JP2005277181A - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor device Download PDFInfo
- Publication number
- JP2005277181A JP2005277181A JP2004089598A JP2004089598A JP2005277181A JP 2005277181 A JP2005277181 A JP 2005277181A JP 2004089598 A JP2004089598 A JP 2004089598A JP 2004089598 A JP2004089598 A JP 2004089598A JP 2005277181 A JP2005277181 A JP 2005277181A
- Authority
- JP
- Japan
- Prior art keywords
- antireflection film
- semiconductor device
- light
- manufacturing
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Formation Of Insulating Films (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、光の反射を低減させることを目的とした反射防止膜を有する半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device having an antireflection film for the purpose of reducing light reflection.
従来、太陽電池などの受光素子、LEDおよび半導体レーザーなどの発光素子ならびにレンズなどの光学部品では、表面での光の反射を抑えるために、光が入射または放射する面に防呟膜や反射防止膜を施すことがある。そして、該反射防止膜では、単層からなるもの以外に、二層以上の層を積層させて光の干渉作用を利用して光の反射率を低減させる技術が知られている。一般に、多層からなる反射防止膜は、CVD法(化学気相成長法)、真空蒸着法、スパッタリング法などを用いて、屈性率の異なる層を積層させることにより、単層の場合よりも広い光波長領域での光の反射を低減させることができる。しかし、その場合、各層で材料の異なるものを使用するか、または各層で材料の混合比が異なるものを使用する。 Conventionally, in light receiving elements such as solar cells, light emitting elements such as LEDs and semiconductor lasers, and optical components such as lenses, in order to suppress reflection of light on the surface, an anti-reflection film or anti-reflection is provided on the surface on which light is incident or emitted A film may be applied. In addition to the single-layered anti-reflection film, a technique is known in which two or more layers are stacked to reduce the light reflectance by utilizing the light interference action. In general, a multilayer antireflection film is wider than a single layer by laminating layers having different reflectivities using CVD (chemical vapor deposition), vacuum deposition, sputtering, or the like. The reflection of light in the light wavelength region can be reduced. However, in that case, a material having a different material is used in each layer, or a material having a different material mixing ratio in each layer.
特許文献1では、プラズマCVD法を用いて、層毎で面方向および厚み方向に屈折率が一定な窒化ケイ素からなる層、酸窒化ケイ素からなる層および酸化ケイ素からなる層などの各層を積層させて形成した反射防止膜の製造方法が開示されている。該公報では、酸窒化ケイ素からなる層を製膜する際のCVD法の条件(成形方法および原料ガスのガス流量など)を調節して元素組成を制御することで、窒化ケイ素からなる層と酸化ケイ素からなる層の界面での屈折率を任意に制御する方法を開示している。しかし上記方法では、各層の界面および反射防止膜と基体の界面で屈折率に差があるため、それら界面で反射が起こり、入射光の反射が残留してしまうことがある。 In Patent Document 1, plasma CVD is used to stack each layer such as a layer made of silicon nitride, a layer made of silicon oxynitride, and a layer made of silicon oxide having a constant refractive index in the plane direction and thickness direction for each layer. A method of manufacturing an antireflection film formed in this manner is disclosed. In this publication, a silicon nitride layer and an oxide layer are oxidized by controlling the elemental composition by adjusting the conditions of the CVD method (molding method, gas flow rate of raw material gas, etc.) when forming the silicon oxynitride layer. A method for arbitrarily controlling the refractive index at the interface of a layer made of silicon is disclosed. However, in the above method, since there is a difference in refractive index between the interface of each layer and the interface between the antireflection film and the substrate, reflection may occur at those interfaces, and reflection of incident light may remain.
さらに、多層からなる反射防止膜では、各層の厚みが、数10nm程度必要とするため、屈折率の高い反射防止膜を製膜する場合、自然と反射防止膜全体の厚みも厚くなる。そして、そのことは、膜内での光の吸収を伴うことが多い。さらに、該反射防止膜を連続的に製膜する場合、単一の層からなる反射防止膜を製造するときと比べて、製造時間や製造コストが余分に必要となる。そして、これらのことを考慮して反射防止膜を製造したとしても、ごく限られた波長領域の光でしか反射防止効果を得られないことが多かった。 Furthermore, since the multilayer antireflection film requires a thickness of several tens of nanometers, when an antireflection film having a high refractive index is formed, the thickness of the entire antireflection film naturally increases. And that often involves the absorption of light within the film. Further, when the antireflection film is continuously formed, extra manufacturing time and manufacturing cost are required as compared with the case of manufacturing an antireflection film composed of a single layer. Even when an antireflection film is manufactured in consideration of these matters, the antireflection effect is often obtained only with light in a very limited wavelength region.
特に、太陽電池の分野においては、半導体基板の表面で起こる光の反射を低減させ、半導体基板内に取り込まれる光の量を増大させることで、電気エネルギーへの変換効率を高めることを目的として、反射防止膜について盛んに研究がなされてきた。例えば、特許文献2では、TiO2からなる層とSiONからなる層などで形成される各層で、屈折率が異なる反射防止膜を、スパッタリング法を用いて製造する方法が開示されている。該公報では、TiO2を製膜する際にArとO2の混合ガスでのO2の分圧を変化させることで、層内での屈折率を3.3〜2.4まで変化させ、SiON層を製膜する際に、ArとN2の混合ガスを、ArとO2の混合ガスへ連続的に移行させることによって層内での屈折率を2.3〜1.4まで変化させた反射防止膜を形成することで、各層内での屈折率の差を0.1、半導体層とTiO2の界面での屈折率の差を0.2、SiON層と入射側の媒質である空気との界面での屈折率の差を0.4に抑えることを可能にし、広い波長域での光の反射を大幅に低減させ、光エネルギーへの変換効率を大幅に向上させることができたと開示している。
In particular, in the field of solar cells, by reducing the reflection of light that occurs on the surface of the semiconductor substrate and increasing the amount of light taken into the semiconductor substrate, the purpose is to increase the conversion efficiency into electrical energy, Active research has been conducted on antireflection films. For example,
また、レンズなどの光学部品では、反射防止膜を用いてレンズ表面で起こる光の反射を少なくして光の透過率を向上させることが重要な課題となっている。特に、太陽電池などの受光素子の場合、広範囲にわたる光波長域において受光素子の表面で起こる光の反射による損失を抑えることで、光の受光率を高め、光エネルギーを電気エネルギーに変換する光電変換効率を向上させることが重要な課題として挙げられている。 Further, in an optical component such as a lens, it is an important issue to improve the light transmittance by reducing the reflection of light that occurs on the lens surface using an antireflection film. In particular, in the case of light-receiving elements such as solar cells, photoelectric conversion that increases the light reception rate and converts light energy into electrical energy by suppressing loss due to light reflection occurring on the surface of the light-receiving element in a wide range of light wavelengths Improving efficiency is cited as an important issue.
しかし、前述のように屈折率の異なる層を積層させた反射防止膜では、最適設計時には85%以上の表面反射を低減させることができるものの、依然として、基板と反射防止膜、あるいは各層の界面、反射防止膜と入射側の媒質である空気などとの界面で光の反射が起こるため、利用可能な光の損失が生じる。 However, in the antireflection film in which layers having different refractive indexes are laminated as described above, surface reflection of 85% or more can be reduced at the time of optimum design, but still the substrate and the antireflection film, or the interface between each layer, Since light is reflected at the interface between the antireflection film and air, which is a medium on the incident side, a loss of usable light occurs.
そこで本発明は、広範囲の波長域の光を受光または発光でき、かつ光の反射によって起こる光の損失を低減させることを目的とした反射防止膜を有する半導体装置の製造方法を提供することを課題とする。 In view of the above, an object of the present invention is to provide a method of manufacturing a semiconductor device having an antireflection film that can receive or emit light in a wide wavelength range and reduce light loss caused by light reflection. And
本発明は、プラズマCVD法により、半導体素子上に、原料ガスの組成比を変化させながら、膜厚方向で屈折率が変化する反射防止膜を形成することを特徴とする半導体装置の製造方法を提供することで、上記課題を解決した。 The present invention provides a method for manufacturing a semiconductor device, characterized in that an antireflection film whose refractive index changes in the film thickness direction is formed on a semiconductor element by a plasma CVD method while changing the composition ratio of the source gas. By providing this, the above problems were solved.
本発明の半導体装置の製造方法に従って反射防止膜を有する半導体装置を製造することで、空気などの媒質と反射防止膜の界面、反射防止膜内部、および反射防止膜と半導体素子との界面で起こる反射による光の損失を低減させることができる半導体装置を提供することができた。
そして、このようにプラズマCVD法で反射防止膜を形成することで、水素パッシベーション効果を得ることができた。つまり、半導体基板が多結晶シリコンからなる場合、粒界中に多数存在するシリコンの未結合手を、成膜中に生じる水素ラジカルによって終端させることができ、他の形成法と比べて、本願発明の製造方法で得られた半導体装置の方が、半導体装置の特性を大きく向上させることができた。
また熱酸化膜のパッシベーションと比べて、低温で形成できるため、基板へのダメージを小さくすることができた。
そして、本製造方法を用いて太陽電池を製造した場合、太陽電池の短絡電流値の向上による変換効率を上昇させ、さらに受光素子の透過光増大による感度の上昇をもたらすことができた。さらに本発明の製造方法を用いてレーザーやLEDなどを製造した場合、発光素子の輝度を向上させることができた。
By manufacturing a semiconductor device having an antireflection film according to the method for manufacturing a semiconductor device of the present invention, it occurs at the interface between a medium such as air and the antireflection film, inside the antireflection film, and at the interface between the antireflection film and the semiconductor element. It was possible to provide a semiconductor device capable of reducing light loss due to reflection.
And the hydrogen passivation effect was able to be acquired by forming an antireflection film by plasma CVD method in this way. That is, when the semiconductor substrate is made of polycrystalline silicon, a large number of silicon dangling bonds existing in the grain boundary can be terminated by hydrogen radicals generated during film formation. The semiconductor device obtained by this manufacturing method was able to greatly improve the characteristics of the semiconductor device.
Moreover, since it can be formed at a lower temperature than the thermal oxide film passivation, the damage to the substrate can be reduced.
And when the solar cell was manufactured using this manufacturing method, the conversion efficiency by the improvement of the short circuit current value of a solar cell could be raised, and also the raise of the sensitivity by the increase in the transmitted light of a light receiving element could be brought about. Furthermore, when a laser, LED, etc. were manufactured using the manufacturing method of this invention, the brightness | luminance of the light emitting element was able to be improved.
本名発明の製造方法で得られる半導体装置は、半導体素子上に、膜厚方向で屈折率が異なる反射防止膜が形成されている半導体装置である。
本発明の反射防止膜を有する半導体素子には、公知の太陽電池などの受光素子、レーザーおよびLEDなどの発光素子が含まれる。中でも、太陽電池が好ましく、特にPN接合型結晶シリコン太陽電池セルが好ましい。
また、本発明で述べる「膜厚方向」とは、半導体素子の表面から反射防止膜の受光面または発光面に向かう方向を意味している。
反射防止膜は、半導体素子の受光部または発光部の前面に渡って形成していてもよいし、光の反射半導体素子の性能に影響を与える部分にのみに形成していてもよい。
また、本発明の反射防止膜は形成する反射防止膜全体にわたって膜厚方向に屈折率が変化している必要はなく、少なくとも光の反射が半導体素子の性能に影響を与える部分が変化していればよい。
具体的な実施の形態として、以下に、PN接合型結晶シリコン太陽電池を1例として用い、本願発明の反射防止膜を有する半導体装置の製造方法によって得られる半導体装置について説明する。
図3(g)は、本願発明の半導体装置の製造方法で得られる半導体装置の1例を示したものである。この半導体装置は、P型のドーパントが注入された半導体基板(2)の受光表面(4)にN型の不純物を熱拡散させて形成させたPN接合層(3)を形成しており、該接合層の表面には表面電極(6)が配されている。さらにその上に反射防止膜(8)が配されている。さらに、受光面の反対側には、ほぼ全面にわたって裏面電極(7)が配された構造となっている。
The semiconductor device obtained by the manufacturing method of the present invention is a semiconductor device in which an antireflection film having a different refractive index in the film thickness direction is formed on a semiconductor element.
The semiconductor element having the antireflection film of the present invention includes a light receiving element such as a known solar cell, and a light emitting element such as a laser and an LED. Among these, a solar cell is preferable, and a PN junction type crystalline silicon solar cell is particularly preferable.
The “film thickness direction” described in the present invention means a direction from the surface of the semiconductor element toward the light receiving surface or light emitting surface of the antireflection film.
The antireflection film may be formed over the front surface of the light receiving portion or the light emitting portion of the semiconductor element, or may be formed only on a portion that affects the performance of the light reflecting semiconductor element.
Further, the antireflective film of the present invention does not have to change the refractive index in the film thickness direction over the entire antireflective film to be formed, and at least the part where the reflection of light affects the performance of the semiconductor element is changed. That's fine.
As a specific embodiment, a semiconductor device obtained by a method for manufacturing a semiconductor device having an antireflection film according to the present invention will be described below using a PN junction type crystalline silicon solar cell as an example.
FIG. 3G shows an example of a semiconductor device obtained by the method for manufacturing a semiconductor device of the present invention. This semiconductor device has a PN junction layer (3) formed by thermally diffusing N-type impurities on the light-receiving surface (4) of a semiconductor substrate (2) implanted with a P-type dopant, A surface electrode (6) is disposed on the surface of the bonding layer. Furthermore, an antireflection film (8) is disposed thereon. Further, on the opposite side of the light receiving surface, a back electrode (7) is arranged over almost the entire surface.
そして、本願発明の半導体装置の製造方法では、半導体素子上に、プラズマCVD法を用いて膜厚方向で屈折率が異なる反射防止膜を形成することに特徴がある。
そして図4は、プラズマCVD法を用いて窒化ケイ素からなる膜を形成する場合のシラン(SiH4)ガスとアンモニア(NH3)ガスの流量比が、製膜される膜(窒化ケイ素)の屈折率の関係を調べたものである。その結果、製膜時に使用するガス(この場合、SiH4/NH3)の流量比を段階的に変化させることで、製膜される膜の屈折率を段階的に変化させることができることが判明した。
The semiconductor device manufacturing method of the present invention is characterized in that an antireflection film having a different refractive index in the film thickness direction is formed on a semiconductor element using a plasma CVD method.
FIG. 4 shows that the flow rate ratio of silane (SiH 4 ) gas and ammonia (NH 3 ) gas when a film made of silicon nitride is formed using the plasma CVD method is the refraction of the film to be formed (silicon nitride). We investigated the relationship between rates. As a result, it was found that the refractive index of the film to be formed can be changed stepwise by changing the flow rate ratio of the gas used in the film formation (in this case, SiH 4 / NH 3 ) step by step. did.
そして、この特徴を利用して、半導体素子上に、膜を形成するための複数の原料のガス(以下、原料ガスと称する)の組成比を変化させながらプラズマCVD法を用いて、反射防止膜を形成することで、膜厚方向に屈折率が異なる反射防止膜を形成することができる。
組成比を変化させる方法としては、各々の原料ガスの流量比を変化させながらプラズマCVD法を用いることで行うことが挙げられる。
さらに好ましくは、原料ガスが少なくとも2成分系である場合には、一方の原料ガスの流量を固定して、他方の原料ガスの流量を変化させることで、原料ガスの組成比を変化させることである。
さらに反射防止膜の屈折率は、半導体素子の表面から反射防止膜の受光面または発光面に向かって低くなるよう製造することである。
用いる原料ガスは、製造する半導体装置の特性に応じて、所望の屈折率および形成する膜の組成に従って適宜選択すればよい。そのため、原料ガスの成分としては、具体的には窒化ケイ素、酸化ケイ素、酸窒化ケイ素、酸化チタン、酸化アルミニウム、フッ化マグネシウム、酸化タンタル、硫化亜鉛、酸化セリウムおよびフッ化セリウムなどが挙げられる。中でも、太陽電池の反射防止膜を形成する場合には、窒化ケイ素などを用いることが好ましい。
Then, by utilizing this feature, an antireflection film is formed using a plasma CVD method while changing the composition ratio of a plurality of source gases (hereinafter referred to as source gases) for forming a film on a semiconductor element. By forming, an antireflection film having a different refractive index in the film thickness direction can be formed.
As a method for changing the composition ratio, it is possible to use a plasma CVD method while changing the flow rate ratio of each source gas.
More preferably, when the source gas is at least a two-component system, the flow rate of one source gas is fixed and the flow rate of the other source gas is changed to change the composition ratio of the source gas. is there.
Furthermore, the refractive index of the antireflection film is manufactured so as to decrease from the surface of the semiconductor element toward the light receiving surface or the light emitting surface of the antireflection film.
The source gas to be used may be appropriately selected according to the desired refractive index and the composition of the film to be formed in accordance with the characteristics of the semiconductor device to be manufactured. Therefore, specific examples of the component of the source gas include silicon nitride, silicon oxide, silicon oxynitride, titanium oxide, aluminum oxide, magnesium fluoride, tantalum oxide, zinc sulfide, cerium oxide, and cerium fluoride. Among these, when forming an antireflection film for a solar cell, it is preferable to use silicon nitride or the like.
また、反射防止膜を形成する際に用いる原料ガスの流速は、所望する反射防止膜の特性に応じて適宜選択すれよい。 The flow rate of the source gas used when forming the antireflection film may be appropriately selected according to the desired characteristics of the antireflection film.
また、反射防止膜を形成する際の原料ガスの流量比を変化させる速度は、所望する屈折率に応じて適宜選択すればよい。
また、単層構造の反射防止膜の場合、ガラス基体表面の屈折率をnsとし、反射防止膜の屈折率をn1とし、光の入射または放射面に接する媒質の屈折率をn0とし、反射防止膜の厚みをd1とし、光の波長をλとした場合、n12=n0×n2およびn1×d1=λ/4の関係が成り立つ際に、波長λの光に対する反射率が最小となるとされている。
そのため、膜厚(d1)は、例えば最も必要とする光の波長などに応じて適宜選択すればよく、一般には50〜100、好ましくは上記最も必要とする光の波長(λ1)に対してλ/4[nm]に相当する厚みに設定することが好ましい。
Further, the speed for changing the flow rate ratio of the source gas when forming the antireflection film may be appropriately selected according to the desired refractive index.
In the case of an antireflection film having a single layer structure, the refractive index of the surface of the glass substrate is ns, the refractive index of the antireflection film is n1, and the refractive index of the medium that is in contact with the light incident or radiation surface is n0. When the thickness of the film is d1 and the wavelength of light is λ, the reflectance for light of wavelength λ is minimized when the relationship of n12 = n0 × n2 and n1 × d1 = λ / 4 holds. .
Therefore, the film thickness (d1) may be appropriately selected according to, for example, the most necessary light wavelength, and is generally 50 to 100, preferably λ with respect to the most necessary light wavelength (λ1). It is preferable to set the thickness corresponding to / 4 [nm].
また図5では、Applied Surface Science 113/4 1997 p610-613に記載されているX線分光分析(XPS)を用いて、アンモニアプラズマ処理を施す時間が膜の表面の結合力と張力に与える影響について示したものである。このことは、分光強度がアンモニアプラズマ処理を施す時間に依存して高まることを示している。つまり、膜の表面付近のSi−H結合濃度がプラズマ処理する時間に依存していることを示している。
そのため、反射防止膜、特に表面部分をアンモニアプラズマ処理して屈折率を制御させることも好ましい。
その際、アンモニアプラズマ処理する時間は、所望する屈折率に応じて適宜選択すればよい。
In addition, in FIG. 5, the effect of the time during which ammonia plasma treatment is applied on the binding force and tension of the membrane surface using X-ray spectroscopy (XPS) described in Applied Surface Science 113/4 1997 p610-613 It is shown. This indicates that the spectral intensity increases depending on the time for performing the ammonia plasma treatment. That is, it shows that the Si—H bond concentration near the surface of the film depends on the plasma processing time.
Therefore, it is also preferable to control the refractive index by treating the antireflection film, particularly the surface portion, with ammonia plasma.
At that time, the time for the ammonia plasma treatment may be appropriately selected according to the desired refractive index.
以下に、本発明の反射防止膜を有する半導体装置の製造方法にて、PN接合型結晶太陽電池を製造した場合の1例を示す。
その製造方法として、以下の主に4工程からなる製造方法を挙げることができる。
(I)P型のドーパントが注入された半導体基板上にN型の不純物拡散層を形成する工程
(II)不純物拡散層に電極を形成する工程
(III)受光面上に反射防止膜を形成する工程
(IV)ダイシング工程
具体的には、
(I)のP型のドーパントが注入された半導体基板上にN型の不純物拡散層を形成する工程とは、図3(a)および(b)に示すように、P型基板((a)2)の表面に、リンなどの不純物を熱拡散させてN型の不純物拡散層を形成し、(a)に示すようなP/N接合を形成する。そして、受光面((b)4)と逆面に存在する不純物拡散層をエッチングにより取り除く(b)工程であり、公知の方法を利用して行うことができる。
半導体基板(2)としてはシリコンだけでなく、例えばゲルマニウム、GaAsやInGaAsなどの化合物等を用いることもでき、その厚さについては、特に限定されるものではない。
(II)の不純物拡散層に電極を形成する工程とは、図3(c)、(d)、(e)および(f)に示すように、上記不純物拡散層を形成した受光面((c)4)に、ネガ型フォトレジスト液を用いて電極パターンを有するマスクを形成し(c)、電極材料((c)6)を受光面上に部分的に蒸着させる(d)。そしてレジストマスクを剥離し、電極部分以外に蒸着した電極材料をはがし、受光面上に(e)に示す電極パターンを形成する。そして、受光面とは逆面の全面に、電極材料を形成する(f)からなる工程であり、公知の方法を利用して行うことができる。
An example in the case where a PN junction type crystal solar cell is manufactured by the method for manufacturing a semiconductor device having the antireflection film of the present invention is shown below.
Examples of the manufacturing method include the following mainly four manufacturing steps.
(I) Step of forming an N-type impurity diffusion layer on a semiconductor substrate implanted with P-type dopant (II) Step of forming an electrode on the impurity diffusion layer (III) Forming an antireflection film on the light receiving surface Process (IV) Dicing process Specifically,
The step of forming the N-type impurity diffusion layer on the semiconductor substrate into which the P-type dopant of (I) is implanted includes a P-type substrate ((a) as shown in FIGS. 3A and 3B). An impurity such as phosphorus is thermally diffused on the surface of 2) to form an N-type impurity diffusion layer, and a P / N junction as shown in (a) is formed. And it is the (b) process which removes the impurity diffusion layer which exists in a light-receiving surface ((b) 4) and an opposite surface by an etching, It can carry out using a well-known method.
As the semiconductor substrate (2), not only silicon but also compounds such as germanium, GaAs and InGaAs can be used, and the thickness is not particularly limited.
The step (II) of forming an electrode in the impurity diffusion layer is a light receiving surface ((c) formed with the impurity diffusion layer as shown in FIGS. 3 (c), (d), (e) and (f). 4) A negative photoresist solution is used to form a mask having an electrode pattern (c), and an electrode material ((c) 6) is partially deposited on the light receiving surface (d). Then, the resist mask is peeled off, the electrode material deposited other than the electrode portion is peeled off, and the electrode pattern shown in (e) is formed on the light receiving surface. And it is the process which consists of (f) which forms an electrode material in the whole surface on the opposite surface to a light-receiving surface, and it can carry out using a well-known method.
電極材料には、銀、アルミニウム、銅、金、亜鉛、スズ、チタン、タングステン、タンタルニウム、モリブデンといった金属、ZnO、SnO2、ITOなどの透明導電性酸化物、更にこれらを積層させたものが含まれる。
電極形成方法については、公知の方法、例えば蒸着法を始め、スクリーン印刷法、スパッタリング法、CVD法、レーザー堆積法などいずれの方法を用いても良い。
そして、裏面側にはほぼ全面に銀またはアルミニウムからなる電極を形成する方法は、具体的には、電極材料である銀を受光面4側に部分的に蒸着して厚さ約5μmの表面電極6を成膜し(図3(d))、その後電極パタ−ン5を剥離し不要な電極材料を取り除く(図3(e))。次にパタ―ニングしたシリコン基板2の裏側に前面に電極材料である銀あるいはアルミニウムを約5μm成膜する
またパタ−ニング及び電極形成を同時に行うことができるスクリーン印刷法を用いることで電極を形成することもできる。電極材料の厚さについては特に限定されるものではない。
Electrode materials include metals such as silver, aluminum, copper, gold, zinc, tin, titanium, tungsten, tantalum, and molybdenum, transparent conductive oxides such as ZnO, SnO 2 , and ITO, and a laminate of these. included.
As the electrode formation method, any known method such as a vapor deposition method, a screen printing method, a sputtering method, a CVD method, or a laser deposition method may be used.
The method of forming an electrode made of silver or aluminum almost entirely on the back side is specifically a surface electrode having a thickness of about 5 μm by partially depositing silver as an electrode material on the light receiving surface 4 side. 6 is formed (FIG. 3D), and then the
(III)受光面上に反射防止膜を形成する工程は、上記で示したような工程である。
その一例として、原料ガスとしてSiH4(シラン)ガスとNH3(アンモニア)ガスを用い、大きさ1000×1500mmの基板間距離10cmの対向型平行平板電極に、周波数250kHzのRF交流電圧を印加させてグロー放電を発生させ、NH3の流量を1000[sccm]としたままで、SiH4の初期流量を順次下げていくことにより、屈折率が半導体素子の表面から反射防止膜の受光面に向かって低くなる反射防止膜を半導体素子上に形成することができる。
具体的には、基板温度が400℃の場合に、NH3の流量を1000[sccm]としたままで、SiH4の初期流量を420[sccm]とし、SiH4の流量だけを順次360、320、240[sccm]と下げていくことにより、屈折率が半導体素子の表面から反射防止膜の受光面に向かって2.3、2.2、2.1、2.0へと低くなる窒化ケイ素からなる反射防止膜を半導体素子上に形成することができる。
(III) The step of forming the antireflection film on the light receiving surface is a step as described above.
As an example, SiH 4 (silane) gas and NH 3 (ammonia) gas are used as source gases, and an RF AC voltage with a frequency of 250 kHz is applied to an opposing parallel plate electrode having a size of 1000 × 1500 mm and a substrate distance of 10 cm. Glow discharge is generated, and the initial flow rate of SiH 4 is sequentially decreased while keeping the NH 3 flow rate at 1000 [sccm], so that the refractive index is directed from the surface of the semiconductor element to the light receiving surface of the antireflection film. Thus, an antireflection film can be formed on the semiconductor element.
Specifically, when the substrate temperature is 400 ° C., the flow rate of NH 3 is kept at 1000 [sccm], the initial flow rate of SiH 4 is set to 420 [sccm], and only the flow rate of SiH 4 is sequentially transferred to 360, 320. , 240 [sccm], the refractive index decreases to 2.3, 2.2, 2.1, 2.0 from the surface of the semiconductor element toward the light receiving surface of the antireflection film. An antireflective film made of can be formed on the semiconductor element.
そして、個々の太陽電池を切り出す(IV)のダイシング工程を行い太陽電池を製造する。 Then, a solar cell is manufactured by performing the dicing step (IV) of cutting out each individual solar cell.
本製造方法を用いて太陽電池を製造した場合、太陽電池の短絡電流値の向上による変換効率を上昇させ、さらに受光素子の透過光増大による感度の上昇をもたらすことができた。さらに本発明の製造方法を用いてレーザーやLEDなどを製造した場合、発光素子の輝度を向上させることができる。 When a solar cell was manufactured using this manufacturing method, the conversion efficiency due to the improvement of the short-circuit current value of the solar cell was increased, and the sensitivity was increased due to an increase in the transmitted light of the light receiving element. Furthermore, when a laser, LED, or the like is manufactured using the manufacturing method of the present invention, the luminance of the light emitting element can be improved.
1:太陽電池セル本体
2:半導体基板
3:不純物拡散層
4:受光面
5:電極パターン
6:表面電極
7:裏面電極
8:反射防止膜
1: Solar cell body 2: Semiconductor substrate 3: Impurity diffusion layer 4: Light receiving surface 5: Electrode pattern 6: Front electrode 7: Back electrode 8: Antireflection film
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004089598A JP2005277181A (en) | 2004-03-25 | 2004-03-25 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004089598A JP2005277181A (en) | 2004-03-25 | 2004-03-25 | Method for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005277181A true JP2005277181A (en) | 2005-10-06 |
Family
ID=35176492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004089598A Pending JP2005277181A (en) | 2004-03-25 | 2004-03-25 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005277181A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136000A1 (en) * | 2006-05-22 | 2007-11-29 | Alps Electric Co., Ltd. | Light emitting device and method for manufacturing same |
JP2012089629A (en) * | 2010-10-18 | 2012-05-10 | Mitsubishi Electric Corp | Photoelectric conversion device and method for manufacturing the same |
JP2012114223A (en) * | 2010-11-24 | 2012-06-14 | Hitachi Kokusai Electric Inc | Manufacturing method of semiconductor device, semiconductor device, and substrate processing apparatus |
JP2013084721A (en) * | 2011-10-07 | 2013-05-09 | Sharp Corp | Photoelectric conversion element, and method for manufacturing photoelectric conversion element |
JP2013539225A (en) * | 2010-09-22 | 2013-10-17 | ダウ コーニング コーポレーション | Electronic article and method of forming the same |
JP2015079937A (en) * | 2014-07-18 | 2015-04-23 | 三井造船株式会社 | Film formation apparatus and film formation method |
JP2018517162A (en) * | 2015-05-01 | 2018-06-28 | アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ | Photofunctional film and method for producing the same |
JP7170817B1 (en) | 2021-09-10 | 2022-11-14 | 上海晶科緑能企業管理有限公司 | SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE |
-
2004
- 2004-03-25 JP JP2004089598A patent/JP2005277181A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136000A1 (en) * | 2006-05-22 | 2007-11-29 | Alps Electric Co., Ltd. | Light emitting device and method for manufacturing same |
JP2013539225A (en) * | 2010-09-22 | 2013-10-17 | ダウ コーニング コーポレーション | Electronic article and method of forming the same |
JP2012089629A (en) * | 2010-10-18 | 2012-05-10 | Mitsubishi Electric Corp | Photoelectric conversion device and method for manufacturing the same |
JP2012114223A (en) * | 2010-11-24 | 2012-06-14 | Hitachi Kokusai Electric Inc | Manufacturing method of semiconductor device, semiconductor device, and substrate processing apparatus |
JP2013084721A (en) * | 2011-10-07 | 2013-05-09 | Sharp Corp | Photoelectric conversion element, and method for manufacturing photoelectric conversion element |
JP2015079937A (en) * | 2014-07-18 | 2015-04-23 | 三井造船株式会社 | Film formation apparatus and film formation method |
JP2018517162A (en) * | 2015-05-01 | 2018-06-28 | アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ | Photofunctional film and method for producing the same |
US10859733B2 (en) | 2015-05-01 | 2020-12-08 | Merck Patent Gmbh | Optical functional film and method for producing the same |
TWI772259B (en) * | 2015-05-01 | 2022-08-01 | 盧森堡商Az電子材料盧森堡有限公司 | Optical functional film and method for producing thereof |
JP7170817B1 (en) | 2021-09-10 | 2022-11-14 | 上海晶科緑能企業管理有限公司 | SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE |
JP2023040981A (en) * | 2021-09-10 | 2023-03-23 | 上海晶科緑能企業管理有限公司 | Solar cell, method for manufacturing same, and photovoltaic module |
US11784266B2 (en) | 2021-09-10 | 2023-10-10 | Shanghai Jinko Green Energy Enterprise Management Co., Ltd. | Solar cell, method for preparing same and solar cell module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101024288B1 (en) | Silicon based thin film solar cell | |
JP5147818B2 (en) | Substrate for photoelectric conversion device | |
US8581093B2 (en) | Optoelectronical semiconductor device | |
JP4454514B2 (en) | Photovoltaic element, photovoltaic module including photovoltaic element, and method for manufacturing photovoltaic element | |
KR101948206B1 (en) | thin film type solar cell and the fabrication method thereof | |
JP2008181965A (en) | Laminated optoelectric converter and its fabrication process | |
JP4186725B2 (en) | Photoelectric conversion element | |
JP2006319068A (en) | Multi-junction silicone thin film photoelectric converter and its manufacturing method | |
JP2002270879A (en) | Semiconductor device | |
US7972883B2 (en) | Method of manufacturing photoelectric device | |
TWI453932B (en) | Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer | |
JP2005277181A (en) | Method for manufacturing semiconductor device | |
US20150034968A1 (en) | Photoelectric conversion element, photoelectric conversion system, and method for production of photoelectric conversion element | |
JP2007305826A (en) | Silicon-based thin film solar cell | |
JP2001203376A (en) | Solar cell | |
JP2009290115A (en) | Silicon-based thin-film solar battery | |
JP4568531B2 (en) | Integrated solar cell and method of manufacturing integrated solar cell | |
KR101677430B1 (en) | A Solar Cell and Manufacture Method of GaN based with graded refractive index TCEs | |
US20110259398A1 (en) | Thin film solar cell and method for manufacturing the same | |
JP5542025B2 (en) | Photoelectric conversion device | |
JP6041120B2 (en) | Manufacturing method of semiconductor light receiving element | |
JP2010272651A (en) | Thin-film solar cell and method of manufacturing the same | |
JP2007251114A (en) | Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor | |
KR20190141447A (en) | Thin-film solar module and method for manufacturing the same | |
WO2010067702A1 (en) | Thin-film solar cell and method for manufacturing same |