JP2005315622A - Nondestructive inspection method and device of concrete structure - Google Patents

Nondestructive inspection method and device of concrete structure Download PDF

Info

Publication number
JP2005315622A
JP2005315622A JP2004131160A JP2004131160A JP2005315622A JP 2005315622 A JP2005315622 A JP 2005315622A JP 2004131160 A JP2004131160 A JP 2004131160A JP 2004131160 A JP2004131160 A JP 2004131160A JP 2005315622 A JP2005315622 A JP 2005315622A
Authority
JP
Japan
Prior art keywords
concrete structure
wave
probe
physical quantity
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004131160A
Other languages
Japanese (ja)
Inventor
Toru Hara
原  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIMITSU KOMUTEN KK
Original Assignee
FUJIMITSU KOMUTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIMITSU KOMUTEN KK filed Critical FUJIMITSU KOMUTEN KK
Priority to JP2004131160A priority Critical patent/JP2005315622A/en
Publication of JP2005315622A publication Critical patent/JP2005315622A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure simply on the site the object physical quantity such as the compressive strength of a concrete structure or the progression degree of an alkali aggregate reaction by determining the sound speed ratio between a longitudinal wave and a transversal wave by a one-time measuring work relative to one measuring point. <P>SOLUTION: This nondestructive inspection method of the concrete structure comprises steps for: (a) allowing an ultrasonic pulse 7 to enter the inside the structure 6 from a transmitting probe 3 for the longitudinal wave in contact with the outer surface of the concrete structure 6, and detecting a reflected wave 8 reflected by the boundary surface of the concrete structure 6 and returned by a receiving probe 4 for the longitudinal wave in contact with the outer surface of the structure 6; (b) calculating the sound speed ratio R between the longitudinal wave and the transversal wave from an arrival time of a bottom surface echo 12a in an unconverted mode acquired at first and a delay echo 12b in a converted mode acquired thereafter in a plurality of peaks 12a, 12b recognized in the waveform of the reflected wave; and (c) determining the object physical quantity corresponding to the sound speed ratio R measured on the site from the correlation between the sound speed ratio R acquired beforehand relative to the concrete structure 6 and the object physical quantity which is an inspection object. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コンクリート構造物の圧縮強度やアルカリ骨材反応の進行度等の対象物理量を非破壊で測定するための非破壊検査方法及び装置に関する。   The present invention relates to a nondestructive inspection method and apparatus for nondestructively measuring target physical quantities such as compressive strength of concrete structures and the degree of progress of alkali aggregate reaction.

コンクリート構造物は、施工不良による圧縮強度の不足や、塩害及びアルカリ骨材反応等による早期劣化が生じることがあり、このため、種々の方法でそれらの測定が試みられているが、迅速性及びコストの点で超音波探査によるコンクリート構造物の非破壊検査が注目されている。
そこで、本願出願人は、コンクリート構造物に対するアルカリ骨材反応の進行度を超音波探査によって測定する方法を既に開発しており、この測定方法は、超音波反射法による反射音速の平均値と、その超音波の伝搬経路に相当する部位について超音波透過法によって測定した透過音速の平均値をそれぞれ測定し、それらの平均値の隔たりとアルカリ骨材反応の進行度との相関関係に基づいて、当該測点におけるアルカリ骨材反応の進行度を推定するものである(特許文献1の請求項1)。
Concrete structures may suffer from insufficient compressive strength due to poor construction and early deterioration due to salt damage and alkali-aggregate reaction, etc. Therefore, their measurement has been attempted by various methods. In terms of cost, nondestructive inspection of concrete structures by ultrasonic exploration is attracting attention.
Therefore, the applicant of the present application has already developed a method for measuring the progress of the alkali-aggregate reaction to the concrete structure by ultrasonic exploration, and this measurement method includes an average value of the reflected sound velocity by the ultrasonic reflection method, Measure the average value of the transmitted sound velocity measured by the ultrasonic transmission method for the part corresponding to the ultrasonic propagation path, and based on the correlation between the difference in the average value and the progress of the alkali aggregate reaction, The degree of progress of the alkali aggregate reaction at the measurement point is estimated (claim 1 of Patent Document 1).

上記の測定方法では、超音波透過法による透過音速を測定する必要があるため、土留め擁壁や堰堤等の背面が土砂に埋もれているコンクリート構造物の場合には、コア抜きを行う必要があり、測定の迅速性及びコストの点で更に改良の余地がある。従って、超音波透過法が採用できない既設のコンクリート構造物に対して、コア抜きをまったく行わずに完全な非破壊で当該コンクリート構造物の対象物理量を測定する技術は、未だ実用化されていない。
特開2003−302382号公報
In the above measurement method, since it is necessary to measure the transmitted sound velocity by the ultrasonic transmission method, in the case of a concrete structure in which the back surface of the retaining wall or dam is buried in the earth and sand, it is necessary to remove the core. There is room for further improvement in terms of measurement speed and cost. Therefore, a technique for measuring the target physical quantity of a concrete structure without completely removing the core from an existing concrete structure that cannot employ the ultrasonic transmission method has not yet been put into practical use.
JP 2003-302382 A

ところで、本願発明者は、既設のコンクリート構造物からコア抜き採取したコンクリートコアに対し、実験室において縦波と横波の超音波音速の測定を透過法で行い、その音速比と圧縮強度及びアルカリ骨材反応の進行度との関係を調査したところ、縦波と横波の音速比がコンクリートの圧縮強度と比例関係(図3参照)にあり、また、アルカリ骨材反応の進行度に対しても強い相関関係(図4参照)があることを突き止めた。
従って、圧縮強度やアルカリ骨材反応の進行度が未知のコンクリート構造物に対して現場で縦波と横波の音速を超音波探査によって測定し、これによって得られた縦波と横波の音速比を上記相関関係図に当てはめれば、超音波透過法が採用できないコンクリート構造物であっても、コア抜き採取等の面倒な作業を行わずに現場のコンクリート構造物の対象物理量を完全な非破壊で求めることができる。
By the way, the present inventor measured the ultrasonic wave velocity of longitudinal waves and transverse waves in a laboratory by using a transmission method on a concrete core sampled from an existing concrete structure, and the sound velocity ratio, compressive strength, and alkali bones were measured. As a result of investigating the relationship with the progress of the aggregate reaction, the sound velocity ratio of the longitudinal wave and the transverse wave is proportional to the compressive strength of the concrete (see Fig. 3), and also strong against the progress of the alkali aggregate reaction It was found that there is a correlation (see FIG. 4).
Therefore, the acoustic velocity of longitudinal and transverse waves is measured on site for a concrete structure with unknown compressive strength and alkali-aggregate reaction, and the sound velocity ratio of the longitudinal and transverse waves obtained by this is measured. If applied to the above correlation diagram, even for concrete structures that cannot adopt the ultrasonic transmission method, the target physical quantities of the concrete structures in the field can be completely non-destructed without performing troublesome work such as core extraction. Can be sought.

しかしながら、コンクリート構造物のある特定の測点について横波と縦波の音速を超音波探査で測定するためには、通常、縦波専用の探触子による測定と、横波専用の探触子による測定を当該測点について個別に行う必要があるので、音速比が現場で即座に得られず、作業に非常に時間がかかるという問題がある。特に、横波専用の探触子による測定は、特殊な接触媒体を当該探触子と被検査対象の間に介在させて行うものであるから、測定に手間がかかる。   However, in order to measure the sound velocity of the transverse wave and longitudinal wave at a specific measuring point of a concrete structure by ultrasonic survey, measurement using a probe dedicated to longitudinal wave and measurement using a probe dedicated to transverse wave are usually used. Therefore, there is a problem that the sound speed ratio cannot be obtained immediately at the site and the work takes a very long time. In particular, the measurement using the probe exclusively for shear waves is performed by interposing a special contact medium between the probe and the object to be inspected.

本発明は、上記のような従来の問題点に鑑み、一つの測点に対して一回の測定作業で縦波と横波の音速比を求めるようにして、コンクリート構造物の圧縮強度及びアルカリ骨材反応の進行度等の対象物理量を現場で簡便に測定することができるコンクリート構造物の非破壊検査方法及び装置を提供することを目的とする。   In view of the above-described conventional problems, the present invention obtains the sound velocity ratio of longitudinal waves and transverse waves in one measurement operation at one measurement point, and compresses strength and alkali bone of a concrete structure. An object of the present invention is to provide a nondestructive inspection method and apparatus for a concrete structure capable of easily measuring a target physical quantity such as a degree of progress of a material reaction on site.

本願発明者は、縦波専用の探触子を用いてコンクリート構造物に対する超音波探査を数多く経験した中で、コンクリート構造物の場合においても、境界面でのモード変換によって発生した横波が反射波の波形データに含まれていることに気づき、本発明に完成するに至った。
すなわち、本発明は、以下の各ステップを含むコンクリート構造物の非破壊検査方法である。
The inventor of the present application has experienced many ultrasonic surveys on concrete structures using a probe dedicated to longitudinal waves. Even in the case of concrete structures, the transverse waves generated by mode conversion at the boundary surface are reflected waves. And the present invention has been completed.
That is, the present invention is a nondestructive inspection method for a concrete structure including the following steps.

(a) コンクリート構造物の外表面に接触させた縦波用の発信探触子から同構造物の内部に向かって超音波パルスを入射し、前記コンクリート構造物の境界面を反射して帰ってきた反射波を同構造物の外表面に接触させた受信探触子で検出するステップ
(b) 前記反射波の波形において認められる複数のピークのうち、最初に得られたモード変換なしの底面エコーの到達時間とその後に得られたモード変換ありの遅れエコーの到達時間から、縦波と横波の音速比を算出するステップ
(c) 前記コンクリート構造物について予め得られている音速比と検査対象である対象物理量との相関関係から、現場で測定した前記音速比に対応する前記対象物理量を求めるステップ
(A) An ultrasonic pulse is incident on the inside of the structure from the longitudinal wave transmission probe brought into contact with the outer surface of the concrete structure, and the boundary surface of the concrete structure is reflected and returned. Detecting the reflected wave with a receiving probe in contact with the outer surface of the structure (b) Of the plurality of peaks recognized in the waveform of the reflected wave, the bottom echo without mode conversion obtained first (C) calculating the sound velocity ratio of longitudinal waves and shear waves from the arrival time of the delayed echo with mode conversion obtained thereafter and the arrival time of the delayed echo with mode conversion. A step of obtaining the target physical quantity corresponding to the sound speed ratio measured in the field from a correlation with a target physical quantity.

上記の本発明によれば、反射波の波形において認められる複数のピークのうち、最初に得られたモード変換なしの底面エコーの到達時間とその後に得られたモード変換ありの遅れエコーの到達時間から、縦波と横波の音速比を算出するようにしたので、コンクリート構造物のある特定の測点について、一回の測定作業でその音速比を求めることができ、縦波専用の探触子による測定と横波専用の探触子による測定を個別に行う必要がない。
このため、コンクリート構造物について予め得られている音速比と検査対象の物理量との相関関係から、上記のようにして現場で簡便に測定した音速比に対応する対象物理量を求めることにより、当該対象物理量を極めて迅速に求めることができる。
According to the present invention described above, the arrival time of the bottom echo without mode conversion obtained first and the arrival time of delayed echo with mode conversion obtained after that among the plurality of peaks recognized in the waveform of the reflected wave Therefore, the sound velocity ratio between the longitudinal wave and the transverse wave is calculated, so that the sound velocity ratio can be obtained with a single measurement for a specific measurement point of the concrete structure. There is no need to perform separate measurements with a probe dedicated to shear waves.
For this reason, by obtaining the target physical quantity corresponding to the sound speed ratio simply measured at the site as described above from the correlation between the sound speed ratio obtained in advance for the concrete structure and the physical quantity to be inspected, the target Physical quantities can be determined very quickly.

本発明において、コンクリート構造物の対象物理量は縦波と横波の音速比と相関関係にあるものであれば特に限定されないが、後述の通り、縦波と横波の音速比はコンクリート構造物の圧縮強度と比例関係にあり、アルカリ骨材反応の進行度に対しても強い相関関係があることは、コンクリートコアに対する実験室での測定データから判明しているので、少なくともこれらは当該対象物理量に含まれる。
また、コンクリート構造物をマクロ的に均質な等方体であると仮定すれば、弾性定数(ヤング率)はコンクリート構造物の密度、縦波の音速及び音速比から求めることができ、ポアソン比は音速比から求めることができるので、これらも当該対象物理量に含まれる。
In the present invention, the target physical quantity of the concrete structure is not particularly limited as long as it has a correlation with the acoustic velocity ratio of the longitudinal wave and the transverse wave. However, as described later, the acoustic velocity ratio of the longitudinal wave and the transverse wave is the compressive strength of the concrete structure. It is known from the measured data in the laboratory for the concrete core that there is a strong correlation with the progress of the alkali aggregate reaction, so at least these are included in the target physical quantity .
Assuming that the concrete structure is a macroscopically homogeneous isotropic body, the elastic constant (Young's modulus) can be obtained from the density of the concrete structure, the sound velocity and sound velocity ratio of the longitudinal wave, and the Poisson's ratio is Since they can be obtained from the sound speed ratio, these are also included in the target physical quantity.

一方、本発明において、コンクリート構造物に対して発信探触子から所定のタイミングで複数の超音波パルスを入射し、その超音波パルスの各反射波を受信探触子でそれぞれ受信するとともに、受信した各信号をデジタル化した波形を同一時間軸上で加算平均するようにすれば、探知の邪魔をする散乱を除去しつつ、探知目標からの反射波を増幅させることができ、測定精度をより向上することができる。
また、その場合において、各探触子のいずれか一方又は双方をコンクリート構造物の外表面に沿って移動させながら反射波の検出を行うようにすれば、仮に探触子が接する測点の内部に比較的大きな粗骨材や空隙が存在していても、入射された各超音波パルスがそれらの障害物に衝突し続けることがない。このため、それらの障害物による反射波の影響はそのまま維持され、出力波形のピークがより明瞭となる。
On the other hand, in the present invention, a plurality of ultrasonic pulses are incident on the concrete structure at a predetermined timing from the transmitting probe, and each reflected wave of the ultrasonic pulses is received by the receiving probe and received. By averaging the digitized waveforms of each signal on the same time axis, it is possible to amplify the reflected wave from the detection target while removing the scattering that hinders detection, and to improve the measurement accuracy. Can be improved.
In that case, if one or both of the probes is moved along the outer surface of the concrete structure and the reflected wave is detected, the inside of the point where the probe contacts Even if relatively large coarse aggregates and voids exist, each incident ultrasonic pulse does not continue to collide with these obstacles. For this reason, the influence of the reflected wave by those obstacles is maintained as it is, and the peak of the output waveform becomes clearer.

従って、上記の測定方法を行うに当たっては、粗骨材による反射波の影響を極力防止するために、想定されるコンクリート内の粗骨材の寸法(3.0〜5.0cm程度)よりも大きい範囲で探触子を動かすようにすることが好ましい。また、前記発信探触子と受信探触子が互いに独立した別個のもので構成されている場合には、この各探触子をそれぞれ別個に動かすようにすることが好ましい。
その理由は、発信探触子を移動することによって入射直後の超音波パルスが障害物に衝突し続けるのが防止されるとともに、受信探触子を移動することによって受信直前のエコーが障害物に衝突し続けるのが防止され、いずれか一方の探触子だけを移動する場合に比べて、コンクリート内の障害物による影響がより少なくなるからである。
Therefore, in performing the above measurement method, in order to prevent the influence of the reflected wave due to the coarse aggregate as much as possible, the size of the coarse aggregate in the concrete (about 3.0 to 5.0 cm) is assumed. It is preferable to move the probe within a range. Further, in the case where the transmission probe and the reception probe are configured as separate and independent elements, it is preferable that the probes are moved separately.
The reason for this is that moving the transmitting probe prevents the ultrasonic pulse immediately after incidence from continuing to collide with the obstacle, and moving the receiving probe causes the echo just before reception to the obstacle. This is because the collision is prevented and the influence of the obstacles in the concrete is less than when only one of the probes is moved.

一方、上記の測定方法において、探触子の動かし方は特に限定されず、例えば、縦向きや横向き等の一定方向で探触子を往復移動させることにしてもよいし、コンクリート構造物の表面の所定範囲内において探触子をランダムに動かすようにしてもよい。もっとも、後述する実施形態において明らかとなるように、コンクリート内の障害物による悪影響を極力少なくするには、探触子をランダムに動かすようにすることが好ましい。   On the other hand, in the above measurement method, the method of moving the probe is not particularly limited. For example, the probe may be reciprocated in a certain direction such as vertical or horizontal, or the surface of the concrete structure. The probe may be moved randomly within a predetermined range. However, as will become apparent in the embodiments described below, it is preferable to move the probe randomly in order to minimize the adverse effects of obstacles in the concrete.

以上の通り、本発明によれば、一つの測点に対して一回の測定作業で縦波と横波の音速比を求めることができるので、コンクリート構造物の圧縮強度及びアルカリ骨材反応の進行度等の対象物理量を現場で簡便に測定することができる。   As described above, according to the present invention, it is possible to determine the sound velocity ratio of the longitudinal wave and the transverse wave in one measurement operation with respect to one measuring point, so that the compressive strength of the concrete structure and the progress of the alkali aggregate reaction The target physical quantity such as degree can be easily measured at the site.

以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明に係る非破壊検査装置の概略構成図である。
同図に示すように、本実施形態の非破壊検査装置1は、検査装置本体2と、この検査装置本体2に接続された縦波専用の発信探触子(パルサー)3と、この発信探触子3とは別個に前記検査装置本体2に接続された縦波専用の受信探触子(レシーバ)4と、検査装置本体2に接続されたノートパソコン等よりなる情報処理装置5とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a nondestructive inspection apparatus according to the present invention.
As shown in the figure, the nondestructive inspection apparatus 1 of the present embodiment includes an inspection apparatus main body 2, a transmission probe (pulsar) 3 dedicated to longitudinal waves connected to the inspection apparatus main body 2, and the transmission probe. A longitudinal wave-dedicated reception probe (receiver) 4 connected to the inspection apparatus main body 2 separately from the contact 3 and an information processing apparatus 5 including a notebook computer connected to the inspection apparatus main body 2 Has been.

このうち、発信探触子3は、土留め擁壁や堰堤等よりなるコンクリート構造物6の内部に向かって超音波パルス7を送信するものであり、圧電セラミックスや圧電性高分子等の電気音響変換素子よりなる圧電素子に対してエポキシ樹脂等よりなる音響整合層を積層することによって構成されている。
また、受信探触子4は、前記超音波パルス7のエコー8を送信側と同一の表面上で受信するものであり、発信探触子3と同じ基本構造のものが使用されている。なお、本実施形態の各探触子3,4は、10kHz程度の可聴領域から5MHz程度の通常探傷器の周波数領域までカバーする超広帯域のものが使用されている。
Among these, the transmission probe 3 transmits an ultrasonic pulse 7 toward the inside of a concrete structure 6 made of a retaining wall, a dam or the like, and is an electroacoustic such as piezoelectric ceramics or piezoelectric polymer. An acoustic matching layer made of epoxy resin or the like is laminated on a piezoelectric element made of a conversion element.
The receiving probe 4 receives the echo 8 of the ultrasonic pulse 7 on the same surface as the transmitting side, and has the same basic structure as the transmitting probe 3. Note that the probes 3 and 4 of this embodiment are ultra-wideband that covers from an audible range of about 10 kHz to a frequency range of a normal flaw detector of about 5 MHz.

検査装置本体2は、発信探触子3による超音波パルス7の送信タイミングを制御する送信制御回路と、受信探触子4からの信号を増幅するメインアンプと、このアンプで増幅した信号をデジタル化するA/D変換回路と、このデジタル化された波形を同一時間軸上で加算平均する加算器とを備えている。
他方、情報処理装置5は、OSや所定のアプリケーションソフト等が固定されたハードディスク等よりなる補助記憶装置と、そのソフト及びデータを一時的に記憶する補助記憶装置(メインラム)と、そのソフト及びデータの演算及び制御を行うCPU等よりなるパソコン本体部9と、この本体部9に接続された液晶ディスプレイ等よりなる表示部10とから構成され、パソコン本体部9には、送信タイミングの設定やデータに対するデジタルフィルタ処理等の指令を検査装置本体2に対して与えるアプリケーションソフトがインストールされている。
The inspection apparatus main body 2 includes a transmission control circuit that controls the transmission timing of the ultrasonic pulse 7 by the transmission probe 3, a main amplifier that amplifies the signal from the reception probe 4, and a signal amplified by this amplifier. An A / D conversion circuit for converting the digitized waveform and an adder for averaging the digitized waveforms on the same time axis.
On the other hand, the information processing apparatus 5 includes an auxiliary storage device including a hard disk to which an OS, predetermined application software, and the like are fixed, an auxiliary storage device (main ram) that temporarily stores the software and data, the software, A personal computer main body 9 composed of a CPU for calculating and controlling data and a display unit 10 composed of a liquid crystal display or the like connected to the main body 9 are provided. Application software that gives instructions to the inspection apparatus body 2 such as digital filter processing for data is installed.

このため、本実施形態の非破壊検査装置1によれば、コンクリート構造物6に対して発信探触子3から所定のタイミングで複数の超音波パルス7を入射するとともに、その超音波パルス7の各エコー8を受信探触子4でそれぞれ受信し、その受信した各信号をデジタル化した波形を同一時間軸上で加算平均することよって得られた出力波形11を、情報処理装置5の表示部10に表示できるようになっている。
また、上記パソコン本体部9の補助記憶装置に格納されたプログラムには、縦波と横波の音速比とコンクリートの圧縮強度との関係(図3)、及び、コンクリートのアルカリ骨材反応の進行度と同音速比との関係(図4)がデータとして含まれている。
For this reason, according to the nondestructive inspection apparatus 1 of the present embodiment, a plurality of ultrasonic pulses 7 are incident on the concrete structure 6 from the transmission probe 3 at a predetermined timing, and the ultrasonic pulses 7 are An output waveform 11 obtained by receiving each echo 8 by the reception probe 4 and averaging the received signals digitized on the same time axis is displayed on the display unit of the information processing device 5. 10 can be displayed.
The program stored in the auxiliary storage device of the personal computer main body 9 includes the relationship between the sound velocity ratio of the longitudinal wave and the transverse wave and the compressive strength of the concrete (FIG. 3), and the progress of the alkali-aggregate reaction of the concrete. And the sound speed ratio (FIG. 4) are included as data.

これらのデータは、測定対象となるコンクリート構造物6とは異なる構造物からコア抜き採取した多数のコンクリートコア(φ100mm、H=200mm)に対して、実験室において縦波の超音波音速の測定と、横波の超音波音速の測定をそれぞれ透過法で行うとともに、その各コアの圧縮強度とアルカリ骨材反応の進行度を求めることによって得られたものである。なお、圧縮強度については一つの採取位置で3〜5本のコアが得られるので、その平均値を当該採取位置での圧縮強度とした。   These data are obtained by measuring the ultrasonic wave velocity of longitudinal waves in a laboratory for a large number of concrete cores (φ100 mm, H = 200 mm) sampled from a structure different from the concrete structure 6 to be measured. The ultrasonic wave velocity of the transverse wave is measured by the transmission method, and the compression strength of each core and the progress of the alkali aggregate reaction are obtained. In addition, about the compressive strength, since 3-5 cores are obtained in one sampling position, the average value was made into the compressive strength in the said sampling position.

一方、アルカリ骨材反応の進行状況を定量化する汎用的な基準は未だ確率されていないので、本実施形態では、各コアをスライスした場合の横断面での骨材の状態を次のような段階を設けて区分し、10箇所に重みを付けて点数化する方法を採用した。
(1)反応段階1=×2点(骨材に白い斑点が見られる。)
(2)反応段階2=×4点(骨材が白いリングで囲まれる。)
(3)反応段階3=×8点(骨材にクラックがある。)
(4)反応段階4=×16点(骨材のクラックがモルタル部まで伸展している。)
On the other hand, since a general-purpose criterion for quantifying the progress of the alkali-aggregate reaction has not yet been probable, in this embodiment, the state of the aggregate in the cross section when each core is sliced is as follows. A method was adopted in which stages were divided and weighted at 10 locations to score.
(1) Reaction stage 1 = × 2 points (white spots are seen on the aggregate)
(2) Reaction stage 2 = × 4 points (the aggregate is surrounded by a white ring)
(3) Reaction stage 3 = × 8 points (there is a crack in the aggregate)
(4) Reaction stage 4 = × 16 points (aggregate cracks extend to the mortar)

従って、ある断面の10箇所すべてが段階(1)であらば20点となり、すべてが段階(4)であれば160点となる。
図3に示すように、縦波と横波の音速比はコンクリートの圧縮強度と比例関係にあり、また、図4に示すように、アルカリ骨材反応の進行度が激しくなるほど圧縮強度が低下するという、強い相関関係が認められる。
また、コンクリート構造物6を等方均質な弾性体と仮定した場合には、弾性定数(ヤング率)は次の式(1)で求めることができ、ポアソン比は次の式(2)で求めることができる。なお、下式において、Eは弾性定数、Rは音速比、ρは密度、Vtは横波の音速、νはポアソン比である。
Therefore, if all 10 points of a cross section are in stage (1), 20 points are obtained, and if all are in stage (4), 160 points are obtained.
As shown in FIG. 3, the sound velocity ratio between the longitudinal wave and the transverse wave is proportional to the compressive strength of the concrete, and as shown in FIG. 4, the compressive strength decreases as the degree of progress of the alkali aggregate reaction increases. A strong correlation is observed.
When the concrete structure 6 is assumed to be an isotropic homogeneous elastic body, the elastic constant (Young's modulus) can be obtained by the following equation (1), and the Poisson ratio can be obtained by the following equation (2). be able to. In the following equation, E is an elastic constant, R is a sound velocity ratio, ρ is a density, Vt is a sound velocity of a transverse wave, and ν is a Poisson's ratio.

Figure 2005315622
Figure 2005315622
Figure 2005315622
Figure 2005315622

そこで、本実施形態では、パソコン本体部9の補助記憶装置に格納されたプログラムには、弾性定数とポアソン比を求める上記式(1)及び(2)もデータとして格納されている。
ところで、本願発明者は、コンクリート構造物6の版厚を超音波探査によって何度も測定しているうちに、縦波専用の探触子3,4のみを用いている場合であっても、例えば図2に示すように、最初のピーク12aの後に2番目のピーク12bが大きく表れることが多いことに気づき、この2番目のピーク12bは境界面でのモード変換によって発生した横波の影響ではないかと推測した。
Therefore, in the present embodiment, the above-described equations (1) and (2) for obtaining the elastic constant and Poisson's ratio are also stored as data in the program stored in the auxiliary storage device of the personal computer body 9.
By the way, the inventor of the present application, while measuring the plate thickness of the concrete structure 6 many times by ultrasonic exploration, even when using only the probes 3 and 4 for longitudinal waves, For example, as shown in FIG. 2, it is noticed that the second peak 12b often appears after the first peak 12a, and this second peak 12b is not the influence of the transverse wave generated by the mode conversion at the boundary surface. I guessed.

そこで、図2に示すように、波形データの画面上において、往復ともに縦波(想定音速4000m/s)であるとした場合の横軸(到達時間)の位置に第一カーソル13を立て、かつ、往きが縦波で帰りが横波(想定音速2350m/s)とした場合の横軸の位置に第二カーソル14を立てたところ、第一カーソル13は最初のピーク12aとほぼ一致し、第二カーソル14は2番目のピーク12bとほぼ一致した。
従って、縦波専用の探触子3,4のみを用いてコンクリート構造物6を超音波探査した場合においても、境界面でのモード変換によって発生した横波のエコーが縦波専用の受信探触子4で拾われ、反射波の波形データに含まれていることが分かった。
Therefore, as shown in FIG. 2, on the waveform data screen, the first cursor 13 is set at the position of the horizontal axis (arrival time) when the longitudinal wave is assumed to be a longitudinal wave (assumed sound velocity of 4000 m / s), and When the second cursor 14 is set at the position of the horizontal axis when the forward wave is a longitudinal wave and the return wave is a horizontal wave (assumed sound speed of 2350 m / s), the first cursor 13 substantially coincides with the first peak 12a, The cursor 14 substantially coincided with the second peak 12b.
Therefore, even when the concrete structure 6 is ultrasonically surveyed using only the longitudinal wave probes 3 and 4, the transverse wave echo generated by the mode conversion at the boundary surface is the reception probe dedicated to the longitudinal wave. 4 was picked up and found to be included in the waveform data of the reflected wave.

このため、本実施形態では、反射波の波形において認められる複数のピーク12a,12bのうち、最初に得られたモード変換なしの底面エコーの到達時間T1と、その後に得られたモード変換ありの遅れエコーの到達時間T2とから、縦波と横波の音速比を算出するようにしている。
すなわち、最初のピーク12aはモード変換なしの底面エコーであり、2番目のピーク12bは、境界面でのモード変換によって発生した横波のエコーであると見なすことができるから、前者の到達時間をT1、後者の到達時間をT2とすると、縦波と横波の音速比R(=Vl/Vt)は次の式(3)で表すことができる。
R=(2×T2−T1)/T1 ・・・(3)
For this reason, in the present embodiment, among the plurality of peaks 12a and 12b recognized in the waveform of the reflected wave, the arrival time T1 of the bottom echo without mode conversion obtained first and the mode conversion obtained thereafter are obtained. From the arrival time T2 of the delayed echo, the sound speed ratio between the longitudinal wave and the transverse wave is calculated.
That is, the first peak 12a can be regarded as a bottom echo without mode conversion, and the second peak 12b can be regarded as a transverse wave echo generated by mode conversion at the boundary surface. If the arrival time of the latter is T2, the sound speed ratio R (= Vl / Vt) between the longitudinal wave and the transverse wave can be expressed by the following equation (3).
R = (2 × T2−T1) / T1 (3)

そして、本実施形態では、パソコン本体部9の補助記憶装置に格納されたプログラムに、上記式(3)がデータとして格納されており、現場で得られた各到達時間T1及びT2をこの式(3)に代入することにより、音速比Rを算出できるようになっている。
次に、上記の非破壊検査装置1を用いてコンクリート構造物6の圧縮強度やアルカリ骨材反応の進行度等の対象物理量を測定する方法について説明する。
まず、コンクリート構造物6の表面における対象物理量を測定したい箇所に、作業員が発信探触子3及び受信探触子4を手で持って接触させる。そして、所定の出力電圧で超音波パルス7を発信させてコンクリート構造物6に入射し、その各パルス7によるエコー8を測定する過程を多数回(例えば1000〜20000回程度)繰り返す。
In the present embodiment, the above equation (3) is stored as data in the program stored in the auxiliary storage device of the personal computer main body 9, and the arrival times T1 and T2 obtained in the field are expressed by this equation ( By substituting in 3), the sound speed ratio R can be calculated.
Next, a method for measuring the target physical quantity such as the compressive strength of the concrete structure 6 and the progress of the alkali aggregate reaction using the nondestructive inspection apparatus 1 will be described.
First, an operator brings the transmitting probe 3 and the receiving probe 4 into contact with a place where the target physical quantity on the surface of the concrete structure 6 is to be measured. And the process which transmits the ultrasonic pulse 7 with a predetermined output voltage, injects into the concrete structure 6, and measures the echo 8 by each pulse 7 is repeated many times (for example, about 1000-20000 times).

そして、かかるエコー8の受信を行っている間に、例えば図1の円A〜C内に示すように、発信探触子3及び受信探触子4のいずれか一方又は双方をコンクリート構造物6の表面に沿って移動させるようにする。
なお、探触子3,4の動かし方は、図1のA円内で示すように、縦向きに往復移動させるものであってもよく、また、同B円内で示すように、横向きに往復移動させるものであってもよい。また、同C円内で示すように、コンクリート構造物の表面の所定範囲内において探触子をランダムに動かすようにしてもよい。
While receiving the echo 8, for example, as shown in circles A to C in FIG. 1, one or both of the transmission probe 3 and the reception probe 4 are placed in the concrete structure 6. To move along the surface.
The probes 3 and 4 may be moved reciprocally in the vertical direction as shown in the circle A in FIG. 1, or in the horizontal direction as shown in the circle B. It may be reciprocated. Further, as shown in the C circle, the probe may be moved randomly within a predetermined range on the surface of the concrete structure.

更に、コンクリート内の粗骨材による反射波の影響を極力防止するために、探触子3,4の移動範囲は想定される粗骨材の寸法(3.0〜5.0cm程度)よりも大きい範囲にすることが好ましく、また、接触不良に伴う散乱波の影響を防止するため、コンクリート構造物6の測定部位に潤滑液を塗布しておくことが好ましい。なお、探触子3,4の移動速度は概ね5〜12cm/秒程度にすればよい。
上記のようにして繰り返し測定して得られた各エコー8は、検査装置本体2によってデジタル化されるとともに、そのデジタル波形を同一時間軸上で加算平均することよって得られた出力波形11が情報処理装置5の表示部10に表示される。
Furthermore, in order to prevent the influence of the reflected wave due to the coarse aggregate in the concrete as much as possible, the movement range of the probes 3 and 4 is larger than the expected size of the coarse aggregate (about 3.0 to 5.0 cm). A large range is preferable, and in order to prevent the influence of scattered waves due to poor contact, it is preferable to apply a lubricating liquid to the measurement site of the concrete structure 6. The moving speed of the probes 3 and 4 may be about 5 to 12 cm / second.
Each echo 8 obtained by repeatedly measuring as described above is digitized by the inspection apparatus main body 2, and an output waveform 11 obtained by averaging the digital waveforms on the same time axis is an information. It is displayed on the display unit 10 of the processing device 5.

なお、かかる加算平均により、各エコー8に含まれているノイズが打ち消され、よりS/N比の高い出力波形11が得られる。また、もし、振幅が大きすぎるか或いは小さすぎる場合には、加算回数や出力電圧を増減して適切な振幅が得られるようにする。
そして、表示部10の出力波形11に現れた最初のピーク12aによって、コンクリート構造物6とその背後の地山13の境界面の位置が測定され、同構造物6の版厚が判明するとともに、最初のピーク12aの到達時間T1と2番目のピーク12bの到達時間T2を検出される。
In addition, the noise contained in each echo 8 is canceled by this averaging, and an output waveform 11 having a higher S / N ratio is obtained. Also, if the amplitude is too large or too small, an appropriate amplitude can be obtained by increasing or decreasing the number of additions and the output voltage.
And by the first peak 12a appearing in the output waveform 11 of the display unit 10, the position of the boundary surface between the concrete structure 6 and the ground 13 behind it is measured, and the plate thickness of the structure 6 is determined, The arrival time T1 of the first peak 12a and the arrival time T2 of the second peak 12b are detected.

そして、これらの到達時間T1及びT2を前記式(3)に代入することによって縦波と横波の音速比Rが求められるとともに、この音速比Rに対応する圧縮強度が図3に示す相関関係図から求められ、同音速比Rに対応するアルカリ骨材反応の進行度が図4に示す相関関係図から求められる。
なお、弾性定数(ヤング率)とポアソン比を求める場合には、上記音速比Rと横波音速Vtを前記式(1)及び(2)に代入することによって求められる。
Then, by substituting these arrival times T1 and T2 into the equation (3), the sound velocity ratio R between the longitudinal wave and the transverse wave is obtained, and the compression strength corresponding to the sound velocity ratio R is a correlation diagram shown in FIG. The degree of progress of the alkali-aggregate reaction corresponding to the sound velocity ratio R is obtained from the correlation diagram shown in FIG.
In addition, when calculating | requiring an elastic constant (Young's modulus) and Poisson's ratio, it calculates | requires by substituting the said sound speed ratio R and the transverse wave sound speed Vt to said Formula (1) and (2).

このように、本実施形態の非破壊検査方法によれば、反射波の波形において認められる複数のピーク12a,12bのうち、最初に得られたモード変換なしの底面エコー12aの到達時間T1とその後に得られたモード変換ありの遅れエコー12bの到達時間T2から、縦波と横波の音速比Rを算出するようにしたので、コンクリート構造物6のある特定の測点について、一回の測定作業でその音速比Rを求めることができる。このため、コンクリート構造物6について予め得られている音速比Rと対象物理量との相関関係(図3及び図4や式(1)及び式(2))から、音速比Rに対応する対象物理量を極めて迅速に求めることができる。   Thus, according to the nondestructive inspection method of this embodiment, the arrival time T1 of the bottom echo 12a without mode conversion obtained first among the plurality of peaks 12a and 12b recognized in the waveform of the reflected wave and thereafter Since the sound velocity ratio R between the longitudinal wave and the transverse wave is calculated from the arrival time T2 of the delayed echo 12b with mode conversion obtained in the above, one measurement operation is performed for a specific measuring point of the concrete structure 6. The sound speed ratio R can be obtained. For this reason, the target physical quantity corresponding to the sound speed ratio R is obtained from the correlation between the sound speed ratio R and the target physical quantity obtained in advance for the concrete structure 6 (FIGS. 3 and 4, and the expressions (1) and (2)). Can be determined very quickly.

なお、本発明は上記実施形態に限定されるものではなく、例えば、一つで発信と受信の双方を行う縦波用の探触子を使用することもできる。   In addition, this invention is not limited to the said embodiment, For example, the probe for longitudinal waves which performs both transmission and reception by one can also be used.

本発明方法を行うための非破壊検査装置の概略構成図である。It is a schematic block diagram of the nondestructive inspection apparatus for performing the method of this invention. 実際に測定を行った場合の出力波形の一例である。It is an example of the output waveform at the time of actually measuring. 縦波と横波の音速比と圧縮強度との相関関係を示すグラフである。It is a graph which shows the correlation with the sound speed ratio of a longitudinal wave and a transverse wave, and compression strength. アルカリ骨材反応の進行度と縦波と横波の音速比との相関関係を示すグラフである。It is a graph which shows the correlation with the progress degree of alkali-aggregate reaction, and the sound speed ratio of a longitudinal wave and a transverse wave.

符号の説明Explanation of symbols

1 非破壊検査装置
2 検査装置本体
3 発信探触子(パルサー)
4 受信探触子(レシーバ)
5 情報処理装置
7 超音波パルス
8 エコー(反射波)
9 パソコン本体部(演算手段、記憶手段、制御手段)
10 表示部
1 Nondestructive inspection device 2 Inspection device body 3 Transmitter probe (Pulsar)
4 Receiving probe (receiver)
5 Information processing equipment 7 Ultrasonic pulse 8 Echo (reflected wave)
9 PC body (calculation means, storage means, control means)
10 Display section

Claims (9)

以下の各ステップを含むコンクリート構造物の非破壊検査方法。
(a) コンクリート構造物の外表面に接触させた縦波用の発信探触子から同構造物の内部に向かって超音波パルスを入射し、前記コンクリート構造物の境界面を反射して帰ってきた反射波を同構造物の外表面に接触させた縦波用の受信探触子で検出するステップ
(b) 前記反射波の波形において認められる複数のピークのうち、最初に得られたモード変換なしの底面エコーの到達時間とその後に得られたモード変換ありの遅れエコーの到達時間から、縦波と横波の音速比を算出するステップ
(c) 前記コンクリート構造物について予め得られている音速比と検査対象である対象物理量との相関関係から、現場で測定した前記音速比に対応する前記対象物理量を求めるステップ
A nondestructive inspection method for concrete structures including the following steps.
(A) An ultrasonic pulse is incident on the inside of the structure from the longitudinal wave transmission probe brought into contact with the outer surface of the concrete structure, and the boundary surface of the concrete structure is reflected and returned. (B) a mode conversion obtained first among a plurality of peaks recognized in the waveform of the reflected wave; and a step of detecting the reflected wave with a longitudinal wave receiving probe brought into contact with the outer surface of the structure. A step of calculating a sound velocity ratio of longitudinal waves and transverse waves from the arrival time of the bottom echo with no wave and the arrival time of the delayed echo with mode conversion obtained thereafter (c) The sound velocity ratio obtained in advance for the concrete structure Obtaining the target physical quantity corresponding to the sound speed ratio measured in the field from the correlation between the target physical quantity and the target physical quantity to be inspected
前記対象物理量は、前記コンクリート構造物の圧縮強度、アルカリ骨材反応の進行度、弾性定数又はポアソン比である請求項1に記載のコンクリート構造物の非破壊検査方法。   2. The nondestructive inspection method for a concrete structure according to claim 1, wherein the target physical quantity is a compressive strength of the concrete structure, a degree of progress of an alkali aggregate reaction, an elastic constant, or a Poisson's ratio. 前記ステップ(a)は、前記コンクリート構造物に対して前記発信探触子から所定のタイミングで複数の超音波パルスを入射し、その超音波パルスの各反射波を前記受信探触子でそれぞれ受信するステップと、
受信した各信号をデジタル化した波形を同一時間軸上で加算平均するステップとを含む請求項1又は2に記載のコンクリート構造物の非破壊検査方法。
In the step (a), a plurality of ultrasonic pulses are incident on the concrete structure from the transmitting probe at a predetermined timing, and each reflected wave of the ultrasonic pulses is received by the receiving probe. And steps to
A nondestructive inspection method for a concrete structure according to claim 1, further comprising: adding and averaging waveforms obtained by digitizing received signals on the same time axis.
前記各探触子のいずれか一方又は双方を前記コンクリート構造物の外表面に沿って移動させながら前記反射波の検出を行うようにした請求項1〜3のいずれかに記載のコンクリート構造物の非破壊検査方法。   The concrete structure according to any one of claims 1 to 3, wherein the reflected wave is detected while moving either one or both of the probes along the outer surface of the concrete structure. Non-destructive inspection method. コンクリート構造物の外表面からその内部に向かって超音波パルスを入射するための縦波用の発信探触子と、
前記コンクリート構造物の境界面を反射して前記外表面に帰ってきた反射波を検出するための縦波用の受信探触子と、
この受信探触子で検出した反射波の波形において認められる複数のピークのうち、最初に得られたモード変換なしの底面エコーの到達時間とその後に得られたモード変換ありの遅れエコーの到達時間から、縦波と横波の音速比を算出する演算手段と、
前記コンクリート構造物について予め得られている音速比と検査対象である対象物理量との相関関係を記憶する記憶手段と、
現場で測定した前記音速比に対応する前記対象物理量を前記記憶手段に記憶されている相関関係から求める制御手段と、
を備えているコンクリート構造物の非破壊検査装置。
An outgoing probe for longitudinal waves for injecting ultrasonic pulses from the outer surface of the concrete structure toward the inside;
A longitudinal wave reception probe for detecting a reflected wave reflected on the boundary surface of the concrete structure and returning to the outer surface;
Of the multiple peaks observed in the waveform of the reflected wave detected by this receiving probe, the arrival time of the bottom echo without mode conversion obtained first and the arrival time of delayed echo with mode conversion obtained thereafter From the calculation means for calculating the sound velocity ratio of the longitudinal wave and the transverse wave,
Storage means for storing a correlation between a sound speed ratio obtained in advance for the concrete structure and a target physical quantity to be inspected;
Control means for obtaining the target physical quantity corresponding to the sound speed ratio measured on-site from the correlation stored in the storage means;
A non-destructive inspection device for concrete structures.
前記対象物理量は、コンクリート構造物の圧縮強度、アルカリ骨材反応の進行度、弾性定数又はポアソン比である請求項5に記載のコンクリート構造物の非破壊検査装置。   6. The nondestructive inspection device for a concrete structure according to claim 5, wherein the target physical quantity is a compressive strength of the concrete structure, a degree of progress of an alkali aggregate reaction, an elastic constant, or a Poisson's ratio. 前記制御手段は、前記コンクリート構造物に対して前記発信探触子から所定のタイミングで複数の超音波パルスを入射し、その超音波パルスの各エコーを前記受信探触子でそれぞれ受信し、その受信した各信号をデジタル化した波形を同一時間軸上で加算平均する機能を有している請求項5又は6に記載のコンクリート構造物の非破壊検査装置。   The control means makes a plurality of ultrasonic pulses incident on the concrete structure from the transmitting probe at a predetermined timing, and receives each echo of the ultrasonic pulse by the receiving probe. The nondestructive inspection apparatus for a concrete structure according to claim 5 or 6, which has a function of averaging the waveforms obtained by digitizing received signals on the same time axis. 検査装置本体と、この検査装置本体に接続された縦波用の発信探触子及び縦波用の受信探触子と、前記検査装置本体に接続されたプログラマブルな情報処理装置とを備えたコンクリート構造物の非破壊検査装置を制御するコンピュータのプログラムであって、請求項1〜4のいずれかに記載の各ステップをコンピュータに実行させるためのプログラム。   Concrete comprising an inspection apparatus main body, a longitudinal wave transmitting probe and a longitudinal wave receiving probe connected to the inspection apparatus main body, and a programmable information processing apparatus connected to the inspection apparatus main body A computer program for controlling a non-destructive inspection apparatus for a structure, the program causing a computer to execute each step according to claim 1. 請求項8に記載のプログラムを記憶したコンピュータ読取可能な記憶媒体。   A computer-readable storage medium storing the program according to claim 8.
JP2004131160A 2004-04-27 2004-04-27 Nondestructive inspection method and device of concrete structure Pending JP2005315622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131160A JP2005315622A (en) 2004-04-27 2004-04-27 Nondestructive inspection method and device of concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131160A JP2005315622A (en) 2004-04-27 2004-04-27 Nondestructive inspection method and device of concrete structure

Publications (1)

Publication Number Publication Date
JP2005315622A true JP2005315622A (en) 2005-11-10

Family

ID=35443219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131160A Pending JP2005315622A (en) 2004-04-27 2004-04-27 Nondestructive inspection method and device of concrete structure

Country Status (1)

Country Link
JP (1) JP2005315622A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128846A (en) * 2006-11-21 2008-06-05 Taiheiyo Cement Corp Alkali aggregate reaction determination method
JP2010266378A (en) * 2009-05-15 2010-11-25 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic diagnosis/evaluation system
CN102636249A (en) * 2012-05-09 2012-08-15 河北省电力研究院 Method for measuring acoustic velocity of material by using surface wave
CN103091479A (en) * 2013-01-28 2013-05-08 河海大学 Common cement paste early-age Poisson's ratio prediction method based on multi-scale model
JP2015172528A (en) * 2014-03-12 2015-10-01 三菱電機株式会社 Ultrasonic measuring device and method
JP2016095210A (en) * 2014-11-13 2016-05-26 大成建設株式会社 Method of estimating concrete strength
JP2017009323A (en) * 2015-06-17 2017-01-12 一般財団法人電力中央研究所 Concrete inclusion measurement method and measurement device
WO2018026575A1 (en) * 2016-08-01 2018-02-08 Donald Eugene Yuhas Methods and apparatus to perform non-destructive dynamic modulus measurements of materials
CN113311074A (en) * 2021-04-26 2021-08-27 长江存储科技有限责任公司 Method, device and system for determining Young modulus of thin film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274256A (en) * 1985-05-30 1986-12-04 Hitachi Constr Mach Co Ltd Ultrasonic measurement for elastic constant of solid
JPH0313859A (en) * 1989-06-13 1991-01-22 Shimizu Corp Method for measuring compressive strength of concrete using ultrasonic wave
JPH09218184A (en) * 1996-02-09 1997-08-19 Sonitsukusu Kk Method for measuring speed of surface wave, creeping wave and transverse wave, and device therefor
JP2000088819A (en) * 1998-09-08 2000-03-31 H & B System:Kk Ultrasonic detecting device and computer-readable record medium memolizing program for supersonic detection
JP2000221076A (en) * 1999-01-29 2000-08-11 Tokimec Inc Ultrasonic sound velocity measuring method
JP2001004353A (en) * 1999-06-23 2001-01-12 Toyoko Elmes:Kk Method for measuring diameter of reinforcing bar ultrasonically
WO2003048758A1 (en) * 2001-11-30 2003-06-12 Masayuki Hirose Ultrasonic detecting device and ultrasonic detecting method using the device
JP2003302382A (en) * 2002-04-08 2003-10-24 Fujimitsu Komuten:Kk Method for measuring advancing stage of alkali aggregate reaction in concrete structure and method for measuring internal strength of concrete structure using the same
JP2004053288A (en) * 2002-07-17 2004-02-19 Akita Prefecture Ultrasonic acoustic velocity measuring method, and method for obtaining young's modulus and poisson's ratio based on the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274256A (en) * 1985-05-30 1986-12-04 Hitachi Constr Mach Co Ltd Ultrasonic measurement for elastic constant of solid
JPH0313859A (en) * 1989-06-13 1991-01-22 Shimizu Corp Method for measuring compressive strength of concrete using ultrasonic wave
JPH09218184A (en) * 1996-02-09 1997-08-19 Sonitsukusu Kk Method for measuring speed of surface wave, creeping wave and transverse wave, and device therefor
JP2000088819A (en) * 1998-09-08 2000-03-31 H & B System:Kk Ultrasonic detecting device and computer-readable record medium memolizing program for supersonic detection
JP2000221076A (en) * 1999-01-29 2000-08-11 Tokimec Inc Ultrasonic sound velocity measuring method
JP2001004353A (en) * 1999-06-23 2001-01-12 Toyoko Elmes:Kk Method for measuring diameter of reinforcing bar ultrasonically
WO2003048758A1 (en) * 2001-11-30 2003-06-12 Masayuki Hirose Ultrasonic detecting device and ultrasonic detecting method using the device
JP2003302382A (en) * 2002-04-08 2003-10-24 Fujimitsu Komuten:Kk Method for measuring advancing stage of alkali aggregate reaction in concrete structure and method for measuring internal strength of concrete structure using the same
JP2004053288A (en) * 2002-07-17 2004-02-19 Akita Prefecture Ultrasonic acoustic velocity measuring method, and method for obtaining young's modulus and poisson's ratio based on the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128846A (en) * 2006-11-21 2008-06-05 Taiheiyo Cement Corp Alkali aggregate reaction determination method
JP2010266378A (en) * 2009-05-15 2010-11-25 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic diagnosis/evaluation system
CN102636249A (en) * 2012-05-09 2012-08-15 河北省电力研究院 Method for measuring acoustic velocity of material by using surface wave
CN103091479A (en) * 2013-01-28 2013-05-08 河海大学 Common cement paste early-age Poisson's ratio prediction method based on multi-scale model
JP2015172528A (en) * 2014-03-12 2015-10-01 三菱電機株式会社 Ultrasonic measuring device and method
JP2016095210A (en) * 2014-11-13 2016-05-26 大成建設株式会社 Method of estimating concrete strength
JP2017009323A (en) * 2015-06-17 2017-01-12 一般財団法人電力中央研究所 Concrete inclusion measurement method and measurement device
WO2018026575A1 (en) * 2016-08-01 2018-02-08 Donald Eugene Yuhas Methods and apparatus to perform non-destructive dynamic modulus measurements of materials
CN113311074A (en) * 2021-04-26 2021-08-27 长江存储科技有限责任公司 Method, device and system for determining Young modulus of thin film
CN113311074B (en) * 2021-04-26 2023-05-09 长江存储科技有限责任公司 Method, device and system for determining Young's modulus of film

Similar Documents

Publication Publication Date Title
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
Abraham et al. Non-destructive testing of fired tunnel walls: the Mont-Blanc Tunnel case study
KR102240941B1 (en) Impact Echo Testing System for Depth Estimation of Shallow Foundations
US20070095139A1 (en) Method and apparatus for non-destructive testing of concrete structures
JP2005315622A (en) Nondestructive inspection method and device of concrete structure
CN111521136B (en) Reinforced concrete structure crack depth detection method and detection device based on horizontal shear wave
EP1780539A1 (en) Method and apparatus for non-destructive ultrasonic testing of concrete structures
JP2011047763A (en) Ultrasonic diagnostic device
Ghosh et al. Detection of defect in concrete slab using Rayleigh waves
JP4405821B2 (en) Ultrasonic signal detection method and apparatus
JP3732134B2 (en) Radar equipment
US10620162B2 (en) Ultrasonic inspection methods and systems
JP2009244076A (en) Method and system of detecting alteration state of heterogeneous substance in medium using electromagnetic wave radar
EP0555298A1 (en) Detecting defects in concrete
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
Ohtsu et al. Development of non-contact SIBIE procedure for identifying ungrouted tendon duct
KR102688130B1 (en) Methods for measuring shear wave parameters and ultrasonic apparatus
JP2004184276A (en) Nondestructive inspection method of concrete structure
JP4500973B2 (en) Method and apparatus for measuring compressive strength of concrete structures
Grosse et al. The resonance method-application of a new nondestructive technique which enables thickness measurements at remote concrete parts
JP2006078243A (en) Nondestructive geometry diagnosing method for buried object and its device
Subodh et al. A novel method for reverberation cancellation in single ultrasonic transducer based measurement systems
Goueygou et al. Measurement of ultrasonic attenuation and Rayleigh wave dispersion for testing concrete with subsurface damage
Laas et al. Two-Dimensional Ray Mathematical Model of Mechanoelectric Transformations Method for Location of Macrodefects Identification in Solid Dielectric Structures
JPH0254505B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706