることができる。
Moreover, according to the cutting tool which concerns on Claim 4, the depth in the axial direction of the tool main body of a gash groove can be set appropriately, and the chip discharge which sends out the chip | tip produced | generated with the bottom blade to the chip discharge groove side The route can be made sufficiently large.
According to the cutting tool of claim 5, the tool on the tool tip side is formed by setting the gash angle of the gash groove to an appropriate angle and forming the groove bottom surface as a convex curved surface facing the outer peripheral side of the tool body. The chips generated by the bottom blade can be more smoothly sent to the chip discharge groove side and discharged outside without impairing the rigidity.

以下、本発明の一実施の形態に係る切削工具について図面を参照して説明する。
図1〜図3において、1は本発明の一実施の形態に係る切削工具としてのエンドミルを示す。このエンドミル1は、超硬合金等の硬質材料で形成された円柱状の工具本体2を備えている。該工具本体2の先端側には、その先端(工具先端)から基端側に向かって螺旋状に右に捻れた複数条(図示の例では3条)の切屑排出溝3,3,3が、工具本体2の周方向に等間隔をあけて形成されている。そして、前記各切屑排出溝3の工具回転方向(図2、図3で矢印T方向)を向く溝壁面4と、前記工具本体2の先端側外周面5(図3参照)との交差稜線部には、前記切屑排出溝3に沿って螺旋状に右に捻れた複数枚(図示の例では3枚)の外周刃6,6,6が形成されている。各外周刃6、6,6の工具回転方向Tの後方側には、第1の逃げ面7aと逃げ部7bが順に設けられている。
Hereinafter, a cutting tool according to an embodiment of the present invention will be described with reference to the drawings.
1 to 3, reference numeral 1 denotes an end mill as a cutting tool according to an embodiment of the present invention. The end mill 1 includes a cylindrical tool body 2 made of a hard material such as cemented carbide. On the distal end side of the tool body 2, there are a plurality of (three in the illustrated example) chip discharge grooves 3, 3, and 3 spirally twisted to the right from the distal end (tool distal end) toward the proximal end side. The tool body 2 is formed at equal intervals in the circumferential direction. And the intersection ridgeline part of the groove wall surface 4 which faces the tool rotation direction (arrow T direction in FIG. 2, FIG. 3) of each said chip | tip discharge groove | channel 3, and the front end side outer peripheral surface 5 (refer FIG. 3) of the said tool main body 2 A plurality of (three in the illustrated example) outer peripheral blades 6, 6, 6 that are spirally twisted to the right along the chip discharge groove 3 are formed. A first flank 7a and a flank 7b are provided in this order on the rear side of the outer peripheral blades 6, 6, 6 in the tool rotation direction T.

そして、前記溝壁面4における工具本体2の軸方向の先端には、工具本体2の先端面との交差稜線部に、前記工具本体2の外周側で前記各外周刃6,6,6に連続し、工具本体2の外周から中心方向へ向けて延長した複数枚(図示の例では3枚)の底刃8,8,8が形成されている。なお、各底刃8,8,8のうちの1つは、その内端部が、工具本体2の中心C付近まで達する長刃に形成され、他の2つの底刃8,8は、略同一の長さで長刃より短い短刃に形成されている。各底刃8,8,8の工具回転方向Tの後方側には、第1、第2の先端逃げ面9a,9bがこの順に設けられ、第2の先端逃げ面9bが前記切屑排出溝3に連絡されている。なお、各底刃8,8,8は、長刃と短刃の長さの異なるものとせずに、全て同一の長さとしてもよい。   The groove wall surface 4 is continuously connected to the outer peripheral blades 6, 6, 6 on the outer peripheral side of the tool body 2, at the tip of the tool body 2 in the axial direction on the groove wall surface 4. A plurality of (three in the illustrated example) bottom blades 8, 8, 8 extending from the outer periphery of the tool body 2 toward the center are formed. One of the bottom blades 8, 8, 8 is formed as a long blade whose inner end reaches the vicinity of the center C of the tool body 2, and the other two bottom blades 8, 8 are substantially The short blade is shorter than the long blade with the same length. First and second tip flank surfaces 9a and 9b are provided in this order on the rear side of each bottom blade 8, 8, and 8 in the tool rotation direction T, and the second tip flank surface 9b is formed in the chip discharge groove 3. Have been contacted. In addition, each bottom blade 8,8,8 may be made into the same length, without making the length of a long blade and a short blade different.

また、前記切屑排出溝3における工具本体2の軸方向の先端側には、各底刃8,8,8に沿って(図2では長刃とした底刃8に沿った部分だけ見えている)、先端に行くに従って工具本体2の中心C側へ切り込まれた凹部となって、前記各底刃8,8,8にすくい面を形成するギャッシュ溝10、10,10が設けられている。該ギャッシュ溝10は、図2に示すように、側面視(図2)で、前記工具本体2の軸方向における工具先端(底刃8)からの長さ(深さ)が増すにつれて溝幅Bが、狭い溝幅B1から広い溝幅B2まで徐々に前記外周刃6,6,6の捻れ方向へ広がる(大きくなる)ように形成されている。前記ギャッシュ溝10の前側壁面11aに対向して工具回転方向Tを向く後側壁面11bは、側面視で、先端が前記すくい面12に接続され基端側が前記外周刃6の捻れ方向に沿うように延長して形成されている。そして、ギャッシュ溝10の溝底10aが、図4、図5に示すように、横断面が円弧状の形成されている。   Further, at the tip end side in the axial direction of the tool body 2 in the chip discharge groove 3, only the portion along the bottom blade 8 which is a long blade in FIG. ), The recesses cut into the center C side of the tool body 2 as it goes to the tip, and the bottom blades 8, 8, 8 are provided with gash grooves 10, 10, 10 that form rake faces. . As shown in FIG. 2, the gash groove 10 has a groove width B as the length (depth) from the tool tip (bottom blade 8) in the axial direction of the tool body 2 increases in a side view (FIG. 2). However, it is formed so as to gradually expand (become large) in the twist direction of the outer peripheral blades 6, 6, 6 from the narrow groove width B1 to the wide groove width B2. The rear side wall surface 11b facing the front side wall surface 11a of the gash groove 10 and facing the tool rotation direction T has a distal end connected to the rake face 12 and a proximal end side along the twist direction of the outer peripheral blade 6 in a side view. It is formed to extend. And the groove bottom 10a of the gash groove | channel 10 is formed in circular arc shape in the cross section as shown in FIG. 4, FIG.

そして、前記各ギャッシュ溝10の工具本体2の先端(底刃8)からの軸方向における長さ(深さ)Lは、工具直径をDとすると、0.5Dを超え1.5D以下の範囲に設定されている。また、前記ギャッシュ溝10の後側壁面11bの前記外周刃6,6,6の捻れ方向への広がり角度(以下「広角」と称する)θ2は、前記底刃8のすくい角θ1を有するすくい面12から5°以上で前記外周刃6の捻れ角度の範囲に設定されている。前記ギャッシュ溝の10の後側壁面11bは、ギャッシュ溝10の内側(工具回転方向T)を向く凸曲面13に形成されている。該凸曲面13は、凸円弧面のほかにそれに近い凸弧状面、その他の種々の形状の凸曲面を含むものとする。   And the length (depth) L in the axial direction from the front-end | tip (bottom blade 8) of the tool main body 2 of each said gash groove | channel 10 is a range exceeding 0.5D and 1.5D or less, when a tool diameter is set to D. Is set to Further, the spread angle (hereinafter referred to as “wide angle”) θ2 of the rear side wall surface 11b of the gash groove 10 in the twist direction of the outer peripheral blades 6, 6, 6 is a rake surface having the rake angle θ1 of the bottom blade 8. The twist angle of the outer peripheral blade 6 is set within a range of 12 to 5 ° or more. A rear side wall surface 11b of the gash groove 10 is formed as a convex curved surface 13 facing the inner side of the gash groove 10 (tool rotation direction T). The convex curved surface 13 includes a convex arc surface close to the convex arc surface and various other shapes of convex curved surfaces.

さらに、各ギャッシュ溝10は、図6に示すように、そのギャッシュ角(工具本体2の先端面(底刃8の面)とのなす角度)αが、20°〜70°の範囲に設定され、先端部のギャッシュ角度αの最小値を20°として、ギャッシュ溝10の工具本体2の軸方向における深さが増すにつれて、徐々にギャッシュ角度αを変化させて、前記後側壁面11bに沿う方向の縦断面(溝底10aの縦断面)におけるギャッシュ面10bが、工具本体2の外周側を向く凸曲面に形成されて、前記ギャッシュ溝10の工具本体2の径方向における深さを、工具本体2の先端側から基端側に行くに従って徐々に浅くしていって、前記切屑排出溝3の底部に滑らかに接続(連続)されるようになっている。先端部のギャッシュ角度αは最大値が70°まで許容し得るが、なるべく50°以内にするのが工具剛性を確保する上でより好ましい。   Further, as shown in FIG. 6, each gash groove 10 has a gash angle (an angle formed with the tip surface of the tool body 2 (surface of the bottom blade 8)) α in a range of 20 ° to 70 °. A direction along the rear side wall surface 11b by gradually changing the gash angle α as the depth of the gash groove 10 in the axial direction of the tool body 2 increases with the minimum value of the gash angle α of the tip portion being 20 °. Is formed in a convex curved surface facing the outer peripheral side of the tool body 2, and the depth of the gash groove 10 in the radial direction of the tool body 2 is determined by the tool body. 2 gradually decreases from the distal end side toward the proximal end side, and is smoothly connected (continuously) to the bottom of the chip discharge groove 3. The maximum value of the gash angle α of the tip can be allowed to be 70 °, but it is more preferable to keep it within 50 ° as much as possible in order to ensure the rigidity of the tool.

前記のように構成された実施の形態に係るエンドミル1は、工具本体2を工具ホルダ等に取り付けてマシニングセンタ等の工作機械の主軸に装着され、該主軸の回転で工具本体2の軸線Sの回りに回転されると共に、前記軸線S方向の先端側への切削送りを与えられて、ワークの所定箇所に穴あけ加工等の突込み加工を行う。その際、工具本体2の先端の各底刃8,8,8によってワークが切削されて生成する切屑は、前記ギャッシュ溝10で構成される切屑排出経路内を工具本体2の外周方向へ移動しながら基端側に流れた後、前記切屑排出溝3内を通ってワークの加工穴から外側へ排出される。   The end mill 1 according to the embodiment configured as described above is attached to a spindle of a machine tool such as a machining center by attaching a tool body 2 to a tool holder or the like, and rotates around the axis S of the tool body 2 by rotation of the spindle. And a cutting feed to the tip side in the direction of the axis S is given to perform a piercing process such as a drilling process at a predetermined position of the workpiece. At that time, chips generated by cutting the workpiece by the bottom blades 8, 8, 8 at the tip of the tool body 2 move in the chip discharge path formed by the gash grooves 10 in the outer peripheral direction of the tool body 2. However, after flowing to the base end side, it passes through the chip discharge groove 3 and is discharged to the outside from the machining hole of the workpiece.

この場合、前記各ギャッシュ溝10が、側面視で、前記底刃8のすくい面12のすくい面から5°以上の角度θ2の広角を有する前記後側壁面11bによって、前記工具本体2の軸方向における先端からの深さが増すにつれて溝幅Bを、狭い溝幅B1から広い溝幅B2まで徐々に前記外周刃6,6,6の捻れ方向へ指向して大きくなるように形成されているので、切屑排出溝3と、底刃8で生成された切屑を前記切屑排出溝3へ送り出すギャッシュ溝10とを滑らかに接続することができると共に、該ギャッシュ溝の横断面積を、大きく確保することができ、しかも、ギャッシュ溝10の工具本体2の軸方向における先端からの深さLが0.5Dを超え1.5D以下の範囲として十分に深く設定されているので、ギャッシュ溝10による切屑排出経路の容積を十分に大きく確保することができる。   In this case, the axial direction of the tool body 2 is such that each of the gash grooves 10 has a wide angle of an angle θ2 of 5 ° or more from the rake face of the rake face 12 of the bottom blade 8 in a side view. As the depth from the tip increases, the groove width B is gradually increased from the narrow groove width B1 to the wide groove width B2 in the direction of twisting of the outer peripheral blades 6, 6 and 6. In addition, it is possible to smoothly connect the chip discharge groove 3 and the gash groove 10 for sending the chip generated by the bottom blade 8 to the chip discharge groove 3, and to ensure a large cross-sectional area of the gash groove. Moreover, the depth L from the tip of the tool body 2 in the axial direction of the tool body 2 is set sufficiently deep as a range of more than 0.5D and not more than 1.5D. The volume of the exit path can be secured sufficiently large.

したがって、前記実施の形態に係るエンドミル1は、高能率な突込み加工によって前記底刃8で切屑が多量に生成された場合であっても、該切屑が、前記切屑排出経路に詰まったり、図7(b)に示すように変形して、それが工具本体2の外周刃6に絡みついて連れ回りしたりすることなく、図7(a)に示すように、カール状になって細長くまとまり、前記ギャッシュ溝10を無理なく通過して外部に円滑に排出されので、前記外周刃6、ワークの加工面に損傷を生じさせることなく、かつ工具剛性を損なわずに、高能率な突込み加工を確実に行うことができる。
前記ギャッシュ溝10の後側壁面11bの広角θ2が5°より小さいと、前記後側壁面11bが、工具本体2の軸線S(図1)に沿った方向のギャッシュ溝10x(図2の鎖線で示す)の後側壁面11xに近くなり、前記ギャッシュ溝10の工具本体2の軸方向における終端側の広がり(溝幅B2)を大きくすることができない。このため、前記底刃8により生成される切屑は、ギャッシュ溝10の内壁面を擦って切屑形状が、図7(b)に示すように変形したものとなり、ギャッシュ溝10内を円滑に流れる図7(a)のようなカール形状とはならない。
なお、前記ギャッシュ溝10の工具本体2の軸方向における先端からの深さLが0.5Dより小さいと、前記切屑排出経路を十分に大きくすることができず、1.5Dを超えると工具剛性が低下して底刃8が欠損するおそれがある。
Therefore, in the end mill 1 according to the embodiment, even when a large amount of chips are generated by the bottom blade 8 by high-efficiency piercing, the chips are clogged in the chip discharge path, and FIG. As shown in FIG. 7 (b), it is deformed as shown in FIG. 7 (a) without being entangled with the outer peripheral blade 6 of the tool body 2 and swung around, as shown in FIG. Since it passes smoothly through the gash groove 10 and is smoothly discharged to the outside, the peripheral blade 6 and the work surface of the workpiece are not damaged, and high-efficiency plunge machining is ensured without impairing the tool rigidity. It can be carried out.
When the wide angle θ2 of the rear side wall surface 11b of the gash groove 10 is smaller than 5 °, the rear side wall surface 11b is moved to the direction along the axis S (FIG. 1) of the tool body 2 (as indicated by the chain line in FIG. 2). It becomes close to the rear side wall surface 11x, and the spread (groove width B2) on the terminal side of the tool body 2 in the axial direction of the gash groove 10 cannot be increased. For this reason, the chips generated by the bottom blade 8 rub against the inner wall surface of the gash groove 10 and the shape of the chips is deformed as shown in FIG. It does not have a curl shape like 7 (a).
If the depth L from the tip of the gash groove 10 in the axial direction of the tool body 2 is smaller than 0.5D, the chip discharge path cannot be made sufficiently large. May decrease and the bottom blade 8 may be lost.

また、前記実施の形態に係るエンドミル1は、前記ギャッシュ溝の10の後側壁面11bが、ギャッシュ溝10の内側を向く凸曲面13に形成されていると共に、前記後側壁面11bが前記溝壁面4より工具回転方向Tの前側に寄った位置に設定されているので、突込み加工中に底刃8で生成される切屑が、前記ギャッシュ溝10を通過する際には、前記後側壁面11bと切屑との擦れを緩和して、切屑の工具本体2の基端側(図2の左方)への流れを円滑にすると共に、切屑の前記溝壁面4や外周刃6に対する擦れを緩和して外周刃6の損耗を減らすことができる。   Further, in the end mill 1 according to the embodiment, the rear side wall surface 11b of the gash groove 10 is formed on the convex curved surface 13 facing the inside of the gash groove 10, and the rear side wall surface 11b is the groove wall surface. 4 is set at a position closer to the front side in the tool rotation direction T. Therefore, when chips generated by the bottom blade 8 during the plunging process pass through the gash groove 10, the rear side wall surface 11b Reducing the friction with the chips, smoothing the flow of the chips to the base end side (left side of FIG. 2) of the tool body 2, and reducing the friction of the chips with respect to the groove wall surface 4 and the outer peripheral blade 6. The wear of the outer peripheral blade 6 can be reduced.

さらに、前記実施の形態に係るエンドミル1は、前記ギャッシュ溝10がギャッシュ角αが、20°〜70°の範囲に設定され、先端部のギャッシュ角αの最小値を20°として、ギャッシュ溝10の工具本体2の軸方向における深さが増すにつれて、徐々にギャッシュ角αを変化させて、前記後側壁面11bに沿う方向の縦断面におけるギャッシュ面10bが、工具本体2の外周側を向く凸曲面に形成され、かつ前記切屑排出溝3へ滑らかに連続されているので、より一層、工具先端部の工具剛性を損なわずに、切屑排出経路を大きくして底刃8で生成された切屑を円滑に切屑排出溝3へ排出させることができる。前記ギャッシュ角αが20°より小さいと工具先端部の前記切屑排出経路が小さくなり過ぎ、70°を超えると切屑排出経路は大きくなるが工具剛性が低下する。   Further, in the end mill 1 according to the embodiment, the gash groove 10 is set so that the gash angle α is in a range of 20 ° to 70 °, and the minimum value of the gash angle α at the tip is 20 °. As the depth of the tool body 2 in the axial direction increases, the gash angle α is gradually changed so that the gash surface 10b in the longitudinal section in the direction along the rear side wall surface 11b protrudes toward the outer peripheral side of the tool body 2. Since it is formed in a curved surface and smoothly continues to the chip discharge groove 3, the chip generated by the bottom blade 8 is made larger by increasing the chip discharge path without impairing the tool rigidity of the tool tip. It can be smoothly discharged to the chip discharge groove 3. When the gash angle α is smaller than 20 °, the chip discharge path at the tip of the tool becomes too small, and when it exceeds 70 °, the chip discharge path becomes large but the tool rigidity is lowered.

なお、前記実施の形態に係る切削工具においては、本発明をスクエアエンドミルに適用した例を示したが、本発明はこれに限らず、ラジアスエンドミル、ボールエンドミル等のエンドミルやドリル等の穴あけ加工を行う回転切削工具にも、同様に適用して同様な作用効果を得ることができる。   In the cutting tool according to the above embodiment, the present invention is applied to a square end mill.However, the present invention is not limited to this, and end drilling such as a radius end mill and a ball end mill, and drilling such as a drill are performed. The same effect can be obtained by applying the same to the rotary cutting tool to be performed.

本発明の一実施の形態に係る切削工具としてのエンドミルを示す側面図である。It is a side view which shows the end mill as a cutting tool which concerns on one embodiment of this invention. 同じくエンドミルの先端部の拡大側面図である。It is an enlarged side view of the tip part of the end mill. 同じくエンドミルの先端部の正面図である。It is a front view of the front-end | tip part of an end mill similarly. 図2のイ−イ断面図である。FIG. 3 is a cross-sectional view taken along the line II in FIG. 2. 図2のローロ断面図である。FIG. 3 is a cross sectional view of FIG. 図2のハーハ断面図である。FIG. 3 is a cross-sectional view of the haha of FIG. 2. エンドミルによる穴あけ加工時の切屑の形状を示す図である。It is a figure which shows the shape of the chip at the time of the drilling process by an end mill.

符号の説明Explanation of symbols

1 エンドミル
2 工具本体
3 切屑排出溝
4 溝壁面
6 外周刃
8 底刃
10 ギャッシュ溝
10a ギャッシュ溝の溝底
11a ギャッシュの前側壁面
11b ギャッシュの後側壁面
12 すくい角
13 凸曲面
α ギャッシュ角度
θ1 すくい面
θ2 広角
B 溝幅
D 工具直径
L ギャッシュ溝の深さ
T 工具回転方向
DESCRIPTION OF SYMBOLS 1 End mill 2 Tool body 3 Chip discharge groove 4 Groove wall surface 6 Peripheral blade 8 Bottom blade 10 Gash groove 10a Gash groove groove bottom 11a Gash front side wall surface 11b Gash rear side wall surface 12 Rake angle 13 Convex curved surface α Gash angle θ1 Rake surface θ2 Wide angle B Groove width D Tool diameter L Gash groove depth T Tool rotation direction

Claims (5)

工具本体の先端側外周に複数の螺旋状に捻れた切屑排出溝が周方向に間隔をあけて形成され、該各切屑排出溝の工具回転方向を向く溝壁面と前記工具本体の外周面との交差稜線部に外周刃が形成されると共に、工具本体の先端には前記各外周刃に連続する底刃が工具本体の中心方向へ向けて設けられ、各底刃のすくい面を形成するギャッシュ溝が前記切屑排出溝の工具本体の軸方向における先端部に連続して設けられてなる切削工具において、
前記ギャッシュ溝は、側面視で、工具本体の軸方向における深さが増すにつれて、工具回転方向に向く後側壁面が前記外周刃の捻れ方向へ指向されることにより、溝幅が徐々に大きくなるように形成されていることを特徴とする切削工具。
A plurality of spirally twisted chip discharge grooves are formed on the outer periphery on the tip side of the tool main body at intervals in the circumferential direction, and a groove wall surface facing the tool rotation direction of each chip discharge groove and the outer peripheral surface of the tool main body A peripheral edge is formed at the crossing ridge part, and a bottom blade continuous to each of the peripheral blades is provided toward the center of the tool body at the tip of the tool body, forming a rake face of each bottom blade In the cutting tool that is continuously provided at the tip portion in the axial direction of the tool body of the chip discharge groove,
As the depth of the tool body in the axial direction increases in the side view, the groove wall width gradually increases as the rear side wall surface facing the tool rotation direction is oriented in the twist direction of the outer peripheral blade. A cutting tool characterized by being formed as follows.
前記ギャッシュ溝の工具回転方向を向く後側壁面が、側面視で、工具回転方向を向く凸曲面に形成されていることを特徴とする請求項1記載の切削工具。   The cutting tool according to claim 1, wherein a rear side wall surface of the gash groove facing the tool rotation direction is formed as a convex curved surface facing the tool rotation direction in a side view. 前記ギャッシュ溝の工具回転方向を向く後側壁面は、前記外周刃の捻れ方向に指向する広角が、前記底刃のすくい面から5°以上で前記外周刃の捻れ角の範囲に設定されていることを特徴とする請求項1または2記載の切削工具。   The rear side wall surface of the gash groove facing the tool rotation direction has a wide angle directed in the twist direction of the outer peripheral blade set in a range of the twist angle of the outer peripheral blade at 5 ° or more from the rake face of the bottom blade. The cutting tool according to claim 1 or 2, characterized by the above. 前記ギャッシュ溝は、工具本体の軸方向における深さが、工具直径の0.5倍を超え1.5倍以下の範囲に設定されていることを特徴とする請求項1〜3のいずれかに記載の切削工具。   The depth of the gash groove in the axial direction of the tool body is set in a range of more than 0.5 times and less than 1.5 times the tool diameter. The described cutting tool. 前記ギャッシュ溝は、そのギャッシュ角が20°〜70°の範囲に設定され、溝底面が工具本体の外周側を向く凸曲面に形成されていることを特徴とする請求項1〜4のいずれかに記載の切削工具。
The gash groove has a gash angle set in a range of 20 ° to 70 °, and the groove bottom surface is formed as a convex curved surface facing the outer peripheral side of the tool body. The cutting tool described in 1.
JP2004181121A 2004-06-18 2004-06-18 Cutting tools Expired - Lifetime JP4088271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181121A JP4088271B2 (en) 2004-06-18 2004-06-18 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181121A JP4088271B2 (en) 2004-06-18 2004-06-18 Cutting tools

Publications (2)

Publication Number Publication Date
JP2006000985A true JP2006000985A (en) 2006-01-05
JP4088271B2 JP4088271B2 (en) 2008-05-21

Family

ID=35769798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181121A Expired - Lifetime JP4088271B2 (en) 2004-06-18 2004-06-18 Cutting tools

Country Status (1)

Country Link
JP (1) JP4088271B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301706A (en) * 2006-05-15 2007-11-22 Osg Corp Drill
JP2010005760A (en) * 2008-06-27 2010-01-14 Toshiba Mach Co Ltd Cutting tool, machine tool, and processing method
JP2013521992A (en) * 2010-03-24 2013-06-13 スミス アンド ネフュー インコーポレーテッド Arthroscopic resection device
CN104174934A (en) * 2013-05-21 2014-12-03 苏州锑玛精密机械有限公司 Molding milling reamer
WO2017034032A1 (en) * 2015-08-27 2017-03-02 株式会社ビック・ツール Three-blade drill
WO2017038763A1 (en) * 2015-08-28 2017-03-09 京セラ株式会社 End mill and manufacturing method for cut work
JP2018012182A (en) * 2016-07-22 2018-01-25 日東電工株式会社 Method and apparatus for manufacturing polarization plate
WO2018168341A1 (en) * 2017-03-13 2018-09-20 三菱日立ツール株式会社 Ball end mill
WO2019163677A1 (en) * 2018-02-26 2019-08-29 京セラ株式会社 Cutting tool and method for manufacturing cut workpiece
JP2020163555A (en) * 2019-03-29 2020-10-08 日進工具株式会社 Cutting tool
WO2020202640A1 (en) * 2019-03-29 2020-10-08 日進工具株式会社 Cutting tool
US20210162520A1 (en) * 2018-08-09 2021-06-03 Kyocera Sgs Precision Tools, Inc. Variable radius gash

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690354A (en) * 2014-12-04 2015-06-10 贵州西南工具(集团)有限公司 Key slot drill milling cutter

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301706A (en) * 2006-05-15 2007-11-22 Osg Corp Drill
JP2010005760A (en) * 2008-06-27 2010-01-14 Toshiba Mach Co Ltd Cutting tool, machine tool, and processing method
KR101118464B1 (en) * 2008-06-27 2012-03-06 도시바 기카이 가부시키가이샤 Cutting tool, machine tool, and processing method
JP2013521992A (en) * 2010-03-24 2013-06-13 スミス アンド ネフュー インコーポレーテッド Arthroscopic resection device
CN104174934A (en) * 2013-05-21 2014-12-03 苏州锑玛精密机械有限公司 Molding milling reamer
JPWO2017034032A1 (en) * 2015-08-27 2017-08-24 株式会社ビック・ツール 3-flute drill
WO2017034032A1 (en) * 2015-08-27 2017-03-02 株式会社ビック・ツール Three-blade drill
WO2017038763A1 (en) * 2015-08-28 2017-03-09 京セラ株式会社 End mill and manufacturing method for cut work
CN107921558A (en) * 2015-08-28 2018-04-17 京瓷株式会社 The manufacture method of slotting cutter and machining part
JPWO2017038763A1 (en) * 2015-08-28 2018-06-07 京セラ株式会社 End mill and method of manufacturing cut product
DE112016003924B4 (en) 2015-08-28 2021-09-16 Kyocera Corporation End mills and method of making a machined product
US10518338B2 (en) 2015-08-28 2019-12-31 Kyocera Corporation End mill and method of manufacturing machined product
JP2018012182A (en) * 2016-07-22 2018-01-25 日東電工株式会社 Method and apparatus for manufacturing polarization plate
JPWO2018168341A1 (en) * 2017-03-13 2019-08-08 三菱日立ツール株式会社 Ball end mill
WO2018168341A1 (en) * 2017-03-13 2018-09-20 三菱日立ツール株式会社 Ball end mill
JP7024779B2 (en) 2017-03-13 2022-02-24 株式会社Moldino Ball end mill
US11351619B2 (en) 2017-03-13 2022-06-07 Moldino Tool Engineering, Ltd. Ball end mill
WO2019163677A1 (en) * 2018-02-26 2019-08-29 京セラ株式会社 Cutting tool and method for manufacturing cut workpiece
JPWO2019163677A1 (en) * 2018-02-26 2021-02-04 京セラ株式会社 Manufacturing method of cutting tools and cutting products
JP6995973B2 (en) 2018-02-26 2022-01-17 京セラ株式会社 Manufacturing method of cutting tools and cutting products
US20210162520A1 (en) * 2018-08-09 2021-06-03 Kyocera Sgs Precision Tools, Inc. Variable radius gash
US11897042B2 (en) * 2018-08-09 2024-02-13 Kyocera Sgs Precision Tools, Inc. Variable radius gash
JP2020163555A (en) * 2019-03-29 2020-10-08 日進工具株式会社 Cutting tool
WO2020202640A1 (en) * 2019-03-29 2020-10-08 日進工具株式会社 Cutting tool
CN113795347A (en) * 2019-03-29 2021-12-14 日进工具株式会社 Cutting tool

Also Published As

Publication number Publication date
JP4088271B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP5719938B2 (en) drill
RU2452597C2 (en) Drill bit point
KR101528936B1 (en) Drill body
JP6611260B2 (en) drill
JP6086171B2 (en) drill
JP4088271B2 (en) Cutting tools
JP6359419B2 (en) drill
JPS62188616A (en) Rotary cutting tool
JP5368384B2 (en) Deep hole drill
JP4125909B2 (en) Square end mill
JPWO2008050389A1 (en) Drill
JP4155157B2 (en) End mill
JP2004276142A (en) End mill
JP5811919B2 (en) Drill with coolant hole
JP6902285B2 (en) Cutting tools
JP2003275913A (en) Drill
JP2019005882A (en) drill
JP6902284B2 (en) Cutting tools
JP3811129B2 (en) End mill
JP2005177891A (en) Drill
JP4954044B2 (en) drill
JP7314546B2 (en) Ball end mill with coolant hole
JP2005186247A (en) Twist drill
JP4449280B2 (en) Ball end mill
WO2020202640A1 (en) Cutting tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4088271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term