JP2005246442A - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting Download PDF

Info

Publication number
JP2005246442A
JP2005246442A JP2004061495A JP2004061495A JP2005246442A JP 2005246442 A JP2005246442 A JP 2005246442A JP 2004061495 A JP2004061495 A JP 2004061495A JP 2004061495 A JP2004061495 A JP 2004061495A JP 2005246442 A JP2005246442 A JP 2005246442A
Authority
JP
Japan
Prior art keywords
immersion nozzle
gas
nozzle
alumina
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061495A
Other languages
Japanese (ja)
Inventor
Sumihiro Kameda
澄広 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004061495A priority Critical patent/JP2005246442A/en
Publication of JP2005246442A publication Critical patent/JP2005246442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an immersion nozzle capable of suppressing the deposition of alumina even when reducing the blowing quantity of nitrogen gas and Ar gas to be blown into a molten metal pouring hole or without blowing the gas such as the nitrogen gas or the Ar gas in a continuous casting. <P>SOLUTION: In the immersion nozzle nozzle for continuous casting provided with one pair of spouting holes 4, 4 symmetrical to the axis of the immersion nozzle 1 on a side wall part 2, the bottom surface level at the position, where the surface passing through the center positions of two spouting holes and parallel to the axis in the longitudinal direction of the immersion nozzle is crossed to the inner surface at the bottom part 3 of the immersion nozzle, is made highest, and the bottom surface level at the position, where the surface crossed orthogonally to the straight line connecting the center position of the two spouting hole and passing through the axis of the immersion nozzle is crossed to the inner surface on the side wall part of the immersion nozzle, is made lowest, thereby inclining the inner surface at the bottom part of the immersion nozzle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼の連続鋳造において、溶鋼を鋳型内に注入するために使用する連続鋳造用浸漬ノズルに関するものである。   The present invention relates to a continuous casting immersion nozzle used for injecting molten steel into a mold in continuous casting of steel.

鋼の連続鋳造では、主にアルミキルド鋼が鋳造される。アルミキルド鋼は、転炉などで酸化脱炭精錬された溶鋼がAlによって脱酸され、酸化脱炭精錬により増加した溶鋼中の酸素が除去されて製造される。この脱酸工程で生成したアルミナ粒子(Al23 粒子)は、溶鋼とアルミナとの密度差に基づき溶鋼から除去されるが、数10μm以下の微小なアルミナ粒子の浮上速度は極めて遅く、浮上分離に長時間を要するため、実際のプロセスでは、このような微小のアルミナ粒子を完全に浮上・分離させることは困難であり、アルミキルド溶鋼中には微細なアルミナ粒子が懸濁した状態で残留する。 In continuous casting of steel, aluminum killed steel is mainly cast. Aluminum killed steel is manufactured by deoxidizing molten steel that has been oxidatively decarburized and refined in a converter or the like, and removing oxygen in the molten steel that has been increased by oxidative decarburization and refining. The alumina particles (Al 2 O 3 particles) generated in this deoxidation process are removed from the molten steel based on the density difference between the molten steel and alumina, but the ascending speed of the fine alumina particles of several tens of μm or less is extremely slow. Since separation takes a long time, it is difficult to completely float and separate such fine alumina particles in an actual process, and fine alumina particles remain suspended in the aluminum killed molten steel. .

ところで、鋼の連続鋳造では、タンディッシュから鋳型へと溶鋼を注湯する際に、浸漬ノズル、スライディングノズル及び上ノズルなど耐火物製のノズルを用いて注湯している。これらのノズルに求められる特性としては、耐熱衝撃性及びモールドパウダーや溶鋼に対する耐溶損性に優れることであり、そのため、これらの特性に優れるアルミナ質或いはアルミナ−グラファイト質の耐火物が広く用いられている。しかしながら、アルミナ質或いはアルミナ−グラファイト質のノズルを用いてアルミキルド鋼を鋳造すると、溶鋼中に懸濁しているアルミナ粒子がノズルの内壁表面に付着・堆積し、ノズル閉塞が発生するという問題が発生する。特に、アルミナ−グラファイト質の浸漬ノズルでノズル閉塞が発生しやすいことが知られている。   By the way, in continuous casting of steel, when pouring molten steel from a tundish to a mold, pouring is performed using a refractory nozzle such as an immersion nozzle, a sliding nozzle and an upper nozzle. The characteristics required for these nozzles are excellent thermal shock resistance and resistance to erosion to mold powder and molten steel. Therefore, refractories made of alumina or alumina-graphite that are excellent in these characteristics are widely used. Yes. However, when aluminum killed steel is cast using an alumina or graphite-nozzle nozzle, there is a problem in that the alumina particles suspended in the molten steel adhere to and accumulate on the inner wall surface of the nozzle, causing nozzle clogging. . In particular, it is known that nozzle clogging is likely to occur with an alumina-graphite immersion nozzle.

浸漬ノズルが閉塞すると、鋳造作業上及び鋳片品質上で様々な問題が発生する。例えば、鋳片引き抜き速度を低下せざるを得ず、生産性が落ちるのみならず、甚だしい場合には、鋳込み作業そのものの中止を余儀なくされる。また、浸漬ノズルなどのノズル内壁表面に堆積し、粗大化したアルミナ粒子が突然剥離し、鋳型内に排出され、これが鋳型内の凝固シェルに捕捉された場合には製品欠陥となり、製品歩留まりの低下につながる。   When the immersion nozzle is blocked, various problems occur in the casting operation and the slab quality. For example, the slab drawing speed has to be reduced, and not only the productivity is lowered, but in a severe case, the casting operation itself must be stopped. In addition, when the alumina particles deposited and coarsened on the inner wall surface of the nozzle, such as an immersion nozzle, suddenly peel off and are discharged into the mold, and become trapped by the solidified shell in the mold, a product defect occurs, resulting in a decrease in product yield. Leads to.

従って、これらの問題を防止するために、通常、アルミキルド鋼を連続鋳造する際には、浸漬ノズルやスライディングノズルなどにより構成される、タンディッシュから鋳型への溶鋼流出孔の内部に、窒素ガスなどの非酸化性ガスまたはArガスなどの希ガスを吹き込み、これらのガスによって強制的に溶鋼流出孔の内壁面を洗浄し、浸漬ノズルなど溶鋼流出孔の内壁表面でのアルミナの付着・堆積を防止する方法が広く行われている。しかし、吹き込んだガスの全てが鋳型内で浮上することはなく、一部のガスは、ガス気泡として凝固シェルに捕捉される。大半のガス気泡は介在物と共存するため、捕捉されたガス気泡が圧延後の表面欠陥となることがある。そのため、少ないガス吹き込み量であっても、或いは、ガス吹き込みを実施しなくてもアルミナの付着を防止するために、浸漬ノズルの形状或いは材質を変更し、浸漬ノズル自体をアルミナの付着しにくい構造とすることが多数提案されている。   Therefore, in order to prevent these problems, normally, when continuously casting aluminum killed steel, nitrogen gas or the like is formed inside the molten steel outflow hole from the tundish to the mold, which is constituted by an immersion nozzle or a sliding nozzle. Non-oxidizing gas or rare gas such as Ar gas is blown in, and the inner wall surface of the molten steel outflow hole is forcibly washed with these gases to prevent adhesion and deposition of alumina on the inner wall surface of the molten steel outflow hole such as an immersion nozzle. There are many ways to do this. However, all of the injected gas does not float in the mold, and a part of the gas is trapped in the solidified shell as gas bubbles. Since most gas bubbles coexist with inclusions, the trapped gas bubbles may become surface defects after rolling. Therefore, the structure or material of the immersion nozzle is changed to prevent the alumina from adhering in order to prevent the alumina from adhering even if the gas injection amount is small or no gas injection is performed. Many have been proposed.

例えば、特許文献1には、浸漬ノズルの内壁面にラセン状の溝または突起を設け、これによって浸漬ノズルの内部孔内に形成される旋回流により、アルミナ付着を防止する浸漬ノズルが提案されており、特許文献2には、流れの遅くなると予想される吐出孔の領域を予め閉鎖するために、吐出孔に、吐出孔の上端中央部から下方に延びる逆台形の突起部を設けた浸漬ノズルが提案されており、また、特許文献3には、溶鋼と接触する浸漬ノズルの内部孔の表層部を、溶鋼中のアルミナと反応して低融点化合物を生成するCaO・ZrO2 質を主成分とする耐火物で構成した浸漬ノズルが提案されている。
特開昭57−130745号公報 特開平2−169160号公報 特開平4−94851号公報
For example, Patent Document 1 proposes an immersion nozzle in which a spiral groove or protrusion is provided on the inner wall surface of the immersion nozzle, thereby preventing alumina adhesion by a swirling flow formed in the internal hole of the immersion nozzle. Japanese Patent Application Laid-Open No. H10-228688 discloses an immersion nozzle in which an inverted trapezoidal protrusion that extends downward from the center of the upper end of the discharge hole is provided in the discharge hole in order to previously close the region of the discharge hole that is expected to slow down the flow. main component but have been proposed, also, Patent Document 3, the surface portion of the inner bore of the immersion nozzle in contact with molten steel, reacts with alumina in molten steel CaO · ZrO 2 quality to produce low-melting compounds An immersion nozzle composed of a refractory material is proposed.
JP-A-57-130745 JP-A-2-169160 Japanese Patent Laid-Open No. 4-94851

しかしながら、上記の特許文献1〜2においてもアルミナの付着防止効果は十分ではなく、未だ改善すべき点が多く、一方、特許文献3の方法ではアルミナの付着は防止されものの、浸漬ノズルの内壁が溶損しながらアルミナと反応して低融点化合物を生成するので、却って溶鋼中の酸化物系介在物自体が増加し、鋳片の清浄性が劣化するという問題がある。そのため、凝固シェルに捕捉されたガス気泡による品質低下の問題は依然として解決されていないものの、浸漬ノズルなどの溶鋼流出孔内への窒素ガスやArガスなどのガス吹き込みが、アルミナ付着防止の主たる対策として行われているのが実状である。   However, in the above Patent Documents 1 and 2, the effect of preventing the adhesion of alumina is not sufficient, and there are still many points to be improved. On the other hand, the method of Patent Document 3 prevents the adhesion of alumina, but the inner wall of the immersion nozzle Since it melts and reacts with alumina to produce a low melting point compound, the oxide inclusions in the molten steel itself increase, and the cleanliness of the slab deteriorates. Therefore, although the problem of quality deterioration due to gas bubbles trapped in the solidified shell has not been solved yet, blowing of gas such as nitrogen gas or Ar gas into the molten steel outflow hole such as an immersion nozzle is the main measure for preventing alumina adhesion It is the actual situation that is done as.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、浸漬ノズルの内部孔などの溶鋼流出孔内に吹き込む窒素ガスやArガスなどの吹き込み量を少なくする、或いは、窒素ガスやArガスなどのガスを吹き込まなくても、浸漬ノズルのアルミナ付着を抑制することの可能な浸漬ノズルを提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to reduce the amount of nitrogen gas or Ar gas blown into the molten steel outflow hole such as the inner hole of the immersion nozzle, or nitrogen gas. It is an object of the present invention to provide an immersion nozzle capable of suppressing the adhesion of alumina to the immersion nozzle without blowing a gas such as Ar gas.

本発明者等は、上記課題を解決すべく、鋭意検討・研究を行った。以下に、検討・研究結果を説明する。   The present inventors have intensively studied and studied in order to solve the above problems. The results of the examination and research are explained below.

上記課題を解決するに当たり、先ず、浸漬ノズルのどこの部位でアルミナ付着が多いのかを、スラブ連続鋳造機の鋳造に使用した浸漬ノズルにおいて調査した。使用した浸漬ノズルは、底部を有し、側壁部に一対の吐出孔が備えられた通常の浸漬ノズルである。その結果、両方の吐出孔を結ぶ直線と直交する位置、即ち、浸漬ノズルの横断面で見た場合に両方の吐出孔の中心位置から、それぞれ浸漬ノズルの円周方向に最も離れた90°の位置(以下、「反吐出孔位置」とも記す)の内壁面においてアルミナ付着が激しいことが分かった。   In order to solve the above-mentioned problem, first, in which part of the immersion nozzle the amount of alumina adhered was investigated in the immersion nozzle used for casting of the slab continuous casting machine. The used immersion nozzle is a normal immersion nozzle having a bottom part and having a pair of discharge holes in the side wall part. As a result, the position perpendicular to the straight line connecting both discharge holes, that is, 90 ° farthest in the circumferential direction of each immersion nozzle from the center position of both discharge holes when viewed in the cross section of the immersion nozzle. It was found that the alumina adhesion was intense on the inner wall surface at the position (hereinafter also referred to as “anti-discharge hole position”).

この原因を調査するために、実機で使用する浸漬ノズルと同一の形状の浸漬ノズルを用いて水モデル実験を実施し、浸漬ノズルの内部孔内の流動を調査した。その結果、反吐出孔位置では、浸漬ノズルの側壁面側に流れの淀みが発生することが確認できた。この流れの淀みに起因してアルミナの付着が激しくなるものと判断された。   In order to investigate this cause, a water model experiment was conducted using an immersion nozzle having the same shape as the immersion nozzle used in the actual machine, and the flow in the internal hole of the immersion nozzle was investigated. As a result, it was confirmed that stagnation of the flow occurred on the side of the side wall surface of the immersion nozzle at the position opposite to the ejection holes. Due to this stagnation of the flow, it was judged that the adhesion of alumina became intense.

この原因は、浸漬ノズルの内部孔を流下した溶鋼が、浸漬ノズルの下部では全て吐出孔に向かって流れ、吐出孔と離れた反吐出孔位置の流速が低下することによるものと想定し、そこで、反吐出孔位置における流れの淀みを解消するために、浸漬ノズルの底部に衝突して生ずる流れを利用することを検討した。   It is assumed that the molten steel that has flowed down the internal hole of the immersion nozzle flows toward the discharge hole at the bottom of the immersion nozzle, and the flow velocity at the position opposite to the discharge hole decreases. In order to eliminate the stagnation of the flow at the position of the anti-discharge hole, it was considered to use the flow generated by colliding with the bottom of the immersion nozzle.

先ず、従来の浸漬ノズルについて水モデル実験により調査した。従来、底部を有する浸漬ノズルの底部の内表面形状は、図5に示すように、平らな平面状の底部表面を有するプール形状か、或いは、図6に示すように、吐出孔の勾配と同一の勾配で吐出孔へ向けて傾斜する山型形状が採用されている。図5及び図6において、1は浸漬ノズル、2は側壁部、3は底部、4は吐出孔、5は内部孔、6はスラグライン部である。   First, a conventional immersion nozzle was investigated by a water model experiment. Conventionally, the inner surface shape of the bottom of an immersion nozzle having a bottom is the same as a pool shape having a flat, flat bottom surface as shown in FIG. 5, or the same as the gradient of the discharge holes as shown in FIG. A mountain shape that is inclined toward the discharge hole with a gradient of is adopted. 5 and 6, 1 is an immersion nozzle, 2 is a side wall portion, 3 is a bottom portion, 4 is a discharge hole, 5 is an internal hole, and 6 is a slag line portion.

図6に示す山型形状の場合には、浸漬ノズル1の底部3に衝突した溶鋼は、流れに乱れを生ずることなく底部3の勾配に沿って吐出孔4の方向に流れるため、反吐出孔位置における流れの淀みが特に著しいことが分かった。図5に示すプール形状の場合には、底部3に衝突した溶鋼が反転して上方に向かう流れ(以下、「反転流」と記す)を形成するが、底部3に衝突した後に形成される流れの方向はランダムであり、反転流により吐出孔5の付近で乱流を形成する程度であり、反吐出孔位置における流れの淀みを解消するほどの反転流は形成されないことが分かった。   In the case of the chevron shape shown in FIG. 6, the molten steel that has collided with the bottom 3 of the immersion nozzle 1 flows in the direction of the discharge hole 4 along the gradient of the bottom 3 without disturbing the flow. It was found that the flow stagnation at the location was particularly significant. In the case of the pool shape shown in FIG. 5, the molten steel that has collided with the bottom portion 3 is reversed to form an upward flow (hereinafter referred to as “reversed flow”). It was found that the direction of the flow was random and the turbulent flow was formed in the vicinity of the discharge hole 5 by the reverse flow, and the reverse flow was not formed so as to eliminate the stagnation of the flow at the counter discharge hole position.

そこで、反吐出孔位置において積極的に反転流を形成すべく、図1(図1の詳細な説明は後述する)に示すように、底部内表面の反吐出孔位置が低く、2つの吐出孔の中心位置を結ぶ位置が高くなるように、底部の内表面に勾配を付け、傾斜させた。その結果、反転流は底部内表面の傾斜に沿って形成されるために、反転流は反吐出孔位置に向かう流れとなり且つ反転流の流速が大きくなることが確認できた。これにより、反吐出孔位置における流れの淀みが解消されることが確認できた。   Therefore, in order to positively form a reverse flow at the position of the anti-discharge hole, as shown in FIG. 1 (detailed description of FIG. 1 will be described later), the position of the anti-discharge hole on the bottom inner surface is low and two discharge holes The inner surface of the bottom portion was inclined and inclined so that the position connecting the center positions of the two was higher. As a result, since the reverse flow is formed along the inclination of the inner surface of the bottom, it was confirmed that the reverse flow becomes a flow toward the counter discharge hole position and the flow velocity of the reverse flow increases. Thereby, it was confirmed that the stagnation of the flow at the counter discharge hole position was eliminated.

本発明は、上記検討・研究結果に基づいてなされたものであり、本発明に係る連続鋳造用浸漬ノズルは、浸漬ノズルの軸心に対して左右対称である一対の吐出孔を側壁部に備えた連続鋳造用浸漬ノズルにおいて、2つの吐出孔の中心位置を通り、浸漬ノズルの長手方向軸心に平行である面と、浸漬ノズル底部の内表面と、が交差する位置の底面が最も高く、2つの吐出孔の中心位置を結ぶ直線と直交し且つ浸漬ノズルの軸心を通る面と、浸漬ノズル側壁部の内表面と、が交差する位置の底面が最も低くなるように、浸漬ノズルの底部の内表面が傾斜していることを特徴とするものである。   The present invention has been made on the basis of the above examination and research results, and the continuous casting immersion nozzle according to the present invention includes a pair of discharge holes which are symmetrical with respect to the axis of the immersion nozzle in the side wall portion. In the continuous casting immersion nozzle, the bottom surface at the position where the surface passing through the central position of the two discharge holes and parallel to the longitudinal axis of the immersion nozzle intersects with the inner surface of the bottom of the immersion nozzle is the highest, The bottom of the immersion nozzle so that the bottom surface at the position where the plane intersecting the straight line connecting the center positions of the two discharge holes and passing through the axis of the immersion nozzle intersects with the inner surface of the sidewall of the immersion nozzle is the lowest. It is characterized in that the inner surface is inclined.

本発明によれば、浸漬ノズルの底部内表面に反吐出孔位置が低くなるように傾斜を設けているので、浸漬ノズルの内部孔を流下して底部内表面に衝突した溶鋼が内表面の傾斜に沿って反吐出孔位置に向いた反転流を形成し、この反転流により反吐出孔位置における溶鋼流速が増速され、反吐出孔位置における流れの淀みが解消されるため、浸漬ノズルの反吐出孔位置の側壁面でのアルミナの付着が抑制される。その結果、多ヒートに亘る連続鋳造を同一の浸漬ノズルで実施することが可能になり、タンディッシュ耐火物の原単位の削減や、浸漬ノズル内部孔へのガス吹き込み量の低減化による鋳片品質の向上などが達成され、工業上有益な効果がもたらされる。   According to the present invention, since the bottom surface of the immersion nozzle is inclined so that the position of the anti-discharge hole is low, the molten steel that has flowed down the internal hole of the immersion nozzle and collided with the inner surface of the bottom is inclined on the inner surface. A reversal flow directed to the anti-discharge hole position is formed along this line, the molten steel flow velocity at the anti-discharge hole position is increased by this reverse flow, and the stagnation of the flow at the anti-discharge hole position is eliminated. Adhesion of alumina on the side wall surface at the discharge hole position is suppressed. As a result, continuous casting over multiple heats can be carried out with the same immersion nozzle, and the slab quality is reduced by reducing the basic unit of tundish refractories and reducing the amount of gas blown into the internal holes of the immersion nozzle. And the like, and an industrially beneficial effect is achieved.

以下、添付図面を参照して本発明を具体的に説明する。図1〜3は、本発明の実施の形態を示す図であって、図1は、本発明に係る連続鋳造用浸漬ノズルの1例を示す側面概略図、図2は、図1のX−X’矢視による側面概略図、図3は、図1のY−Y’矢視による平面概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1-3 is a figure which shows embodiment of this invention, Comprising: FIG. 1 is a side schematic diagram which shows an example of the immersion nozzle for continuous casting which concerns on this invention, FIG. 2 is X- of FIG. FIG. 3 is a schematic side view as viewed from the arrow X ′, and FIG. 3 is a schematic plan view as viewed from the arrow YY ′ in FIG. 1.

図1〜3に示すように、本発明に係る連続鋳造用の浸漬ノズル1は、円筒状の側壁部2と、この側壁部2の下部に位置する底部3とで構成され、側壁部2の内面側は、溶鋼が流下するための、上端が開口した内部孔5となり、側壁部2の下部には、この内部孔5に連通し、内部孔5を流下する溶鋼を鋳型内に流出させるための一対の吐出孔4が備えられている。2つの吐出孔4は、浸漬ノズル1の長手方向の軸心を軸として左右対称となっている。側壁部2の外周には、スラグに対する耐食性に優れた耐火物材質からなるスラグライン部6が、モールドパウダーと接触する範囲に該当する位置に設けられている。スラグに対する耐食性に優れた耐火物材質としては、例えばZrO2 −グラファイト質耐火物などを用いることができる。 As shown in FIGS. 1 to 3, the immersion nozzle 1 for continuous casting according to the present invention includes a cylindrical side wall portion 2 and a bottom portion 3 positioned below the side wall portion 2. The inner surface side becomes an internal hole 5 having an open upper end for flowing the molten steel, and the lower part of the side wall 2 communicates with the internal hole 5 so that the molten steel flowing down the internal hole 5 flows out into the mold. A pair of discharge holes 4 is provided. The two discharge holes 4 are symmetric with respect to the longitudinal axis of the immersion nozzle 1 as an axis. On the outer periphery of the side wall portion 2, a slag line portion 6 made of a refractory material having excellent corrosion resistance against slag is provided at a position corresponding to a range in contact with the mold powder. As a refractory material having excellent corrosion resistance against slag, for example, ZrO 2 -graphite refractory can be used.

底部3の内表面には、両方の吐出孔4,4の方向を向いた中心線の位置が最も高く、それぞれの吐出孔4,4から浸漬ノズル1の円周方向に90°離れた位置、即ち、反吐出孔位置が最も低くなるように、傾斜面7が設けられている。即ち、2つの吐出孔4,4の中心位置を通り、浸漬ノズル1の長手方向軸心に平行である面と、底部3の内表面と、が交差する位置の底面が最も高く、2つの吐出孔4,4の中心位置を結ぶ直線と直交し且つ浸漬ノズル1の軸心を通る面と、側壁部2の内表面と、が交差する位置の底面が最も低くなるように、浸漬ノズル1の底部3の内表面が傾斜している。図中、傾斜面7の最も高くなった位置を頂点7aで表示している。   On the inner surface of the bottom 3, the position of the center line facing the direction of both discharge holes 4, 4 is the highest, a position 90 ° away from each discharge hole 4, 4 in the circumferential direction of the immersion nozzle 1, That is, the inclined surface 7 is provided so that the anti-discharge hole position is the lowest. That is, the bottom surface at the position where the surface passing through the center position of the two discharge holes 4 and 4 and parallel to the longitudinal axis of the immersion nozzle 1 intersects with the inner surface of the bottom portion 3 is the highest. The immersion nozzle 1 is arranged such that the bottom surface at the position where the plane perpendicular to the straight line connecting the center positions of the holes 4 and 4 and passing through the axis of the immersion nozzle 1 intersects the inner surface of the side wall 2 is the lowest. The inner surface of the bottom 3 is inclined. In the figure, the highest position of the inclined surface 7 is indicated by a vertex 7a.

この場合、図1〜3では傾斜面7と側壁部2とが鋭角で交差しているが、この部位に曲率を付け、傾斜面7から側壁部2への円滑な流れを形成させるようにしてもよい。また、図1〜3では傾斜面7の勾配が一定であるが、頂点7a側の勾配を大きくして、側壁部2に向かって徐々に勾配を弱くするようにしてもよい。傾斜面7の勾配はどの程度であってもよいが、最大でも水平方向に対して45°程度とすればよい。但し、頂点7aと最も低くなる位置との高低差が小さいと本発明の効果が少なくなるので、高低差を3mm以上確保するように、勾配を設定することが好ましい。更に、図1〜3では、頂点7aの位置が側壁部2の内面側の吐出孔4の位置よりも鉛直方向下方であるが、吐出孔4の位置と同等レベル、或いは吐出孔4の位置よりも鉛直方向上方としても構わない。更にまた、頂点7aでは両側に傾斜しているが、頂点7aの部位に水平面部を設置してもよい。   In this case, in FIGS. 1 to 3, the inclined surface 7 and the side wall portion 2 intersect at an acute angle, but a curvature is applied to this portion so that a smooth flow from the inclined surface 7 to the side wall portion 2 is formed. Also good. 1 to 3, the gradient of the inclined surface 7 is constant. However, the gradient on the apex 7 a side may be increased and gradually decreased toward the side wall 2. The gradient of the inclined surface 7 may be any degree, but it may be at most about 45 ° with respect to the horizontal direction. However, if the height difference between the vertex 7a and the lowest position is small, the effect of the present invention is reduced. Therefore, it is preferable to set the gradient so as to ensure a height difference of 3 mm or more. Further, in FIGS. 1 to 3, the position of the vertex 7 a is vertically lower than the position of the discharge hole 4 on the inner surface side of the side wall portion 2, but at the same level as the position of the discharge hole 4 or from the position of the discharge hole 4. May also be set vertically upward. Furthermore, although the vertex 7a is inclined on both sides, a horizontal surface portion may be installed at the portion of the vertex 7a.

浸漬ノズル1の成型時、内部孔5は中子を挿入して成型されるので、即ち、底部3の内表面の形状は、中子の先端の形状によって形成されるので、中子の先端の形状を上記に沿って加工することで、所望する形状の底面を得ることができる。浸漬ノズル1の材質は、どのような耐火物材料であってもよく、例えば、慣用のアルミナ−グラファイト質やアルミナ−スピネル質、更にはアルミナ質などを用いることができる。   When the immersion nozzle 1 is molded, the inner hole 5 is molded by inserting the core, that is, the shape of the inner surface of the bottom portion 3 is formed by the shape of the tip of the core. By processing the shape along the above, a bottom surface having a desired shape can be obtained. The material of the immersion nozzle 1 may be any refractory material, and for example, conventional alumina-graphite, alumina-spinel, and alumina may be used.

このような構成の本発明に係る浸漬ノズル1においては、内部孔5を流下した溶鋼が底部3の傾斜面7に衝突し、傾斜面7に沿った反転流が形成されるため、吐出孔4,4から浸漬ノズル1の円周方向に90°離れた位置、即ち、反吐出孔位置に向いて流れる反転流が多くなり、この反転流によって反吐出孔位置が強制的に攪拌されることから、反吐出孔位置における溶鋼の淀みが解消される。そのため、特にアルミナ付着の激しかった反吐出孔位置でのアルミナ付着が抑制され、浸漬ノズル1の鋳造可能時間を飛躍的に延長させることが可能となる。また、浸漬ノズル1の内部孔5でのアルミナ粒子の付着・堆積による粗大化を防止することができるので、粗大化したアルミナの剥離に起因する鋳片の大型介在物を大幅に削減することもできる。   In the immersion nozzle 1 according to the present invention having such a configuration, the molten steel flowing down the inner hole 5 collides with the inclined surface 7 of the bottom portion 3, and a reverse flow along the inclined surface 7 is formed. , 4 from 90 ° in the circumferential direction of the immersion nozzle 1, that is, the reverse flow flowing toward the counter discharge hole position increases, and the counter discharge hole position is forcibly agitated by the reverse flow. The stagnation of the molten steel at the position opposite to the discharge hole is eliminated. For this reason, alumina adhesion at the anti-discharge hole position where alumina adhesion was particularly severe is suppressed, and the casting possible time of the immersion nozzle 1 can be dramatically extended. Moreover, since the coarsening due to the adhesion and deposition of alumina particles in the internal hole 5 of the immersion nozzle 1 can be prevented, the large inclusions in the slab caused by the exfoliation of the coarsened alumina can be greatly reduced. it can.

図4に、2ストランドのスラブ連続鋳造機において、図1に示す本発明に係る浸漬ノズルを片側のストランドに設置し、他方のストランドに、図5に示すプール形状の従来の浸漬ノズルを設置して、低炭素アルミキルド鋼を5ヒート連続鋳造したときの、反吐出孔位置におけるアルミナ付着量の調査結果を示す。本発明に係る浸漬ノズルにおいて、頂点7aと最も低くなる位置との高低差は15mmとした。図4からも明らかなように、本発明に係る浸漬ノズルではアルミナの付着量が大幅に減少することが確認できた。   4, in a two-strand slab continuous casting machine, the immersion nozzle according to the present invention shown in FIG. 1 is installed on one strand, and the pool-shaped conventional immersion nozzle shown in FIG. 5 is installed on the other strand. Then, the investigation result of the amount of alumina adhered at the position of the anti-discharge hole when the low carbon aluminum killed steel is continuously cast for 5 heats is shown. In the immersion nozzle according to the present invention, the height difference between the apex 7a and the lowest position was 15 mm. As is clear from FIG. 4, it was confirmed that the amount of alumina deposited was significantly reduced in the immersion nozzle according to the present invention.

尚、鋳造の際には、内部孔5内を流下する溶鋼中に窒素ガスなどの非酸化性ガス或いはArガスなどの希ガスを吹込むことが好ましい。これらのガスの吹込みによってアルミナ付着がより一層抑制される。また、本発明は上記説明に限定されるものではなく、種々の変更が可能である。例えば、上記説明の浸漬ノズル1では、吐出孔4が水平方向に対して下向きであるが、吐出孔4の向きを水平方向或いは上向きとしてもよく、また、吐出孔4の形状が矩形であるが、吐出孔4の形状を楕円形或いは円形などとしてもよい。   During casting, it is preferable to blow a non-oxidizing gas such as nitrogen gas or a rare gas such as Ar gas into the molten steel flowing down in the internal hole 5. By blowing these gases, the adhesion of alumina is further suppressed. The present invention is not limited to the above description, and various modifications can be made. For example, in the immersion nozzle 1 described above, the discharge hole 4 is downward with respect to the horizontal direction, but the direction of the discharge hole 4 may be horizontal or upward, and the shape of the discharge hole 4 is rectangular. The shape of the discharge hole 4 may be elliptical or circular.

本発明の実施の形態を示す図であって、本発明に係る連続鋳造用浸漬ノズルの1例を示す側面概略図である。It is a figure which shows embodiment of this invention, Comprising: It is a side schematic diagram which shows an example of the immersion nozzle for continuous casting which concerns on this invention. 図1のX−X’矢視による側面概略図である。FIG. 2 is a schematic side view taken along line X-X ′ in FIG. 1. 図1のY−Y’矢視による平面概略図である。FIG. 2 is a schematic plan view taken along the arrow Y-Y ′ in FIG. 1. 本発明に係る浸漬ノズルと従来の浸漬ノズルとでアルミナ付着量を比較して示す図である。It is a figure which compares and shows the alumina adhesion amount with the immersion nozzle which concerns on this invention, and the conventional immersion nozzle. 底部がプール形状である従来の浸漬ノズルの側面概略図である。It is a side schematic diagram of the conventional immersion nozzle whose bottom is a pool shape. 底部が山型形状である従来の浸漬ノズルの側面概略図である。It is the side surface schematic diagram of the conventional immersion nozzle whose bottom part is a mountain shape.

符号の説明Explanation of symbols

1 浸漬ノズル
2 側壁部
3 底部
4 吐出孔
5 内部孔
6 スラグライン部
7 傾斜面
7a 頂点
DESCRIPTION OF SYMBOLS 1 Submerged nozzle 2 Side wall part 3 Bottom part 4 Discharge hole 5 Internal hole 6 Slag line part 7 Inclined surface 7a Vertex

Claims (1)

浸漬ノズルの軸心に対して左右対称である一対の吐出孔を側壁部に備えた連続鋳造用浸漬ノズルにおいて、2つの吐出孔の中心位置を通り、浸漬ノズルの長手方向軸心に平行である面と、浸漬ノズル底部の内表面と、が交差する位置の底面が最も高く、2つの吐出孔の中心位置を結ぶ直線と直交し且つ浸漬ノズルの軸心を通る面と、浸漬ノズル側壁部の内表面と、が交差する位置の底面が最も低くなるように、浸漬ノズルの底部の内表面が傾斜していることを特徴とする連続鋳造用浸漬ノズル。   In a continuous casting immersion nozzle having a pair of discharge holes that are symmetrical to the axis of the immersion nozzle in the side wall portion, it passes through the center position of the two discharge holes and is parallel to the longitudinal axis of the immersion nozzle. The bottom surface at the position where the surface and the inner surface of the bottom of the immersion nozzle intersect is the highest, the surface orthogonal to the straight line connecting the center positions of the two discharge holes and passing through the axis of the immersion nozzle, An immersion nozzle for continuous casting, wherein the inner surface of the bottom portion of the immersion nozzle is inclined so that the bottom surface at the position where the inner surface intersects is lowest.
JP2004061495A 2004-03-05 2004-03-05 Immersion nozzle for continuous casting Pending JP2005246442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061495A JP2005246442A (en) 2004-03-05 2004-03-05 Immersion nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061495A JP2005246442A (en) 2004-03-05 2004-03-05 Immersion nozzle for continuous casting

Publications (1)

Publication Number Publication Date
JP2005246442A true JP2005246442A (en) 2005-09-15

Family

ID=35027425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061495A Pending JP2005246442A (en) 2004-03-05 2004-03-05 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JP2005246442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177195A (en) * 2016-03-31 2017-10-05 品川リフラクトリーズ株式会社 Soaking nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177195A (en) * 2016-03-31 2017-10-05 品川リフラクトリーズ株式会社 Soaking nozzle

Similar Documents

Publication Publication Date Title
EP1952913B1 (en) Method for manufacture of ultra-low carbon steel slab
WO2008069329A1 (en) Molten metal continuous casting method
JP4556804B2 (en) Molten metal injection tube and injection method
JP2005246442A (en) Immersion nozzle for continuous casting
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JPH09108793A (en) Continuous casting method and straight immersion nozzle
JP2001347348A (en) Immersion nozzle for continuous casting
JP2005254245A (en) Pouring tube for tundish
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JPH04220148A (en) Molten steel supplying nozzle
JP2004283848A (en) Immersion nozzle for continuous casting of steel
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP7215361B2 (en) Continuous casting method
JP2011110561A (en) Method for continuously casting steel
JP6792179B2 (en) Immersion nozzle for continuous casting
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP2010274321A (en) Tundish for continuous casting
JP2004209512A (en) Continuous casting method and immersion nozzle
JP2001232449A (en) Immersed nozzle for continuous casting
JP2006239746A (en) Tundish for continuous casting of steel
JPH04238658A (en) Immersion nozzle for continuous casting
JPH11104794A (en) Continuous casting of beam blank
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921