JP2005253368A - Insect proof net - Google Patents

Insect proof net Download PDF

Info

Publication number
JP2005253368A
JP2005253368A JP2004069871A JP2004069871A JP2005253368A JP 2005253368 A JP2005253368 A JP 2005253368A JP 2004069871 A JP2004069871 A JP 2004069871A JP 2004069871 A JP2004069871 A JP 2004069871A JP 2005253368 A JP2005253368 A JP 2005253368A
Authority
JP
Japan
Prior art keywords
core
sheath
net
insect
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004069871A
Other languages
Japanese (ja)
Inventor
Yoshitomo Hara
義智 原
Hideo Ueda
秀夫 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2004069871A priority Critical patent/JP2005253368A/en
Publication of JP2005253368A publication Critical patent/JP2005253368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Protection Of Plants (AREA)
  • Catching Or Destruction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a woven and knitted material for an insect proof net made of a polyester causing less deterioration due to ultraviolet light by using a sheath-core type fusing filament. <P>SOLUTION: This insect proof net is formed of the sheath-core type fusing filaments having a sheath-core area ratio of 50:50 to 90:10 wherein core components comprise a polyester containing 0.3-5.0 wt.% of an organic ultraviolet light-absorbing agent based on the weight of the core components, and sheath components comprise a polyester with a low melting point, and the intersections of the woven and knitted material are bonded with heat. The organic ultraviolet light-absorbing agent preferably comprises a triazine-based compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、農業用および園芸用に使用される防虫ネットに関する。   The present invention relates to an insect net used for agriculture and horticulture.

農業において、農作物を害虫から守ることは長年の課題である。これまでの害虫対策として、農薬による殺虫、被覆資材による害虫侵入防止、忌避剤による害虫の排除などが挙げられる。中でも、農薬はここ数十年で開発が大幅に進み、農作物の害虫を激滅させることが出来るようになり、広く普及するに至った。しかし、農薬使用により収穫量は大幅に増大する反面、生態系や自然環境の破壊や、人体への悪影響などの多くの問題を引き起こした。このため、近年は環境や人体に無害な農薬が研究開発されているが、長期蓄積性や慢性毒性などについてはまだ完全には解決されていない。   In agriculture, protecting crops from pests has been a challenge for many years. Conventional pest control measures include insecticide killing with pesticides, prevention of pest infestation with coating materials, and elimination of pests with repellents. Among them, the development of agricultural chemicals has greatly progressed in recent decades, and it has become possible to exterminate pests on agricultural crops and has become widespread. However, the use of pesticides greatly increased the yield, but it caused many problems such as the destruction of ecosystems and the natural environment, and adverse effects on the human body. Therefore, in recent years, agricultural chemicals that are harmless to the environment and the human body have been researched and developed, but long-term accumulation and chronic toxicity have not yet been completely solved.

最近は、食物や健康に対する意識が高まり、無農薬の有機栽培農作物が広く求められている。そこで、従来の農薬を用いない害虫対策の一つとして、農作物をネットで覆い、害虫の飛来や侵入を防ぐ方法が広く用いられるようになってきた。ネットは、雨風などの自然環境に対する耐久性を維持するために、合成繊維を用いるのが主流である。しかし、合成繊維は太陽から放射される紫外線により劣化し、破断強度が低下するという問題点があった。   In recent years, awareness of food and health has increased, and organic farm products without pesticides have been widely demanded. Therefore, as one of the conventional pest-control measures that do not use pesticides, a method of covering crops with a net and preventing the pests from flying in and out has come into wide use. The net is mainly made of synthetic fibers in order to maintain durability against natural environments such as rain and wind. However, synthetic fibers are deteriorated by ultraviolet rays emitted from the sun, and there is a problem that the breaking strength is lowered.

特許文献1、2などでは、熱融着性繊維からなる織物交点を熱融着した防虫ネットが提案されている。熱融着することによって織物開口部の目ずれはなくなるが、実際屋外で使用する際、紫外線により強度低下し、長期使用ができないという欠点があった。特許文献3では、熱接着性繊維からなる織編物の交点を熱接着し、かつ紫外線吸収剤を含有した防虫ネットが提案されている。しかし、糸全体に紫外線吸収剤を練込むことで、多量に添加しなくてはならず効率が悪くなるだけでなく、練込による溶融粘度低下により、糸の破断強度が低下してしまう。更に、特許文献4には、芯鞘型繊維を用いた不織布を融着させた被覆シートが提案されている。しかし、不織布では農作物への太陽光の照射量が減り、かつ通気度が悪くなるため内部が蒸れやすくなり好ましくない。   In Patent Documents 1 and 2 and the like, insect repellent nets in which fabric intersections made of heat-fusible fibers are heat-sealed are proposed. Although there is no misalignment of the opening of the fabric by heat-sealing, there is a drawback in that when it is used outdoors, the strength is reduced by ultraviolet rays and it cannot be used for a long time. In patent document 3, the insect net which heat-bonds the intersection of the woven or knitted fabric made of heat-adhesive fibers and contains an ultraviolet absorber is proposed. However, the kneading of the UV absorber into the entire yarn not only has to be added in a large amount, but also the efficiency is deteriorated, and the breaking strength of the yarn is lowered due to a decrease in melt viscosity caused by kneading. Furthermore, Patent Document 4 proposes a covering sheet in which a nonwoven fabric using core-sheath fibers is fused. However, non-woven fabrics are not preferred because the amount of sunlight applied to the crops is reduced and the air permeability is deteriorated, so that the inside is easily stuffy.

特開平10―44273号公報Japanese Patent Laid-Open No. 10-44273 特開2000−217497号公報JP 2000-217497 A 特開2000−217446号公報JP 2000-217446 A 特開平7−303426号公報JP 7-303426 A

本発明の目的は、上記問題点を解消し、紫外線劣化の少ないポリエステルからなる芯鞘型融着フィラメントを用いた防虫ネット用織編物を提供することにある。   An object of the present invention is to provide a woven or knitted fabric for insect repellent nets using a core-sheath-type fused filament made of polyester with less ultraviolet deterioration, which solves the above problems.

上記課題は、芯成分に有機系紫外線吸収剤を芯成分重量に対して0.3%〜5.0%含有したポリエステル、鞘成分に低融点ポリエステルを配した、芯鞘面積比率が50:50〜90:10である芯鞘型フィラメントからなる防虫ネットで、該織編物の交点が熱接着
されていることを特徴とする防虫ネットにより解決する。
The above-mentioned problem is that the core-sheath area ratio is 50:50, in which the core component contains a polyester containing an organic ultraviolet absorber in an amount of 0.3% to 5.0% based on the weight of the core component, and the sheath component has a low melting point polyester. This is solved by an insect repellent net comprising a core-sheath type filament of ˜90: 10, wherein the intersection of the woven or knitted fabric is thermally bonded.

本発明により、紡糸操業性良好で紫外線劣化の少ない芯鞘型融着繊維を得ることができ、これを製織編した布帛を熱融着することにより目ずれを防止し、農薬を使わずに害虫の侵入を阻止できる防虫ネットを提供することが可能となる。   According to the present invention, it is possible to obtain a core-sheath type fused fiber having good spinning operability and little UV degradation, preventing misalignment by heat-sealing a fabric woven and knitted, and without using pesticides, pests. It is possible to provide an insect net that can prevent the intrusion of the insect.

以下、本発明を詳細に説明する。
本発明に用いられる防虫ネット用の繊維は、芯鞘型のフィラメントであることが必要である。芯鞘型とすることにより、良好な紫外線耐久性と融着性能を兼ね備えた防虫ネットを得ることができる。単独型にした場合、十分な紫外線耐久性を得るためには紫外線吸収剤を多く練り込まなければならず、その結果繊維の破断強度が低下してしまうので好ましくない。なお、フィラメントはマルチフィラメント、モノフィラメントいずれも使用することができる。
Hereinafter, the present invention will be described in detail.
The fiber for the insect net used in the present invention needs to be a core-sheath type filament. By adopting the core-sheath type, an insect repellent net having both excellent ultraviolet durability and fusion performance can be obtained. In the case of a single type, in order to obtain sufficient UV durability, a large amount of UV absorber must be kneaded, and as a result, the breaking strength of the fiber decreases, which is not preferable. In addition, a multifilament and a monofilament can be used for a filament.

芯鞘型フィラメントは、芯鞘ともポリエステルであることが必要である。ポリエステルは、寸法安定性、耐水性が良好であり、防虫ネットに適している。芯鞘いずれかがポリエステル以外のポリマーであると、長期間使用により芯と鞘の接着性が悪くなり、剥離が生じて破断強度が低下するので好ましくない。   In the core-sheath filament, both the core and the sheath need to be polyester. Polyester has good dimensional stability and water resistance and is suitable for insect nets. If any one of the core and sheath is a polymer other than polyester, the adhesion between the core and the sheath will deteriorate due to long-term use, and peeling will occur and the breaking strength will be reduced.

用いられるポリエステルの種類としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)のような芳香族ポリエステル、または、ポリエチレンサクシネート、ポリカプロラクトンのような脂肪族ポリエステルが挙げられる。中でも、PETは溶融紡糸の簡便性、製造コストなどの観点より特に好ましく用いられる。   Examples of the polyester used include aromatic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), and aliphatic polyesters such as polyethylene succinate and polycaprolactone. It is done. Among these, PET is particularly preferably used from the viewpoints of convenience of melt spinning, production cost, and the like.

芯鞘型フィラメントの芯成分には、有機化合物系の紫外線吸収剤を含有させることが必要である。紫外線吸収剤は、紫外線領域の波長を吸収し、無害な熱エネルギーに変換することにより、ポリマーの物性低下を抑制する効果がある。無機系の紫外線吸収剤は、溶融紡糸にて粒子同士が凝集しやすく、均一分散が困難となるため、性能安定させることが困難となる。   The core component of the core-sheath filament needs to contain an organic compound-based ultraviolet absorber. The ultraviolet absorber has an effect of suppressing deterioration of physical properties of the polymer by absorbing the wavelength in the ultraviolet region and converting it into harmless heat energy. Inorganic UV absorbers tend to aggregate particles during melt spinning, making uniform dispersion difficult, making it difficult to stabilize performance.

有機系の紫外線吸収剤は、ベンゾトリアゾール系化合物、トリアジン系化合物、ベンゾフェノン系化合物などが挙げられ、数多く市販されている。一般的に有機系の紫外線吸収剤は昇華または揮発しやすいため、できるだけ耐熱性の高い紫外線吸収剤が好ましい。特に耐熱性やポリエスエルとの相溶性の観点から、本発明の防虫ネットにはトリアジン系化合物が好ましく用いられる。トリアジン系化合物の主なものとして、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]―フェノールが挙げられる。   Examples of organic ultraviolet absorbers include benzotriazole compounds, triazine compounds, and benzophenone compounds, and many are commercially available. In general, since an organic ultraviolet absorber is easily sublimated or volatilized, an ultraviolet absorber having as high a heat resistance as possible is preferable. In particular, from the viewpoint of heat resistance and compatibility with polyester, triazine compounds are preferably used in the insect net of the present invention. The main triazine compounds include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol.

なお、紫外線吸収剤は芯成分重量に対して0.3%〜5.0%含有させることが必要であり、好ましくは0.5%〜3.0%である。0.3%未満であると、紫外線吸収剤の量が少なすぎて、太陽光を曝露した際ポリマー劣化が顕著となる。また、5.0%を超えると、性能が頭打ちになり紫外線吸収剤が無駄になる上、含有量が多くなりすぎてポリエステルの溶融粘度低下を引き起こし、芯鞘型フィラメントの破断強度が低下し、防虫ネットの破裂強度が低下してしまう。   In addition, it is necessary to make a ultraviolet absorber contain 0.3%-5.0% with respect to a core component weight, Preferably it is 0.5%-3.0%. If it is less than 0.3%, the amount of the UV absorber is too small, and the polymer deterioration becomes remarkable when exposed to sunlight. On the other hand, if it exceeds 5.0%, the performance will reach its peak and the UV absorber will be wasted, and the content will increase so much that the melt viscosity of the polyester will decrease, and the break strength of the core-sheath filament will decrease, The burst strength of the insect repellent net will be reduced.

紫外線吸収剤は、芯成分に含有させることが必要である。後加工による含浸では、防虫ネットにした際に降雨などで脱落してしまうので好ましくない。一方、鞘成分に含有させ
ると、織物の融着の際に揮発してしまい、性能低下してしまう。
The ultraviolet absorber must be contained in the core component. Impregnation by post-processing is not preferable because it will fall off due to rain when it is used as an insect repellent net. On the other hand, if it is contained in the sheath component, it volatilizes when the woven fabric is fused, and the performance deteriorates.

芯成分のポリエステルの極限粘度は、極限粘度0.60以上が好ましく、特に好ましくは0.64以上である。0.60以上であると、芯鞘型フィラメントの破断強度が高くなる。   The intrinsic viscosity of the polyester as the core component is preferably 0.60 or more, particularly preferably 0.64 or more. When it is 0.60 or more, the breaking strength of the core-sheath filament increases.

芯鞘型フィラメントとして、破断強度は3.0cN/dtex以上あれば十分であり、特に好ましくは4.0cN/dtexである。3.0cN/dtex以上であると、外部からの衝撃にも強く、頑丈な防虫ネットを得ることができる。   As the core-sheath filament, it is sufficient that the breaking strength is 3.0 cN / dtex or more, and particularly preferably 4.0 cN / dtex. When it is 3.0 cN / dtex or more, a strong insect net can be obtained which is resistant to external impacts.

上記芯鞘型フィラメントを織編物にして防虫ネットとして使用する場合、織編物交点の目ずれを防止するために、鞘成分は低融点ポリエステルであることが必要である。低融点ポリエステルは、紡糸性が良好であるイソフタル酸共重合PETが好ましい。共重合比率は特に限定されないが、芯成分のポリエステルに対し、融点の差が30℃以上となるような共重合比率であることが好ましい。この範囲であると、芯成分が溶融することなく十分な熱量で交点を接着することができる。   When the core-sheath filament is woven or knitted and used as an insect repellent net, the sheath component needs to be a low-melting polyester in order to prevent misalignment of the woven / knitted intersection. The low melting point polyester is preferably isophthalic acid copolymerized PET having good spinnability. The copolymerization ratio is not particularly limited, but the copolymerization ratio is preferably such that the difference in melting point is 30 ° C. or more with respect to the polyester as the core component. Within this range, the intersection can be bonded with a sufficient amount of heat without melting the core component.

芯鞘型フィラメントの横断面形状は特に限定されるものではないが、円形が好ましく、芯鞘形状も同心円状が好ましい。芯鞘面積比率は、50:50〜90:10が必要であり、特に好ましく60:40〜80:20である。芯面積比率が50%未満であると、芯鞘型フィラメントの破断強度が低下する。一方、90%を超えると、鞘面積の減少により織物交点の融着が不十分となるので好ましくない。   The cross-sectional shape of the core-sheath filament is not particularly limited, but is preferably circular and the core-sheath shape is preferably concentric. The core-sheath area ratio needs to be 50:50 to 90:10, particularly preferably 60:40 to 80:20. When the core area ratio is less than 50%, the breaking strength of the core-sheath filament decreases. On the other hand, if it exceeds 90%, it is not preferable because the fusion of the fabric intersection becomes insufficient due to the decrease in the sheath area.

芯鞘型フィラメントの繊度は特に限定されるものではないが、防虫ネットとしての利便性、耐久性の観点から、50〜100dtexが好ましい。この範囲であれば、適度な剛性で丈夫な防虫ネットが得られる。   The fineness of the core-sheath filament is not particularly limited, but 50 to 100 dtex is preferable from the viewpoint of convenience and durability as an insect repellent net. Within this range, a strong insect net with moderate rigidity can be obtained.

芯鞘型フィラメントは、防虫ネットにして屋外で使用する際、紫外線による強度低下が少ないことが必要である。この耐光評価を簡便に行うために、強キセノン型フェードメーターを使用して照射後の破断強度や破裂強度を測定する方法がある。本発明の防虫ネットに使用する芯鞘型フィラメントは、強キセノン型フェードメーター測定において、48時間曝露後の破断強度保持率が60%以上であることが好ましく、70%以上が特に好ましい。この範囲であると、自然曝露下においても紫外線による劣化が少ないので、耐久性のある防虫ネットを得ることができる。   When the core-sheath filament is used outdoors as an insect repellent net, it is necessary that the strength decrease due to ultraviolet rays is small. In order to easily perform this light resistance evaluation, there is a method of measuring the breaking strength and bursting strength after irradiation using a strong xenon type fade meter. The core-sheath filament used in the insect repellent net of the present invention preferably has a breaking strength retention after exposure for 48 hours of 60% or more, particularly preferably 70% or more, as measured by a strong xenon fade meter. Within this range, there is little deterioration due to ultraviolet rays even under natural exposure, so that a durable insect-proof net can be obtained.

本発明の防虫ネットは、織編物であることが必要である。不織布だと、防虫シートにした際に農作物への太陽光の照射量が減る上、通気度も不良となり内部が蒸れやすくなるため、好ましくない。また、織編物は熱融着することが必要である。熱融着をしないと、長時間の自然曝露中に目ずれが起きやすくなり、害虫が侵入しやすくなる。   The insect net of the present invention needs to be a woven or knitted fabric. Non-woven fabrics are not preferred because when the insect-proof sheet is used, the amount of sunlight applied to the crops is reduced, and the air permeability becomes poor and the inside tends to be stuffy. In addition, the woven or knitted fabric needs to be heat-sealed. Without heat fusion, misalignment is likely to occur during prolonged natural exposure, and pests are more likely to enter.

以下に実施例を挙げて本発明をさらに詳細に説明する。なお、本発明は以下に述べる実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to the Example described below.

A.極限粘度の測定
極限粘度は、溶媒にフェノール/テトラクロロエタン(体積比率6/4)を用いて、20℃の恒温槽にて測定した。
A. Measurement of intrinsic viscosity Intrinsic viscosity was measured in a thermostatic bath at 20 ° C. using phenol / tetrachloroethane (volume ratio 6/4) as a solvent.

B.芯鞘型フィラメントの破断強度の測定
破断強度は、JIS−L−1013法に準じ、試料糸長20cm、定速引張速度20c
m/分の条件で求めた。
B. Measurement of Breaking Strength of Core-Sheath Filament Breaking strength was measured according to JIS-L-1013 method, sample yarn length 20cm, constant speed tensile speed 20c.
It calculated | required on the conditions of m / min.

C.防虫ネットの破裂強度の測定
破裂強度は、JIS−L−1096A法(ミューレン形法)に準じ、試料15cm×15cmとして求めた。
C. Measurement of burst strength of insect repellent net The burst strength was determined as a sample of 15 cm × 15 cm according to the JIS-L-1096A method (Murlen type method).

D.フェードメーター耐光評価
フェードメーター耐光評価は、スガ試験機株式会社製『強エネルギーキセノンフェードメーターSC700−FA』にて、ブラックパネル温度63℃、湿度50%の環境下でフィラメント試料またはネット試料を装着し、48時間照射した。その後取り出し、破断強度または破裂強度を測定した。
D. Fade meter light resistance evaluation Fade meter light resistance evaluation was performed by attaching a filament sample or a net sample in an environment with a black panel temperature of 63 ° C and a humidity of 50% using the “Strong Energy Xenon Fade Meter SC700-FA” manufactured by Suga Test Instruments For 48 hours. Thereafter, the film was taken out and the breaking strength or bursting strength was measured.

E.芯成分用練込PETの作製
極限粘度0.68のPETに、トリアジン系紫外線吸収剤として、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]―フェノールをPETに対し1重量%添加し、ベント付二軸混練機にて270℃で溶融押出して、芯成分用の練込PETを得た。得られたチップの極限粘度は0.64、融点は257℃であった。
E. Preparation of Kneaded PET for Core Component To PET having an intrinsic viscosity of 0.68, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[( 1% by weight of hexyl) oxy] -phenol was added to PET and melt extruded at 270 ° C. with a vented twin-screw kneader to obtain a kneaded PET for the core component. The obtained chip had an intrinsic viscosity of 0.64 and a melting point of 257 ° C.

F.鞘成分用共重合PETの作製
低融点PETは、従来公知のDMT法に従って共重合PETを得た。すなわち、エチレングリコール100mol%に対し、DMTを75mol%、イソフタル酸ジメチルを25mol%となるように重合槽に投入し、エステル交換触媒として酢酸カルシウム一水和物を0.09(重量%/エステル)、酢酸マンガン四水和物を0.03(重量%/エステル)を加え、エステル交換反応を行った。次の重縮合反応は、重合触媒として三酸化アンチモン0.04(重量%/ポリマー)、熱安定剤としてリン酸トリメチル0.043(重量%/ポリマー)添加し、重合温度275℃、133Pa以下の高真空条件下で行い、低融点の共重合PETを得た。得られたチップの極限粘度は0.64、融点は193℃であった。
F. Production of copolymer PET for sheath component Low-melting PET was obtained by copolymerization PET according to a conventionally known DMT method. That is, with respect to 100 mol% of ethylene glycol, 75 mol% of DMT and 25 mol% of dimethyl isophthalate were charged into the polymerization tank, and calcium acetate monohydrate was 0.09 (wt% / ester) as a transesterification catalyst. Then, 0.03 (wt% / ester) of manganese acetate tetrahydrate was added to conduct transesterification. In the next polycondensation reaction, 0.04 (wt% / polymer) of antimony trioxide was added as a polymerization catalyst, and 0.043 (wt% / polymer) of trimethyl phosphate was added as a thermal stabilizer, and the polymerization temperature was 275 ° C. and 133 Pa or less. This was carried out under high vacuum conditions to obtain a low melting point copolymerized PET. The obtained chip had an intrinsic viscosity of 0.64 and a melting point of 193 ° C.

G.芯鞘型フィラメントの作製
芯成分に前記(E.)で得られた練込PET、鞘成分に前記(F.)記載の共重合PETを用い、従来公知の芯鞘複合紡糸方法に従った。すなわち、芯鞘面積比率を60:40とし、紡糸温度290℃、紡速1000m/分にて未延伸糸を巻き上げた後、室温にて1日エージングした。その後、ホットローラー85℃、プレートヒーター温度150℃にて延伸を行い、84dtex/8フィラメントの芯鞘型マルチフィラメントを得た。
G. Production of Core-Sheath Filament Using a kneaded PET obtained in (E.) above as the core component and the copolymerized PET described in (F.) above as the sheath component, a conventionally known core-sheath composite spinning method was followed. That is, the core-sheath area ratio was 60:40, the undrawn yarn was wound up at a spinning temperature of 290 ° C. and a spinning speed of 1000 m / min, and then aged at room temperature for 1 day. Then, it extended | stretched at the hot roller 85 degreeC and the plate heater temperature 150 degreeC, and obtained the core-sheath-type multifilament of 84 dtex / 8 filament.

H.防虫ネットの作製
(G.)記載の芯鞘型フィラメントを経緯使いで、スルーザー型織機にて30本/2.54cm(1インチ)の平織物を得た。この平織物の開口部の目開きは、約0.8mmであった。次にこの平織物をピンテンター型のヒートセッターを用いて220℃で2分間処理し、織物交点を融着させて防虫ネットを得た。
H. Production of Insect-proof Net Using the core-sheath filament described in (G.), a plain woven fabric of 30 pieces / 2.54 cm (1 inch) was obtained with a luther loom. The opening of this plain woven fabric opening was about 0.8 mm. Next, this plain woven fabric was treated at 220 ° C. for 2 minutes using a pin tenter type heat setter, and the woven fabric intersection was fused to obtain an insect repellent net.

実施例1
(G.)記載に従って芯鞘型フィラメントを作製した。この芯鞘型フィラメントの破断強度は3.34cN/dtexであった。この芯鞘型フィラメントを(D.)記載に従ってフェードメーター耐光評価を行ったところ、48時間曝露後の破断強度は2.40cN/dtexであり、破断強度保持率は71.9%であった。次に、(H.)記載に従って防虫ネットを作製した。この防虫ネットの破裂強度は、416kPaであった。この防虫ネットを(D.)記載に従ってフェードメーター耐光評価を行ったところ、48時間曝露
後の破裂強度は299kPaであり、破裂強度保持率は72.9%であった。このネットをキャベツ用の防虫ネットとして使用したところ、ネットは紫外線劣化が少ないために6ヶ月使用でも裂けや破れがなく、耐久性良好であった。また、目ずれを起こさないため、キャベツへの害虫被害はなかった。
Example 1
(G.) A core-sheath filament was prepared according to the description. The core-sheath filament had a breaking strength of 3.34 cN / dtex. When this core-sheath filament was evaluated for light resistance according to the description in (D.), the breaking strength after 48 hours exposure was 2.40 cN / dtex, and the breaking strength retention was 71.9%. Next, an insect net was prepared according to the description in (H.). The burst strength of this insect repellent net was 416 kPa. When the insect net was evaluated for light resistance according to the description in (D.), the burst strength after exposure for 48 hours was 299 kPa, and the burst strength retention was 72.9%. When this net was used as an insect repellent net for cabbage, the net did not tear or tear even after 6 months of use because of its low UV degradation, and had good durability. In addition, there was no pest damage to the cabbage because it did not cause misalignment.

<紫外線吸収剤の添加有無による防虫ネット性能評価>
比較例1
芯成分に極限粘度0.68のホモPETを用いた以外は、(G.)記載に従って芯鞘型フィラメントを作製した。この芯鞘型フィラメントの破断強度は3.51cN/dtexであった。更にフェードメーター耐光評価を行ったところ、48時間曝露後の破断強度は1.74cN/dtexであり、破断強度保持率は49.6%であった。次に、(H.)記載に従って防虫ネットを作製した。この防虫ネットの破裂強度は、410kPaであった。この防虫ネットを(D.)記載に従ってフェードメーター耐光評価を行ったところ、48時間曝露後の破裂強度は230kPaであり、破裂強度保持率は56.1%であった。更に、実施例1と同様にキャベツ用の防虫ネットとして使用したところ、ネットは紫外線遮断剤が含まれていないために紫外線劣化が激しく、草木に引っかかるだけでも裂けや破れが生じた。従って、防虫ネットとしては使用不可能であった。
<Performance evaluation of insect repellent net with and without UV absorber>
Comparative Example 1
A core-sheath filament was prepared according to the description in (G.) except that homo-PET having an intrinsic viscosity of 0.68 was used as the core component. The core-sheath filament had a breaking strength of 3.51 cN / dtex. Furthermore, when the fade meter light resistance evaluation was performed, the breaking strength after 48 hours exposure was 1.74 cN / dtex, and the breaking strength retention was 49.6%. Next, an insect net was prepared according to the description in (H.). The burst strength of this insect repellent net was 410 kPa. The insect net was evaluated for light resistance according to the description in (D.). As a result, the burst strength after exposure for 48 hours was 230 kPa, and the burst strength retention rate was 56.1%. Furthermore, when used as an insect repellent net for cabbage, as in Example 1, the net did not contain an ultraviolet blocking agent, so that the ultraviolet ray deteriorated severely, and tearing or tearing occurred even when caught on a plant. Therefore, it could not be used as an insect repellent net.

<鞘の熱融着有無による防虫ネット性能評価>
比較例2
鞘成分に極限粘度0.68のホモPETを用いた以外は、(G.)記載に従って芯鞘型フィラメントを作製した。この芯鞘型フィラメントの破断強度は3.75cN/dtexであった。更にフェードメーター耐光評価を行ったところ、48時間曝露後の破断強度は2.27cN/dtexであり、破断強度保持率は60.5%であった。次に、熱融着処理を行う以外は(H.)記載に従って防虫ネットを作製した。この防虫ネットの破裂強度は、422kPaであった。この防虫ネットを(D.)記載に従ってフェードメーター耐光評価を行ったところ、48時間曝露後の破裂強度は301kPaであり、破裂強度保持率は71.3%であった。更に、実施例1と同様にキャベツ用の防虫ネットとして使用した。ネットの紫外線劣化は少なかったものの、織物交点が接着されていなかったので、風雨により所々で目ずれが発生し、防虫効果は低いものであった。
<Performance evaluation of insect net by the presence or absence of heat fusion of sheath>
Comparative Example 2
A core-sheath filament was prepared according to the description in (G.) except that homo-PET having an intrinsic viscosity of 0.68 was used as the sheath component. The breaking strength of the core-sheath filament was 3.75 cN / dtex. When the fade resistance was further evaluated, the breaking strength after 48 hours exposure was 2.27 cN / dtex, and the breaking strength retention was 60.5%. Next, an insect repellent net was prepared according to the description in (H.) except that heat fusion treatment was performed. The burst strength of this insect repellent net was 422 kPa. When the insect net was evaluated for light resistance according to the description in (D.), the burst strength after exposure for 48 hours was 301 kPa, and the burst strength retention was 71.3%. Further, as in Example 1, it was used as an insect repellent net for cabbage. Although there was little UV deterioration of the net, the intersections of the fabrics were not adhered, so misalignment occurred in places due to wind and rain, and the insect repellent effect was low.

<紫外線吸収剤の添加量変化による防虫ネット性能評価>
(G.)記載の方法に従って芯鞘型フィラメントを作製し、その際に表1に示すように紫外線吸収剤の添加量を種々変化させて、評価を行った。
<Evaluation of insect net performance by changing the amount of UV absorber added>
A core-sheath filament was prepared according to the method described in (G.), and at that time, as shown in Table 1, the addition amount of the ultraviolet absorber was variously changed and evaluated.

比較例3は、紫外線吸収剤の添加量が多すぎるために、フェードメーター評価による破断強度保持率は83.2%と高いものの、紡糸時に芯成分の溶融粘度低下が著しく、破断強度が2.10cN/dtexと低くなった。この芯鞘型フィラメントを防虫ネットにすると破れやすくなり、使用不可能であったので、防虫ネット性能評価は不良(×)であった。一方、本発明に準ずる実施例1〜5は破断強度保持率、防虫ネット評価とも良好であった。特に実施例1、3、4は、紫外線吸収剤の添加量が最適であるために溶融紡糸時の粘度低下が少なく、破断強度が高い。防虫ネットにした場合、いずれも6ヶ月使用しても裂けや破れがなく優良であった。   In Comparative Example 3, since the amount of the ultraviolet absorber added is too large, the fracture strength retention rate by the fade meter evaluation is as high as 83.2%, but the melt viscosity of the core component is significantly reduced during spinning, and the fracture strength is 2. It was as low as 10 cN / dtex. When this core-sheath type filament was made into an insect repellent net, it was easily broken and could not be used, so the insect repellent net performance evaluation was poor (x). On the other hand, Examples 1 to 5 according to the present invention were good in both breaking strength retention and insect net evaluation. In Examples 1, 3, and 4 in particular, the addition amount of the ultraviolet absorber is optimal, so that there is little decrease in viscosity during melt spinning and the breaking strength is high. When using insect repellent nets, they were all excellent without tearing or tearing even after 6 months of use.

<芯鞘面積比率変更による防虫ネット性能評価>
(G.)記載の方法に従って芯鞘型フィラメントを作製し、その際に表2に示すように芯鞘面積比率を種々変化させて、評価を行った。
<Performance evaluation of insect nets by changing the core-sheath area ratio>
(G.) A core-sheath filament was prepared according to the method described, and the core-sheath area ratio was variously changed as shown in Table 2 for evaluation.

比較例4は、芯面積が少なすぎるため、破断強度が低下した。これを実施例1記載と同様に防虫ネットを作製し使用したところ、丈夫さに欠けるネットとなり、使用不可能だった。従って、防虫ネット性能評価は不良(×)であった。また、比較例5は、鞘面積が少なすぎるために織物交点の熱融着が不十分であった。その結果、これを使用した防虫ネットは使用時に強い風雨で交点での目ずれが発生し、防虫効果は低く使用不可能であり、防虫ネット性能評価は不良(×)であった。一方、本発明に準ずる実施例1、6〜8は、いずれも芯鞘比率が最適であるために破断強度も高く、熱融着も十分であるために防虫ネットとしての性能も良好であった。   In Comparative Example 4, since the core area was too small, the breaking strength was lowered. When this was produced and used in the same manner as described in Example 1, it became a net lacking in strength and could not be used. Therefore, the insect net performance evaluation was poor (x). Moreover, since the comparative example 5 had too little sheath area, the heat | fever fusion | bonding of the textile intersection was inadequate. As a result, the insect repellent net using this produced misalignment at the intersection due to strong wind and rain during use, the insect repellent effect was low and could not be used, and the insect net performance evaluation was poor (x). On the other hand, in Examples 1 and 6 to 8 according to the present invention, since the core-sheath ratio was optimal, the breaking strength was high and the heat fusion was sufficient, so that the performance as an insect repellent net was also good. .

本発明の防虫ネットは、特に農業、園芸分野の使用に適している。   The insect net of the present invention is particularly suitable for use in agriculture and horticulture.

Claims (3)

芯成分に有機系紫外線吸収剤を芯成分重量に対して0.3%〜5.0%含有したポリエステル、鞘成分に低融点ポリエステルを配した、芯鞘面積比率が50:50〜90:10である芯鞘型フィラメントからなり、該織編物の交点が熱接着されていることを特徴とする防虫ネット。 A core-sheath area ratio of 50:50 to 90:10, in which a polyester containing 0.3% to 5.0% of an organic ultraviolet absorber as a core component and a low-melting-point polyester as a sheath component is arranged. An insect repelling net comprising a core-sheath filament, wherein the intersection of the woven or knitted fabric is thermally bonded. 芯鞘型フィラメントの芯成分に含有されている有機系紫外線吸収剤が、トリアジン系化合物であることを特徴とする請求項1記載の防虫ネット。 2. The insect repellent net according to claim 1, wherein the organic ultraviolet absorbent contained in the core component of the core-sheath filament is a triazine compound. 芯鞘型フィラメントの鞘成分の低融点ポリエステルがイソフタル酸を共重合した共重合ポリエチレンテレフタレートであり、芯成分との融点の差が30℃以上であることを特徴とする請求項1または2記載の防虫ネット。
The low melting point polyester of the sheath component of the core-sheath filament is copolymerized polyethylene terephthalate copolymerized with isophthalic acid, and the difference in melting point from the core component is 30 ° C or more. Insect net.
JP2004069871A 2004-03-12 2004-03-12 Insect proof net Pending JP2005253368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069871A JP2005253368A (en) 2004-03-12 2004-03-12 Insect proof net

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069871A JP2005253368A (en) 2004-03-12 2004-03-12 Insect proof net

Publications (1)

Publication Number Publication Date
JP2005253368A true JP2005253368A (en) 2005-09-22

Family

ID=35079709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069871A Pending JP2005253368A (en) 2004-03-12 2004-03-12 Insect proof net

Country Status (1)

Country Link
JP (1) JP2005253368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247887A (en) * 2012-05-30 2013-12-12 Toyonen Kk Partition net, fence and preserve
CN107494072A (en) * 2017-10-11 2017-12-22 邢志强 Cool net

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134720A (en) * 1994-11-09 1996-05-28 Teijin Ltd Functional conjugate fiber and insectproof rug
JPH08172940A (en) * 1994-12-27 1996-07-09 Unitika Ltd Agricultural solid covering sheet
JPH108338A (en) * 1996-06-26 1998-01-13 Kanebo Ltd Differently shrinkable combined filament yarn composed of conjugate fiber
JPH11229236A (en) * 1998-02-12 1999-08-24 Nippon Ester Co Ltd Antimicrobial polyester yarn
JP2000217446A (en) * 1999-01-27 2000-08-08 Chisso Corp Insect proof net
JP2003181997A (en) * 2001-12-14 2003-07-03 Mitsubishi Chem Mkv Co Anti-alga agricultural resin film
JP2004009363A (en) * 2002-06-04 2004-01-15 Dainippon Printing Co Ltd Hydrophilic member and its manufacturing process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134720A (en) * 1994-11-09 1996-05-28 Teijin Ltd Functional conjugate fiber and insectproof rug
JPH08172940A (en) * 1994-12-27 1996-07-09 Unitika Ltd Agricultural solid covering sheet
JPH108338A (en) * 1996-06-26 1998-01-13 Kanebo Ltd Differently shrinkable combined filament yarn composed of conjugate fiber
JPH11229236A (en) * 1998-02-12 1999-08-24 Nippon Ester Co Ltd Antimicrobial polyester yarn
JP2000217446A (en) * 1999-01-27 2000-08-08 Chisso Corp Insect proof net
JP2003181997A (en) * 2001-12-14 2003-07-03 Mitsubishi Chem Mkv Co Anti-alga agricultural resin film
JP2004009363A (en) * 2002-06-04 2004-01-15 Dainippon Printing Co Ltd Hydrophilic member and its manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247887A (en) * 2012-05-30 2013-12-12 Toyonen Kk Partition net, fence and preserve
CN107494072A (en) * 2017-10-11 2017-12-22 邢志强 Cool net

Similar Documents

Publication Publication Date Title
ES2822594T3 (en) Green energy environmental control fiber, the manufacturing method of the same and fabric made of the same
KR102522846B1 (en) Insect-proof fiber and insect-proof net using the same
JP6119009B2 (en) Industrial material sheet
CN108495547A (en) Screen for hothouse
US6080688A (en) Flame retardant, long-time UV-stabilized drapeable screen
JP2005253368A (en) Insect proof net
JP5684436B2 (en) Agricultural coating material and manufacturing method thereof
JPH07289097A (en) Insect pest control mesh sheet
JP2005269962A (en) Multifilament for mothproof net
TWI702258B (en) Agricultural covering material composition, agricultural covering material and manufacturing method of agricultural covering material
EP0206304B1 (en) Covering sheet for agricultural use
JP2001352844A (en) Farming net
JP3826599B2 (en) Insect net
JPH05117508A (en) Polyester composition having ultraviolet light screening performance, its production and fiber therfrom
KR100438020B1 (en) Preparation of Insect repel-lent fabric containing Permethrin
JP2005163476A (en) Biodegradable construction work sheet and its manufacturing method
JP4173793B2 (en) Milky white film for curtain
JP4981721B2 (en) Method for producing heat-retaining polylactic acid fiber structure, heat-retaining polylactic acid fiber structure and fiber product
JP2015223152A (en) Agricultural covering material
JP2020193415A (en) Multifilament yarn and thermoforming method of fiber product using the same
JP2020068704A (en) Agricultural light reflection sheet
KR100493110B1 (en) Thermoplastic Synthetic Fiber Nonwoven Fabric and its Manufacturing Method
JP3002939U (en) Cover cover sheet for sericulture
CN107936507A (en) Suppress mulch of weed growth and preparation method thereof
JP2009242953A (en) Fiber structure for industrial material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902