JP2005271816A - Shock absorbing member for indoor of automobile - Google Patents

Shock absorbing member for indoor of automobile Download PDF

Info

Publication number
JP2005271816A
JP2005271816A JP2004090277A JP2004090277A JP2005271816A JP 2005271816 A JP2005271816 A JP 2005271816A JP 2004090277 A JP2004090277 A JP 2004090277A JP 2004090277 A JP2004090277 A JP 2004090277A JP 2005271816 A JP2005271816 A JP 2005271816A
Authority
JP
Japan
Prior art keywords
rib
absorbing member
shock absorbing
ribs
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004090277A
Other languages
Japanese (ja)
Inventor
Masaru Murayama
勝 村山
Rentaro Kato
錬太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2004090277A priority Critical patent/JP2005271816A/en
Publication of JP2005271816A publication Critical patent/JP2005271816A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock absorbing member for the indoor of an automobile improving impact energy absorbing performance without increasing member's height and having the high impact energy absorbing performance even under a low temperature environment. <P>SOLUTION: This synthetic resin made shock absorbing member absorbs a shock by ribs arranged between a cabin forming member and an interior parts of the automobile and extending in an impact load inputting direction, and the ribs are formed in a lattice-work having an intersection part 3 where the longitudinal ribs 1 and the lateral ribs 2 intersect with each other at right angles. A round part 3a is provided on the intersection part 3 so as to make it thicker than thickness of the longitudinal rib 1 and the lateral rib 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車室内において、例えばピラーやルーフサイドレール等の車室形成部材とその車室形成部材の内側を覆うガーニッシュ等の内装部品との間に配設されて、外部からの衝撃を吸収する自動車室内用衝撃吸収部材に関する。   The present invention is arranged between a vehicle compartment forming member such as a pillar or a roof side rail and an interior part such as a garnish covering the inside of the vehicle compartment forming member in an automobile interior to absorb external impacts. The present invention relates to an automobile interior shock absorbing member.

従来より、例えば乗用車等の自動車においては、ルーフパネルやルーフパネルを支持するフロントピラー、センタピラー、リヤピラー等の各種のピラー、及び各種ピラーの上部側を連結するルーフサイドレール等の車室を形成する車室形成部材(ボディパネル)を備えている。そして、これら車室形成部材の内側は、車室内の意匠性を高めること等を目的として、合成樹脂等で形成されるルーフライニングやピラーガーニッシュ等の内装部品で覆われている。   Conventionally, for example, in automobiles such as passenger cars, various types of pillars such as a roof panel, front pillars that support the roof panel, center pillars, rear pillars, and roof side rails that connect the upper sides of the various pillars are formed. A vehicle compartment forming member (body panel) is provided. And the inside of these vehicle compartment formation members is covered with interior parts, such as roof lining and pillar garnish formed with a synthetic resin etc., for the purpose of improving the designability of a vehicle interior.

ところで、近年においては、衝突時における乗員の安全性がより高いレベルで要求されるようになり、特に、乗員の頭部が衝突する恐れの高いピラーガーニッシュ等の内装部品に対しても、より高い衝撃エネルギ吸収機能を有することが要求されるようになっている。   By the way, in recent years, the safety of passengers at the time of collision has been demanded at a higher level, and in particular, it is also higher for interior parts such as pillar garnishes where the head of the passenger is likely to collide. It is required to have an impact energy absorbing function.

この要求への対応策として、例えば特許文献1〜4には、車室形成部材と内装部品の間に配設されて、衝撃荷重入力方向に延びるリブにより衝撃を吸収する弾性材や合成樹脂等からなる衝撃吸収部材が提案されている。特許文献1には、格子状の吸収体本体の各格子交差部に、衝撃を受けた時に吸収体本体の圧縮・座屈を補助し最終的には破壊して衝撃を吸収する薄肉部を形成することにより、安定した衝撃吸収特性を発揮できるようにした衝撃吸収部材が開示されている。また、特許文献2には、梁部材の壁板部材との連結部に薄肉部を形成して、その薄肉部によって破断を容易に行わせるようにした衝撃吸収部材が開示されている。   As countermeasures for this requirement, for example, in Patent Documents 1 to 4, an elastic material, a synthetic resin, or the like that is disposed between a vehicle compartment forming member and an interior part and absorbs an impact by a rib extending in an impact load input direction. An impact absorbing member made of In Patent Document 1, a thin-walled portion is formed at each lattice intersection of the lattice-shaped absorber body so as to assist the compression and buckling of the absorber body when it receives an impact, and finally break and absorb the impact. Thus, an impact absorbing member that can exhibit stable impact absorbing characteristics is disclosed. Patent Document 2 discloses an impact absorbing member in which a thin portion is formed at a connection portion between a beam member and a wall plate member, and the thin portion can be easily broken.

また、特許文献3には、リブに切り欠きを設けることにより、リブの交差部が独立して変形可能にし、リブの交差部の破断を防止するようにした衝撃吸収部材が開示されている。特許文献4には、材料面からのアプローチとして、引張破断伸びの大きな材料を用いることにより、リブの交差部の破壊を防止することが開示されている。しかし、近年においては、益々より一層の衝撃吸収特性の向上が求められており、これらの方法によっても充分とは言えない。   Further, Patent Document 3 discloses an impact absorbing member in which notches are provided in the ribs so that the intersecting portions of the ribs can be independently deformed to prevent breakage of the intersecting portions of the ribs. Patent Document 4 discloses that as a material approach, a material having a large tensile elongation at break is used to prevent breakage of the intersecting portion of the ribs. However, in recent years, there has been a demand for further improvement in impact absorption characteristics, and these methods are not sufficient.

ところで、衝撃吸収部材の衝撃吸収性能は、一般に、衝撃時に加わる荷重値と、その際の衝撃吸収部材の変位量との関係を示す、荷重変位曲線の形状によって評価される。即ち、荷重変位曲線は、図10に示すように、荷重入力の初期において小さな変位量で荷重が急激に立ち上がる部分と、その立ち上りピーク後の落ち込みに続いて、変位量の増加に伴って荷重値が増減変動しつつ横這い状態となる部分と、その後、小さな変位量で荷重が再び急激に立ち上がる部分とからなる。ここで、横這い状態となる部分の後で衝撃吸収部材の底付きが起こり、荷重が急激に上昇し始める点が衝撃吸収部材の潰れきり変位となる。   By the way, the shock absorbing performance of the shock absorbing member is generally evaluated by the shape of a load displacement curve indicating the relationship between the load value applied at the time of impact and the amount of displacement of the shock absorbing member at that time. That is, as shown in FIG. 10, the load displacement curve shows that the load value increases as the displacement amount increases following the portion where the load suddenly rises with a small displacement amount at the initial stage of load input and the drop after the rising peak. Is composed of a portion that is in a horizontal state while increasing and decreasing, and a portion in which the load suddenly rises again with a small displacement. Here, the bottom of the shock-absorbing member occurs after the portion that is in a side-by-side state, and the point at which the load starts to rise rapidly is the crushing displacement of the shock-absorbing member.

この場合、潰れきり変位までに吸収したエネルギ吸収量は、荷重変位曲線と変位量を示す横軸との間の面積で表され、その面積が大きいほどエネルギ吸収量は多くなる。よって、初期の荷重ピークに続く荷重の大きな落ち込みを防ぎ、荷重値が増減変動しつつ横這い状態となる部分での荷重の振幅を小さく抑えることで、エネルギ吸収量は高められる。また、衝撃エネルギ吸収性能を評価する際の指標となるエネルギ吸収効率は、(エネルギ吸収量)/{(ピーク荷重)×(潰れきり変位)}×100によって求められ、エネルギ吸収効率が高いほど衝撃エネルギ吸収性能は高くなると評価される。さらに、潰れきり変位が大きくなるほどエネルギ吸収量は多くなる。   In this case, the energy absorption amount absorbed before the crushing displacement is represented by the area between the load displacement curve and the horizontal axis indicating the displacement amount, and the energy absorption amount increases as the area increases. Therefore, the amount of energy absorption can be increased by preventing a large drop in the load following the initial load peak and suppressing the load amplitude in a portion where the load value is in a sideways state while the load value fluctuates up and down. The energy absorption efficiency, which is an index for evaluating the impact energy absorption performance, is obtained by (energy absorption amount) / {(peak load) × (crushed displacement)} × 100, and the higher the energy absorption efficiency, the higher the impact. Energy absorption performance is evaluated to be high. Furthermore, the amount of energy absorption increases as the crushing displacement increases.

衝撃エネルギ吸収性能が不充分である場合、又はより高性能を求められた場合に、それらの衝撃吸収部材の衝撃エネルギ吸収性能を高めるには、潰れきり変位を大きくするために、部材(リブ)の高さを高くする必要がある。しかし、衝撃吸収部材(リブ)の高さを高くすると、車室内が狭められ、外部に対する視認性が悪化することとなる。   In order to increase the impact energy absorbing performance of those impact absorbing members when the impact energy absorbing performance is insufficient or when higher performance is required, in order to increase the crushing displacement, the member (rib) It is necessary to increase the height. However, when the height of the shock absorbing member (rib) is increased, the interior of the vehicle is narrowed and visibility to the outside deteriorates.

その上、合成樹脂は、環境温度が低下するに連れて延性や引張破断伸び等の特性が低下するため、低温環境下においては衝撃吸収部材の破壊が早期に起こり、衝撃エネルギの吸収を全く行わないか不充分にしか行わなくなる。
特開平8−207578号公報 特開平8−207580号公報 特開2002−302003号公報 特開2000−170814号公報
In addition, since synthetic resin deteriorates in properties such as ductility and tensile elongation at break as the environmental temperature decreases, the impact absorbing member breaks down early in a low temperature environment and absorbs impact energy at all. There will be no or insufficient work.
JP-A-8-207578 JP-A-8-207580 JP 2002-302003 A JP 2000-170814 A

本発明は上記実状に鑑みてなされたものであり、部材高さを大きくすることなく衝撃エネルギ吸収性能を向上させることができ、低温環境下においても高い衝撃エネルギ吸収性能を有する自動車室内用衝撃吸収部材を提供することを解決すべき課題とするものである。   The present invention has been made in view of the above circumstances, and can improve the impact energy absorption performance without increasing the member height, and has high impact energy absorption performance even in a low temperature environment. Providing a member is a problem to be solved.

上記課題を解決する本発明の自動車室内用衝撃吸収部材は、自動車の車室形成部材と内装部品の間に配設されて衝撃荷重入力方向に延びるリブにより衝撃を吸収する合成樹脂製の衝撃吸収部材であって、前記リブは、板状リブが交差する交差部を有する格子状に形成され、前記交差部には、前記板状リブの厚みよりも厚くなるようにアールが設けられていることを特徴としている。   An automotive interior shock absorbing member of the present invention that solves the above-described problems is a synthetic resin shock absorbing member that is disposed between a vehicle interior forming member and an interior part and absorbs an impact by a rib that extends in an impact load input direction. The ribs are formed in a lattice shape having intersecting portions where the plate-shaped ribs intersect, and a radius is provided at the intersecting portions so as to be thicker than the thickness of the plate-shaped ribs. It is characterized by.

本発明の自動車室内用衝撃吸収部材は、リブの交差部にアールが設けられていることにより、低温(3℃)環境下でエネルギ吸収効率が大きく向上し、リブの交差部にアールが設けられていない従来の一般的な形状に比べて、ほぼ同じ荷重・同じ部材(リブ)の高さで、エネルギ吸収量が約80%以上向上することが試験により確認されている。   The shock absorbing member for automobile interior according to the present invention is provided with a radius at the rib intersection, so that the energy absorption efficiency is greatly improved in a low temperature (3 ° C.) environment, and the radius is provided at the rib intersection. It has been confirmed by tests that the amount of energy absorption is improved by about 80% or more with substantially the same load and the same height of the member (rib) as compared with a conventional general shape that is not.

これは、衝撃荷重が入力した際に、リブの交差部が破壊され難いことにより、荷重変位曲線において、荷重入力の初期に現れる荷重ピークに続く荷重の大きな落ち込みが無くなり、エネルギ吸収量が増加したためと考えられる。また、リブの交差部は、圧縮変形する際に捻れるように変形するが、交差部にアールが設けられていることによって変形抵抗が増し、荷重の底上げがされた結果、荷重変位曲線において、荷重値が増減変動しつつ横這い状態となる部分での荷重の振幅が小さくなり、エネルギ吸収量が増加したためと考えられる。   This is because, when an impact load is input, the intersection of ribs is not easily broken, so in the load displacement curve, there is no large drop in load following the load peak that appears at the beginning of load input, and the amount of energy absorption increases. it is conceivable that. Also, the intersecting portion of the rib is deformed so as to be twisted when compressively deformed, but the deformation resistance is increased due to the provision of the round at the intersecting portion, and as a result of raising the load, in the load displacement curve, This is considered to be because the load amplitude in the portion where the load value fluctuates and becomes sideways is reduced, and the amount of energy absorption is increased.

本発明において、リブの交差部に設けられるアールは、0.4〜5.0mmの範囲に形成されていることが好ましく、より好ましくは、1.0〜3.0mmの範囲である。アールの大きさが0.4mmを下回ると、充分なエネルギ吸収効率が得られ難くなる。逆に、アールの大きさが5.0mmを上回ると、潰れきり変位が小さくなる。また、アールは、リブの厚みtに対して、0.5t〜5.0tの範囲で形成されていることが好ましく、より好ましくは、1.5t〜3.0tの範囲である。   In the present invention, the radius provided at the intersecting portion of the rib is preferably formed in the range of 0.4 to 5.0 mm, more preferably in the range of 1.0 to 3.0 mm. If the size of the radius is less than 0.4 mm, it is difficult to obtain sufficient energy absorption efficiency. On the other hand, when the size of the radius exceeds 5.0 mm, the crushing displacement becomes small. Moreover, it is preferable that R is formed in the range of 0.5t to 5.0t, more preferably in the range of 1.5t to 3.0t with respect to the rib thickness t.

一方、リブの厚みtは、0.6〜3.0mmの範囲とするのが好ましい。なお、本発明の衝撃吸収部材は、樹脂成形により形成されることから、型抜きの関係上、リブの一端側の厚みtよりも他端側の厚み(t+Δt)の方が厚くなる。また、リブが矩形のセルをもつ格子状に形成される場合、セルの一方の辺の長さは、10〜50mmの範囲にするのが好ましく、より好ましくは20〜30mmの範囲である。また、セルの他方の辺の長さは、10〜100mmの範囲にするのが好ましく、より好ましくは20〜50mmの範囲である。   On the other hand, the thickness t of the rib is preferably in the range of 0.6 to 3.0 mm. Since the impact absorbing member of the present invention is formed by resin molding, the thickness (t + Δt) on the other end side is thicker than the thickness t on one end side of the rib, because of die cutting. Moreover, when the rib is formed in a lattice shape having rectangular cells, the length of one side of the cells is preferably in the range of 10 to 50 mm, more preferably in the range of 20 to 30 mm. Moreover, it is preferable to make the length of the other side of a cell into the range of 10-100 mm, More preferably, it is the range of 20-50 mm.

また、本発明において、リブの交差部は、直角に交差しているのが好ましい。このようにすれば、交差部に設けられるアールの円弧面の大きさを均一化することができる。   In the present invention, it is preferable that the intersecting portions of the ribs intersect at a right angle. If it does in this way, the size of the rounded arc surface provided in the intersection can be made uniform.

また、本発明の衝撃吸収部材は、合成樹脂材料を成形処理することによって得られる成形体であることから、リブを任意の形状に形成することができる。例えば、縦方向に延びる板状の縦リブと横方向に延びる板状の横リブとが交差する格子状のリブにしたり、リブが板状の基部上に立設されているようにすることができる。合成樹脂材料としては、例えば、ポリプロピレン(PP)やABS樹脂などの熱可塑性樹脂、或いは熱可塑性樹脂組成物(未来化成株式会社製、品番「YV−20−2001」)などを好適に採用することができる。なお、成形処理は、従来より公知の方法を採用することができ、例えば、射出成形や押出成形等を好適に採用することができる。   Moreover, since the impact-absorbing member of this invention is a molded object obtained by shape | molding a synthetic resin material, it can form a rib in arbitrary shapes. For example, the plate-like vertical ribs extending in the vertical direction and the plate-like horizontal ribs extending in the horizontal direction may be grid-like ribs, or the ribs may be erected on the plate-like base. it can. As the synthetic resin material, for example, a thermoplastic resin such as polypropylene (PP) or ABS resin, or a thermoplastic resin composition (manufactured by Mirai Kasei Co., Ltd., product number “YV-20-2001”) is preferably used. Can do. In addition, a conventionally well-known method can be employ | adopted for a shaping | molding process, for example, injection molding, extrusion molding, etc. can be employ | adopted suitably.

本発明の自動車室内用衝撃吸収部材は、リブの交差部に、板状リブの厚みよりも厚くなるようにアールが設けられているため、部材高さを大きくすることなく衝撃エネルギ吸収性能を向上させることができ、低温環境下においても高い衝撃エネルギ吸収性能を有するようにすることができる。   The shock absorbing member for automobile interior of the present invention is provided with a radius at the intersecting portion of the rib so as to be thicker than the thickness of the plate-like rib, so that the impact energy absorbing performance is improved without increasing the member height. And can have high impact energy absorption performance even in a low temperature environment.

以下、本発明の実施形態を図面に基づいて説明する。
〔実施形態1〕
図1は本実施形態に係る自動車室内用衝撃吸収部材の部分平面図であり、図2はその自動車室内用衝撃吸収部材の部分側面図であり、図3はその自動車室内用衝撃吸収部材の斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1
FIG. 1 is a partial plan view of a shock absorbing member for automobile interior according to the present embodiment, FIG. 2 is a partial side view of the shock absorbing member for automobile interior, and FIG. 3 is a perspective view of the shock absorbing member for automobile interior. FIG.

本実施形態の自動車室内用衝撃吸収部材1は、乗用車のルーフパネルを支持する各種ピラーの上部側を連結するルーフサイドレール(図示せず)と、そのルーフサイドレールおよびルーフパネルの内側を覆う内装部品としてのルーフライニング(図示せず)との間に配設されるものである。この衝撃吸収部材は、合成樹脂材料(未来化成株式会社製、品番「YV−20−2001」)を用いて、射出成形することにより所定の形状に形成された樹脂成形体からなる。   The automobile interior shock absorbing member 1 of the present embodiment includes a roof side rail (not shown) that connects the upper sides of various pillars that support a roof panel of a passenger car, and an interior that covers the inside of the roof side rail and the roof panel. It is disposed between roof linings (not shown) as parts. This impact absorbing member is made of a resin molded body formed into a predetermined shape by injection molding using a synthetic resin material (product number “YV-20-2001” manufactured by Mirai Kasei Co., Ltd.).

この衝撃吸収部材は、図3に示すように、縦方向に延びる平板状の縦リブ1と横方向に延びる平板状の横リブ2とが直角に交差する格子状に形成されており、全体として横方向に長い板状の長方体形状とされている。図1に示すように、縦リブ1は約26mmの間隔(W1 )で形成され、横リブ2は約22mmの間隔(W2 )で形成されている。そして、縦リブ1と横リブ2が交差する交差部3には、縦リブ1及び横リブ2よりも厚くなるように3mmのアール3aが設けられている。縦リブ1及び横リブ2は、図2に示すように、高さ(T)が約25mmとされ、一端部の厚み(t1 )が約2.0mmとされ、他端部の厚み(t2 )が2.2mmとされている。 As shown in FIG. 3, the shock absorbing member is formed in a lattice shape in which flat plate-like ribs 1 extending in the vertical direction and flat plate-like horizontal ribs 2 extending in the horizontal direction intersect at right angles. It has a plate-like rectangular shape that is long in the lateral direction. As shown in FIG. 1, the vertical ribs 1 are formed at an interval (W 1 ) of about 26 mm, and the horizontal ribs 2 are formed at an interval (W 2 ) of about 22 mm. A 3 mm round 3 a is provided at the intersection 3 where the vertical rib 1 and the horizontal rib 2 intersect so as to be thicker than the vertical rib 1 and the horizontal rib 2. As shown in FIG. 2, the vertical rib 1 and the horizontal rib 2 have a height (T) of about 25 mm, a thickness at one end (t 1 ) of about 2.0 mm, and a thickness at the other end (t 2 ) is 2.2 mm.

図3に示すように、この衝撃吸収部材の長手方向の一端部及び略中央部の部位において縦リブ1と横リブ2で包囲される空間(セル)では、その底面を塞ぐように底板4、4が設けられており、その底板4、4には円形の取付孔5、5が設けられている。また、この衝撃吸収部材の長手方向の他端には、長手方向外方に突出する突出片6が設けられており、その突出片6にも円形の取付孔7が設けられている。   As shown in FIG. 3, in the space (cell) surrounded by the longitudinal rib 1 and the lateral rib 2 in the longitudinal end portion and the substantially central portion of the impact absorbing member, the bottom plate 4 4, and the bottom plates 4 and 4 are provided with circular mounting holes 5 and 5. Further, a projecting piece 6 projecting outward in the longitudinal direction is provided at the other end in the longitudinal direction of the shock absorbing member, and a circular mounting hole 7 is also provided in the projecting piece 6.

以上のように構成された本実施形態の衝撃吸収部材は、各取付孔5、5、7に挿入される取付ボルト(図示せず)等で乗用車のルーフサイドレールの室内側に取付けられることによって、ルーフサイドレールとルーフライニングの間に配設される。これにより、衝撃吸収部材は、乗用車の衝突時に乗員の頭部がルーフライニングに衝突する方向(衝撃荷重入力方向)に対して、縦リブ1及び横リブ2が延びる方向(高さ方向)となるように配設される。   The impact absorbing member of the present embodiment configured as described above is attached to the interior side of the roof side rail of a passenger car with mounting bolts (not shown) inserted into the mounting holes 5, 5, 7. And between the roof side rail and roof lining. Thereby, the impact absorbing member is in a direction (height direction) in which the longitudinal rib 1 and the lateral rib 2 extend with respect to a direction (impact load input direction) in which the head of the occupant collides with the roof lining when the passenger car collides. It is arranged as follows.

そして、その乗用車が衝突することによって乗員の頭部がルーフライニングに衝突したときには、ルーフライニングの弾塑性変形を介して縦リブ1及び横リブ2が塑性変形することにより衝撃エネルギを吸収する。このとき、衝撃吸収部材は、縦リブ1と横リブ2の交差部3にアール3aが設けられていることから、常温環境下だけではなく低温環境下においても高い衝撃エネルギ吸収機能を発揮して、充分に大きな衝撃エネルギを吸収し、乗員を保護する。よって、本実施形態の衝撃吸収部材は、低温環境下においても高い衝撃エネルギ吸収能力を有する。   When the passenger's head collides with the roof lining due to the collision of the passenger car, the longitudinal ribs 1 and the lateral ribs 2 are plastically deformed through elastic-plastic deformation of the roof lining to absorb impact energy. At this time, since the shock absorbing member is provided with the radius 3a at the intersection 3 of the vertical rib 1 and the horizontal rib 2, it exhibits a high shock energy absorbing function not only in a normal temperature environment but also in a low temperature environment. , Absorb enough impact energy and protect the occupant. Therefore, the impact absorbing member of this embodiment has a high impact energy absorbing ability even in a low temperature environment.

なお、本実施形態の衝撃吸収部材は、ルーフサイドレールとルーフライニングとの間に配設されるものであるが、形状や大きさ等を適宜変更して、例えばセンタピラーとピラーガーニッシュとの間などの乗用車の他の部位に配設することも可能である。   Note that the impact absorbing member of the present embodiment is disposed between the roof side rail and the roof lining, but the shape, size, etc. are appropriately changed, for example, between the center pillar and the pillar garnish. It is also possible to arrange in other parts of the passenger car.

〔試験1〕
本発明の衝撃吸収部材の優れた効果を確認するために、実施例として、合成樹脂材料(未来化成株式会社製、品番「YV−20−2001」)により図4に示すような形状に形成した試験片を作製して落錘試験を行った。試験片は、図4に示すように、正方形の平板状の基部50と、基部50に立設された縦方向に延びる平板状の2枚の縦リブ51と、基部50に立設された横方向に延びる平板状の2枚の横リブ52とからなる。縦リブ51と横リブ52は直角に交差して格子状に形成されており、その交差部53には2mmのアール53aが設けられている。基部50は、厚みが2.5mm、一辺の長さが60mmとされている。縦リブ51及び横リブ52の間隔(芯−芯間距離:L)や厚み(t、Δt)については、表1に記載されている通りである。なお、比較例として、縦リブと横リブの交差部にアールが設けられていない点でのみ異なる試験片を準備した。
[Test 1]
In order to confirm the excellent effect of the impact absorbing member of the present invention, as an example, a synthetic resin material (manufactured by Mirai Kasei Co., Ltd., product number “YV-20-2001”) was formed into a shape as shown in FIG. A test piece was prepared and a falling weight test was performed. As shown in FIG. 4, the test piece has a square flat plate-like base portion 50, two flat plate-like vertical ribs 51 erected on the base portion 50, and a horizontal portion erected on the base portion 50. It consists of two flat ribs 52 extending in the direction. The vertical ribs 51 and the horizontal ribs 52 intersect with each other at a right angle and are formed in a lattice shape. The base 50 has a thickness of 2.5 mm and a side length of 60 mm. The distance between the vertical rib 51 and the horizontal rib 52 (core-to-core distance: L) and the thickness (t, Δt) are as described in Table 1. As a comparative example, different test pieces were prepared only in that a radius was not provided at the intersection of the vertical rib and the horizontal rib.

Figure 2005271816
Figure 2005271816

この落錘試験は、図5に示すように、載置台60上に縦リブ51及び横リブ52側を下にして試験片を載置し、試験片の基部50の上面に、アルミニウムで半球形状(SR82.5mm)に形成された押圧部61の球面を3.13m/sの速度で衝突させ、そのとき加わる荷重値(kN)とその際の試験片の変位量(mm)との関係を、20℃(常温)及び3℃(低温)の環境温度下において調べた。20℃(常温)における測定結果(荷重変位曲線)は図6に示され、3℃(低温)における測定結果(荷重変位曲線)は図7に示されている。また、それぞれの環境温度において得られた、各試験片のピーク荷重、エネルギ吸収量及びエネルギ吸収効率については表2にまとめて記載されている。なお、ここでのエネルギ吸収量は、荷重変位曲線と変位量を示す横軸との間の面積で表される。また、ここでのエネルギ吸収効率は、(エネルギ吸収量)/{(ピーク荷重)×(潰れきり変位)}×100によって求められる。   As shown in FIG. 5, the falling weight test is performed by placing test pieces on the mounting table 60 with the vertical ribs 51 and the horizontal ribs 52 facing down, and forming a hemispherical shape with aluminum on the upper surface of the base 50 of the test pieces. The spherical surface of the pressing portion 61 formed on (SR 82.5 mm) is caused to collide at a speed of 3.13 m / s, and the relationship between the load value (kN) applied at that time and the displacement amount (mm) of the test piece at that time is shown. And 20 ° C. (room temperature) and 3 ° C. (low temperature). The measurement result (load displacement curve) at 20 ° C. (normal temperature) is shown in FIG. 6, and the measurement result (load displacement curve) at 3 ° C. (low temperature) is shown in FIG. Further, the peak load, energy absorption amount and energy absorption efficiency of each test piece obtained at each environmental temperature are collectively described in Table 2. Here, the energy absorption amount is represented by the area between the load displacement curve and the horizontal axis indicating the displacement amount. Further, the energy absorption efficiency here is obtained by (energy absorption amount) / {(peak load) × (crushed displacement)} × 100.

Figure 2005271816
Figure 2005271816

20℃(常温)の場合には、図6及び表2からも明らかなように、エネルギ吸収量及びエネルギ吸収効率のいずれにおいても、実施例の方が比較例よりも上回る結果が得られた。即ち、ピーク荷重では16%の上昇に過ぎないが、エネルギ吸収効率が15%向上し、エネルギ吸収量では61%も実施例の方が上回っている。   In the case of 20 ° C. (normal temperature), as is clear from FIG. 6 and Table 2, the results of the example were higher than the comparative example in both the energy absorption amount and the energy absorption efficiency. That is, the peak load is only a 16% increase, but the energy absorption efficiency is improved by 15%, and the amount of energy absorption is 61% higher than in the example.

また、3℃(低温)の場合には、図7及び表2からも明らかなように、エネルギ吸収量及びエネルギ吸収効率のいずれにおいても、実施例の方が比較例よりも大幅に上回る結果が得られた。即ち、ピーク荷重は16%の上昇に過ぎないが、エネルギ吸収効率が31%向上するためエネルギ吸収量では84%も実施例の方が上回っている。特に、エネルギ吸収効率においては、比較例の場合には、20℃(常温)の50%から3℃(低温)の39%に低下しているのに対して、実施例の場合には、20℃(常温)の65%から3℃(低温)の70%に上昇している。よって、実施例の場合は、縦リブ51と横リブ52の交差部にアールを設けたことにより、低温(3℃)環境下においても高い衝撃エネルギ吸収能力を有することが解る。   In addition, in the case of 3 ° C. (low temperature), as is clear from FIG. 7 and Table 2, in both the energy absorption amount and the energy absorption efficiency, the result of the example is significantly higher than the comparative example. Obtained. That is, the peak load is only increased by 16%, but the energy absorption efficiency is improved by 31%, so that the amount of energy absorption is 84% higher than that of the example. In particular, in the case of the comparative example, the energy absorption efficiency decreases from 50% at 20 ° C. (normal temperature) to 39% at 3 ° C. (low temperature), whereas in the case of the embodiment, 20%. The temperature rises from 65% at room temperature (normal temperature) to 70% at 3 ° C (low temperature). Therefore, in the case of the example, it can be seen that by providing a round at the intersection of the vertical rib 51 and the horizontal rib 52, it has a high impact energy absorption capability even in a low temperature (3 ° C.) environment.

これは、衝撃荷重が入力した際に、縦リブ51と横リブ52の交差部53にアール53aが設けられていることから交差部53が破壊され難いため、図7の荷重変位曲線において、荷重入力の初期に現れる荷重ピークに続く荷重の大きな落ち込みが比較例よりも少なく、エネルギ吸収量が増加したためと考えられる。また、縦リブ51と横リブ52の交差部53は、圧縮変形する際に捻れるように変形するが、交差部53にアール53aが設けられていることによって変形抵抗が増し、荷重の底上げがされた結果、図7の荷重変位曲線において、荷重値が増減変動しつつ横這い状態となる部分での荷重の振幅が小さくなり、エネルギ吸収量が増加したためと考えられる。   This is because, when an impact load is input, since the radius 53a is provided at the intersection 53 of the vertical rib 51 and the horizontal rib 52, the intersection 53 is not easily broken. Therefore, in the load displacement curve of FIG. It is considered that the large drop in load following the load peak appearing at the initial stage of input is smaller than that in the comparative example, and the amount of energy absorption is increased. In addition, the intersecting portion 53 of the vertical rib 51 and the lateral rib 52 is deformed so as to be twisted when compressively deformed. However, since the round portion 53a is provided at the intersecting portion 53, the deformation resistance is increased, and the load is raised. As a result, in the load displacement curve of FIG. 7, it is considered that the amplitude of the load in the portion where the load value is in a sideways state while the load value fluctuates increases and decreases and the energy absorption amount increases.

〔試験2〕
試験1で用いた実施例の試験片について交差部のアールの大きさを種々変化させて、エネルギ吸収効率及び潰れきり変位との関係を調べる試験を行った。交差部のアールの大きさは、0mm、2mm、3mm、5mm、7mmに変化させ、20℃(常温)と3℃(低温)の環境温度下でそれぞれ調べた。交差部の大きさとエネルギ吸収効率の関係の試験結果は図8及び表3に示され、交差部の大きさと潰れきり変位の試験結果は図9及び表3に示されている。
[Test 2]
The test piece of the example used in Test 1 was subjected to a test for examining the relationship between the energy absorption efficiency and the crushing displacement by variously changing the size of the radius of the intersection. The size of the radius of the crossing portion was changed to 0 mm, 2 mm, 3 mm, 5 mm, and 7 mm, and examined at ambient temperatures of 20 ° C. (normal temperature) and 3 ° C. (low temperature), respectively. The test results of the relationship between the size of the intersection and the energy absorption efficiency are shown in FIG. 8 and Table 3, and the test results of the size of the intersection and the crushing displacement are shown in FIG. 9 and Table 3.

Figure 2005271816
Figure 2005271816

図8及び表3からも明らかなように、エネルギ吸収効率は、交差部のアールが2〜3mmの時に約70%で最大となり、それ以降緩やかに低下していき、アールが7mmでも60%程度であった。一方、潰れきり変位は、図9及び表3からも明らかなように、アールの大きさが大きくなるに連れて減少していき、アールの大きさが7mmのときには2mmの半分程度にまで顕著に低下していた。潰れきり変位が小さいということは、縦リブ51及び横リブ52の高さ(荷重入力方向に延びる部分の長さ)を有効に生かしていないことになり、望ましいことではない。したがって、エネルギ吸収効率及び潰れきり変位の結果を考慮すると、交差部のアールの大きさは、0.4〜5.0mmの範囲にするのが好ましく、より好ましいくは1.0〜3.0mmの範囲であることが判明した。   As is clear from FIG. 8 and Table 3, the energy absorption efficiency reaches a maximum at about 70% when the radius of the intersection is 2 to 3 mm, and then gradually decreases, and is about 60% even when the radius is 7 mm. Met. On the other hand, as is clear from FIG. 9 and Table 3, the crushing displacement decreases as the radius becomes larger. When the radius is 7 mm, the displacement is significantly reduced to about half of 2 mm. It was falling. That the crushing displacement is small is not desirable because the height of the vertical rib 51 and the horizontal rib 52 (the length of the portion extending in the load input direction) is not effectively utilized. Therefore, considering the results of energy absorption efficiency and crushing displacement, the radius of the intersection is preferably in the range of 0.4 to 5.0 mm, more preferably 1.0 to 3.0 mm. Was found to be in the range.

本発明の実施形態に係る自動車室内用衝撃吸収部材の部分平面図である。It is a partial top view of the shock absorption member for motor vehicle interior which concerns on embodiment of this invention. 本発明の実施形態に係る自動車室内用衝撃吸収部材の部分側面図である。It is a partial side view of the shock absorbing member for automobile interior according to the embodiment of the present invention. 本発明の実施形態に係る自動車室内用衝撃吸収部材の斜視図である。1 is a perspective view of a shock absorbing member for automobile interior according to an embodiment of the present invention. 試験1で使用した試験片の形状及び寸法を示す説明図である。It is explanatory drawing which shows the shape and dimension of the test piece used by Test 1. FIG. 試験1の試験方法を示す説明図である。6 is an explanatory diagram showing a test method of Test 1. FIG. 試験1の落錘試験での20℃(常温)における実施例と比較例の荷重変位曲線を示すグラフである。It is a graph which shows the load displacement curve of the Example in 20 degreeC (normal temperature) in the falling weight test of Test 1, and a comparative example. 試験1の落錘試験での3℃(低温)における実施例と比較例の荷重変位曲線を示すグラフである。It is a graph which shows the load displacement curve of the Example in 3 degreeC (low temperature) in the falling weight test of Test 1, and a comparative example. 試験2における交差部アールの大きさとエネルギ吸収効率の関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the cross | intersection part R in test 2, and energy absorption efficiency. 試験2における交差部アールの大きさと潰れきり変位の関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the cross | intersection part round in Test 2, and a crushing displacement. 荷重変位曲線を示すグラフである。It is a graph which shows a load displacement curve.

符号の説明Explanation of symbols

1、51…縦リブ 2、52…横リブ 3、53…交差部
3a、53a…アール 4…底板 5、7…取付孔 6…突出片
50…基部 60…載置台 61…押圧部
DESCRIPTION OF SYMBOLS 1, 51 ... Vertical rib 2, 52 ... Horizontal rib 3, 53 ... Crossing part 3a, 53a ... Earl 4 ... Bottom plate 5, 7 ... Mounting hole 6 ... Projection piece 50 ... Base 60 ... Mounting stand 61 ... Pressing part

Claims (5)

自動車の車室形成部材と内装部品の間に配設されて衝撃荷重入力方向に延びるリブにより衝撃を吸収する合成樹脂製の衝撃吸収部材であって、
前記リブは、板状リブが交差する交差部を有する格子状に形成され、前記交差部には、前記板状リブの厚みよりも厚くなるようにアールが設けられていることを特徴とする自動車室内用衝撃吸収部材。
A shock absorbing member made of a synthetic resin that absorbs shock by a rib that is disposed between a vehicle compartment forming member and an interior part of an automobile and extends in the direction of impact load input,
The said rib is formed in the grid | lattice form which has a cross | intersection part where a plate-shaped rib cross | intersects, and the round is provided in the said cross | intersection part so that it may become thicker than the thickness of the said plate-shaped rib. Shock absorber for indoor use.
前記アールは、0.4〜5.0mmの範囲に形成されている請求項1又は2に記載の自動車室内用衝撃吸収部材。   The automobile interior shock absorbing member according to claim 1 or 2, wherein the radius is formed in a range of 0.4 to 5.0 mm. 前記リブの前記交差部は、直角に交差している請求項1に記載の自動車室内用衝撃吸収部材。   The shock absorbing member for automobile interior according to claim 1, wherein the intersecting portion of the rib intersects at a right angle. 前記リブは、縦方向に延びる板状の縦リブと横方向に延びる板状の横リブとが交差する格子状に形成されている請求項1〜3に記載の自動車室内用衝撃吸収部材。   The said rib is a shock absorption member for vehicle interiors of Claims 1-3 currently formed in the grid | lattice form where the plate-shaped vertical rib extended in a vertical direction and the plate-shaped horizontal rib extended in a horizontal direction cross | intersect. 前記リブは、板状の基部上に立設されている請求項1〜4に記載の自動車室内用衝撃吸収部材。   The shock absorbing member for an automobile interior according to claim 1, wherein the rib is erected on a plate-like base.
JP2004090277A 2004-03-25 2004-03-25 Shock absorbing member for indoor of automobile Pending JP2005271816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090277A JP2005271816A (en) 2004-03-25 2004-03-25 Shock absorbing member for indoor of automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090277A JP2005271816A (en) 2004-03-25 2004-03-25 Shock absorbing member for indoor of automobile

Publications (1)

Publication Number Publication Date
JP2005271816A true JP2005271816A (en) 2005-10-06

Family

ID=35171911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090277A Pending JP2005271816A (en) 2004-03-25 2004-03-25 Shock absorbing member for indoor of automobile

Country Status (1)

Country Link
JP (1) JP2005271816A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122972A (en) * 2007-11-15 2009-06-04 Fuji Xerox Co Ltd Shape inspection apparatus and shape inspection program
JP2010275783A (en) * 2009-05-29 2010-12-09 Takiron Co Ltd Ribs of floor pan and support structure of the floor pan in which the ribs are formed
JP2011005744A (en) * 2009-06-25 2011-01-13 Inoac Corp Spacer, manufacturing method thereof and mold for forming spacer
US9540972B2 (en) 2007-07-07 2017-01-10 Basf Se Article having impact resistant surface
US10012117B2 (en) 2013-10-08 2018-07-03 Basf Se Structural oil pan
US10195770B2 (en) 2013-10-08 2019-02-05 Basf Se Method of forming a structural oil pan via lost core molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540972B2 (en) 2007-07-07 2017-01-10 Basf Se Article having impact resistant surface
JP2009122972A (en) * 2007-11-15 2009-06-04 Fuji Xerox Co Ltd Shape inspection apparatus and shape inspection program
JP4609481B2 (en) * 2007-11-15 2011-01-12 富士ゼロックス株式会社 Shape inspection apparatus and shape inspection program
US8243063B2 (en) 2007-11-15 2012-08-14 Fuji Xerox Co., Ltd. Shape inspection apparatus, shape inspection method and computer readable medium
JP2010275783A (en) * 2009-05-29 2010-12-09 Takiron Co Ltd Ribs of floor pan and support structure of the floor pan in which the ribs are formed
JP2011005744A (en) * 2009-06-25 2011-01-13 Inoac Corp Spacer, manufacturing method thereof and mold for forming spacer
US10012117B2 (en) 2013-10-08 2018-07-03 Basf Se Structural oil pan
US10195770B2 (en) 2013-10-08 2019-02-05 Basf Se Method of forming a structural oil pan via lost core molding

Similar Documents

Publication Publication Date Title
EP1263628B1 (en) Energy absorber
US6017084A (en) Energy absorbing assembly
US5806889A (en) Shock absorbing structure for motor vehicle
KR101118828B1 (en) Vehicular metal absorber, vehicular bumper system, vehicular bumper absorber, and automobile bumper system
US9981541B2 (en) Protection structure of battery module mounted in rear of vehicle body
JP4741579B2 (en) Bumper beam equipment
JP4316575B2 (en) Shock absorbing structure for vehicle and its mounting structure
JPH11348699A (en) Impact absorbing structure of interior trim part for vehicle
US20100253114A1 (en) Shock absorption structure for vehicle
CN101456393A (en) Bumper beam for vehicles
JP2005271816A (en) Shock absorbing member for indoor of automobile
JP2014505838A (en) Energy absorbing device having fibers embedded in plastic material and associated front face
CN102883921B (en) Shock absorber
JP4457302B2 (en) Shock absorber for automobile
US20030075953A1 (en) Impact energy absorbing component
JP2008168844A (en) Hood panel for automobile having excellent pedestrian protecting performance
JP2005145161A (en) Shock absorbing member for automobile cabin
JP4688318B2 (en) Vehicle beam
JPH08295194A (en) Impact absorbing structural body for vehicle
JP4723986B2 (en) Bumper absorber
JP6320864B2 (en) Shock absorbing structure for vehicle and bumper absorber
KR101157748B1 (en) A bumper improved pedestrian protection functions and an automobile having thereof
JP2002302003A (en) Resin-made impact absorbing member
JP4813864B2 (en) Bumper absorber
Nagae et al. Development of fender structure for pedestrian protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071115